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Abstract 

Tuneable diode laser absorption spectroscopy (TDLAS) based gas sensors are widely used 

for trace gas detection for their high selectivity and sensitivity. The laser source used in  

TDLAS requires a narrow line width in the order of 10s of MHz, with a wavelength stability 

multiple orders lower than the molecular absorption line width, which is, for example, 

4.1GHz (38pm) for an air broadened methane line. 

 

TDLAS requires the use of a laser diode with a long term wavelength stability of better than 

10% of the absorption line width of the target gas species. The wavelength stability of the 

laser is highly temperature dependent as the wavelength increases with increasing 

temperature. Therefore, control of the temperature of the laser diode is vital for stabilising the 

laser emission wavelength. 

 

In this thesis, a novel method has been proposed to measure and stabilise the temperature of a 

laser diode. The laser diode emission wavelength was stabilised by using its measured 

junction voltage in a control feedback loop. In order to determine the junction voltage, a 

series resistance correction term was identified, which was the novel part of this wavelength 

stabilisation technique. The laser diode junction and forward voltages were calculated from 

the forward voltage drop of the laser diode at measured at various operating temperatures. 

The laser diode series resistance was measured dynamically and was subtracted from the 

forward voltage to calculate the junction voltage. Both the forward voltage and series 

resistances were found to be temperature dependent. 

 

This method was investigated for its short term (~ 5minute) and long term (~ 1 hour) 

wavelength stability and was compared with other available methods. The laser diode 

wavelength stability attained using this method has been also investigated at various ambient 

temperatures (10-40 °C). 

 

 The laser diode had a long term wavelength stability of ±0.7pm (±80MHz) and wavelength 

drift of 0.03pm /°C with ambient temperature using the junction voltage control technique. 

On the other hand, the conventional thermistor based control technique had a long term 



 

 

wavelength stability of ±2.2pm (±240MHz) and a wavelength drift of 3.8pm /°C with varying 

ambient temperature. The wavelength stability attained using junction voltage control was 

also compared with wavelength stability attained using the forward voltage technique. For 

this project, the forward voltage method was technique proposed initially to stabilise the laser 

diode wavelength. However, when this technique was used to stabilise the laser diode under 

variable ambient temperature, the laser wavelength drift was found to be ±4.5 pm/ ºC, almost 

double the conventional thermistor-based method. The long-term wavelength stability of the 

laser diode achieved using this technique was ±1.3pm (±145MHz), better than the 

conventional thermistor-based method. 

 

A further objective of this project was to develop a compact method for stabilising the laser 

diode and implement it in TDLAS based wavelength modulation spectroscopy (WMS) for 

detecting methane gas (CH4). Therefore, junction voltage control was used to stablise the 

laser diode wavelength in WMS, which had a wavelength drift of 0.24pm / ºC (26MHz / ºC) 

with ambient temperature, as compared to that achieved using the  conventional thermistor-

based control, which was 2.6pm / ºC (295MHz / ºC). 

 

In WMS, the laser emission wavelength is locked conventionally to molecular absorption 

line. This wavelength locking technique gives wavelength stability in the range of 1.6 kHz-40 

kHz over a duration of few seconds. However, this wavelength technique is complex and 

requires careful optical alignment. The wavelength locking technique is also sensitive to the 

optical path length of the reference gas cell and to the concentration of the reference gas. The 

junction voltage control is insensitive to optical alignment and uses electrical means to 

stabilise the laser diode wavelength. In addition, the locking technique is simple and could be 

implemented within the laser package. 

 

The junction voltage control technique has also been investigated for light emitting diodes 

with initial results suggesting that this method could also be extended for their temperature 

stabilisation. 
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1 

1 Introduction 

Tuneable diode laser absorption spectroscopy (TDLAS) based sensors are reliable, compact 

and gas specific. Laser diodes in TDLAS are single mode, with output wavelengths that 

match absorption features of the target gas, typically in the mid-infrared region. Sensors 

based on TDLAS have wide applications, including in atmospheric measurement, where high 

sensitivity is required, and in aircraft or gas flux measurement, where a fast response time is 

essential. The gas absorption lines have narrow linewidths and to achieve high resolution 

spectroscopy, the linewidth of the laser diode has to be narrow. Therefore, the laser diode 

should have sufficiently narrow line width and high wavelength stability to meet the 

requirements of TDLAS. The laser diode output characteristics, such as wavelength and 

output power, are temperature dependent. Therefore, a laser diode used in TDLAS will 

require a robust temperature controller to achieve suitable wavelength stability. 

 In addition, the laser diode wavelength drifts with time due to heat generated by the laser 

diode injection current and variation in the ambient temperature in the absence of a 

wavelength control system. Therefore, some means of laser wavelength control will be 

required to maintain the laser diode’s central wavelength.  

This chapter sets out the background to the application, the objectives and outlines the 

structure of the thesis. 

1.1  Back ground to laser diode wavelength stability techniques  

Laser diode central wavelength drifts over time with fluctuation in operating temperature and 

injection current. To reduce the drift in the laser diode wavelength, several techniques have 

been developed that can be divided into the following categories [1]: 

 Interferometers 

 Molecular absorption lines 

 Atomic transitions 

Laser wavelength locking systems based on interferometers such as Fabry-Perot (FP) etalons 

and waveguide resonators are used widely due to their simple implementation and wide 

tuning range. The laser diode central wavelength is locked to the FP etalon. The first 
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derivative of the FP etalon transmission curve can be used in the feedback loop for the 

wavelength stabilisation of the laser diode [1][2]. 

FP based wavelength locking systems provide good short-term wavelength stability. 

However, the cavity length of the FP cavity fluctuates with temperature and will require an 

absorption reference to maintain its cavity length, complicating its use for ensuring long-term 

wavelength stability [1].  

Molecular and atomic absorption lines are the other techniques where the laser central 

emission wavelength is locked to the atomic or molecular absorption lines such as rubidium 

(RB), cesium(Cs), methane (CH4) and ammonia(NH3). These atomic and molecular 

absorption lines provide good long term wavelength stability. However, absorption line 

locking provides wavelength locking at discrete wavelengths (due to the absorption lines at 

specific wavelengths) limiting its application [3]. 

The above three categories and the variety of wavelength locking techniques could be 

adopted in TDLAS . The target gas of this thesis is methane. Methane was selected as it has 

inference free, strong gas absorption lines in the near infra-red region, it as a narrow line 

width and TDLAS is used widely for its detection.  

1.2  Application to gas sensing 

Gas detection in TDLAS is carried out by scanning the narrow emission line width of a laser 

diode across the target gas absorption line. The narrow line-width and absorption-specific 

emission wavelength allows for selective, high-resolution detection. TDLAS gas sensors have 

high signal to noise ratio (SNR), fast response times and accuracy. To achieve high resolution 

spectroscopy, the laser diode wavelength has to be known accurately and its wavelength 

fluctuation should be smaller than the line width of the target gas absorption line [4]. This 

stringent requirement of wavelength stability much better than the line width of the gas 

absorption line necessitates a very stable laser diode in TDLAS. 

The laser diode emission wavelength drifts with temperature and has a large temperature 

coefficient. Therefore the temperature control of the laser diode is vital for TDLAS.  

The common method for stabilising the laser diode emission wavelength may be achieved by 

locking the laser diode to a gas absorption line. While this method has the advantage of high 
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wavelength stability, it requires highly sensitive and difficult optical alignment and an 

additional measurement channel.   

This thesis will investigate alternative methods for stabilising the laser diode temperature, 

with the requirement that the technique  simple, has  a wide tuning range for use in TDLAS 

and other laser diode based applications where stringent laser diode wavelength stability is 

required. In addition, the project will aim to develop a compact wavelength stability 

technique (without the requirement of a wavelength locking reference) using an all-electronic 

method. 

 

1.3  Thesis objective 

This thesis is focused on stabilising the operating temperature of a laser for use in high 

resolution TDLAS. The main objectives of thesis are outlined below: 

 Investigate the performance of laser diode wavelength stability with temperature 

using conventional thermistor and thermoelectric cooler based system 

 Investigate methods and techniques to measure the operating temperature of the laser 

diode 

 Investigate the feasibility of using the voltage drop measured across the laser diode 

terminals as a temperature sensor and for use in stabilising  wavelength of the laser 

diode 

 Implement this scheme in tuneable laser diode absorption spectroscopy 

 Extend this scheme to other light sources, such light emitting diodes 

The developed wavelength stablisation approach will be exploited in a TDLAS system to 

detect methane. The scheme could be applied more generally to the detection of other gases. 

1.4  Thesis outline 

Concise literature review is presented in Chapter 2, covering the issue of laser diode 

wavelength stability and reviewing the laser diode wavelength stabilisation techniques that 

have been used gas absorption spectroscopy systems.  Gas detection using the optical 
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absorption spectroscopy technique Wavelength Modulation Spectroscopy (WMS) is 

discussed in detail. In addition, factors that limit the performance of WMS, such as 

interference fringes and residual amplitude modulation (RAM) , are also reported. The 

primary objective of this thesis is to develop a wavelength stabilisation technique for use in 

wavelength modulation spectroscopy that will provide an alternative to the conventional 

technique of locking to the wavelength of a gas absorption line, which is affected by factors 

like RAM and interference fringes. The Literature review identified the need for a simple and 

robust laser diode wavelength stabilisation technique for use in TDLAS  

Chapter 3 covers theoretically the effect of temperature on the laser diode threshold current, 

output power and emission wavelength. Different methods for measuring the laser diode 

operating temperature are also investigated and compared. The effect of the laser diode series 

resistance is also considered. Diode series resistance measurement methods are theoretically 

and experimentally investigated and compared. The experimental verification the theoretical 

analyses in chapter 3 is carried out in the next chapter  

Chapter 4 starts with a theoretical analysis of the effect of temperature on the forward voltage 

of the laser diode. This is followed by experimental work to develop suitable techniques for 

measuring the forward voltage of a laser diode. Different light source such as a distributed 

feedback (DFB) laser, vertical cavity surface emitting laser and LED were investigated to 

determine the effect of temperature on their forward voltages and the use of their forward 

voltages as a measure of their junction temperature. An alternative method known as the 

power averaged wavelength technique is also investigated for measuring the junction 

temperature. In the following chapter forward voltage method is investigated for calculating 

the laser diode junction temperature and then using it to stabilise its emission wavelength.  

Chapter 5 deals with a modified technique whereby the actual junction voltage of a laser 

diode is determined by taking into account the series resistance and correcting the measured 

forward voltage. A theoretical model is followed by experimental investigation into the 

wavelength stability achieved using the junction voltage method implemented in a control 

feedback loop. Finally, the use of the junction voltage method is investigated for stabilising 

the laser diode by means of an optical spectrum analyser and molecular absorption line. In the 

next chapter the application of junction voltage based wavelength control in TDLAS 

technique is investigated 
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In chapter 6, a WMS based system is setup with a conventional temperature controller and is 

used for probing different concentrations of methane gas. The conventional temperature 

controller is replaced with the newly developed temperature control method and the system 

again used to detect methane gas. In the final setup, the influence of variations in ambient 

temperature on the performances of the system employing the conventional temperature 

controller and of that using the newly developed method is compared. 

Chapter 7 concludes this thesis with a summary and consideration of future work. 
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2 Introduction to optical gas detection  

This chapter discusses the issues raised by the wavelength stability required of laser diodes 

used in TDLAS. The aim of this chapter is to review laser wavelength locking references and 

methods for use in absorption spectroscopy. 

The basics of optical gas detection will be discussed along with the reasons for the choice of 

the target gas, methane. This will be followed by a detailed explanation of WMS, which is 

used experimentally in chapter 6.  The noise sources that affect WMS and techniques to 

eliminate or reduce their influence on the detection sensitivity of WMS are also discussed in 

this chapter. 

2.1  Wavelength stability of laser 

The stability of the laser wavelength is vital for the resolution of narrow band molecular 

transitions in the probed species. The wavelength of the laser drifts due to geometric changes 

in its cavity length induced by thermal, mechanical and acoustic noises. The temperature and 

carrier density can also affect the refractive index of the laser diode cavity. The change in 

operating temperature and current can therefore change the optical cavity length of the laser 

diode, which in turn changes the wavelength output from the laser. The change in resonant 

frequency due to the change in the laser cavity length can be represented the in the following 

equation [1]  

 
𝑑𝑣

𝑣
=

𝑑𝑙𝑟

𝑙𝑟
            (2.1) 

Where 𝑣 is the lasing frequency and  𝑙𝑟= 𝑛𝑙 is the cavity length. Taking into account the 

thermal expansion of the cavity length and the thermal induced refractive index change, the 

change in the cavity length of the laser diode in response to a change of temperature, dTav can 

be expressed as 

 𝑑𝑙𝑟 = 𝑛𝑙 (𝛼𝑒 +
𝜕𝑛

𝑛𝜕𝑇
) 𝑑𝑇𝑎𝑣              (2.2) 

Where 𝛼𝑒 is the thermal expansion coefficient, 𝑛 is the refractive index of the cavity and 𝑇 is 

the operating temperature of the laser. Inserting equation (2.1) in equation (2.2), the thermally 

induced change on the laser wavelength can be expressed as 
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𝑑𝑣

𝑑𝑇
= −(𝛼𝑒 +

𝜕𝑛

𝑛𝜕𝑇
)𝑣             (2.3) 

In the next section different wavelength locking reference and techniques used to stabilise the 

laser diode emission wavelength will be reviewed 

2.2  Basic principle  of stabilising laser diode emission wavelength  

The laser diode emission wavelength is often stabilised by comparing its wavelength to the 

wavelength of reference wavelength source and an error signal is fed back to the laser diode 

driver as shown in Figure 2.1. 

 

Figure 2.1 Basic concept of laser diode wavelength stabilisation. Adapted from [2] 

Several types of wavelength references, such as Fabry-Perot (FP) etalons and gas molecules 

absorption lines have been used to stabilise the laser diode wavelength and are described 

below. 

The laser diode wavelength can be stabilised using an external wavelength reference by 

adopting two basic methods, as shown in Figure 2.2. In one method, a narrow wavelength 

reference is used for wavelength stabilisation of the laser diode [2]. The derivative of the 

spectral curve of a wavelength reference such as an FP interferometer or gas absorption line 

is acquired and is used for wavelength stabilisation. Alternatively, a narrower wavelength 

spectrum can be obtained from an external reference source such as a Doppler-free line of gas 

molecular absorption. The derivative of this line is then acquired. The zero crossing point 

between the derivative curve at the horizontal axis is used as the reference wavelength [2].  

 Both methods require accurate acquisition of the centre wavelength of the referenced 

spectrum. 

 

Semiconductor 
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Figure 2.2 (a) The use of narrow spectrum itself as a wavelength reference (b) and the 

used of the narrower spectrum obtained from the original spectrum. Redrawn from [2] 

 

Table 2.1 summarises the wavelength locking techniques and references used in stabilising 

laser diode wavelength. 

Table 2.1 Categories and types of wavelength references Taken from [2] 

Category Type Materials 

Interferometers 
Fabry-Perot 

Wave guide resonator 
Air, quartz, glass 

Atomic transition 
Normal absorption, 

Optogalvanic effect 

Rb, Cs, Na, K, Ba, Bi etc 

 

Gas molecular absorption Diatomic molecules 
I2, Cs2, Na2, K2, Rb2, O2, HF, 

HI 

 Poly atomic molecules 
H2O, NH3, HCN, C2H2, CH4, 

H2CO 

 

The wavelength stability of the laser diode cannot exceed the line width of the wavelength 

reference, so that the choice of the wavelength reference should reflect the requirements of 

the wavelength stability. A good wavelength reference should be independent of external 

perturbations such a temperature, pressure, electric and magnetic fields [3] 

In the next section, the wavelength techniques tabulated in Table 2.1 are reviewed in detail. 
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 Interferometer based wavelength references  2.2.1

The interferometer is the most common and oldest method used for laser diode wavelength 

stabilisation. Interferometers such as waveguide resonators and FP etalons are easy to 

implement and have wide tuning ranges [4]. 

 The 1
st
 derivative of the FP transmission curve is used for locking the laser diode emission 

wavelength. When a laser diode is modulated with a sinusoidal signal, the laser diode 

wavelength modulation λ can be described by the following equation [2] 

 𝜆 = 𝜆𝑜 + 𝜆𝑚𝑜𝑑sin (𝜔𝑡) (2.4) 

Where λ0 is the average wavelength of the laser diode, λmod is the wavelength amplitude 

modulation, ω is the frequency modulation, and t is the time. 

The transmission, T (λ), of the FP etalon is given by [2] 

 
𝑇(𝜆) =

𝑇𝑚𝑎𝑥

[1 + 4 {(
𝐹𝑒

𝜋 ) sin [
(𝜆𝑚𝑜𝑑 − 𝜆𝑚)𝜋

𝐹𝑆𝑅 ]}]
  

(2.5) 

Where Tmax is the peak etalon transmission; FSR is the free spectral range of the FP etalon, Fe 

is its finesse, and λm is the transmission peak wavelength of FP etalon. 

If the argument of the sinusoid in equation (2.5) meet the following condition  

 
(𝜆 − 𝜆𝑚)𝜋

𝐹𝑆𝑅
≪ 1         (2.6) 

then equation (2.5) can be expanded in a Tayler series about the average wavelength λ0 , 

resulting in a first approximation 

 𝑇(𝜆) = 𝑇(𝜆0) + 𝑇 ̷(𝜆0)sin (𝜔𝑡)         (2.7) 

T΄( λ0)
 
is the first derivative of the Fabry-Perot etalon transmission curve with respect to the 

laser wavelength . In equation (2.7), the amplitude and the sign of sin(ωt) are directly 

proportional to the first derivative of the etalon transmission curve 

 For a tightly locked system, the difference between the average wavelength and etalon 

transmission peak wavelength is much less than the etalon pass band width, λ0 - λm ≪  
FSR

F
 . 

Therefore, the etalon transmission function and its derivative can be approximated as  
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 𝑇(𝜆) = 𝑇𝑚𝑎𝑥          (2.8) 

 𝑇 ̷(𝜆0) = [−
8(𝜆0 − 𝜆𝑚)

(
𝐹𝑆𝑅

𝐹 )
2 ] 𝑇𝑚𝑎𝑥        (2.9) 

The first derivative of the etalon transmission becomes zero when λ0 = λm i.e. the laser 

wavelength is locked.  

Byovskii et al [2], in 1970 for the first time implemented a wavelength stability scheme using 

an FP etalon. The laser had a frequency tuning coefficient of -0.9 GHz/mA, and the authors 

modulated the injection current of the laser diode. They obtained the 1
st
 derivative of the F-P 

transmission and, by using this derivative curve as a wavelength reference, they attained a 

frequency (wavelength is directly related to wavelength) stability of 40MHz over a duration 

of several minutes.    

Picque and Poizen obtained an improved frequency stability of 4MHz by enhancing the 

cooling system for the GaAs laser diode [5] by using helium gas.   

 A practical FP-based scheme for the wavelength stabilisation of a laser diode was developed 

by Okoshi et al. [6].  Figure 2.3 shows the block diagram of their wavelength stabilisation 

scheme. In this scheme the laser diode wavelength was stabilised by feeding back the error 

into Peltier cooling system. 

 

 + 

- 

Pd.-B 

Pd.-A 

Fabry-Perot 

interferometer 

GaAlAs 

Laser 

Peltier 

element 

Differential 

amplifier 

Beam splitter 

Figure 2.3 Wavelength stability scheme based on Fabry-Perot interferometer, designed 

for use in practical application. Redrawn from []  
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The unmodulated output of the GaAs laser, at an operating wavelength of 0.828µm, was 

divided into two parts and fed separately into a photo-detector A (Pd A) and, via a Fabry-

Perot interferometer, to photo-detector (Pd.B). The pass band of the Fabry-Perot was adjusted 

using a piezoelectric tuning element, so that the laser emission wavelength coincided with the 

maximum – slope of the transmission spectrum of the FP. The detected voltages of the photo 

diodes were sent to a differential amplifier and fed back to the Peltier cooling element. The 

output from the differential amplifier maintained the central wavelength of the laser output at 

a fixed wavelength corresponding to the maximum slope point. Their results suggested that 

frequency fluctuation could be reduced below 10MHz [6]. 

A slightly modified version of the above scheme was proposed by Frave and Gaven, where 

the output from the differential amplifier was fed to the laser diode current driver instead of 

the Peltier [7]. The advantage of this scheme was its fast response compared to the system of 

Okoshi et al. Frave and Gaven reduced the long-term fluctuation to 8 MHz and the short term 

fluctuation to 1.5MHz.  

However, the temperature dependence of the FP cavity will cause fluctuations in the 

wavelength reference. To overcome this, improved materials such as ultra-low expansion 

(ULE) glass has allowed the demonstration of  sub Hz wavelength stability of a laser. Alnis et 

al [8] reported a frequency drift of 0.1Hz/s using ULE and a vertically mounted FP cavity. 

