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ABSTRACT   

A long period grating (LPG) modified with a mesoporous film infused with a functional compound, calix[4]arene, was 
employed for the detection of volatile organic compounds (VOCs). The mesoporous film consisted of an inorganic part, 
of SiO2 nanoparticles (NPs) along with an organic moiety of poly(allylamine hydrochloride) polycation PAH, which was 
finally infused with functional compound, p-sulphanatocalix[4]arene (CA[4]). The LPG sensor was designed to operate 
at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the 
measurement of the refractive index (RI) change induced by the complexion of the VOCs with calix[4]arene (CA). The 
LPG modified with 5 cycles of (SiO2 NPs/PAH)5PAA responded to exposure to chloroform and benzene vapours. The 
sensitivity to humidity as an interfering parameter was also investigated.  

Keywords: Long period grating (LPG), volatile organic compounds (VOCs), phase matching turning point (PMTP), 
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1. INTRODUCTION 
Among the many classes of contaminants to be found within the indoor air, volatile organic compounds, VOCs, have 
been identified as a major cause for concern [1].  Total VOC concentration (TVOC)is generally used as an indicator of 
the potency of VOCs to cause health effects [2]. Currently, measurements of the concentrations of gaseous contaminants 
at or near levels that are acceptable in terms of indoor air quality are not easily achieved. Expensive items of analytical 
equipment that facilitate techniques based on sampling and analysis are all that is available for TVOC measurement, and 
these must be calibrated and operated by experienced personnel. Consequently, the development of sensitive, cheap and 
reliable sensors capable of generating measurement results in real time is highly desirable. 

Optical fibre long period gratings (LPGs) coated with chemically sensitive materials have emerged as a promising 
platform for fibre optic sensors [3, 4]. Typically, the transmission spectrum of an LPG contains a number of resonance 
bands, each corresponding to coupling to a different cladding mode and each showing a different sensitivity to 
environmental perturbation, which has been noted to offer the potential for multi-parameter sensing.  The wavelengths at 
which light is coupled from the core to the cladding modes is governed by the phase matching equation ߣ௫ = ൫݊௖௢௥௘ − ݊௖௟௔ௗ(௫)൯Λ                                                                                   (1) 

 where λx represents the wavelength at which light is coupled to the LP0x cladding mode,  ncore is the effective refractive 
index of the mode propagating in the core of the fibre, nclad(x)  is the effective index of the LP0x cladding mode and Λ is 
the period of the LPG. The dispersion of an optical fibre is such that the difference between the core and cladding mode 
effective indices exhibits a turning point where the value is maximum.  For an FBG fabricated with a period such that 
equation (1) is satisfied at the phase matching turning point (PMTP), it has been shown that the sensitivity of the 
transmission spectrum to perturbation is at its maximum, and that for subsequent decreases in (ncore-nclad(x)), the LPGs 
transmission spectrum is characterised by the formation of a broad resonance band that subsequently splits into two.  

Recently, LPGs modified with porous coatings have attracted a lot of interest. For instance, we have demonstrated a new 
approach to LPG based chemical sensing: the chemical infusion of analytes into a mesoporous coating that consisted of a 
multilayer fillm of SiO2 nnanoparticles ((SiO2 NPs) ddeposited usinng the LbL teechnique [5]. In this studyy, the conceppt 
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compounds to bond to. The presence of functional chemical compounds increased the RI of the porous coating and 
resulted in a significant change in the LPG’s transmission spectrum, consistent with previous observations for increasing 
the coating thickness. All experiments have been conducted at 25 oC and 50% of rH.  

For VOC gas measurements the LPG fibre modified with the (PAH/SiO2)5CA[4] film was fixed in a measurement 
chamber of volume 380 cm3 and constant volumes of each analyte solutions (benzene and chloroform) was placed in 
proximity to the sensor. The sensor response was recorded at a frequency of 1 Hz. The transmission spectrum (TS) was 
recorded with each analyte solution present in the chamber and also after its removal. To regenerate the sensor response, 
the optical fibre was flushed using nitrogen gas. 