Kessler et al [9] proposed an FP cavity made from single-crystal silicon. The cavity 

configuration was insensitive to vibration, with superior stiffness of the silicon crystal. They 

reported frequency stability of 1x10
-6

 in the time scale of 0.1-1s and the stability remained at 

a low level of 10
-6

 for 10s.  Hirata et al [10] showed an improved laser frequency stability, 

with frequency drift of 25 MHz/s. 

 Atomic transitions  2.2.2

Solids or gases emit light due to heat or electric discharge. This light contains spectral lines 

corresponding to definite wavelengths. These spectral lines from atomic transitions can be 

used as wavelength references for stabilising the laser diode wavelength [2]. This emission of 

light can be described by the quantum theory of radiation: 

 ℎ𝑣 = 𝐸𝑢𝑝𝑝𝑒𝑟 − 𝐸𝑙𝑜𝑤𝑒𝑟 (2.10) 

Eupper and Elower represent the upper energy level and lower energy level respectively. h is the 

Plank constant and v is the frequency of the emitted photon. 
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Historically, atomic transitions have been used as wavelength references in the microwave 

region, in the so-called atomic clock [2]. The use of an atomic transition as a wavelength 

reference was first attempted by Arditi and Picque, using a microwave frequency standard 

technique [11]. They achieved absolute wavelength stability to within 2 parts in 10
10

 for a 

duration of 5minutes. 

Yabusaki et al in 1981 carried out the first direct stabilisation of a laser diode’s output 

wavelength using an atomic transition [12]. They stabilised the wavelength of a GaAlAs laser 

diode by using the Doppler free spectrum of the Cs-D2 line at 0.8521µm.They achieved an 

estimated stability between 3x10
-12

 and 1x10
-11

 for the average time durations of 0.1s and 

1000s respectively. 

Figure 2.4 Experimental setup for the stabilization of laser wavelength using the Cs-D2 

line at 0.8521µm [12] 

Figure 2.4 shows the block diagram of the experimental setup used in wavelength 

stabilisation of the laser diode. The wavelength of the laser diode was stabilised by stabilising 

temperature within ±10 
-3

 °C. They obtained an Allan variance between 3x10
-12

 and 1x10
-11

 

for the average time ranges 0.1s to 1000s, respectively.  

Tanaka et al [13] reported the wavelength stabilisation of a laser diode using a combination 

of a confocal Fabry-Perot (CFP) cavity and a Rb-D2 line to simultaneously improve long and 

short term frequency stability. The CFP was used to achieve short term stability and, for long 
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term stability, the cavity length of CFP was controlled by the Rb-D2 line. The authors 

achieved stabilities of 2x10
-12

 and 2x10
-14

 in the time ranges 0.1 and100s, respectively. 

Crowin et al [14] achieved a frequency stability of 0.5MHz peak to peak over a period of 38 

h. They locked to a Doppler broadened Rb line by employing a Zeeman shift (spectral lines 

are divided into closely spaced lines upon the application of magnetic field), generating an 

anti-symmetric resonance.   

Zhao et al [15] reported the frequency stabilization of an external cavity laser using the sub 

Doppler spectrum of Cs atoms and achieved a stability of 5x10
-11

 over a  duration of 200s. 
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 Optogalvanic effect  2.2.3

When a flame or a discharge is illuminated by radiation which has a wavelength 

corresponding to an atomic or molecular transition, then the electrical properties of the 

radiation change due to the optogalvanic effect [2]. 

The optogalvanic effect can be observed in all types of discharges such as normal discharges, 

hollow cathode discharges, microwave discharges and even flames. 

Green et al first reported the observation of a laser-induced change in the voltage of a gas 

discharge tube plasma and then used this voltage as a wavelength reference for a dye 

laser[16][17]. The apparatus used by Green et al is shown in the Figure 2.5. 

 

Power 

supply 

Discharge tube 

Scope 

Chopper 

 Tuneable laser 

+ Current 

Phase sensitive 

detector 

- + 

Figure 2.5 Block diagram of the experimental setup for laser wavelength stabilisation 

using the optogalvanic effect. Redrawn from [16] 

The opto-galvanic error signal arises due to the variation in the discharge voltage of a plasma. 

When the optical radiation, having a wavelength corresponding to the atomic transition in the 

discharge, is passed through the plasma, optical absorption changes the ionization potential of 

atoms in the discharge. This change in ionization potential translates to a variation of the 

voltage of the gas discharge tube plasma. The voltage of the plasma decreases due to the 

increase in discharge current, as atoms are excited from a level with small ionization 

probability to a level that has a large probability of ionization.  
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The opto-galvanic effect was discovered by Green et al in 1976, but little attention was given 

to this method until the mid-1980 due to the requirement for a large optical power to induce a 

large change in the voltage of the gas discharge. In 1988, Cheung et al succeeded in 

producing an opto-galvanic signal at a relatively low power (0.5mW) using a DFB laser 

diode. They used argon (Ar) at 1.3µm and krypton (Kr) at 1.5 µm for a wavelength reference 

[18][19]. Cheung et al reported a reduction in wavelength fluctuation of their laser system 

from 25MHz to 1.2MHz [18][19]. 

 Gas molecule absorption  2.2.4

The absorption lines of gas molecules can be used as wavelength references for stabilizing 

the emission wavelength of laser diodes, as shown in Figure 2.6. These absorption lines 

correspond to electronic and vibrational - rotational transitions of the gas molecules. Most of 

the electronic transitions for the gas molecules (except for iodine) are in the ultraviolet 

region, which cannot be used as reference for laser diode wavelength stability [2]. Thus, 

vibrational – rotational transition with wavelengths in the range of 0.5µm-10µm are used as 

wavelength references. 

Shimoda in 1968, for the first time, developed a scheme for stabilizing the wavelength of a 

laser diode [20]. Shimoda used the absorption line of the CH4 v3 transition as a wavelength 

reference. 

The choice of the molecular absorption line as a wavelength reference was based on the 

following advantages [2]: 

 The probability of finding a molecular transition that will match the laser transition is 

very high 

 Molecular absorption lines have narrow linewidths due to their long radiative life 

times, making them good candidate for wavelength referencing 

 Absorption can be obtained from thermally populated  states and when such 

absorption takes place from the ground states, perturbing effects like discharge can 

eliminated 

It has been reported that the vibrational- rotational absorption lines of methane are the 

best candidates for use in laser wavelength stabilisation schemes [2]. In addition, the 

absorption lines of the iodine molecule (499nm-909.1nm) were found to be another good 

wavelength reference. The following block diagram shows a wavelength stability scheme 

using a gas molecular absorption line. 
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Figure 2.6  Molecular absorption line typical arrangement used for laser frequency 

stabilisation 

Table 2.2 lists the frequency stability achieved using different molecular gas absorption lines. 

Table 2.2  Frequency stability achieved using molecular absorption line as a 

wavelength reference 

Molecular 

absorption line 

Wavelength 

range 

(µm) 

Frequency stability 

(Allan variance) 

Time 

duration 

Reference 

CH4 7.7 4.3 x10-11 (1.6 kHz) 15s  [21] 

NH3 1.5 8 x10-11(16 kHz) 1s [2] 

C2H2 1.5 2 x10
-10 

(40 kHz) 1≤ τ ≤100s [2] 

HF 1.3 7.9 x10
-11 

(18 kHz) 240s  [22] 

H2O 0.8 1.1 x10
-11

(4 kHz) 100s  [23] 

 

More recently, Ryu et al [24] reported on the frequency stabilisation of a widely tuneable 

external cavity laser using an optical frequency comb. This optical frequency comb was 
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generated using a seed laser stabilised by an acetylene absorption lines. They reported a 

frequency stability of 1.1 x10
-12

 (220Hz) for an averaging time of 1s. 

2.3  Optical absorption spectroscopy  

This section starts with the underlying principle behind absorption spectroscopy, with 

emphasis on methane gas detection, which is the target gas in this project. The choice of 

methane gas for this project is due to its will characterised spectrum and narrow line width. A 

detailed discussion on the gas absorption molecule spectrum and line shape is provided, 

which is relevant in understanding wavelength modulation spectroscopy  

 Basic principles of optical absorption spectroscopy 2.3.1

Absorption spectroscopy is described by the Beer-Lambert law, as shown in Figure 2.7 [25], 

where an electromagnetic wave with intensity 𝐼𝑜 and frequency 𝑣 is transmitted through an 

absorption medium. The concentration of the gas is measured from the attenuation of the 

incident light.  The length of the absorption medium is 𝐿 with a gas concentration 𝐶 .The 

absorption medium has a frequency dependent absorptivity k cm
-1

 atm
-1

. The intensity of the 

transmitted electromagnetic waves decays exponentially with length on interaction with the 

absorption medium. The exponential decay of the transmitted intensity is described in the 

following equation (2.11) [25]. 

  𝐼(𝑣) = 𝐼𝑜(𝑣)exp (−𝑘(𝑣)𝐿𝐶) (2.11) 

I (v) represents the transmitted intensity. 

Figure 2.7 Principle of Beer Lambert Law 

The proportion of transmitted light can be represented by its transmittance, 𝑇, given below in 

equation (2.12) 

 𝑇 =
𝐼(𝑣)

𝐼𝑜(𝑣)
 = exp(−𝑘(𝑣)𝐿𝐶) ≌ 1 − 𝑘(𝑣)𝐿𝐶                            (2.12) 
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Equation (2.12) can be written in linear form for low gas concentrations, to give a measure of 

absorbance or optical density 𝐴 by the probes species. 

 𝐴 ≈ ln (
1

𝑇
) = 𝑘(𝑣)𝐿𝐶         (2.13) 

Equation (2.13) shows that the absorbance (𝐴) is directly proportional to the concentration 𝐶 

of the target gas. Concentrations of unknown gases are measured in the gas mixture in terms 

of volume mixing ratio, expressed in parts per million by volume (ppmv). For an ideal gas, 

this represents a mole fraction of the gas molecule in a gas mixture [26]. 

Figure 2.8 represents the methane spectrum in the wavelength range 1610-1690nm. The 

spectrum was plotted for a path length of 10cm with 1atm pressure. 

 

Figure 2.8  Methane spectrum in the wavelength range 1610-1690nm. Re plotted from 

[27] 

This is the wavelength range targeted in this project for the absorption spectroscopy. The gas 

absorption lines are well isolated from neighbouring methane absorption lines (approximately 

3nm) and other molecules such as water.  
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Figure 2.9 Methane absorption line at 1650.96 nm at 1atm pressure and 10 cm path 

length. Re plotted from [27] 

The strongest absorption line is at a 1650.96 nm, as shown as shown in Figure 2.9. This is the 

target wavelength of the project due to its strength and isolation from neighbouring 

molecules. The path length for the plot in Figure 2.9 was 10cm, which is approximately the 

length of the gas cell used in this project (10cm length will reduce the effects of interference 

fringes as will be discussed in detail in section 2.4.5). The full width half maximum of this 

absorption line is 50pm. 

 Origin of gas molecules absorption spectra 2.3.2

Molecules are excited from their ground state to an excited state due to the absorption of a 

photon; this changes the rotational, vibrational or electronic energy of the gas molecule. The 

transition of energy states in the gas molecules can be interpreted in terms of spectral lines; 

molecule absorption spectroscopy is the study of these spectral lines. Each gas molecule has a 

unique absorption spectrum, as gas molecules will absorb frequencies (energies) resonant 

with their natural frequencies [28].  

The absorbed wavelengths range from the microwave region to the vacuum ultraviolet 

(VUV) region of the electromagnetic spectrum. However, spectroscopic gas detection is often 

concerned with the infra-red region (1.5μm - 25µm) of the electromagnetic spectrum. In the 

middle infra-red region, the molecular absorption cross section (absorptivity/atomic number 

density) is 10
-18

cm
2
 and absorption bands of many gasses of interest, such as methane, 

hydrogen sulphide and carbon mono oxide, are present in this region [29]. Therefore, in the 
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infra-red region, the detection sensitivity is high and the spectrum can be used as a fingerprint 

for identifying gas molecules in a gas mixture. 

An infrared radiation corresponds to absorption energy in the range 8-40 kJ/mole (assuming 

it is an ideal gas). This energy range represents the bond frequencies corresponding to 

stretching and vibration in many covalently bonded molecules. When a molecule absorbs 

infrared radiation its vibrational energy increases. Not all molecules in a gas produce 

absorption spectra; only molecules with a dipole moment, which absorb energy due to the 

vibrational or rotational motion of the dipole, produce a vibrational or rotational spectra 

spectrum [28].  

 𝑣 = 4.12√𝐾
𝜇⁄  (2.14) 

 

  µ =
𝑀1𝑀2

𝑀1 + 𝑀2
 (2.15) 

𝑣 is the natural frequency of vibration of a bond, 𝐾 is the force constant which varies from 

bond to bond e.g. a triple bond has higher force constant than does a double bond, and a 

double bond has higher force constant than single bond . 𝜇 is the reduced mass of the system, 

and M1 and M2 are the atomic weights [28]. 

 By analysing equations (2.14) and (2.15), it can be concluded that stronger bonds have 

higher vibrational frequencies than weaker bonds and that bonds between lighter atoms 

vibrate at higher frequencies than the bonds between heavier atoms [28].  

 Methane Gas line  2.3.3

Methane is a tetrahedral molecule with four fundamental vibrational modes v1 (3.432μm), v2 

(6.563μm), v3 (3.311 μm), and v4 (7.656 μm) as shown in Figure 2.10. v1 and v3 represents 

the bending modes, whereas v2 and v4 characterise the stretching bands. v3 and v4 are the 

two strong fundamental bands.  
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Figure 2.10 Fundamental vibration modes for CH4 molecule. Redrawn from [2] 

Tuneable lasers with wavelength lower than 2μm when operating at room temperature, in the 

near infrared region, which contains overtones and combination bands, are also used for the 

detection of methane measurement. The strength of overtones and combination bands in this 

region are 10-1000 times weaker than the fundamental bands, but commonly available lasers 

and detectors operate in this region. Therefore, TDLAS is carried out in near infrared region 

where the 2v3 band is the strongest absorption band with centre wavelength 1.665 μm. 

Table 2.3 shows the overtone and bands for methane in the near infra-red region, which is the 

target region of this project. 

Table 2.3 Overtones and combination of methane absorption bands in the near infrared 

region [2] 

Band(μm) v (GHz) Classification 

1.135 263.8 v1+2v3 

1.1620 25.8 3v3 

1.1873 25.2 2v1+2v4 

1.3305 22.5 v2+2v3 

1.6645 18 2v3 

1.7335 17.3 v1+v2+v4 

1.7898 16.77 v1+2v4 

 

 Absorption l ine shape 2.3.4

Absorption spectroscopy quantifies concentration of gas analytes using the Beer-Lambert 

law. Absorption spectroscopy is also dependent on the width of the line, line strength and line 

shape of the probed gas species. Pressure and temperature can change the shape and width of 
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the absorption line. Under certain temperatures and pressures, gas lines for some gases are 

well defined and separated, allowing highly sensitive gas detection. However, at higher 

pressures these gas molecules can experience width broadening and cross interference from 

neighbouring gas lines.  

 

Figure 2.11 Absorption spectra of the of the 2v3, band of methane obtained by Uehara 

et al
 
 [30] (a) Doppler broadened absorption spectrum and (b) Pressure broadened 

methane absorption spectrum   The methane partial pressure was 4 Torr in both traces, 

but 1-atm air is added in (b). The absorption cell length was 50 cm 

Figure 2.11 shows the absorption spectrum of the Q branch of the 2v3 band of methane at 

different pressures. The widths of the methane absorption lines in Figure 2.11 (a) are very 

narrow and well defined at 4 Torr. While, on the other hand, where 1atm air has been to the 4 

Torr methane pressure, these absorption lines are wide with less defined structure, translating 

to a low absorption coefficient [31] 
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Linewidths of gas spectral lines are modelled using spectral lineshape functions such as 

Lorentzian and Gaussian line shapes. Atmospheric gases measurement is affected by two 

broadening mechanism, collisional (pressure) broadening and Doppler broadening.   

Collisional (pressure) broadening of gas spectral lines occurs due to the collision of different 

gas molecules contributing to gas line shape. In collisional broadening, the energies in the 

ground or excited states of the gas molecules are changed slightly by the collision [29]. 

Collisional broadening is dominant above a pressure of 100 Torr. The linewidth of a gas line 

increases linearly with pressure at a given temperature [29]
 
 

 ∆𝑣𝐿 = 2𝑏𝑐𝑝 (2.16) 

Where ∆𝑣𝐿is the Lorentzian linewidth; 𝑝 is gas pressure and 𝑏𝑐is the pressure broadening 

coefficient which is determined experimentally. The absorption cross section at a line centre 

𝑣𝑜 is given by 

 𝑘(𝑣𝑜) =
2𝑆

(𝜋∆𝑣𝐿)
= 2𝑆

𝜋𝑏𝑐
⁄  (2.17) 

Where 𝑆 is the line strength and  𝑘(𝑣𝑜) is the absorption cross section [29].  At conditions 

where pressure broadening is dominant, the peak absorption cross section decreases linearly 

with increasing pressure and the line widths are typically around 0.1cm
-1 

at atmospheric 

pressure [31]. 

Doppler broadening is caused by the thermal excitation of gas molecules along the 

observation path.  As the gas molecules are continuously moving with respect to the source or 

detector, the frequency of the gas molecules appears to be Doppler shifted, resulting in 

increased linewidth [32]. 

At pressure of less than 10 Torr, Doppler broadening defines lineshapes and linewidth of gas 

molecules. Doppler broadened linewidths are 1-2 orders of magnitude smaller than collisional 

broadened linewidths at atmospheric pressure. 

A Doppler broadened lineshape is a Gaussian function, which depend on the linewidth. The 

Doppler broadened linewidth ∆𝑣𝐷 can be described as [29] 
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 ∆𝑣𝐷 = 71.16 × 10−7𝑣𝑜̅̅ ̅ (
𝑇

𝑀𝑚
)

1
2
 (2.18) 

𝑣𝑜̅̅ ̅  (in wavenumbers) is the frequency of the line centre; 𝑇 ,the temperature in Kelvins; and 

𝑀𝑚, is molecular mass in g mol-1. 

 For example, methane molecule (𝑀𝑚=16) has a Doppler broadened line width of  

9.53x10
-3

cm
-1

 at a line centre of 3100cm
-1

 at 295K. 

At a line centre, the peak absorption cross section 𝜎𝑜 can be represented as 

 𝜎𝑜 = 0.94 ×
𝑆

∆𝑣𝐷
 (2.19) 

In the Voigt regime, the line shape and width are described by the convolution of the Doppler 

and pressure broadening lineshapes. The Voigt regime applies to a pressure range of 10-

100Torr or at altitudes between 10-40km [29].  

The Voigt linewidth ∆𝑣𝑣 is generally calculated numerically and by referring to look up 

tables. However, the Voigt line width can be approximated in terms of ∆𝑣𝐷 and ∆𝑣𝐿 

 ∆𝑣𝑣
2 = (∆𝑣𝐿

2  + ∆𝑣𝐷
2 ) (2.20) 

Typical line widths of atmospheric gas species lie in the range of 5x10
-3

 to 2x10
-2

 cm
-1

. This 

linewidth range is smaller than the spacing of the rotational lines of many of the gas 

molecules of interest. Hence, this allows more sensitive and specific gas concentration 

measurement [29]. 

This project is targeting gas linewidths in the atmospheric pressure broadened regime and 

therefore gas detection will be carried out at atmospheric pressure  

2.4  Wavelength Modulation Spectroscopy  

Wavelength modulation spectroscopy (WMS) is a widely used trace gas detection technique 

with a high signal to noise ratio and immunity from low frequency laser noise [29]. WMS 

uses the technique of modulation of the injection current of a semiconductor laser diode at a 

frequency much smaller than the half width of the absorption peak of the gas species under 

investigation. The modulated signal is scanned through the absorption line. Interaction of the 

modulated signal with the absorption line produces signals that are at different harmonics of 
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the modulation frequency. These frequency harmonics are then detected with the help of a 

lock-in amplifier. WMS enables the detection of the modulation signal at higher frequencies, 

therefore avoiding excess laser noise which decrease with increasing frequencies as (>1kHz) 

1

f
 [29][30]. 

Tang et al were the first to use WMS [31], whereas Pokrowsky et al used a GaAlAs 

semiconductor laser for sensitive detection in WMS [32]. Various techniques such as high 

frequency WMS, one tone and two tone FMS have been used for sensitive detection of trace 

gases. 

 

Figure 2.12 Basic Description of wavelength modulation spectroscopy  

WMS is adversely affected by interference fringes resulting from etalons between reflecting 

or scattering optical surfaces and by residual amplitude modulation signal (RAM) resulting 

from the modulation of the intensity of the laser output [33]. 

This thesis will use WMS for gas detection. The following sections will describe WMS in 

detail. The aim of this project is to develop a wavelength length locking technique for laser 

diode used in WMS, which is described in chapter 6. Therefore, it is important to detail the 

WMS background theory and noise sources affecting its performance. 
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 WMS Background theory  2.4.1

WMS involves modulating the laser diode current with a sinusoidal signal with a frequency 

lower than the half width of the absorption feature [34]. The following equation (2.21) 

describes the change in wavelength with time [34] 

 𝜆(𝑡) = 𝜆𝑐 + 𝜆𝑚𝑜𝑑 sin(2𝜋𝑓𝑚𝑡)              (2.21) 

Where 𝑓𝑚 is the modulation frequency, 𝜆𝑐 is the centre wavelength, and 𝜆𝑚𝑜𝑑 is the 

wavelength modulation amplitude.  

In WMS, a frequency of typically few kHz is used to modulate the injection current of the 

laser diode. This modulation process translates into the wavelength (frequency) modulation 

as well as intensity modulation, also called the residual amplitude modulation or  RAM 

signal, of the output of the laser [34] [35] . Equation (2.21) can be written in frequency terms 

as:  

 𝑣(𝑡) = 𝑣𝑐 + 𝑣𝑚𝑜𝑑sin (2𝜋𝑓𝑚𝑡) (2.22) 

Here 𝑣(𝑡)is the laser frequency, 𝑣𝑐 is the laser frequency tuned to the absorption centre 

frequency and 𝑣𝑚𝑜𝑑 is the modulation amplitude of the signal [34]. The intensity of the 

output power is: 

 𝐼(𝑡) = 𝐼𝑜 + 𝜂𝑖𝐼𝑜(sin2𝜋𝑓𝑚𝑡) (2.23) 

Where 𝐼𝑜 is the laser intensity and 𝜂𝑖 is the intensity modulation index [30]. The interaction 

of the instantaneous frequency of the laser source with the absorption feature is converted 

into an intensity modulation that is detected by the photo detector, as described in the 

following section.  

 Time dependent absorption signal  2.4.2

The modulated output of the light source is passed through a gas cell containing the probed 

gas species. The interaction of light with the gas species can be described by the Beer- 

Lambert law, as shown in equation (2.11). 

The transmittance of the gas can be approximated, as was described by Reid and Labrie [36]  

At a low level of absorption ( 𝑘(𝑣)𝐿 ≲ 0.0), we have 
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 𝐼 ≃ 𝐼𝑜(𝑣)[1 − (𝑘(𝑣)𝐿𝐶)]         (2.24) 

The Beer-Lambert law in equation (2.11) can be rewritten after taking into account the 

wavelength modulation of the light output as: 

          𝐼(𝑡) = 𝐼𝑜(1 + 𝜂𝑖 sin(2𝜋))[1 − 𝑘(𝑣𝑐 + 𝑣𝑚𝑜𝑑 sin(2𝜋𝑓𝑚𝑡)  𝐿𝐶)]  (2.25) 

As the intensity modulation is small, equation (2.25) can be re-written by approximating 

𝜂𝑖 ≪ 1 [33] 

 𝐼(𝑡) ≃ 𝐼𝑜(1 + 𝜂𝑖 sin(2𝜋𝑓𝑚𝑡)) − 𝑘(𝑣𝑐 + 𝑣𝑚𝑜𝑑 sin(2𝜋𝑓𝑚𝑡)  𝐿𝐶)   (2.26) 

Neglecting the higher order terms obtained from the simplification of equation (2.26), the 

absorption coefficient, 𝑘(𝑣), describing features of the absorption line, can be written in 

terms of the line shape F and absorption line strength S as: 

 𝑘(𝑣) = 𝑆𝐹(𝑣 − 𝑣𝑜)    where 𝑆 = ∫ 𝑘(𝑣)𝑑(𝑣) (2.27) 

Assuming that pressure broadening in the line shape of the absorption signal dominates, then 

the 𝑘(𝑣) can be described by a Lorentzian function 

 𝑘(𝑣) =
𝑘𝑜

1 + (
𝑣 − 𝑣𝑜

𝛿𝑣
)

2  (2.28) 

Where, 𝛿𝑣 is the half-width of the absorption line and 𝑘𝑜 is the absorption coefficient at the 

centre of absorption line. By substituting 𝑘(𝑣) in equation (2.26), 

 
𝐼(𝑡) = 𝐼𝑜[(1 + 𝜂𝑖sin2𝜋𝑓𝑚𝑡) −

𝑘𝑜(𝐿𝐶)

1 + (
𝑣𝑐 + 𝑣𝑚𝑜𝑑 SIN(2𝜋𝑓𝑚𝑡) − 𝑣𝑜

𝛿𝑣
)

2 
(2.29) 

At the central frequency of the absorption (i.e. 𝑣𝑐 = 𝑣𝑜 ) equation (2.29) can be simplified as 

[34]: 

 
𝐼(𝑡) = 𝐼𝑜[(1 + 𝜂𝑖sin2𝜋𝑓𝑚 𝑡)] −

𝑘𝑜(𝐿𝐶)

1 + (
𝑣𝑚𝑜𝑑sin (2𝜋𝑓𝑚𝑡)

𝛿𝑣
)

2 
 (2.30) 

By substituting   𝑥 =
𝑣𝑚𝑜𝑑 

𝜕𝑣
 equation (2.30) can be simplified according to Jin et al [37]. 
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 𝐼(𝑡) = 𝐼𝑜[(1 + 𝜂𝑖sin2𝜋𝑓𝑚 𝑡)] −
𝑘𝑜(𝐿𝐶)

1 + 𝑥2 sin2(2𝜋𝑓𝑚𝑡)
 (2.31) 

Where 𝐼(𝑡) can be written in terms of its Fourier series, with the magnitudes of the first and 

second harmonics represented as [37]:  

 𝐼1 = 𝐼𝑜𝜂  (2.32) 

 𝐼2 = −2𝑈𝑘𝑜𝐼𝑜𝐿𝐶  (2.33) 

Where 𝐼1 is magnitude of the first harmonic, where as 𝐼2 is the magnitude of the second 

harmonic, and 𝑈 can be expressed as a function of modulation index x 

 𝑈 =
2[2 + 𝑥2 − 2(1 + 𝑥2)

1
2]

𝑥2(1 + 𝑥2)
1
2

         (2.34) 

A maximum second harmonic signal can be obtained by optimising the value of modulation 

index x. The maximum second harmonic signal is obtained for x = 2.2 as shown in Figure 

2.13.  

 

Figure 2.13 Modulation index U vs x showing that x=0.93 and x=2.2 for optimum 2f/1f    

and 2f signal respectively 
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The intensity fluctuation in the output of the laser diode can be overcome by adopting the 

ratio detection method [37] expressed as 

 
𝐼2

𝐼1
= −

2𝑈𝑘𝑜𝐿𝐶

𝜂𝑖
 (2.35) 

The optimal value of x is 0.93 in ratio detection method, with 𝑈 corresponding to 0.243 as 

shown in Figure 2.13 [37][337][39]. 

 Harmonic detection 2.4.3

The consequences of the previous analysis are as follows. The output light after scanning the 

peak of the absorption line is detected with a lock- in amplifier at the modulation frequency 

or its harmonics. Demodulation of the output light is at the same frequency as the modulation 

frequency, it is termed 1f detection, whereas detection at twice the frequency is termed 

second harmonic (2f) detection [34], as shown in Figure 2.14 . The nonlinear changes in the 

output power of the laser with applied current create a substantial zero offset in the 1f signal. 

Therefore, the magnitude of the 1f signal will fluctuate with the fluctuation in the intensity of 

the laser diode. A 2f detected signal is therefore used in WMS. The line shape produced at 

the output of the detector is proportional to the 2nd derivative of the original line shape when 

the modulation amplitude is very small in relation to the line width. The maximum signal is 

obtained when the modulation index is 2.2 times the half width at half maximum of the 

absorption line. 2f detection reduces the 
1

f
 noise of the laser and the sensitivity to thermal 

fluctuations. Moreover, WMS has an absorption sensitivity of 10
-4

 to 10
-5

(absorbance) at 2f 

[34][36]. However, 2f detection is sensitive to the curvature and the sharp absorption feature 

of the probed gas, therefore heavier atomic mass molecules cannot be detected with this 

technique in the absence of well resolved ro-vibrational absorption bands (due to overlap 

between fundamental and overtone vibrations or  their combination) [40]. 
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Figure 2.14 Description of Lorentzian profile of 1f and 2f detection in WMS for 

Lorentzian absorption line. Taken from [41] 

Figure 2.14 (a) demonstrates 1f and 2f detection. Figure 2.14 (b) is the comparison of 1f, 2f 

and 3f Lorentzian line shapes. The 1f harmonic line shape is asymmetric with respect to the 

line centre of the absorption line and has a zero crossing at the line centre but with a DC 

offset. Therefore, 1f modulation can be used for line locking to establish the line centre if the 

DC offset is constant and accurately known. The amplitude of the 1f signal is bigger than the 

2f signal, but due to high base line signals and asymmetry, the 1f signal is not generally used 

for the detection of gases. The 2f harmonic is symmetric with respect to the absorption line 

with two zero crossings and with a peak signal at the absorption line centre. The 2f signal 

however does not give the absolute concentration measurement of the gas (requiring 

calibration with known concentration). However, RAM and 
1

f
 of the laser used in WMS is 

low; allowing the measurement of small changes in the absorption lines of the probed species 

[29]. The 3f signal, unlike the 1f signal, has a zero DC offset at the gas absorption line centre 

and therefore can also be used for wavelength locking. 

 Residual amplitude modulation 2.4.4

The injection current of the laser diode is modulated in WMS, which modulates both the 

frequency and intensity of the emitted light of the laser diode. The intensity modulation (IM) 

and frequency modulation (FM) of the laser diode are out of phase by an amount that depends 

on the structure of the laser diode and modulation frequency [30]. Typical values of the phase 
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shift between IM and FM ranges from 0 at low frequencies to π at high frequencies [34]. In 

WMS the detection of the absorption line is dependent on the FM of the light, whereas IM is 

termed as residual amplitude modulation (RAM) and considered as an unwanted signal. IM 

introduces asymmetry in all the harmonics and a DC offset in the 1f signal, which increases 

with modulation frequency [29][30][42]. 

The AM signal-induced background is lower at higher derivatives of the absorption line. 

Therefore, in WMS, the 2f signal is used for the detection of absorption species. However, 

even detection at twice the modulation frequency does not overcome the problem of RAM-

induced distortion, limiting the sensitivity of the system [43]. In addition, 2f detection does 

not give the absolute concentration of the probed gas, but the concentration measurement is 

carried out by comparing the 2f signal with a calibration curve under known conditions.  

Recently, the Hanson group proposed a calibration free measurement in WMS, where the 

normalisation of 2f signal by 1f signal and the use of laser specific tuning characteristics 

avoid the need for calibration [44]. Overcoming the RAM allows calibration free absolute 

measurement of the gas lines and detection at 1f signal with low baseline [45]. 

 

  Interference fringes in wavelength modulation s pectroscopy 2.4.5

Detection sensitivity in WMS is often limited by interference fringes in the gas detection 

system. The effect of interference fringes in WMS is described in Figure 2.15. Interference 

fringes appear due to Fabry-Perot etalons between reflecting optical surfaces such as mirrors, 

detectors and laser head windows, optical fibre ends, semiconductor surfaces and components 

of multi pass cells [29][46].These etalons are dependent on the reflectivity of the surfaces, the 

distance between the structures, the angle of incidence, the centre frequency around which 

the laser injection current is modulated, the modulation index, amplitude of the modulation 

and the mode of detection. The free spectral ranges of these etalons are in the range 150MHz 

– 30GHz
 
[46][47][48]. 
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Figure 2.15 Description of WMS system and the resultant signals with interference 

fringes on (a) WMS harmonic signals in absence of interference fringes (b) WMS 

harmonic signals in the presence of interference fringes. Re drawn from Masiyano [49] 

The influence of interference fringes can be reduced by reducing the etalon effect using anti 

reflection optics (where possible), avoiding parallel surfaces, avoiding sharp focus, and by 

mode selection of the laser diode and of the modulation waveform and amplitude. Several 

techniques have been implemented to reduce the effect of interference noise, including signal 

averaging, mechanical vibration and balanced detection. However, interference fringes 

cannot be eliminated completely but the level of noise due to interference fringes can 

sometimes be minimised below other limiting noise factors affecting the detection of the 

absorption signal [46][47][48]
  
. 
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2.5  Summary 

Table 2.4 summarises the wavelength references and methods that have been reported in the 

literature for stabilising laser wavelengths. 

Table 2.4 Laser frequency stabilisation techniques  

Method Advantages Disadvantage 

Fabry-Perot interferometer  A common and 

convenient method 

 Wide tuning range                                                                                                                                                                                

 Temperature 

dependence  of resonant 

wavelength of the etalon 

Atomic transition  Narrow line width 

 Rich spectra 

 Absolute reference 

 Slow response 

Optogalvanic effect  Rich spectra 

 Absolute reference 

 Requires high power to 

generate optogalavanic 

signal 

 Discharge effect 

Molecular absorption  Narrow line width 

 Rich molecular spectra for 

laser transitions 

 Absence of discharge 

effect 

 Complicated setup 

The above motioned methods have their advantages and disadvantages as well as their 

suitability for laser wavelength locking in WMS.  

All the wavelength reference techniques reported in this chapter have excellent wavelength 

stability but for short times only. In addition, many of are only suited to laboratory 

experiments. Interferometers and molecular lines are often used for long term stability. 

WMS has been chosen for this project is due to its widespread application in methane 

detection and its high selectivity and sensitivity. 

In WMS, the wavelength of the laser output light is modulated and detected with lock-in 

amplifiers. 1f and 2f signals are used to measure the probed gas species. The 2f signal is 

preferred over the 1f signal for gas measurement due to instabilities in the DC offset, a 
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sloping background and higher laser excess noise in the 1f signal. However, 2f signal based 

WMS does not provide absolute gas measurement without some form of calibration. In 

addition, 2f signal based WMS sensitivity is limited by interference noise due to the etalon 

effect, wavelength stability and residual amplitude modulation (RAM). 

Wavelength stability is an important parameter, as the target gas has a very narrow line width 

and due to the laser wavelength drift, the detection measurement will have poor SNR.WMS 

requires laser wavelength stability of better than 10% of the absorption line width of the 

target gas species 

In WMS, the linewidth of the laser diode is often stabilised using a gas absorption line 3f 

signal. In WMS based methane gas detection, a methane reference cell can be used to lock 

the laser wavelength and wavelength stability of 500kHz has been reported by Sudo et al 

using an acetylene absorption line. However, this technique requires careful and tedious 

alignment. The aim of this project is to develop a laser wavelength locking technique that can 

reduce the long term and short term wavelength drift of the laser diode in WMS and could 

keep laser wavelength stable when operated in variable ambient temperature. 
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3 Laser Diode Temperature Control and Series 

Resistance 

The wavelength stability of a laser diode is vital in TDLAS. In TDLAS the target gas 

absorption line has narrow linewidth and therefore the detection technique requires excellent 

wavelength stability (10% better than the linewidth of the absorption line). The emission 

wavelength and output power of the laser diode are dependent on its operating temperature 

and injection current. Therefore, it is important to characterise the effects of temperature on 

laser diodes in order to operate them with a stable output power and emission wavelength. 

In a conventional laser diode temperature controller, a thermistor sensor-based peltier 

thermo-electric cooler is used to stabilise the temperature of the laser diode. However, due to 

the laser diode package design, the thermistor is placed at a distance from the gain chip and 

does not sense the actual temperature of the laser gain chip. Therefore, the laser diode may 

drift with change in the ambient temperature. As the laser diode wavelength has large 

temperature gradient, the laser diode emission wavelength will vary with the change in 

temperature. Therefore, an alternative method is required to measure the actual temperature 

of the laser gain chip and to improve the stability of the emission wavelength of the laser 

diode. 

Several techniques, such as the forward voltage method, the power averaged wavelength 

method and the null method, will be reviewed and compared for measuring the junction 

temperature (temperature of the gain chip) of the laser diode. 

Moreover, the effects of temperature on the laser diode series resistance will also be 

discussed. The laser diode series resistance is calculated from the voltage drop across the 

laser diode. Different methods of calculating the laser diode series resistance from the voltage 

drop across the laser diode will also be reviewed in this chapter. 

3.1  Temperature effects on laser diode  

The wavelength of the laser diode increases with increasing temperature. This is an important 

parameter that needs to be taken into consideration in wavelength dependent applications 

such as TDLS, which have stability requirements of less than 0.2- 0.3 nm. The temperature of 

a laser diode e is a function of ambient temperature, junction heating and thermal design of 



42 

 

the laser diode package. Laser diodes’ and LEDs’ performances and reliabilities are 

temperature dependent.  Changes in these parameters may lead to a change in their behaviour. 

In addition, the junction temperature of the laser diode is a function of the injection current 

and ambient temperature. At constant ambient temperature, an increase in the injection 

current will increase the junction temperature operating temperature. Therefore, the 

temperature change caused by the injection current will affect the output characteristics of the 

laser diode and thus should be taken into consideration [1].  A change in temperature affects 

the slope efficiency of the laser diode. The current density and noise of the laser diode 

increase with increasing temperature, and therefore decrease the efficiency of the laser diode. 

In general, the performance of the laser diode degrades with increasing temperature.  

 Laser slope efficiency  3.1.1

A laser diode is characterised by its slope efficiency η, which is a plot of the rate of change of 

output power P against the injection current, If , as shown in Figure 3.1 [2] 

 𝜂 =
𝑑𝑃

𝑑𝐼𝑓
 (3.1) 

 

Figure 3.1 Diagram of the relation P vs If 

The temperature dependence of the laser diode slope efficiency can be described by the 

following equation 

 𝛥𝜂(𝑇) = 𝜂𝑒𝑥 𝑝 − (
𝑇 − 𝑇𝑟𝑒𝑓

𝑇0
) (3.2) 

Threshold 
η 

If 

P 
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Where Δη is the change in slope efficiency with temperature, Tref  is the reference temperature 

and T0 is the characteristic temperature [3]. 

The slope efficiency has units of W/A and a better laser diode will have a higher slope 

efficiency. The slope efficiency of a laser diode generally depends on the internal quantum 

efficiency (the efficiency of the laser diode in converting injection current into light with in 

the laser structure), the reflectivity of the front and back facets, and absorption within the 

semiconductor material [4]. 

 

 Threshold Current vs. Temperature  3.1.2

Laser diode threshold increases exponentially with higher operating temperature as compared 

to lower operating temperature. A laser diode’s spontaneous and lasing emissions both suffer 

from lower external quantum efficiency (slope efficiency) due to increasing operation 

temperature.  

Figure 3.2 shows the temperature dependence of a bulk laser and a strained quantum well 

laser in the 1300nm wavelength range. The laser diode output power and slope efficiency 

degrade with increasing temperature for both types of lasers
 
[5][6]. 

. 
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Figure 3.2 slope efficiency (black line)and light out power (red line) dependence on the 

operating temperature for 1300nm band (a) bulk type laser (b) strained quantum well 

InGaAsP/InP laser diode. Taken from M.Fukuda [7]
 

There are several factors that contribute to laser diode heating which are given below. 

1) Heat generation in the diode laser. A fraction of input electric power is converted to 

heat via non-radiative effects i.e. the internal quantum efficiency is less than unity. 

2) Heat generation due to radiative reabsorption processes i.e. the external quantum 

efficiency is less than unity and only a small proportion of light generated is emitted 

by the laser diode. 

3) Joule heating due to ohmic contacts and series resistance [6][7]. 

Output  power 

Slope efficiency 
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Pilkuhn et al examined experimentally the effect of diode heating under stimulated 

emission using a GaAs laser diode operated in CW mode [8]. They reported that the rise 

in junction temperature was linear with direct injection current when the product of series 

resistance (bulk resistance + contact resistance) and current was smaller than the band gap 

voltage. However, when the product of direct current and series resistance was larger than 

the band gap voltage, then the rise in junction temperature is quadratic with current. The 

relationship between temperature and threshold current is given below [9] 

 𝐼𝑡ℎ = 𝐼0 exp (
𝑇𝐽

𝑇0
) (3.3) 

Ith is the threshold current, I0 is the operation current, TJ is the junction temperature and T0 

is the characteristic temperature, which represents the dependence of the threshold current 

on temperature. T0 increases with decreasing junction temperature. When a laser diode 

has a large characteristic temperature (T0), the operating temperature will have a small 

effect on the lasing characteristics (such as slope efficiency and emission spectrum) of the 

laser diode [7].  

Thermal runaway (increase in the junction temperature of the laser due to current) may 

limit the maximum output power of a laser at ambient temperature. To compensate the 

effect of thermal runaway, increased injection current is required, which further increases 

the junction temperature of the laser [10]. 

The laser diode characteristic temperature is dependent on the following physical 

mechanisms; 

 Overflow of injected carriers from wells to barrier, optical confinement and 

cladding layers due to the increase in threshold current caused by a temperature 

increase of the active region. 

 Free carrier absorption in the active and cladding area. 

 Auger recombination (non radiative recombination which contributes to device 

degradation). 

 Intervalance band recombination (a photon emitted during the recombination 

process is absorbed in the valence band during lasing) [11]. 



46 

 

Figure 3.3  shows the temperature dependence of various laser diodes’ threshold currents. 

The characteristic temperature for AlGaAs / GaAs laser diodes is around 100K-200K, 

caused primarily by the over flow of injected carriers. 