3. RESULTS AND DISCUSSION 
3.1 In fusion of the functional compound 

The transmission spectrum of the LPG undergoes changes due to the alternate deposition of SiO2 NPs, which influences 
the effective RI of the cladding mode, as described previously [3]. When the LPG was in the silica colloidal solution, the 
resonance feature (at ca. 677 nm) corresponding to coupling to the LP018 cladding mode exhibited a small linear blue 
wavelength shift of ca. 0.6 nm/layer, suggesting uniform film deposition (data not shown). As the optical thickness of the 
coating increased, it became possible to couple energy to the LP019 mode, with the corresponding development of the 
resonance band at ca. 830 nm [3]. In contrast to previous work [3] using this grating period the resonance feature starts to 
develop in air and is well-developed in water for this coating thickness.  

After deposition of the (PAH/SiO2)5 thin film on the LPG optical fibre it was immersed into 1 mM aqueous solution of 
the CA[4] compound to provide sensor with its specificity. The small change in transmission along with the wavelength 
shift was observed on immersion of the LPG into functional compounds, suggesting its efficient binding in the 
mesopores, Figures 2a and b. The sensor response saturated after ca. 15 min indicating completion of the binding 
process, Figure 2a. The same binding time was measured when UV-Vis spectra of the (PAH/SiO2)5 thin film deposited 
onto quartz substrates were measured (data not shown). After the LPG was withdrawn from the CA[4] solution, a blue 
shift of the LP018 resonance band was observed, accompanied by the splitting of the LP019 resonance band, indicating 
increase of the coating refractive index and thus incorporation of the CA[4] into the mesoporous (PAH/SiO2)5 thin film. 
In order to check its response to VOCs the LPG device was exposed to chloroform and benzene. 
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(a)                                                                  (b) 
Figure 2: (a), Dynamic change in the transmission of  an LPG with grating period of 111.5 μm coated with the (PAH/SiO2)5 
thin film, measured in 1 mM aqueous solution of the CA[4] at a wavelength of 821 nm;  (b) comparison of the transmission 
specturm measured in air before and after infusion of the  CA[4]. 
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3.2 VOC response 

Figure 3a shows the dynamic sensor response measured at 821 nm on exposure of the coated LPG in turn to saturated 
concentrations of chloroform, water and benzene vapors. The transmission undergoes dramatic change after the drop of 
the corresponding VOC liquid is placed into the measurement chamber. The response was observed to be reversible as 
after the cap of the chamber was opened and the sensor was re-exposed to ambient air, i.e. at the decrease of the VOCs 
concentration, the transmission reverted to its previous value. The effect of relative humidity was observed to be 
considerably lower than the response to the VOCs when the LPG was exposed to the same amount of water, Figures 3a 
and 3b. It should be noted that when the response to water vapour was larger before the infusion of CA[4]. These results 
suggest that CA[4] provides (PAH/SiO2)5 film not only with the specificity to VOCs compounds, but also reduces its 
sensitivity to humidity, most likely owing to CA[4]’s hydrophobicity. Changes in the TS of the LPG suggest that binding 
of the VOCs to the CA[4] induces an increase in the RI of the mesoporous (PAH/SiO2)5 CA[4] film, Figure 3b.  
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(a)                                                                           (b) 

Figure 3. (a) Dynamic sensor response at the exposure to chloroform, water and benzene of the LPG with grating 
period of 111.5 μm modified with the mesoporous (PAH/SiO2)5 CA[4] film measured 821 nm (b) TS spectra measured 
in atmospheres of: air, chloroform, water vapour and benzene.  

 
Conclusions 

The response of the LPG sensor modified with a mesoporous (PAH/SiO2)5 film infused with the CA[4] receptor to VOCs 
was studied. Presence of the CA[4] receptor allows to sensitive measurements of VOCs with high reversibility and rapid 
response time. Future work will focus on studying the response of different VOCs and also at determining the limit of 
detection by measuring concentration profiles. In addition, the effect of the calixarene size on sensor performance will be 
investigated. 
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