 

Figure 3.3  Threshold temperature dependence of different laser diodes. Taken from [7] 

The Augar recombination rate and carrier overflow are constant above the threshold due to 

constant carrier density while above lasing. Therefore, free carrier absorption and 

intervalence band absorption in the active and cladding layers of the semiconductor device 

are the main factors that affect the temperature characteristics of laser diodes [7]. 

Quantum well and strained quantum well laser have better temperature characteristics than 

bulk laser diodes. This improved temperature characteristic is due to the reduction in 

threshold current density and carrier overflow as well as optical confinement layers. Strained 

quantum well InGaAsP / InP laser diodes have maximum lasing operating temperatures of 



47 

 

more than 100˚C , whereas InGaAsP/InP lasers with bulk active layers have operating 

temperatures of usually less than 100˚C 
[7][12]. 

 Wavelength vs. Temperature  3.1.3

The emission wavelength of a laser diode is temperature dependent. The refractive index and 

band gap energy determines the laser diode wavelength, both of which vary with temperature. 

An increase in temperature usually increases the emission wavelength of the laser diode
 

[1][13]. 

 

Figure 3.4  Laser wavelength variation. Taken from M.Fakuda et al [14] 

The arrows in Figure 3.4 show the laser diode wavelength variation due to band gap energy 

and refractive index .The laser diode gain curve and longitudinal modes are both temperature 

dependent. The laser diode gain curve shifts to shorter wavelength with increasing injection 

when operated below the threshold. This shortening in the wavelength of the gain curve is 

caused by the band filling effect [15]. This effect can be express below as: 

 𝜆𝑝 ≈
1.24

[𝐸𝑔 + (𝐸𝐹𝐶 − 𝐸𝐶  ) + (𝐸𝑉_𝐸𝐹𝑉
)]

 (3.4) 

λp and Eg are the peak lasing wavelength and  band gap energy and EFC, EFV are the quasi 

Fermi level of the conduction band Ec and valence band EV. 

Laser diode longitudinal modes also shift with changes in refractive index and cavity length. 

The longitudinal mode shift with injection current is described by equation (3.5) 

Band gap change due 

to temperature 

increase 

Refractive index change due   

to heating 

 Intensity 

Refractive index change 

due to carrier (Plasma) 

effect 

Energy level change 

due to Band filling 

Gain Envelope 

Each lasing mode Wavelength 
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 𝛿𝜆𝑚(𝑁) = (
𝜆𝑝

𝑛𝑟
) (

𝑑𝑛

𝑑𝑁
) 𝛥𝑁 (3.5) 

δλm is the size of wavelength shift of a laser diode, n, ΔN and λp are the refractive index, 

change in carrier density, and  peak wavelength respectively. Table 3.1 shows the refractive 

index change with injection current for different gain materials. 

Table 3.1 The change in refractive index as function of current density [7] 

Gain material 
𝒅𝒏

𝒅𝑵
 

AlGaAs /GaAs (850nm) -1.3 x10
-21 

cm
3
 

InGaAsP/InP (1300nm) -4 x10
-21 

cm
3
 

InGaAsP/InP (1550nm) -6 x10
-21 

cm
3
 

The central wavelength of the laser diode (above the threshold current) increases with 

increase in injection current due to Joule heating. The size of the wavelength shift for each 

longitudinal mode as a function of junction temperature Tj can be described by the following 

equation [7] 

 𝛿𝜆𝑚(𝑛) = (
𝜆0

𝑛
) (

𝑑𝑛

𝑑𝑇𝑗
) 𝛥𝑇𝑗 (3.6) 

 For the laser diodes in the infra-red region the value of 
dn

 dTj
  is between 2 x10

-4
 and 5 x10

-4
 

K
-1 

[5]. As a result laser longitudinal modes shift to longer wavelengths with increasing 

temperature [7]. 

Table 3.2 shows the effect of temperature on the longitudinal mode as a function of 

temperature for different gain materials. The temperature dependent longitudinal mode 

wavelength shift increases with increasing emission wavelength. 
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Table 3.2 Longitudinal mode shift with temperature [7] 

Gain material Longitudinal mode shift 

AlGaAs /GaAs (850nm) 0.008 nm/ °C 

InGaAsP/InP (1300nm) 0.1 nm/ °C 

InGaAsP/InP (1550nm) 0.12 nm/ °C 

The temperature dependence of the laser diode peak wavelength gain curve can be described 

as: 

 
𝑑𝜆𝑔

𝑑𝑇𝑗
= − (

ℎ𝑐

𝐸𝑔
2

) (
𝑑𝐸𝑔

𝑑𝑇𝑗
) = −

1.24

𝐸𝑔
2

(
𝑑𝐸𝑔

𝑑𝑇𝑗
) (3.7) 

Where Eg is the band gap energy of the laser diode. At low temperatures, the band gap energy 

changes with the square of the temperature, however at room temperature Eg decreases with 

increasing temperature. Therefore, 
dEg

dTj
 at temperatures near to room temperature, can be 

roughly approximated to [7]: 

 
𝑑𝐸𝑔

𝑑𝑇𝑗
= −𝛼𝑎 (3.8) 

Where αa is the temperature coefficient (
eV

k
) of the band gap energy. Combining equation 

(3.8) with equation (3.7) gives [7] 

 
𝑑𝜆𝑔

𝑑𝑇𝑗
=

1.24

𝐸𝑔
2

(𝛼𝑎) (3.9) 

The wavelength variation due to the change of operation temperature increases with the 

decrease in the band gap of the active layer material
 
[7].  The wavelength shift due to the 

band gap energy as a function of temperature is given in the Table 3.3. 
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Table 3.3 Gain curve wavelength shift as a function of temperature [7] 

Gain material wavelength shift 

AlGaAs /GaAs 850nm 0.25 nm/ °C 

InGaAsP/InP 1300nm 0.4 nm/ °C 

InGaAsP/InP 1550nm 0.6 nm/ °C 

The laser diode wavelength varies with temperature largely due to the change in bad gap 

energy as a function of temperature. In a Fabry-Perot laser, the emission wavelength follows 

the dependence of the band gap energy on the temperature, whereas a DFB laser has 

improved temperature stability due to the optical losses introduced by the grating to select a 

wavelength [16]. In a DFB laser, the emission wavelength shift is due largely to the variation 

of refractive index with temperature. Therefore, a DFB laser has greater wavelength stability 

with temperature compared to a Fabry-Perot laser [13]. In this thesis, the wavelength stability 

under constant and variable ambient temperature of a DFB laser (IngaAsP/InP) at central 

wavelength of 1651nm was investigated for use in WMS.  

 Light intensity vs Temperature  3.1.4

A laser diode’s output power decreases with increasing temperature. As the injection current 

is increased, the resultant Joule heating and increased operating temperature (ambient and 

heat sink) cause the output power to saturate. A laser diode’s threshold current increases with 

increase in temperature due to the reduction of gain at a constant current. This reduction of 

the laser diode gain is due to the carriers occupying higher energy states [17][18]. Due to the 

increase in the laser diode threshold current, the efficiency of injection also decreases, which 

in turn decreases the slope efficiency, as shown in Figure 3.3.  Moreover, the laser diode 

slope efficiency curve exhibits non-linearity with increasing operating temperature [1]. 
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 Laser diode packaging 3.1.5

Laser diode packaging is designed by taking into consideration the material, optical, 

mechanical and thermal engineering aspects of the laser. A laser diode can be packaged either 

actively cooled or uncooled. In an actively cooled packaged laser diode, no external cooling 

is required and the laser diode is mounted on a heat sink with a dual in-line packaging [19]. 

A cooled laser diode makes use of a thermoelectric cooler (TEC) and thermistor devices to 

keep its operating temperature stable. The laser diode is bonded to a ceramic subcarrier using 

eutectic bonding. The laser diode subcarrier is mounted on a TEC. In addition, a thermistor is 

attached to the laser diode’s subcarriers, as shown in Figure 3.5, and is mounted to the TEC 

to monitor the temperature of the laser diode [20]. Figure 3.5 shows a schematic of basic laser 

diode elements [19] 

 

Figure 3.5  Schematic of basic laser diode elements. Redrawn from [19] 

3.2  Techniques to measure junction temperature of laser diodes 

Semiconductor devices such as laser diodes and light emitting diodes are sensitive to their 

operating temperatures and their performance and reliability are affected by temperature. A 

Laser diode’s characteristics, such as peak wavelength, output power and voltage drop, are 

temperature dependent. 

The junction temperature of a laser diode is a function of both ambient temperature and 

injection current [1]. The junction temperature measures the temperature of the active region. 
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However, the junction temperature is difficult to measure as laser diodes are very small. The 

laser diode junction temperature can be determined by methods such as measuring the 

wavelength of the laser diode, measuring the variation in the output power of the laser diode, 

and by measuring the threshold and variations in the threshold current and voltage drop 

across the laser diode in CW and pulsed modes due to the change in temperature. 

  Forward voltage method 3.2.1

The junction temperature of a laser diode has been determined by measuring the voltage drop 

across the laser diode [21]. This method consisted of two sets of experiments, where, firstly 

the laser diode was biased with a short pulse current of 1µs and duty cycle of 0.1%. It was 

assumed that no heat was generated when the laser diode was pulsed. Then, the voltage 

across laser diode was measured at different temperatures and pulse currents. The voltages 

measured at these short pulses were used to calibrate the laser diode. In the second part of the 

experiment, the laser diode was injected with a DC current, and the junction temperature was 

measured by comparing voltages measured under pulsed and DC currents [22]. The 

relationship between forward voltage and junction temperature is reported by Xi et al [23] 

and is given by equation (3.10). 

 
𝑑𝑉𝑓

𝑑𝑇𝑗
=

𝑒𝑉𝑓 − 𝐸𝑔

𝑒𝑇𝑗
+

1

𝑒

𝑑𝐸𝑔

𝑑𝑇𝑗
−

3𝑘

𝑒
 (3.10) 

Where Vf and Tj are forward voltage and junction temperature respectively. Eg  is the band 

gap energy and k represent Boltzmann’s constant. As the laser diode has a series resistance of 

a few ohms (series resistance is of  a laser diode is of the order of 5-10 Ω. A detailed 

discussion on the effect of temperature on laser diode series resistance is undertaken in 

section 3.4) [24], the equation (3.10) can be further expanded by including the voltage drop 

due to series resistance, which is thermally activated. 

 
𝑑𝑉𝑓

𝑑𝑇𝑗
= [

𝑒𝑉𝑓 − 𝐸𝑔

𝑒𝑇𝑗
+

1

𝑒

𝑑𝐸𝑔

𝑑𝑇𝑗
−

3𝐾

𝑒
] − [

1

2

𝐸𝑎 + 2𝑆𝑇𝑘𝑇𝑗

𝑘𝑇𝑗  2  
𝐼𝑅𝑠] (3.11) 

Where Ea is the dopant activation energy of the series resistor Rs and ST represent the 

temperature dependence of the carrier mobility. 

The forward voltage technique has been used for measuring the junction temperature of GaN 

based laser diodes. Ryu et al suggested that forward voltage technique can be used for laser 

diodes with large forward voltages [25]. Therefore, in general, this method has not been used 
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for laser diodes with a gain material of InP or GaAs, which have small forward voltages. 

However, Jeong et al reported measurement of the junction temperature using the forward 

voltage method for high power InAs based quantum dot lasers [26]. 

An accuracy of ±3˚C has been reported for measuring junction temperature for LEDs [27]. 

However, this technique needs calibration for individual lasers. In addition, generating a very 

short current pulse signal and its interpretation is complex, requiring careful design and 

interpretation for the measurement of laser diode junction temperature. 

 Peak Emission Wavelength  3.2.2

The temperature dependence of the bandgap energy (and therefore peak wavelength) can be 

used to measure the junction temperature of semiconductor devices. This method also 

requires calibration, where the peak energy (the wavelength at which the emitted energy is 

the greatest) is measured at different short pulse currents with low duty cycle, in a similar 

manner to the forward voltage method. The calibration method establishes the relationship 

between peak energy and junction temperature at different currents. Semiconductor devices 

(such as LEDs and laser diodes) are then injected with different DC currents and the peak 

emission energy is measured at a constant temperature, as shown in Figure 3.6.  The junction 

temperature for each current is then determined from the calibration data [24] 

 

Figure 3.6 LED peak wavelength at different oven temperature and pulsed injection 

current. Taken from Xi et al [24]
 

The peak energy for band- to-band recombination from bulk semiconductor optical emission 

is given by equation (3.12) [28]: 
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 ℎ𝑣𝑝𝑒𝑎𝑘 = 𝐸𝑔 +
1

2
𝑘𝑇 (3.12) 

Where vpeak is the peak frequency. As 
dEg

 dT
  > 

1
2
 

d

 dT
 kT, the peak energy as a function of 

temperature can be derived from Varshni equation which is given below [22]: 

 𝐸𝑔 = 𝐸𝑔|0𝐾 −
𝛼𝑇2

𝛽 + 𝑇𝛽
 (3.13) 

Where 𝛼 and 𝛽 are the Varshni parameters. Therefore, the junction temperature of LEDS and 

laser diodes can be estimated from the peak position of the emission spectrum [21][28]. 

This method requires calibration of individual devices and the accuracy of the junction 

temperature measurement is limited by the lack of accuracy (error bar of the peak wavelength 

is 5-10% of the FWHM of the luminescence line) in determining the position of the peak 

wavelength [22]. 

 Null measurement method  3.2.3

This method was put forward by Paoli where, the modal wavelength (lasing longitudinal 

mode) was used to measure the junction temperature of the laser diode [29]. The refractive 

index of the laser waveguide is a function of temperature, which has been exploited in this 

technique for measuring temperature. This method makes use of a null measurement where 

the laser diode wavelength in CW mode at constant current is measured. Then the laser diode 

is pulsed with a short current pulse and a very low duty cycle. The drop in the heat sink 

temperature (ΔThs) (while pulsing the laser diode) required to maintain the wavelength in CW 

mode is measured. The temperature drop (ΔThs) can be considered to be  the temperature rise 

(ΔT) in the laser cavity when the laser diode is operated in CW mode while maintaining the 

same wavelength. The laser diode thermal impedance Rth is related to ΔT  

 ∆𝑇 = 𝑅𝑡ℎ𝑃𝑗 (3.14) 

Where  

                                                   𝑃𝑗 = 𝐼𝑓𝑉𝑓 − 𝑃𝑜 (3.15) 

Where Pj is the power dissipated when the laser is operated in CW mode. If ,Vf are the 

injection current and voltage drop across the laser diode and Po  is the output. The junction 

temperature Tj is given by: 
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 𝑇𝑗 = 𝑇ℎ𝑠 + ∆𝑇 (3.16) 

Where Ths is the heat sink temperature. 

This method does not require calibration and very small temperature differences (0.2 
º
C) can 

be measured[29]. However, this method requires an extrapolation to the CW condition, 

making it less reliable. In addition, the need for short current pulses (ns) with duty low cycle 

(0.1%) makes it difficult to implement [29]. 

 Power averaged wavelength method  3.2.4

The measurement of the laser diode junction temperature can be carried out by measuring the 

laser diode output power and the power averaged wavelength in CW mode [30]. This is a 

modified version of the null method described in section 3.2.3. 

The laser diode wavelength, voltage drop and output power are measured at different currents 

and temperatures. The laser diode waste thermal power, Pj , is calculated using equation 

(3.15) at these currents and temperatures and is plotted against the wavelength. The power 

averaged wavelength is defined as the zero power intercept of this plot, i.e. the point at which 

Pj = 0 and Po = IV. At the zero power intercept Tj  = To. This power averaged wavelength is 

then plotted against the thermistor based Peltier temperature and the junction temperature is 

determined from this plot [30]. 

The power averaged wavelength method does not require short current pulses, which can be 

difficult to generate and interpret due to pulse distortion. 

 Method of Fabry-Perot mode 3.2.5

This is a modified version of Null method section 3.2.4 for measuring junction temperature 

from the FP modes of the laser diode, where, instead of a short pulse injection current with 

varying duty cycle, the laser diode is modulated with a high frequency (500 MHz) square 

wave [31]. This high frequency square wave modulation results in a double peak FP mode, as 

shown in Figure 3.7. 
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Figure 3.7  Results of Fabry-Perot mode tracking for thermal impedance measurement. 

Taken from Bhumbra et al [31] 

A current equivalent to the modulation amplitude (δI) is subtracted from the average current 

I, while still modulating the laser diode with a square wave of amplitude  δI. This reduction in 

injection current reduces the carrier density in the laser waveguide, hence shifting the Fabry-

Perot modes to longer wavelengths.  In addition, the junction temperature is also reduced, 

which shifts the modes to shorter wavelength. The shift to shorter wavelengths due to 

reduced junction temperature is dominant and therefore the net shift is towards shorter 

wavelengths, as shown in Figure 3.7b. The mode at wavelength λ2 moves to λ1, with this 

reduction of injection current by δI. The junction temperature of the laser diode is brought 

back to its original value by increasing the heat sink temperature. Therefore the Fabry-Perot 

mode at wavelength λ1 is brought back to its initial value, as shown in Figure 3.7c. 

The shorter and longer FP modes are due to carrier concentration when the laser diode square 

modulation is in “on” and “off” mode causing a variation in refractive index in the laser diode 

waveguide. The average temperature over the “on” and “off” periods is the same, due to the 

slow dissipation of heat compared to the period of modulation, and is dependent on the DC 

injection current. Therefore, the separation of FP mode peaks is due to carrier concentration 

only. Thus junction temperature of the laser diode can be correctly measured from the carrier 

density dependent wavelength shifts. 

Injection current I  + 

      Modulation current    

δI 

Injection current I  - 

      current  equal to  δI 

Increase the heatsink 

temperature to bring λ1 

back to its initial value in a 



57 

 

This method overcomes the problem of heating effects when the laser diode is pulsed. 

3.3  Laser diode Series Resistance 

Laser diode forward voltage is the sum of the junction voltage and voltage drop across its 

series resistance. Both junction voltage and series resistance are temperature dependent. 

Junction voltage decreases with increase in temperature and series resistance increases with 

increasing temperature. Therefore, to stabilise the laser diode temperature using the voltage 

drop across the laser diode (where this concept is explored in chapter 5 and 6), the 

temperature dependent properties of the series resistance needed to be taken into 

consideration. 

Theoretical I-V characteristics of a diode can be described by the Shockley equation. The 

injection current I applied to a diode is related to its voltage Vf by the following Shockley 

equation   

 𝐼 = 𝐼𝑠 [𝑒𝑥𝑝 (
𝑒𝑉𝑓


𝑖𝑑𝑒𝑎𝑙

𝑘𝑇
)] (3.17) 

Where e is the electronic charge, k is Boltzmann’s constant and T is temperature. Is is the 

saturation current and ideal  is the ideality factor, with a value of 1 for an ideal diode. For 

arsenide and phosphide diodes, the ideality factor can be as high as 2. For GaN/ GaInN an 

ideality factor of 6 has been reported [22]. 

Diodes are made of a semiconductor material, which does not behave as an ideal conductor 

when operated with a forward bias, and does not behave as a perfect insulator with a reverse 

bias [32]. 

Figure 3.8 shows the effect of series and parallel (shunt resistance) resistance on the I-V 

characteristic of the pn junction diode. 
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Figure 3.8 Effect of series and parallel (shunt) resistance on the I-V characteristic of a 

GaAs diode. Inset shows the equivalent circuit of the diode. Taken from [22]
 

The series resistance (Rs) of the diode is caused by the ohmic contact and the resistance of the 

diode’s neutral region. A parallel resistance (Rp) is caused by a channel bypassing of the pn 

junction. To include these parasitic resistances, the Shockley diode equation (3.17) is 

modified to become: 

 𝐼𝑓 −
(𝑉𝑓 − 𝐼𝑓𝑅𝑠)

𝑅𝑝
= 𝐼𝑠 [𝑒𝑥𝑝 (

𝑒(𝑉𝑓 − 𝐼𝑓𝑅𝑠

𝑖𝑑𝑒𝑎𝑙𝑘𝑇
)] 

                            

(3.18) 

When 𝑅𝑝 → ∞ and 𝑅𝑠 = 0 equation (3.19) reduces to the Shockley equation. 

There are two types of resistances in a pn junction diode when operated with forward bias: 

1. Static resistance: This is the resistance that applies when the laser diode is operated in 

DC mode. This is simply the ratio of DC voltage  across the junction of the diode and 

the  DC injection current, 
Vf

If
  

2. Dynamic resistance: This diode resistance is described by the diode junction 

opposition to the AC current riding on a DC current[32], 
δVf

 δIf
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Figure 3.9 Small signal model of a diode [33] 

Figure 3.9 shows the small signal model of a diode. 

 Evaluation of laser diode resistance  3.3.1

The resistance of a laser diode can be measured in the following two regions of the I-V curve: 

1. Near the origin, where 𝑉𝑓 ≪ 𝑘𝑇/𝑒, the pn junction parallel resistance is given by the 

following equation 

                  𝑅𝑝 =
𝑑𝑉𝑓

𝑑𝐼𝑓
 , 𝑉𝑓 ≪ 𝑘𝑇/𝑒     (3.19) 

The resistance measured near the origin is the parallel resistance. It is a very large resistance 

and the series resistance of the diode can therefore be ignored when evaluating the parallel 

resistance 

2. At high voltage 𝑉𝑓 ≫ 𝑘𝑇/𝑒, the resistance of the diode is series resistance and the  I-

V characteristics of the laser diode become linear 

 𝑅𝑠 =
𝑑𝑉𝑓

𝑑𝐼𝑓
, 𝑉𝑓 ≫ 𝑘𝑇/𝑒 

   

(3.20) 

To evaluate the laser diode series resistance, it is recommended not to operate the laser diode 

at high applied bias, to avoid device heating. 

 

- 

+ 
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For  𝑅𝑝 → ∞ , the I-V characteristic for the diode can be written as  

 𝐼𝑓 = 𝐼𝑠 [𝑒𝑥𝑝 (
𝑒(𝑉𝑓 − 𝐼𝑓𝑅𝑠

𝑖𝑑𝑒𝑎𝑙𝑘𝑇
)] (3.21) 

Solving equation (3.21) for 𝑉 with respect to injection current 𝐼 

 
𝑑𝑉𝑓

𝑑𝐼𝑓
= 𝑅𝑠 +


𝑖𝑑𝑒𝑎𝑙

𝑘𝑇

𝑒

1

𝐼𝑓
 (3.22) 

The second term on the right hand side of the above equation (3.22) represents the junction 

resistance Rj , as shown in Figure (3.9). A plot of 
dVf

dIf
  vs  

1

If
  can be used to calculate the series 

resistance of a diode.  

3.4  Diode resistance measurement methods  

There are several methods that can be used to measure the resistance of a diode based on the 

manipulation of equation (3.22). Detailed work on Schottky diode series resistance modelling 

and measurement has been reported in the literature [36][37][38][39]. However, literature on 

the laser diode series resistance modelling and measurement is scarce. Barnes and Paoli 

reported on the electrical characterisation of a double heterostructure junction laser for 

calculating the series resistance and laser threshold current [33]. The effect of the series 

resistance on the output power of a strained layer multiple quantum well ridge waveguide 

InGaAsP laser was reported by Elenkrig et al [34] . They investigated the effect of 

temperature on the laser diode series resistance and the reduction of output power of the laser 

diode due to the presence of series resistance. Xiangming undertook detailed modelling and 

measurements of the differential resistance and ideality factor of heterostructure LEDs and 

laser diodes in his doctoral thesis [35]. 

The following section covers several methods for measuring the series resistance of a 

Schottky diode. These methods were then adapted to measure the series resistance of the 

DFB laser diode, covered in chapter 5 of this thesis. 
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 Norde Method  3.4.1

Norde proposed the calculation of the series resistance of an ideal Schottky diode using an 

auxiliary function [36] 

  𝐹(𝑉) =
𝑉𝑓

2
−

1

𝛽𝑁
ln (

𝐼

𝐴∗ 𝐴𝑇2
) (3.23) 

Where Vf  and Ad are the voltage and area of the diode. A
*
 is Richardson’s constant and βN  = 

e

 kT
  

For a diode with series resistance, the Schottky diode equation can be written as 

  𝐼𝑓 = 𝐼𝑠𝑒𝑥𝑝 [𝛽𝑁(𝑉𝑓 − 𝐼𝑅𝑠)] (3.24) 

Where 𝐼𝑠 = 𝐴∗𝐴𝑑𝑇2𝑒𝑥𝑝 (−𝐵) (𝐵  is the barrier height of the diode junction). By 

substituting equation (3.24) in equation (3.23) 

  𝐹(𝑉) = −
𝑉𝑓

2
+ 𝐼𝑓𝑅𝑠 + 𝐵 (3.25) 

By differentiating equation (3.25) with respect to voltage  

 
𝑑𝐹(𝑉)

𝑑𝑉𝑓
= 𝑅𝑠 (

𝑑𝐼𝑓

𝑑𝑉𝑓
) −

1

2
 (3.26) 

By differentiating the ideal Schottky diode equation 

 
𝑑𝐼𝑓

𝑑𝑉𝑓
=

𝑑

𝑑𝑉
[𝐼𝑠𝑒𝑥𝑝 [𝛽𝑁(𝑉)]= 𝛽𝑁𝐼𝑓 (3.27) 

Substituting equation (3.25) in equation (3.24) 

 
𝑑𝐹

𝑑𝑉
=

𝛽𝑅𝑠𝐼

1 + 𝛽𝑅𝑠𝐼
−

1

2
 (3.28) 

By plotting F(V) vs Vf,  and Vf  vs If , the minimum points F (Vo , Io) can be calculated. From 

the value of F (Vo , Io) and its minimum current 𝐼0 will give the measure of series resistance 

 𝑅𝑠 =
𝑘𝑇

𝑒𝐼0
 (3.29) 
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In the Norde method of calculating series resistance, the ideality factor for the diode was 

considered to be 1, which is not typically the case for the real diode (lies in the range 1-2). 

Moreover, a single minimum point (Vo , Io) was used to calculate the barrier height and series 

resistance, which is not representative of the full range of the diode behaviour [37]. 

 Cheung and Cheung Method  3.4.2

The Cheung and Cheung method uses the forward I-V data of given Schottky diode to 

calculate the series resistance of the diode [38]. By manipulating the Schottky diode equation 

(3.24) can be obtained 

 
𝑑𝑉𝑓

𝑑𝑙𝑛(𝐼𝑓)
= 𝑅𝑠𝐼𝑓 + (

𝑘𝑇

𝑒𝐼𝑓
) (3.30) 

A plot of 
dVf

dlnIf
  vs If will result in a straight line, with a gradient at large If  that gives the series 

resistance for the diode [38]. The advantage of this method is that it is simpler than the Norde 

method and only the V-I data is required to calculate the series resistance of the diode. Use in 

the high current range is emphasised in the Cheung and Cheung method due to the use of 

linear current as the abscissa; this may result in unreliable resistance measurements in high 

resistance diodes [37].  

 Werner Method 3.4.3

Werner proposed three plots using the diode Shockley equation [39]. One of the plots was 

similar to that used in the Cheung and Cheung method for calculating series resistance of a 

diode. Using the diode equation (3.24) under forward conditions with 𝑉 − 𝑅𝑠𝐼𝑓 ≫
𝑘𝑇

𝑒
 , 

 
1

𝐼𝑓

𝑑𝐼𝑓

𝑑𝑉𝑓
=

𝛽𝑁


(1 −

𝑑𝐼𝑓

𝑑𝑉𝑓
𝑅𝑠) (3.31) 

Equation (3.31) shows that a plot between 
1

If
 
dIf

dVf
   and  

dIf

dVf
  will result in a straight line with 

negative gradient whose x-axis intercept gives the measure of series resistance [39]. In the I-

V data, small voltage steps are used to obtain more accurate values of 
dIf

dVf
 . The data in the 

intermediate voltages in the I-V characteristics are emphasised in this method, limiting the 

effect of the data in the low and high voltage regions. Therefore the effect of minority current 

(a leakage current which is generated due to thermally generated carriers at the diffusion 
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length of the junction) is reduced in the calculation of series resistance using this method 

[37]. 

3.5  Summary 

The effect of temperature on laser diode threshold current and emission wavelength has been 

discussed in this chapter. Laser diode output characteristics such as output power and 

wavelength degrade with increases in operating temperature. The laser diode junction 

temperature increases because of heat generation due to non-radiative processes, heat 

generation because of less than unity quantum efficiency, and Joule heating. The laser’s 

characteristic temperature determines the effect of operating temperature on laser diode 

behaviour. High characteristic temperature laser diodes have lasing characteristics that are 

less sensitive to the temperature. Thermal resistance is the measure of increase in junction 

temperature caused by external factors (ambient temperature and TEC temperature) is 

indicated by its thermal resistance. A low thermal resistance reduces the level of degradation 

of the diode’s performance at high temperature.  

There are several techniques which are used to measure the junction temperature of LEDs 

and laser diodes which are summarised it in the Table 3.4 below. 

Table 3.4  Comparison of techniques for measuring junction temperature 

Technique Advantages Disadvantages 

Forward voltage 

[23] 

An accurate technique widely used 

for LEDs and Laser diode (GaN, 

and quantum dot laser). 

It can be implemented in TDLS 

Need calibration for each device. 

Requires extremely short pulse 

current which is difficult to produce 

and susceptible to distortion. 

Peak emission 

wavelength [23] 

The accuracy of this technique is 

similar to that of forward voltage 

This technique requires calibration. 

It lacks accuracy due to difficulty in 

determining the peak wavelength. 
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Technique Advantages Disadvantages 

Null 

measurement 

[29] 

This technique does not require 

calibration. 

It is an accurate technique for 

measuring small variation in 

junction temperature. 

 

Requires an extrapolation to CW 

condition making it less reliable. 

Requires short current pulses and 

low duty cycle where the heat during 

the pulse is ignored underestimating 

junction temperature. 

Power 

Averaged 

wavelength 

method [30] 

It is a CW technique 

Only proven to be accurate for high 

power laser diodes. 

This method cannot be implemented 

in TDLS. 

With the exception of the forward voltage method, the techniques summarised in Table 3.4 

cannot be implemented in controlling the emission wavelength of the laser diode. The voltage 

drop across the laser could be used in a feedback loop to stabilise the temperature and 

eventually the wavelength of the laser diode used in TDLS. 

Laser diode series resistance has also been discussed in this chapter, with a focus on its effect 

on the performance of the laser diode. As the injection current to the laser diode is increased, 

Joule heating increases in the active area and the ohmic resistance (due to the neutral region 

of the semiconductor and contacts) becomes larger. The laser diode output power saturates 

due to this increase in the active region temperature and resistance.  

The measurement of diode series resistance was first proposed by Norde, who developed an 

auxiliary function to calculate this series resistance. However, this method is limited to 

measurement at a single data point to calculate series resistance and may result in erroneous 

series resistance calculation. 

Cheung and Chung provided an alternative method which took into consideration several data 

points over the linear region of the I-V plot to calculate series resistance. The Cheung and 

Cheung method required an I-V plot with small steps to accurately calculate the series 

resistance. 
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Werner proposed three different plots for calculating the series resistance, with one plot 

similar to that of the Cheung and Cheung method. Using a plot of  
1

If
 
dIf

dVf
   vs  

dIf

dVf
    gave the 

best result by reducing the effect of minority carries in the calculation of series resistance   

In the next chapter these methods for measuring the series resistance of a diode will be 

extended to the laser diode used in this thesis. The Cheung and Cheung method will be used 

to measure the series resistance of the laser diode. 

The effect of temperature on the laser diode series resistance and its contribution to the 

forward voltage will be investigated and integrated in the forward voltage based control 

feedback method to stabilise the laser diode wavelength.  
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4 Laser Diode Junction Temperature Measurement  

Junction temperature measurement of the laser diode is carried out by experientially 

evaluating forward voltage and power averaged wavelength method reviewed in chapter 3. 

The junction and thermal impedances of three different types of light sources i.e. two 

distributed feedback laser diodes (DFB), a vertical cavity surface emitting laser diode 

(VCSEL) and an ultra violet (UV) light emitting diode (LED) is calculated and compared. 

The forward voltage method in this chapter does not take into account contribution of the 

voltage drop across the laser diode series resistance to the forward voltage, which will be the 

topic of chapter 5  

In the first section of the chapter, the difference between voltage controlled current pulse and 

current controlled pulses, and their effects on the accuracy of laser diode junction temperature 

measurement are discussed. This section is followed by an investigation of laser diode 

junction temperature measurement techniques, such as forward voltage and power average 

wavelength techniques. The experimental work on these two techniques will suggest whether 

the junction temperature of the above mentioned light sources could be measured accurately. 

Then the junction temperature measurement results from these two techniques will be 

compared. The effect of ambient temperature on laser diode characteristics are explored in 

the final section of the chapter.  

4.1  Forward Voltage theory  

The injection current and laser diode junction voltage can be represented by the Shockley 

equation [1] as reported in section 3.3
 

 𝐼𝑓 = 𝐼𝑠𝑒𝑥𝑝 (
𝑒𝑉𝑓

𝜂𝑘𝑇
) (4.1) 

Where If  and Is are forward and saturation current of the laser diode respectively. 𝑉𝑓 is the 

forward voltage of the laser diode, 𝑒 is the electronic charge, 𝑘 is the Boltzmann’s constant, 

and 𝑇 is the thermodynamic temperature. 𝜂 is the ideality factor and is approximately equal to 

1 for an ideal laser diode operated above the threshold. 

The voltage of the laser diode can be derived from equation (4.1) 
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 𝑉𝑓 =
𝜂𝑘𝑇

𝑒
 𝑙𝑛

𝐼𝑓

𝐼𝑠
   (4.2) 

When 
ηkT

e
  « Vf , which is also called the thermal voltage then 

 
𝑑𝑉𝑓

𝑑𝑇
=

𝑑

𝑑𝑇
[
𝜂𝑘𝑇

𝑒
𝑙𝑛

𝐼𝑓

𝐼𝑠
] (4.3) 

 Where saturation current Is, 

 𝐼𝑠 = [𝑇3𝑒𝑥𝑝 (
−𝐸𝑔

𝑘𝑇
)] 𝑇

𝛾
2 (4.4) 

Eg is the band gap energy measured in volts and 𝛾 is a constant
 
[2]. The 𝑇

𝛾

2 term is close to 

unity, and the saturation current can be approximated as 

 𝐼𝑠 = 𝑇3𝑒𝑥𝑝 (
−𝐸𝑔

𝑘𝑇
) 𝐶 (4.5) 

Substituting equation (4.5) in (4.3) equation  

 
𝑑𝑉𝑓

𝑑𝑇
=

𝑑

𝑑𝑇
[
𝑘𝑇

𝑒
ln (

𝐼𝑓

𝐶
) −

3𝑙𝑛𝑇𝑘𝑇

𝑒
+ 𝐸𝑔] (4.6) 

The above relationship in equation (4.6) gives the temperature dependence of the laser diode 

forward voltage when the laser diode is operated above the threshold with Vf >>
ηkT

e
 . This 

forward voltage Vf temperature dependence is used to calculated the junction temperature of 

the laser diode. Equation (4.6) is the compact version of equation (3.6), where in equation 

(3.6) the current is further defined in terms of its intrinsic carrier concentration. Equation 

(4.6) shows the temperature dependence of the laser diode forward voltage. 

4.2  Equipment  

The equipment used for the measurement of the laser diode temperature using the forward 

voltage is described in the following sections, starting (in section 4.2.1) with the source used 

to bias the laser diode. Three different light sources were used to investigate the performance 

of the forward voltage method in measuring the diode’s temperature. The descriptions of 

these light sources are given in section 4.2.2, followed by a discussion of the instruments 

used in the experiment in section 4.2.3  
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 High speed constant current pulse source  4.2.1

A constant current pulse source was designed and built to drive the laser diode. The circuit 

diagram for the pulse source is provided in Appendix A. This circuit makes use of a voltage 

controlled pulse source (BNC model 555), and a high voltage and current power supply 

(Thurlby Thandar model PL320). A voltage source provides current based on the resistance 

according V=IR. As the laser diode resistance is dynamic, the current to the source will also 

be dynamic. The design of the current pulse generator ensures that a constant current was 

continuously supplied to the laser diode, irrespective of transient variations in laser diode 

impedance due to rapid changes in operating temperatures and currents. In addition, the 

designed current pulse generator prevented transient current generation and minimised pulse 

distortion. 

 Light sources  4.2.2

Two distributed feedback (DFB) laser diodes were used (Laser components HHI and NEL 

NLK1U5EAAA). The first was packaged in miniature thermo electric (MTE) T08 can, while 

the latter was butterfly packaged. Both lasers were single mode at 1650nm. Both include a 

Peltier TEC element with thermistor sensor resistance of 10kΩ at 25 
0
C. 

A vertical cavity surface emitting laser (VCSEL) can packaged (Vertilas VL-1651-1-SQ-TS) 

at 1651nm was also investigated for junction temperature measurement using the laser diode 

forward voltage. 

An ultra violet (UV) LED TO18 can package (Sensor Electronic Technology UVTOP335) 

with ball lens and no Peltier packaging was also used.  

 Measurement Instruments and temperature controller  4.2.3

The laser diode thermistor temperature was controlled by a temperature controller (ThorLab 

TED200) with accuracy of ±0.1 ºC. The laser diode forward voltage was measured with a 

high frequency (1GHz) oscilloscope (Agilent MSO6104A). A high precision digital 

multimeter ( Keithly 195A) was used to measure the DC forward voltage.  

4.3  Setup and Measurements  

The laser diode thermistor temperature was controlled with the temperature controller as 

shown in section 4.2.3. The laser diode pulse current was provided by the custom-built 

current pulse generator.  
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Figure 4.1 Basic setup for the forward voltage method 

 Figure 4.1 shows the basic setup for the forward voltage method. A high-wattage, low-

inductance 5Ω resistor was used to calculate a known pulse current in order to bias the laser 

diode. The current pulse was injected into the laser diode and the voltage drop across the 

laser diode was measured at different temperatures and currents, using an oscilloscope. 

 Pulse parameters  4.3.1

Laser diode P-I-V characteristics are temperature dependent and variation in temperature can 

vary the forward voltage, output power and emission wavelength. In order to minimise 

internal junction heating when calibrating laser diode temperature, a short pulse of  

duration1-10µs was applied to the laser diode while keeping the duty cycle in the range 0.01- 

0.1%. Therefore, the laser diode average power dissipation (heat) was negligible [3]. The sum 

of the rise and fall time of the current pulse delivered to the laser diode was less than 30% of 

the total pulse width, in order to preserve the pulse width of the current pulse [3].  

 Impedance matching and pulse delivery  4.3.2

When an electromagnetic signal passes between different materials or impedances, 

reflections and coupling losses occur, resulting in potential signal distortion and in the output 

signal exceeding the desired level. When a laser diode is pulsed at high speed and there is 

mismatch in impedance between the transmission cable and laser diode, output power losses 

occur which manifest themselves as a standing waveform resulting in ringing effect on the 
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pulse. This pulse distortion can translate to erroneous results and can even damage the laser 

diode [3]. 

The impedance of a typical laser diode is 3-4Ω and the impedance of a typical transmission 

cable is 50 Ω. To overcome this impedance mismatch between laser diode and cable, a series 

resistance of 46 Ω can be placed between the cable and laser diode. 

However, this technique has a serious disadvantage as the pulse source has to provide voltage 

equal to the resistance in series times the desired current, resulting in a high voltage drop; 

which can be a safety hazard and can damage the device. 

The distance of the pulse source from the load also affects signal quality to the laser diode. 

An electrical pulse suffers from pulse lengthening or pulse dispersion. In the event of any 

signal being reflected from the end of the transmission line, the signal travels back up the line 

and is either reflected or absorbed by the drive source. The settling time of the pulse can 

greatly increase due to the reflection of the pulse signal back and forth s. Therefore, to reduce 

the pulse signal settling time, the length of the cable between the laser diode and the pulse 

source must be kept to a minimum. In this project, the distance between the pulse source and 

the load (laser diode) was ˂ 5cm [4][5]. 

 Current source 4.3.3

A laser diode is inherently current dependent and its resistance is both dynamic and 

temperature dependent. Therefore, when a laser diode is injected with current, the resistance 

of the laser diode decreases, and when a laser diode is pulsed with a voltage source then the 

resistance of the laser diode will change, making it complicated to deliver a known constant 

current to the laser diode [4]. 

Moreover, the diode current is exponentially dependent on voltage, so when a voltage pulse 

source is used to supply a current pulse, then a small change in voltage source can result in a 

large change in the current pulse to the laser diode. 
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Figure 4.2 Pulse signal delivered to the LED using voltage controlled current source 

Figure 4.2 represents the current pulse sent to the LED using the voltage controlled pulse 

source (BNC 555). The current sent to the LED was calculated by measuring the voltage drop 

across a low inductance 5Ω resistor. The pulse shape was deformed when a voltage 

controlled pulse source was used. This deformation of the pulse could result in erroneous 

measurement of the current sent to the LED.  

 

Figure 4.3 Voltage drop across LED using Voltage controlled pulse 

Figure 4.3 shows the voltage drop across the LED using the voltage controlled current source 

(VCCS). The forward voltage drop measured using VCCS was 0.83 V. 
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Figure 4.4 Pulse signal delivered to the LED using current controlled current source 

Figure 4.4 represents the current pulse sent to the LED using custom built current source. The 

current sent to the LED was calculated by measuring voltage drop across a low inductance 

5Ω resistor. 

 

Figure 4.5 Voltage drop across LED using Current controlled pulse 

Figure 4.5 shows a voltage drop across a LED using current controlled current source (CCS). 

The voltage drop across the LED using constant current pulse source measured a voltage drop 

of 1.92V at 10mA injection current. The voltage drop measured (peak voltage) with VCCS in 

Figure 4.3 was less than half the forward voltage measured in Figure 4.5 using CCS,  despite 

sending the same pulse current of 10mA.  
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 The decaying behaviour of the pulse measured across LED was due to the capacitance of the 

LED. 

Figure 4.5 suggests that the CCS pulse provided a constant current to the LED despite the 

LED dynamic resistance, which was a function of current and temperature, whereas in Figure 

4.3 the current to the LED changed with the change in the dynamic resistance, resulting in 

wrong measurement. 

 In addition, the voltage source suffers from greater instantaneous current capabilities and can 

contribute to a transient current to the load, increasing the risk of damaging the laser diode 

[4][5]. Moreover, temperature changes cause changes in the resistance of the laser diode and 

thus a voltage source will not be able to maintain a constant current, complicating further the 

measurement of known current and the laser P-I-V characteristics. 

To maintain a constant current to a laser diode with dynamic resistance, a current controlled 

current source should be used, which is independent of laser diode dynamic impedance. A 

known current can be supplied to the laser diode when characterising the laser diode at 

different currents and temperatures. In addition, an ideal current source has infinite 

impedance (in ideal case). Therefore, the laser diode can be protected from the dangers of 

transient current. 

In the following section, the forward voltage of all the light sources were calculated a 

constant current pulse source. 

 Forward Voltage Method  4.3.4

The laser diode junction temperature was calculated in two steps; the calibration step and 

then using the calibration parameters to calculate the junction temperature of the laser diode.  

The laser diode pulsed forward voltage 𝑉𝑝𝑢𝑙𝑠𝑒,𝑓 has a linear relationship with thermistor  

temperature and can be fitted to the following equation 

 𝑉𝑝𝑢𝑙𝑠𝑒,𝑓 = 𝐴 + 𝐵𝑇0 (4.7) 

Where 𝐴 and 𝐵 are the fitting parameters. 𝑇0 is the  thermistor temperature (It is the set 

temperature of the laser temperature controller) of the laser diode. 

Using equation (4.7), the calibration of the laser diode was carried out as the 1
st
 step in 

measuring the junction temperature. The laser diode was pulsed with a short pulse of duration 
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1µs and with low duty cycle of 0.01%. The laser diode thermistor temperature was 

considered to be approximately equal to the junction temperature of the laser diode. It is 

assumed that negligible heat is generated in the active region of the laser diode when biased 

with a short pulse current at low duty cycle  

The fitting parameters in equation (4.7) were used to calibrate the laser diode junction 

temperature by plotting the pulsed forward voltage 𝑉𝑝𝑢𝑙𝑠𝑒,𝑓 against the thermistor 

temperature. After the calibration process, the laser diode DC forward voltage was measured. 

Then the fitting parameters calculated in the calibration process were used to calculate the 

junction temperature 𝑇𝑗 of the laser diode at any direct current (DC) and temperature using 

equation (4.8). 

 𝑇𝑗 =
𝑉𝐷𝐶,𝑓 − 𝐴

𝐵
 (4.8) 

The ability of the laser diode to efficiently remove the heat generated during operation is 

defined by the measure of the thermal impedance. 

 ∆𝑇 = 𝑇𝑗 − 𝑇0 (4.9) 

Where ∆𝑇 is the temperature rise in the active region. Thermal impedance 𝑅𝑡ℎ can be 

described as: 

 𝑅𝑡ℎ =
∆𝑇

𝐼𝑓𝑉𝐷𝐶,𝑓
 (4.10) 

Where 𝐼𝑓 is the DC injection current and 𝑉𝐷𝐶,𝑓 is the DC forward voltage. 

4.4  Results  

The results section is divided into 4 subsections, presenting and discussing results for a MTE 

module DFB laser having T08 can package, for a DFB laser in a butterfly package, for a 

VCSEL, and for an LED. The result sections will cover junction temperature measurements, 

the effect of injection current on the junction temperature and of operating temperature on 

thermal impedance.  
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 MTE Module DFB laser  4.4.1

Figure 4.6 shows the relationship between the measured forward voltage drop of the laser 

diode and thermistor temperature in the pulse current range of 70mA-160mA. This current 

range is above the threshold while at a typical operating injection current of 160mA resulting 

in an emission wavelength of 1650nm used for methane gas sensing as covered in chapter 5 

and 6.  The laser diode thermistor temperature was changed using the temperature controller 

in a step of 5˚C in the range of 15-35 ˚C. 

 

Figure 4.6 Relationship between laser diode forward voltage and Thermistor 

temperature in the current range 70-160mA 

The relationship between the forward voltage drop and the thermistor temperature is 

approximately linear. Figure 4.6 shows the calibration curves for the laser diode, which were 

then used to calculate the junction temperature of the laser diode when operated in CW mode. 

Figure 4.7 shows the calibration plot for an injection current of 120 mA. The fitting 

parameters for this current were A(intercept) = 1.68V and B (gradient) =0.0017˚C/V. 
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Figure 4.7 Calibration plot for pulse injection current of 120mA 

Table 4.1 shows the fitting parameters for the MTE laser DFB laser, measured 

experimentally in the calibration process. 

Table 4.1 Fitting parameters for MTE DFB laser at the temperature range 15-35 ºC 

Injection current(mA) Parameter A (V) Parameter B (˚C/V) 

70 1.4083 0.0021 

80 1.4571 0.0019 

90 1.5226 0.0018 

100 1.5721 0.0017 

110 1.6206 0.0016 

120 1.68 0.0017 

130 1.7227 0.0016 

140 1.7728 0.0015 

150 1.8139 0.0014 

160 1.8581 0.0014 

The fitting parameters in Table 4.1 were then used to calculate the junction temperature of the 

DFB laser at each thermistor temperature and injection current, using equation (4.8). 
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Figure 4.8 Junction temperature as a function DC injection current at different 

thermistor temperatures 

Figure 4.8 shows the relationship between the DC injection current and the junction 

temperature of the laser diode. The laser diode junction temperature increased with the DC 

injection current. In addition, with increasing thermistor temperature from 15 °C to 35 °C at 

the same DC injection current, the laser diode junction temperature also increased. For 

example, at an injection current of 130mA and thermistor temperature of 30 ºC, the 

difference between the laser diode junction temperature (the temperature of the gain chip)  

and that as measured by the thermistor was estimated to be ΔT=16 ºC, as shown in Figure 

4.8. This increase in junction temperature was due to the thermal gradient created between 

the laser diode chip, thermistor and the ambient temperature. Equation (4.6) shows 

temperature dependence of the laser diode forward voltage when operated above the 

threshold current. This equation (4.6) suggests that the forward voltage method can only be 

used to calculate the junction temperature of the laser diode when biased with a forward 

current above the threshold, and cannot be applied when the current is below the threshold. 
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Table 4.2 Average thermal impedance at various thermistor temperatures 

Thermistor Temperature(˚C) 
Average Thermal Impedance(˚C/W) 

Over the current range of 90-140mA 

15 36.5 

20 48.6 

25 60.4 

30 72.1 

35 83.4 

Table 4.2 shows the average thermal impedance in the current range of 90-140mA at 

different thermistor temperatures. This thermal impedance for the laser diode was calculated 

using equation (4.10). It can be seen in the table that with increasing thermistor temperature, 

the thermal impedance has doubled to 72 ˚C/W at thermistor temperature of 30˚C. This 

increased thermal impedance with thermistor temperature shows the inefficiency of the laser 

diode package heat sinking. 

 Butterfly packaged DFB laser 4.4.2

The junction temperature of a butterfly packaged DFB laser diode was calculated using the 

forward voltage method. The laser diode was operated well above threshold in the current 

range of 50-100mA at thermistor temperatures in the range15-35˚C. 

 

Figure 4.9 Laser diode forward voltage biased with pulsed current at thermistor 

temperature in the range 15-35˚C 
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Figure 4.9 shows the effect of thermistor temperature on the laser diode forward voltage 

when operated with a short duration pulse current of 1µs. The laser diode voltage decreased 

with increasing thermistor temperature and the relationship between the laser diode forward 

voltage and thermistor temperature was approximately linear, as shown by the dashed linear 

fit line in Figure 4.9. 

Table 4.3 Calibration parameters for the butterfly package 

Injection current(mA) Parameter A (V) Parameter B (˚C/V) 

50 1.0373 -0.0004 

60 1.0873 -0.0004 

70 1.1306 -0.0004 

80 1.1671 -0.0005 

90 1.2121 -0.0004 

100 1.2543 -0.0004 

Table 4.3 shows the calibration parameters calculated for the butterfly package in the 

calibration process using equation (4.8). 

The laser diode forward voltage under pulsed current condition should have been higher than 

the forward voltage measured under DC, due to negligible heat generated in the pulse 

operation. However, the forward voltage of the butterfly packaged DFB laser diode under DC 

current was higher than that of the pulsed current as shown in Figure 4.10. 

 

Figure 4.10 Laser diode forward voltage under Pulse and DC operation over the 

thermistor temperature range 15-35˚C 
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This lower pulsed voltage in Figure 4.10, suggests that the laser diode was not at the same 

temperature as the thermistor. The possible reasons behind the measurement of a lower 

forward voltage under pulsed conditions are 1) The laser diode chip is at higher temperature 

than that of the thermistor due to heat generation during pulsed operation and failure of the 

thermistor to detect heat during operation, 2) a thermal gradient between the laser diode chip 

and thermistor existed due to inefficient thermal design, 3) the combined effect of heating 

during pulse current and poor thermal design. 

 VCSEL Laser 4.4.3

The forward voltage method was used to calculate the junction temperature of the VCSEL 

laser in the current range 5-13mA (operating current range) at thermistor temperature 15-35 

in a step of 5 ºC. 

 

Figure 4.11 Laser diode forward voltage at various thermistor temperatures at pulse 

current 8-13mA 

Figure 4.11 shows the effect of thermistor temperature on the forward voltage of the VCSEL. 

The relationship between the forward voltage and the thermistor temperature was linear. The 

laser diode forward voltage measured under pulse current was higher than the DC condition.  

The threshold voltage for VCSEL laser was 0.5mA at 20ºC. However, when the VCSEL laser 

was operated well above the threshold in the current range 5-7mA, the laser diode forward 

voltage was lower than that of the VCSEL operated under DC operation. Figure 4.12 shows 

the comparison between measured forward voltages and pulsed forward voltages at various 

thermistor temperatures. At all the thermistor temperatures, the DC voltage was higher than 
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the pulsed voltage; however, the pulsed voltage was expected to be higher than the DC 

voltage  

 

Figure 4.12 Comparison between pulsed forward voltage and DC forward 

voltage in the current range 5-7mA 

The decreases in the forward voltage under pulsed current could be attributed to 1) heat 

generation during the pulse current and the inability of the thermistor to detect that heat 

during the course of the short duration pulse 2) poor thermal design and 3) the combined 

effect of 1) and 2). 

Table 4.4 shows the fitting parameters calculated using equation (4.7). These parameters 

were then used to calculate the Junction temperature under DC conditions using equation 

(4.8). 

Table 4.4 Fitting parameters for VCSEL laser 

Injection current(mA) Parameter A (V) Parameter B (˚C/V) 

5 0.8457 -0.0014 

6 0.8782 -0.0011 

7 0.9356 -0.0012 

8 0.9776 -0.0014 

9 1.018 -0.0014 

10 1.0532 -0.0015 

11 1.0862 -0.0015 

12 1.1151 -0.0015 

13 1.1454 -0.0014 
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The VCSEL junction temperature was calculated using the fitting parameter in Table 4.4 

using equation (4.8)  

 

 

Figure 4.13  VCSEL junction temperature as a function of temperature in DC condition 

Figure 4.13 shows that the laser diode junction temperature increased with increasing 

junction current. Therefore, laser diode chip temperature increased with increasing injection 

current. In addition, the laser diode junction temperature had also increased with increasing 

thermistor temperature due to the thermal gradient between the chip and laser diode package. 

Table 4.5 Average thermal impedance measurement at various thermistor temperatures 

Thermistor Temperature(˚C) Average Thermal Impedance(˚C/W)  

Over a current range 7-13mA 

15 0.25 

20 0.3 

25 0.33 

30 0.35 

35 0.7 

Table 4.5 shows the average thermal impedance of the VCSEL laser at different thermistor 

temperatures calculated using equation (4.10). As the thermistor temperature was increased 

the thermal impedance also increased and at 35 ºC the thermal impedance increased to 0.7 

ºC/W, almost a 3 fold increase in the thermal impedance from its value at 15 °C. 
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 Light emitting diode 4.4.4

A light emitting diode (LED) was also tested for junction temperature calculation using 

forward voltage method. As the LED had no internal temperature controller, the LED was 

placed in a custom built environmental chamber with variable temperature in the range 10-40 

ºC. The temperature of the environmental chamber was measured using three thermocouples 

placed at different points inside the environmental chamber employing a scanning 

thermometer (Kiethly 740) with a measured error of  ± 0.5 ºC.  

 

 

Figure 4.14 LED forward voltage as function of ambient temperature under pulse 

condition 

Figure 4.14 shows the effect of varying ambient temperature on the LED forward voltage. 

The LED was pulsed in a current range 6-10mA at ambient temperature range 10-40ºC. The 

LED forward voltage had an approximately linear relationship with varying ambient 

temperature. The LED forward voltage was decreasing with increasing ambient temperature, 

showing similar behaviour to that of laser diodes discussed in the previous sections.  
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Table 4.6 Fitting parameter for LED 

Injection current(mA) Parameter A Parameter B(˚C/V) 

6 7.4471 -0.0255 

7 7.8146 -0.0285 

8 7.8978 -0.0256 

9 8.2057 -0.0286 

10 8.198 -0.0241 

Table 4.6 gives the calibration parameters calculated for the LED calculated form the 

calibration process as described in section 4.3.4. These parameters are then used to calculate 

the junction temperature of the LED at a particulate current and temperature. 

 

 

Figure 4.15  LED Junction temperature as a function of DC injection current 

Figure 4.15 shows the LED junction temperature plotted as a function of DC injection 

currents. The laser diode junction temperature was calculated at different injection current 

and at various ambient temperatures using equation (4.8). The junction temperature of the 

LED increased with increasing junction current. In addition, the junction temperature of the 

LED also increased with increasing ambient temperature due to the thermal gradient between 

the LED active region, the package and the surrounding environment. 
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Table 4.7 Average thermal impedance of LED 

Thermistor Temperature(˚C) 
Thermal Impedance(˚C/W) 

Over a current 6-10mA 

10 147 

20 169 

30 183 

40 182 

Table 4.7 shows the average thermal impedance of the LED while operated at different 

ambient temperature. The thermal impedance of the LED increased with increasing ambient 

temperature. The thermal impedance of the LED calculated using forward voltage was much 

higher than the thermal impedances for lasers as discussed in the previous sections. This high 

thermal impedance of the LED was due to the absence of an internal temperature controller. 

4.5  Power averaged wavelength method  

The so-called power averaged wavelength method is an alternative technique for calculating 

the junction temperature and thermal impedance of the laser diode and was described in 

section 3.2.4. In this technique the laser diode was operated under DC conditions and the P-I-

V characteristics were exploited for the thermal characterisation of the laser diode [6]. This 

technique has been discussed in two sections. In the first section, the instruments and setup 

for the experiment has been described. The final section contains the results and discussion 

on the power averaged wavelength technique. 

 Measurement instruments  4.5.1

The laser diode was biased using a current controlled current driver (Thor Labs LDC 202) 

with precision of ±100µA and a temperature controller (Thor Labs TED200) with precision 

of ±0.1 ºC to control the laser diode temperature. 

The distributed feedback (DFB) laser diode (NEL NLK1U5EAAA) used in section 4.4.2 was 

investigated for calculating junction temperature using power averaged method. The 

thermistor of the laser diode was 10kΩ at 25
0
C. 

The laser diode output wavelength was measured with an optical spectrum analyser 

(Yokogawa AQ6370D).The resolution of the spectrum analyser was 20pm. The output power 

of the laser diode was measured with an optical power meter (Ando AQ 2105). The DC 

forward voltage of the laser diode was measured with a digital multimeter (Keithly 195A). 
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 System Setup 4.5.2

The laser diode was biased with a DC injection current above the threshold in the range of 

50-100mA. The thermistor temperature was controlled by the temperature controller in the 

range of 15-35˚C. The injection current to the laser diode was varied in a steps of 10 mA and 

the laser diode emission wavelength, forward voltage drop and output power were measured 

at various temperatures. Figure 4.16 shows the basic setup used in the power averaged 

method. 

 

Figure 4.16 Basic setup for power averaged method 

 

 Method 4.5.3

The relationship between junction temperature 𝑇𝑗 and thermistor temperature 𝑇𝑜 is given in 

equation (4.11)  

 𝑇𝑗 = 𝑇𝑜 + 𝑅𝑡ℎ𝑃𝑗  (4.11) 

The laser diode junction temperature is calculated from the relationship between waste 

thermal power 𝑃𝑗 , input supplied power 𝐼𝑉, and output optical power 𝑃0 in equation (4.12)  

 𝑃𝑗 = 𝐼𝑉 − 𝑃0 (4.12) 
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In the first step of the experiment, the laser diode wavelength was established at zero waste 

thermal power. This was calculated by plotting the laser diode emission wavelength against 

the waste thermal power 𝑃𝑗 for different injection currents. 

 

 

Figure 4.17 Laser diode peak wavelength as a function of. waste thermal power 

Figure 4.17 shows the laser diode wavelength as a function of waste thermal power, 

calculated using equation (4.12). The laser diode thermistor temperature was varied in the 

range 15-35ºC. At 𝑃𝑗 = 0 it is assumed that the thermistor temperature is equal to the junction 

temperature 𝑇𝑗 = 𝑇𝑜.  

The wavelength calculated at 𝑃𝑗 = 0  was then plotted against 𝑇𝑜 to determine the junction 

temperature from the temperature dependent wavelength shift at various injection currents 

and thermistor temperatures. 
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Figure 4.18 Laser diode power averaged wavelength variation with thermistor 

temperature (wavelength where𝑻𝒋 = 𝑻𝒐) 

Figure 4.18 shows a linear relationship between power averaged wavelength (the y-axis 

intercept of Figure (4.17) wavelength) and thermistor temperature. The junction temperature 

𝑇𝑗 of the laser diode can be calculated using the above graph in Figure 4.18, using the 

following equation.   

 𝑇𝑗 =
𝜆 − 𝜆0

𝑚
 (4.13) 

𝜆0 is the wavelength at 𝑃𝑗 = 0  calculated from Figure 4.18, m is the slope of the graph in 

Figure 4.19 , λ is the wavelength  measured at DC current where waste thermal power 𝑃𝑗 ≠ 0. 

Then junction temperature of the laser diode was calculated by substituting the wavelength 𝜆 

calculated at different injection current and thermistor temperature. The value calculated for 

𝜆0 was 1648nm and m=0.11nm / ºC over the thermistor temperature range 15-35 ºC. 
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Figure 4.19 Laser diode Junction temperature as a function of injection current of 

butterfly packaged DFB laser using power averaged method 

Figure 4.19 shows a linear relationship between the injection current and junction 

temperatures. The laser diode junction temperature increased with increasing injection 

current. In addition, the junction temperature had also increased with an increase in 

thermistor temperature due to increased thermal gradient between the chip and the laser diode 

package.  

Table 4.8 Average thermal impedance of DFB laser at variable ambient temperatures 

using power averaged method 

Thermistor Temperature ˚C Average Thermal Impedance (˚C/W) 

15 0.044 

20 0.046 

25 0.049 

30 0.054 

35 0.058 

Table 4.8 shows the average thermal impedance calculated for the butterfly packed DFB 

laser. The thermal impedance of the DFB increased with increasing thermistor temperature. 

The junction temperature calculated for the butterfly package laser diode using the power 

averaged wavelength method was higher than that calculated using forward voltage method 

in section 4.4.2. This higher junction temperature calculation using power averaged 
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wavelength method could be attributed to uncertainty in measuring laser diode emission 

wavelength using optical spectrum analyser and optical power  

Table 4.9 Junction temperature for butterfly packaged DFB laser calculated with 

forward voltage method 

Current(mA) Thermistor Temperature 

15 ˚C 20 ˚C 25 ˚C 30 ˚C 35 ˚C 

80 -3.034 2.192 5.806 8.444 10.686 

90 7.9225 13.68 18.2975 21.6625 23.9725 

100 15.02 20.66 24.855 28.41 30.3875 

 

Table 4.10 Junction temperature calculated with Power average wavelength method for 

butterfly packaged DFB laser 

Current(mA) Thermistor Temperature 

15 ˚C 20 ˚C 25 ˚C 30 ˚C 35 ˚C 

80 18.47818 23.6 28.89818 34.23364 39.59636 

90 19.08636 24.21455 29.53182 34.89909 40.28 

100 19.73364 24.88091 30.21545 35.60636 41.00545 

 

Table 4.9 and Table 4.10 show the junction temperatures calculated using the forward voltage 

method and the power averaged method for the same butterfly packaged laser diode. In Table 

4.9, the junction temperature calculated with the forward voltage was lower than the 

thermistor temperature. Whereas, in power averaged wavelength method in Table 4.10, the 

junction temperature was higher than the thermistor temperature and the junction temperature 

calculated with forward voltage method. This difference in junction temperature calculation 

using forward voltage and power average wavelength method could be due to  

1) the inability of the thermistor to maintain the laser diode temperature at set 

temperature due to heat generation when the laser diode is pulsed with an injection 

current 
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2) uncertainty in measuring laser diode emission wavelength using an optical spectrum 

analyser due to its limited resolution of 20pm and uncertainty in measuring output 

power due to coupling efficiency 

  

4.6  The effect of ambient temperature on the laser diode characteristics   

The butterfly packaged DFB and VCSEL were investigated for the effect of ambient 

temperature on the laser diode forward voltage. 

 Method and Results  4.6.1

The laser diode was supplied with a constant current pulse having a width of 1μs and a duty 

cycle of 0.01%. The laser diode thermistor set point temperature was kept constant at 15 ˚C. 

An environmental chamber as shown in Figure 4.24 was used in the experiment, where the 

enclosed laser diodes temperature was varied in the range 10-40 ˚C. 

 

Figure 4.20 Homemade environmental chamber used investigating the effects of 

ambient temperature on light source 

Two Peltier elements were used to vary the temperature of the environmental chamber. The 

environmental chamber had three thermocouple placed at three different locations to give 

measure of the environmental chamber temperature using a scanning thermometer. The 

environmental chamber had a temperature gradient of ±0.5ºC. 
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The laser diode forward voltages were measured with an oscilloscope (Agilent MSO6104A). 

The pulse was above the threshold current of 10mA for VCSEL and 100mA for the DFB 

laser.  

 

 

Figure 4.21 VCSEL Forward Voltage and junction temperature under pulsed current 

condition as function of ambient temperature at a constant thermistor temperature of 

15ºC 

 Figure 4.21 shows the effect of ambient temperature on the VCSEL forward voltage and 

junction temperature. The VCSEL laser had a constant thermistor temperature of 15 ºC and 

10mA injection current in pulse mode. The forward voltage and junction temperature 

increased with increasing ambient temperature despite constant operating thermistor 

temperature. 

This was an indication of thermal gradient between the VCSEL Laser chip, thermistor and 

the ambient temperature.  
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Figure 4.22 Butterfly packaged DFB forward Voltage and junction temperature under 

pulsed condition as a function of ambient temperature at a constant thermistor 

temperature of 15ºC 

Figure 4.22 shows the effect of ambient temperature on the laser diode forward voltage and 

junction temperature at constant current pulse (100mA) and thermistor temperature (15˚C). In 

contrast to the results in Figure 4.10, the laser diode forward voltage increased with 

increasing temperature. In addition, the junction temperature of the laser diode also increased 

with increasing ambient temperature, despite using constant thermistor temperature. 

These results suggested that 

 There was a temperature gradient between thermistor and junction of the laser diode 

 Ambient temperature affected the temperature gradient 

 Thermistor control therefore forced the junction temperature to change when the 

ambient temperature was changed.  

4.7  Summary 

Laser diode P-I-V characteristics are functions of laser diode temperature. The laser diode 

temperature is a function of the ambient temperature and chip heating. The laser diode 

junction temperature can be calculated by several techniques. Two techniques, the diode 

forward voltage method and power averaged wavelength method were investigated to 
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calculate the junction temperature and thermal impedance of 3 different light sources i.e. 

DFB laser, VCSEL and LED. 

In the first stage of the experiment a T08 can packaged DFB laser and a butterfly packaged 

laser were investigated using the forward voltage method. In the first step of calculating 

junction temperature, all the above mentioned light sources were calibrated using under 

pulsed current conditions as it was assumed that no heat will be generated during pulse 

current. The parameters calculated in the calibration process were then used to calculate the 

junction temperature under DC condition.  

When the T08 can laser diode was operated under DC condition, the calculated junction 

temperature was higher than the thermistor temperature, indicating heat generation due to DC 

current and a thermal gradient between the thermistor and the laser gain chip. The thermal 

impedance calculated using forward voltage increased with increasing operating temperature. 

For the butterfly packed DFB laser, the calculated junction temperature was not the same as 

the set thermistor temperature. The calculated junction temperature was on average lower 

than the thermistor temperature under DC condition.   

The VCSEL laser junction temperature also increased with increasing injection current and 

temperature suggesting a thermal gradient between the thermistor and the gain The calculated 

thermal impedance for VCSEL was lower than that of the DFB laser due to the low operation 

current. 

The junction temperature of the LED increased with increasing junction current. In addition, 

the junction temperature of the LED also increased with increasing ambient temperature due 

to the thermal gradient between the LED active region, the package and the surrounding 

environment. The average thermal impedance calculated for the LED was higher than those 

of the laser diodes, due to the absence of a Peltier cooling element within the device package. 

The power averaged wavelength method was also investigated for measuring the junction 

temperature of the laser diode. The butterfly packaged DFB laser diode junction temperature 

was measured from the peak emission wavelength shift of the laser diode with temperature. 

There was a linear relationship between the laser diode peak wavelength at zero waste power 

and the operating thermistor temperature. The laser diode junction temperature was higher 

than the thermistor set point at higher currents. The junction temperature and thermal 

impedance increased with increasing operating thermistor temperature.   
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The effect of ambient temperature on the laser forward voltage was also investigated for the 

butterfly packaged laser diode and VCSEL laser. The ambient temperature was varied while 

maintaining the thermistor temperature and injection current constant. Results showed that 

the laser diode forward voltage increased with increasing ambient temperature rather than 

decreasing with temperature. The increase in the forward voltage can be attributed to the 

thermal gradient between the thermistor the laser diode chip, laser package and the ambient 

temperature. 

The power averaged method is a straight forward process, requiring no prior calibration of 

the laser diode. However, uncertainty in measuring wavelength and emitted power can result 

in erroneous junction temperature measurement. In addition, this technique cannot be 

implemented in wavelength modulation spectroscopy, but is only useful as a characterisation 

or calibration technique.  

The forward voltage method is a better technique for measuring temperature with higher 

accuracy in comparison to power averaged method and can be easily implemented in 

wavelength modulation spectroscopy. However, this technique requires a calibration process 

and an accurate fast current pulse, which can add to the uncertainty in measuring the junction 

temperature. 

In the next chapter, the forward voltage method will be implemented in a control loop to 

sense and stabilise the laser diode temperature. If the forward voltage based control was 

successful in stabilising the temperature, then this method will be extended to TDLAS, which 

is the objective of this project. 
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5 Laser Diode series resistance and wavelength control  

The temperature dependence of the semiconductor laser diode emission wavelength is 0.25 

nm /˚C for AlGaAs lasers and 0.4-0.6 nm/ ˚C [1].  Therefore accurately measuring and 

controlling the temperature of the laser diode is vital for the wavelength stability of the laser 

diode. TDLAS requires a long term wavelength stability of better than 10% of the absorption 

line width of the target gas species. In this chapter the forward voltage of the laser diode is 

used to accurately sense the temperature of the laser diode and is used as a tool to aid the 

control of the temperature of the laser diode chip and hence the emission wavelength. 

The laser diode forward voltage is the sum of junction voltage and voltage drop across the 

laser diode as reported in section 573.3, and both are temperature dependent. In chapter 4, the 

laser diode junction voltage was calculated using forward voltage and the contribution from 

the laser diode series resistance to the forward voltage was ignored. By ignoring the 

temperature dependent voltage drop across the laser diode series resistance, Junction 

temperature calculation for the light sources were compromised as reported in chapter 4. 

The aim of this chapter is to refine the forward voltage method by including the influence of 

laser diode resistance; this is the junction voltage of the laser diode and the novel part of this 

thesis. This chapter will investigate different methods for calculating the series resistance of a 

laser diode and the effects of temperature on the laser diode series resistance. Both 

conventional thermistor temperature control and forward voltage will be investigated for 

stabilising the laser diode emission wavelength and then the emission wavelength. Then the 

junction voltage method will be investigated in stabilising the laser diode temperature and 

then the emission wavelength and compared with the forward voltage and conventional 

thermistor temperature controlled methods. 

 In the first part of the chapter the series resistance of two distributed feedback (DFB) lasers; 

one TO8 Can packaged and the other butterfly packaged are calculated using different 

techniques. The two lasers have the same gain material (IngaAsP/InP) but different 

packaging. The aim of this experimental work is to investigate the effects of different 

packaging on the temperature dependence of the laser diode series resistance. 

The 2
nd

 part of this chapter deals with the wavelength control of the laser diode using the 

voltage drop across the laser diode. Laser diode forward voltage and junction voltage are 
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investigated for stabilising the laser diode wavelength. Then the performances of these two 

methods are compared with the conventional thermistor temperature control for stabilising 

the laser diode wavelength control. 

5.1  Laser diode resistance  

Laser diode resistance is measured from the current – voltage (I-V) characteristics of the laser 

diode. The current to the diode can be expressed by Shockly ideal diode equation as reported 

in section 3.3[2] : 

 𝐼𝑓 = 𝐼𝑠[exp (
𝑒𝑉𝑓

𝑘𝑇
− 1)] (5.1) 

Where If  and Is  are forward and saturation current of the laser diode respectively. Vf  is the 

forward voltage of the laser diode, e is the electronic charge, k is the Boltzmann’s constant, 

and T is the thermodynamic temperature. η is the ideality factor of the laser diode . 

Assuming 𝑉𝑓≫kT/e (kT/e is also called thermal voltage) in equation (5.1) 

 
𝐼𝑓 ≅ 𝐼𝑠[exp (

𝑒𝑉𝑓

𝑘𝑇
)] 

(5.2) 

Equation (5.2) offers a mean of measuring junction temperature of the laser diode as shown 

in section 3.2.1. 

The voltage of the laser diode can be derived from equation (5.2) 

 
𝑉𝑓 =

𝑘𝑇

𝑒
𝑙𝑛 (

𝐼𝑓

𝐼𝑠
)  

(5.3) 

Where  

 
𝐼𝑠 = [𝑇3 exp (−

𝐸𝑔

𝑘𝑇
)] 𝑇

𝛾
2  

(5.4) 

 𝐸𝑔 is the band gap energy with a unit of volts and 𝛾 is a constant. The 𝑇
𝛾

2  term is close to 

unity. The saturation current can be approximated as 

 
𝐼𝑠 = [𝑇3 exp (−

𝐸𝑔

𝑘𝑇
)] 𝐶  

(5.5) 
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Where 𝐶 is a constant. Substituting equation (5.5) and (5.3) and taking its first derivative in 

terms of temperature  

 𝑑𝑉𝑓

𝑑𝑇
=

𝑑

𝑑𝑇
[
𝑘𝑇

𝑒
𝑙𝑛 (

𝐼𝑓

𝐼𝑠
) −

3𝑙𝑛𝑇𝑘𝑇

𝑒
+
𝐸𝑔

𝑒
]   

(5.6) 

The above relationship gives the temperature dependence of the laser diode junction voltage. 

The forward voltage 𝑉𝑓 which is measured across the terminal of the laser diode is given by 

 𝑉𝑓 = 𝑉𝑗 + 𝐼𝑓𝑅𝑠   (5.7) 

Where 𝑅𝑠 is the series resistance of the laser diode. Substituting equation (5.7) in equation 

(5.6), the derivative of junction voltage in terms of forward voltage can be written as 

 𝑑𝑉𝑗

𝑑𝑇
=

𝑑

𝑑𝑇
[
𝑘𝑇

𝑒
𝑙𝑛 (

𝐼𝑓

𝐼𝑠
) −

3𝑙𝑛𝑇𝑘𝑇

𝑒
+
𝐸𝑔

𝑒
] −

𝑑

𝑑𝑇
(𝐼𝑓𝑅𝑠) 

(5.8) 

Equation (5.8) shows the temperature dependence of the laser diode junction voltage and 

series resistance.  

The junction resistance 𝑅𝑗  of the laser diode  shown in equation (3.20) can be derived by 

taking the first derivative of equation (5.3) in terms of forward injection current 𝐼𝑓 

 
𝑅𝑗 =

𝑑𝑉𝑓

𝑑𝐼𝑓
=
𝑘𝑇

𝑒

1

𝐼𝑓
  

(5.9) 

Where the saturation current 𝐼𝑠 has been ignored as the laser diode is operated with a forward 

current. 

 According to equation (5.9), as the injection current is increased, the junction resistance will 

decrease to zero. However, in practice, the measured resistance with increase in injection 

current does not decrease to zero and reaches a constant. At this point, the measured 

resistance is the series resistance of the laser diode, which can be described as [2]:
 

 𝑅𝑠 =
1

𝐴𝑗
∫ 𝜌(𝑥)𝑑𝑥 +

𝜌𝐵

4𝑟
+ 𝑅𝑐

𝑥2

𝑥1

 (5.10) 



104 

 

                         

Figure 5.1 Description of a Shottkey diode. Redrawn from [2] 

𝐴𝑗 and 𝜌(𝑥) are the junction area and the series resistance of the quasi-neutral region of the 

laser diode chip. 𝑥1 and 𝑥2 are the positions of the depletion laser edge and epitaxial layer 

sub-boundary respectively. 𝜌𝐵 is the resistivity of the metal-semiconductor substrate and 𝑟 is 

its circular area radius. 𝑅𝑐 represents the ohmic contact resistance. Equation (5.11) shows the 

total dynamic resistance,𝑅, of the laser diode 

 𝑅 = 𝑅𝑗 + 𝑅𝑠 (5.11) 

Both the junction voltage and the series resistance of the laser diode are temperature 

dependent as shown in equation (5.8). The voltage drop across the laser diode terminals is the 

forward voltage. The junction voltage of the laser diode is calculated from the forward 

voltage by subtracting the voltage drop across the series resistance as shown in equation 

(5.7). The forward voltage of the laser diode decreases with increasing temperature, whereas 

the laser diode resistance increases with increasing temperature as shown in equation (5.9). 

Therefore, the temperature dependence of the laser diode series resistance has to be taken into 

consideration, when the junction voltage is used to stabilise the laser diode. 

5.2  Equipment and experimental setup for measuring the laser diode 

series resistance 

Two distributed feedback (DFB) laser diode (Laser Components HHI and NEL 

NLK1U5EAAA) were used; the first one is packaged in a miniature thermo electric (MTE) 

T08 Can, while the latter one was butterfly packaged. The thermistors of both laser diodes 
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had a resistance of 10kΩ at 25 
0
C. Both laser diode packages contained a Peltier cooling 

element to maintain a set temperature. 

Both DFB laser were operated above their thresholds and the forward voltage across the laser 

diode terminals were measured at different thermistor temperatures. The DC injection current 

to the laser diode was supplied by a current controlled current driver (Thor Labs LDC 202) 

with an accuracy of ±100µA. The laser diode Peltier temperature was controlled by a 

temperature controller (Thor Labs TED200) with an accuracy of ±0.1˚C. A digital multimeter 

(Keithly 195A) was used to measure the voltage drop across the laser diode terminals. 

 

Peltier 

Laser diode 

Environmental chamber 

Laser current 

driver 

A to D converter 
Temperature 

controller 

Vf 

Digital 

multimeter 

 

Figure 5.2 Laser diode resistance measurement setup 

Figure 5.2 shows the experimental setup used for the laser diode resistance measurement. The 

laser diode was biased with DC injection current and was operated at a constant temperature 

using the temperature controller. The voltage drop across the laser diode was acquired with 

the help of GPIB using LabVIEW software (National Instruments 2013). 
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 Standard Method 5.2.1

The laser diode forward voltage 𝑉𝑓 is the sum of the junction voltage 𝑉𝑗 and the voltage drop 

across the laser diode series resistance  

 𝑉𝑓 = 𝑉𝑗 + 𝐼𝑓𝑅𝑠 (5.12) 

Substituting equation (5.12) in equation (5.9) [2] 

 
𝑑𝑉𝑓

𝑑𝐼𝑓
= 𝑅𝑠 + (

𝑘𝑇

𝑒𝐼𝑓
) (5.13) 

Where  
ηkT

eIf
 « Rs Laser diode series resistance was measured by plotting 

dVf

dIf
  against If as 

shown in Figure (5.3) below 

 

Figure 5.3  Plot of dVf/dIf vs 1/If for MTE T08 Can packaged laser diode at 20˚C 

thermistor temperature using standard method 
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Figure 5.4 Butterfly packaged laser diode dVf/dIf vs 1/If  plot at 20˚C thermistor 

temperature using standard method 

Figures 5.3 and 5.4 shows the series resistance measured from the (I-V) characteristics of the 

MTE T08 Can packaged and butterfly packaged laser diodes. The laser diode was operated in 

DC conditions in the current range of 55-135mA at different thermistor temperatures. This 

was an intermediate current voltage range representing the approximately linear region of the 

I-V relationship. This current range was also selected for the following reasons: 

 Operation below threshold will result in a higher series resistance measurement 

 Avoiding series resistance change due to heat generation by operating laser high 

injection current region 

The relationship between 
dVf

dIf
 and 

1

If
   was approximately linear. The y-axis intercept 

dVf

dIf
  of 

the graph gave the measure of the series resistance. The experiment for calculating the series 

resistance was repeated for a temperature range of 10-40 ˚C Table 5.1 shows the regression 

parameters for  
dVf

dIf
 Vs 

1

If
   relation at different temperatures. 
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Table 5.1 Regression parameters calculated for the series resistance 

measurement using standard method 

Temperature(˚C) 
Slope (m) 

 

Standard 

error(Δm) 

(Ω) 

Intercept(c) 

= Rs (Ω) 

Standard error(Δc) 

(Ω) 

10 0.23 0.006 2.65 0.06 

20 0.23 0.006 2.696 0.06 

30 0.23 0.006 2.74 0.07 

40 0.22 0.009 2.86 0.1 

The resistance of T08 can package diode using the standard method was calculated by using 

the regression parameters in Table 5.1.  

 

Figure 5.5 T08 Can packaged DFB laser diode resistance at different thermistor 

temperatures 

The series resistance calculated with standard method increased with increasing temperature 

as shown in Figure 5.5. Table 5.2 shows the regression parameters calculated for the butterfly 

packaged DFB laser using standard method. 
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Table 5.2 Regression parameters calculated for Butterfly packaged DFB laser 

diode series resistance as a function of operating temperature  

Temperature 

(°C) 

Slope (m) 

 

Standard 

error(Δm) 

(Ω) 

Intercept(c) 

=Rs (Ω) 

Standard error(Δc) 

(Ω) 

15 0.08 0.003 3.06 0.04 

20 0.08 0.003 3.08 0.04 

25 0.08 0.003 3.10 0.04 

30 0.08 0.004 3.13 0.04 

35 0.08 0.004 3.14 0.04 

 

 

Figure 5.6 Butterfly packaged DFB laser diode resistance calculated with 

standard method at different thermistor temperatures 

Figure 5.6 shows the effect of thermistor temperature on the laser diode series resistance 

calculated using standard method. Resistance of the laser diode increased with increasing 

thermistor temperature.  

The standard method could be used to calculate the series resistance of both T08 can and 

butterfly packaged laser diodes. The series resistance of the butterfly packed laser diode was 

calculated to be higher than the T08 can packed laser diode. The series resistance of both 

diodes increased with increasing temperature, giving an increase in series resistance of 

0.21Ω/°C for T08 and 0.079Ω for Butterfly packaged laser diode in the temperature range 10-

40 ˚C.  
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 Cheung and Cheung Method  5.2.2

The Cheung and Cheung method [3]
 
is a modified version of the standard method as 

reviewed in section 3.4.2. In the Cheung and Cheung method the linear relationship between  

dVf

dln(If)
   vs If  is used to measure the resistance of the laser diode, while 

ηkT

eIf
 « If Rs 

 
𝑑𝑉𝑓

𝑑𝑙𝑛(𝐼𝑓)
= 𝑅𝐼𝑓 + (

𝑘𝑇

𝑒𝐼𝑓
) (5.14) 

Both laser diodes forward voltages are measured in a step of 5mA injection current in the 

current range of 55-135mA. The operating thermistor temperature was varied in the range 10 

- 40 ˚C. 

 

Figure 5.7 MTE T08 Can packaged laser diode plot of dVf/dlnIf vs If at 20˚C 

thermistor temperature using the Cheung and Cheung method 
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Figure 5.8 Plot of dVf/dlnIf vs If for Butterfly packaged at 20˚C thermistor 

temperature using the Cheung and Cheung method 

Figures 5.7 and 5.8 show the relationship between  
dVf

dln(If)
   vs If at 20 ˚C thermistor 

temperature for the T08 can packaged laser and butterfly packaged laser diode. The 

relationship between 
dVf

dln(If)
 and If was approximately linear for both laser diodes as shown by 

the dashed straight line fit. The slope of the graph between  
dVf

dln(If)
   vs If gave the measure of 

the series resistance. 

Using calculated regression parameters for the Cheung and Cheung method as tabulated for 

the standard method in Table 5.1, the series resistance for the MTE laser was calculated as 

shown in Figure 5.9. 
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Figure 5.9 T08 Can packaged DFB laser diode series resistance as a function of 

thermistor temperatures 

Figure 5.9 shows the effect of operating thermistor temperature on the series resistance of 

T08 can packed DFB laser diode. The series resistance for this laser diode was calculated 

using the Cheung and Cheung method. The series resistance increased linearly with 

increasing temperature.  

By calculating regression parameter as tabulated in the standard method in Table 5.2 , the 

series resistance of the butterfly packaged DFB laser was calculated as shown in Figure 5.10. 

 

Figure 5.10 Butterfly packaged laser diode series resistance measurement as a 

function of thermistor temperature 
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The series resistance of the laser diode increased with increasing temperature. The 

relationship between the calculated series resistance for the laser diode was approximately 

linear. More emphasis is given to the lower injection current rage in calculating the series 

resistance in standard method compared to the Cheung and Cheung method, resulting in 

higher values for the series resistance. For both T08 and Butterfly packaged, the Cheung and 

Cheung method gave a lower increase in the series resistance as a function temperature, 

compared to the standard method.   

 Werner method 5.2.3

Werner [4] used the conductance calculated from the IV characteristics of the diode for 

measuring the resistance as reviewed in section 3.4.3. By manipulating equation (5.2). 

 
𝑑𝐼𝑓

𝑑𝑉𝑓

1

𝐼𝑓
=

𝑒

𝑘𝑇
× [1 −

𝑑𝐼𝑓

𝑑𝑉𝑓
× 𝑅] (5.15) 

The relationship between
dIf

dVf
 
1

If
  and 

dIf

dVf
  gives a straight line. Both T08 can packaged and 

butterfly packaged laser diode were operated in the current range of 55-135mA and operating 

thermistor temperature 10-40 ˚C. 

 

Figure 5.11 MTE T08 Can packaged laser diode plot between 
dIf

dVf
 
1

If
  and 

dIf

dVf
   at 

20˚C using Werner method 
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Figure 5.12 Butterfly packaged laser diode plot of  
dIf

dVf
 
1

If
  and 

dIf

dVf
  at 20˚C 

thermistor temperature using Werner method 

The relationship between 
dIf

dVf
 
1

If
  and 

dIf

dVf
 was approximately linear for both lasers as shown in 

Figure 5.11 and Figure 5.12. The series resistance of the laser diode was calculated from the 

slope of the graph 
Rs.e

ηkT
 . The x-axis intercept also gave the measure of resistance 

1

Rs
 . From the 

Regression parameters for the relationship between 
dIf

dVf
 
1

If
  and 

dIf

dVf
 , the series resistance of the 

T08 can packaged laser diode was calculated as shown in Figure 5.13.  
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Figure 5.13 T08 can packaged DFB laser diode series resistance as a function of 

operating thermistor temperature calculated using Werner method 

The T08 DFB laser resistance increased with increasing operating temperature as shown in 

Figure 5.13. The relationship between the operating thermistor temperature and the calculated 

series resistance was approximately linear.  

By using the regression parameters as tabulated for standard method in Table 5.2, the series 

resistance of the butterfly packaged laser diode was calculated for different operating 

thermistor temperatures, as shown in Figure 5.14.  

The Cheung and Cheung method and the Werner method emphasise high and intermediate 

voltage range respectively for calculating the series resistance. Both methods revealed similar 

increases in the laser diode resistance as a function of temperature for both DFB lasers  
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Figure 5.14 Butterfly packaged laser diode series resistance measurement as a 

function of thermistor temperature 

Figure 5.14 shows the resistance of the laser diode as a function of operating thermistor 

temperatures. The resistance of both laser diodes was increased with increasing temperature. 

The relationship between the operating thermistor temperature was linear. 

Table 5.3 Comparison of methods used for measuring the resistance of T08 Can 

packaged DFB laser 

Temperature(ºC) Rs according to Method / (Ω) 

Standard  Cheung and 

Cheung  

Werner  

10 2.65±0.06 2.65±0.07 2.59±0.11 

20 2.70±0.06 2.68±0.07 2.63±0.11 

30 2.74±0.07 2.71±0.08 2.66±0.12 

40 2.86±0.1 2.78±0.1 2.73±0.18 

Table 5.3 shows the comparison between different methods used to calculate the resistance of 

the MTE T08 Can package DFB laser. Resistance calculated by the standard method and the 

Cheung and Cheung method gave similar result (within experimental errors). However, 

resistance calculation from the Werner method gave lower resistance values for the MTE T08 

.can packaged DFB laser diode. This lower resistance calculation could be attributed to the 

emphasis on the intermediate voltage range by the Werner method, giving a lower measure of 

the series resistance compared to standard methods. In addition, standard method gave a 

higher measure of increase in the series resistance (0.21Ω/ ºC) as a function of temperature 
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for T08 can packaged laser compared to the Cheung and Cheung, and the Werner methods. 

Both the Cheung and the Werner methods gave similar increase in the laser diode series 

resistance (0.131Ω, 0.136Ω respectively) as a function of temperature. By analysing the 

results, error bars for standard method and the Cheung and Cheung method are similar. 

However, standard method give measure of series resistance, therefore the Cheung and 

Cheung method will be used to calculate the series resistance. 

Table 5.4 Comparison of methods used for measuring the resistance of butterfly 

packaged DFB laser 

Temperature(ºC) Rs according to Method / (Ω) 

Standard Cheung and 

Cheung 

Werner 

15 3.06±0.04 3.02±0.041 3.01±0.5 

20 3.08±0.041 3.04±0.042 3.04±0.5 

25 3.10±0.041 3.06±0.04 3.06±0.5 

30 3.13±0.044 3.08±0.04 3.08±0.6 

35 3.14±0.045 3.08±0.004 3.08±0.6 

Table 5.4 shows resistance values calculated for butterfly packaged DFB laser at different 

thermistor temperatures. In contrast to Table 5.3, here the Werner and the Cheung and 

Cheung methods gave similar resistance values (within experimental errors). The resistance 

values calculated by the standard method were higher in comparison to the Werner and the 

Cheung and Cheung methods. The emphasis of the standard method is at the lower voltage 

range in contrast to the Cheung and Cheung and the Werner methods resulting in a higher 

series resistance calculation. Standard method calculated a higher increase (0.079Ω) in the 

resistance of the Butterfly packaged DFB laser diode in the temperature range 15-35 ºC 

compared to the Cheung and Cheng method (≈0.65Ω) and the Werner method (≈0.69Ω). The 

error bars for the Werner method are higher compared to the standard and the Cheung and 

Cheung method, however, the standard method gives a higher measure of the series 

resistance for both lasers. Therefore the Cheung and Cheung method is considered to be the 

right method for calculating the series resistance of T08 and butterfly packaged laser diodes.  

5.3  Laser diode wavelength control  

In this section, three different techniques, thermistor based control, forward voltage control 

and junction voltage based control, were investigated for the stability of the laser diode 

wavelength. As mentioned in the introduction of this chapter, the laser diode wavelength 
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temperature coefficient is higher than the current tuning coefficient. To stabilise the laser 

diode wavelength, it is essential to accurately sense and maintain the operating temperature of 

the laser diode. In addition, it is essential to maintain short term and long term wavelength 

stability of the laser diode in applications such spectroscopy and telecommunications. 

  

 Laser diode wavelength stability using conventional thermistor 5.3.1

based control  

In a conventional laser diode temperature control system, the temperature of the laser diode 

chip is sensed with a thermistor placed from the gain chip at a distance as shown in Figure 

5.15. 

 

                

Figure 5.15 Inside view of a DFB laser diode in a butterfly package taken with 

microscope 

 

 Equipment and experimental setup  5.3.2

Conventional thermistor-based temperature control was investigated in order to achieve 

wavelength stability in an InP ridged waveguide laser (HHI TO8 MTE Module as previously 

used in section 4.4.1) with a peak wavelength of 1650nm.  

Laser diode 

chip 

Photo Detector 
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The thermistor inside the laser diode package was connected to a temperature controller 

(Thorlabs TED200), which in turn was connected to the Peltier element in the package in 

order to control the thermistor temperature. The injection current to the laser diode was 

supplied using a current driver (Thorlabs LDC200). A custom built environmental chamber 

was used to maintain constant external ambient temperature, as shown in Figure 5.16. The 

wavelength of the laser diode was measured with wavelength meter (High Finesse 

WS6/200IR). The resolution of this wavemeter was 0.45pm and its absolute accuracy was 

1.8pm.  

 

Figure 5.16 Conventional method of laser diode wavelength stabilisation using 

thermistor 

The laser diode placed in an environmental chamber and was operated above threshold at 

different ambient temperatures, in the range of 15-35˚C. The laser diode injection current was 

kept constant at 167mA and the thermistor temperature was maintained at 25˚C. 

5.3.2.1  Results for conventional control  

Figure 5.17 demonstrates the effect of varying ambient temperature on the laser diode 

wavelength. The laser diode injection current was kept constant at 167mA and the thermistor 

temperature was maintained at 25˚C, where the laser diode emission wavelength 

corresponded to methane gas line at 1651nm. The ambient temperature experienced by the 
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laser diode was varied in 5˚C steps by changing the temperature of the environmental 

chamber. 

As the ambient temperature was increased from 15 ˚C to 35 ˚C, the laser diode emission 

wavelength drifted to shorter wavelengths, despite having constant injection current and 

thermistor temperature. This is consistent with the hypothesis that the thermistor was not 

measuring the actual temperature of the laser diode and that as the ambient temperature was 

increased, the temperature gradient between the chip and the thermistor was affected. 

Therefore, the laser diode chip was further cooled down. 

 

Figure 5.17 Laser diode wavelength drift with ambient temperature while 

conventionally controlled to a thermistor temperature of 25  ˚C 

 

Thus, the laser diode wavelength drifted towards shorter wavelengths with a total wavelength 

shift of 80pm over the temperature range of 15-35˚C. The laser diode wavelength had an 

overall wavelength change with ambient temperature of -3.8pm ±0.55pm /ºC at a constant 

thermistor temperature. 

The conventional thermistor control method was also tested for the long term laser 

wavelength stability at a single temperature setpoint. The injection current to the laser diode 

was kept constant at 167mA and the thermistor temperature was controlled to at 25˚C. The 

ambient temperature was set to 20 ˚C and the wavelength monitored for 60min. Figure 5.18 

shows the resulting long term wavelength stability. 
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Figure 5.18 Laser diode long term wavelength stability as a function of time at constant 

ambient temperature of 20 ˚C, thermistor temperature of 25 ˚C and constant injection 

current of 167mA 

The laser diode wavelength drifted over time with a standard deviation of σ=±2.2pm over a 

time of 60 minutes.  

The sawtooth like response could be attributed to mode hops in the laser diode, while 

maintaining the ambient temperature at 20 ˚C using an environmental chamber. The sawtooth 

behaviour could also be due to the resetting of the PID to maintain the set thermistor 

temperature. This mode hop in the laser diode could be the result of the inability of the 

thermistor to accurately to sense the temperature of the laser diode.  

 Laser diode wavelength stability using forward voltage b ased 5.3.3

control  

The laser diode forward voltage was used as a temperature sensor to stabilise the wavelength 

of the laser diode according to the method described by Uehara and Katakura[5].  

Figure 5.21 shows the If -Vf  relation for the T08 can packaged DFB laser over the temperature 

range 10-40 ˚C .  The forward voltage (Vf )  decreased with increasing operating thermistor 

temperature. The temperature dependence of the forward voltage of the laser diode was used 

to stabilise the temperature of the laser diode and thus the emission wavelength. 

1650.904

1650.906

1650.908

1650.91

1650.912

1650.914

1650.916

1650.918

0 10 20 30 40 50 60

Em
m

is
io

n
 w

av
e

le
n

gt
h

 (
n

m
)

Time (min)



122 

 

 

Figure 5.19 Vf -If plot of the laser diode operating under thermistor based 

control at different temperatures 

The method of using forward voltage for stabilising the laser diode emission wavelength is 

described in two sections; 

 Equipment and experimental setup  

 Results and discussion.  

5.3.3.1  Equipment and Experimental setup  

The same DFB laser as reported in section 5.3.1 was temperature stabilised using a forward 

voltage method to achieve wavelength stability. The laser diode was driven using the same 

current driver (ThorLabs LDC200) and its emission wavelength was monitored using the 

same wave meter (High Finesse WS6/200IR) as described in section 5.3.1. The laser diode 

was placed in a custom built environmental chamber with ambient temperature controlled in 

the range 15-35°C. A LabVIEW (National Instruments) based proportional integral and 

derivative (PID) controller was used to implement the forward voltage based temperature 

controller, as shown in the flowchart in Figure 5.20.  
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Figure 5.20 Laser diode wavelength stability flow chart using forward voltage based 

control 

 The voltage drop across the laser diode was measured and compared to a voltage setpoint, 

chosen to give a  wavelength  near the methane gas line (1650.9nm) at specific temperature 

(for operation at 25˚ C and 167mA). The difference between these voltages acted as an error 

signal and was fed into the PID controller to stabilise the temperature of the laser diode as 

described in Figure 5.21. The starting P,I, and D  values for the control loop were determined 

using the method described by Cohen and Coon [6] . Table 5.5 gives the PID values for the 

forward voltage based control loop. 

Table 5.5 PID control values for the forward voltage based control  

Control type Proportional Gain 

(kc) 

Integral time 

(Ti, min) 

Derivative time 

(Td, min) 

PID 5 0.005 0.00005 

Appendix B contains the LabVIEW programme written for implementing the forward voltage 

for stabilising the wavelength of the laser diode. 
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Figure 5.21 Schematic diagram of the forward voltage method to stabilise the 

laser diode wavelength 

5.3.3.2  Results  and discussion  

The laser diode was driven with a constant injection current of 167mA. The voltage drop  

was measured while the thermistor was controlled to 25°C ,was used as set voltage for the 

PID controller, the ambient external temperature of the environmental chamber was then 

varied in steps of 5°C over the range 15-35°C, while operating under forward voltage control 

and maintaining the emission wavelength.  

Figure 5.22 shows the relationship between ambient temperature and laser diode emission 

wavelength under forward voltage control. The laser diode wavelength was found to drift 

towards longer wavelengths at higher ambient temperatures, in contrast to the conventional 

method using thermistor, where wavelength drifted towards shorter wavelengths as described 

in section (5.3.1.2). It was found that this technique suffered from a systematic wavelength 

drift of 4.5pm/°C with varying ambient temperature, as can be observed in the graph in 

Figure 5.22. 
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Figure 5.22 Laser diode wavelength stability as a function ambient temperature 

under forward voltage control. 

Figure 5.22 shows that the laser diode wavelength was drifting towards longer wavelength as 

the temperature was increased, indicating that the forward voltage was influenced by some 

other parameter, that could influence laser diode junction temperature. The wavelength drift 

with the forward voltage method over the ambient temperature range (15-35˚C) was 91 pm. 

The systematic change in wavelength with temperature was 4.5pm/˚C ±0.06pm /˚C. The 

performance of the forward voltage method in stabilising the wavelength of the laser diode 

with variable ambient temperature was therefore comparable to that of conventional 

thermistor-based control 

Laser diode long term wavelength stability was assessed by controlling the laser diode 

temperature using feedback from the forward voltage method. The laser diode was kept in an 

environmental chamber at a constant temperature of 20 ˚C. The laser diode chip was biased 

with an injection current of 167mA and the wavelength was measured with the wavemeter 

(described in section 5.3.1) over a period of 60 minutes.   

 

 

 

 

1650.900

1650.920

1650.940

1650.960

1650.980

1651.000

1651.020

10 20 30 40Em
is

si
o

n
 W

av
e

le
n

gt
h

 (
n

m
)

Ambient temperature (˚C)

Experimental

Linear Fit



126 

 

 

Figure 5.23 Laser diode  wavelength stability test as a function of time using forward 

voltage based control 

Figure 5.23 shows the wavelength stability of a laser diode as a function of time diode at 

constant temperature and injection current. The wavelength stability was σ ±1.32pm, which 

again was comparable to conventional thermistor based control in section 5.3.2.1. In Figure 

5.23, the DFB laser experienced mode hops at approximately 33, 34 and 38min respectively. 

These mode hops could be attributed to the sudden drop in forward voltage and then the 

subsequent stabilisation by the forward voltage  

The long term wavelength stability and systematic error in wavelength with ambient 

temperature changes for the forward voltage method were comparable to that of the 

thermistor. However, tuneable diode laser spectroscopy of gases such as methane, where the 

absorption line full width half maximum is 50pm (100% methane concentration at 

atmospheric pressure), requires a more stable laser diode wavelength when faced with 

varying ambient temperatures. Therefore, an improved wavelength control method is 

required. 

 Laser diode junction voltage based control  5.3.4

The forward voltage is the voltage measured across the anode and cathode of the laser diode. 

The forward voltage is the sum of junction voltage and the voltage drop across the resistance 

of the laser diode, as described in equation (5.7). The laser diode series resistance increased 

with increasing temperature as shown in section 5.2. The laser diode junction voltage was 
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investigated for the purpose of stabilising the wavelength of the laser diode over long 

timescales and in the face of variable ambient temperature. 

Figure 5.2 showed that, with increasing temperature, the forward voltage decreased, in 

contrast to the series resistance of the laser diode as shown in Table 5.3 which increased with 

increasing temperature. 

Table 5.3 confirmed that there was a small additional series resistance within the laser diode, 

which is temperature dependent. The voltage drop due to the laser diode resistance, will 

contribute to the forward voltage by adding a small voltage that is dependent on both 

temperature and injection current, as described in equation (5.7). Therefore, this potentially 

adds a systematic error to the measurement of the temperature of the laser diode using the 

forward voltage of the laser diode. This systematic error in temperature sensing using the 

forward voltage could be observed in Figure 5.22 where, the laser diode emission has drifted 

towards longer wavelengths due to the increasing ambient temperature. 

The junction voltage based control system takes into account the temperature dependence of 

the laser diode series resistance and its contribution to the forward voltage drop across the 

laser diode. In the junction voltage control technique, the voltage drop across the series 

resistance of the laser diode is subtracted from the forward voltage of the laser diode and the 

resultant voltage is used for stabilising the temperature and wavelength of the laser diode. 

5.3.4.1  Equipment and Experimental Setup  

The flow chart in Figure 5.24 shows the process used for stablising the laser diode 

wavelength using laser diode junction voltage. The laser diode series resistance was 

measured dynamically by modulating the laser diode using a relatively small modulation 

depth (compared to the DC injection current), while simultaneously applying a DC injection 

current.  The voltage drop across the laser diode was fed into a lock-in amplifier and 

demodulated at 1f. The demodulated signal gave a measure of the laser dynamic resistance as 

∂V/∂I at the DC current.  

The same PID controller was used as described in section 5.3.2.1. The LabVIEW code 

(Appendix B) used in section 5.3.2.1 was modified by subtracting the voltage drop across the 

series resistance from the forward voltage measured across the laser diode. 

The RMS modulated voltage was measured using a lock-in amplifier and multiplied by an 

empirically determined factor (A) in Figure 5.24, to give a measure of the series voltage 
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(IfRs).  This was subtracted from the DC forward voltage to give a measure of the junction 

voltage Vj. A setpoint value (Forward voltage at 165mA giving emission wavelength of 

165nm minus the calculated voltage across the series resistance at this current) was 

subtracted from Vj to provide an error signal to the PID. Voltages were measured using a data 

acquisition card (National Instruments PCI 6259). The voltage compensation and the PID 

were all implemented in LabVIEW. The output from the PID was sent to the modulation 

input of the Peltier cooler current diver in order to close the feedback loop.  
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Figure 5.24  Flow chart for the laser diode wavelength stabilisation using junction 

voltage 

The schematic diagram in Figure 5.25 shows the operation of the laser diode wavelength 

controller using the junction voltage of the laser diode. The laser diode was modulated at 31 

kHz with modulation amplitude of 0.08Vrms (5.2mA current modulation). The smallest 

modulation amplitude which could be detected by the lock-in amplifier was applied to the 

injection current in order to reduce contribution to the laser diode resistance by the 

modulation current. To avoid heating at the gain chip, the laser diode was modulated at a high 

frequency. The bandwidth of the lock-in amplifier was 100 kHz and to detect 2f and 3f 

signal, a maximum of 31 kHz modulation frequency was used to modulate the laser diode. A 
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current driver (Thorlab LDC200) was used to bias the diode at an injection current of 165 

mA. A current driver (ThorLab ITC510) was used to drive the Peltier cooler. A lock-in 

amplifier (Stanford research SR85) was used to measure the 1f modulated forward voltage, 

providing a dynamic resistance measurement input to the PID which was implemented in 

LabVIEW. The output error signal from the PID was sent to the modulation input of the 

Peltier cooler current diver.  

 The half width half maximum of the methane gas line was ≈ 50pm at atmospheric pressure 

and 100% concentration. The methane gas was in a gas cell with a short path length of 5mm 

and methane gas concentration of ≈2.5 / %Vol. The light from the laser diode was coupled 

into single mode optical fibre and transmitted through the gas cell. 

 

Figure 5.25 Description of the junction voltage method for stabilising the wavelength of 

the laser diode 

The laser diode wavelength stability was measured with the help of a methane gas line at 

1650.96nm, due to limited sampling rate of the wavemeter and limited resolution and 

sampling rate of the optical spectrum analyser. The 3f signal of the detector output from the 

methane absorption gas line was used to check the wavelength stability of the laser diode. 

5.3.4.2  Laser diode wavelength calibration  

The laser diode wavelength was calibrated using a methane gas line at 1650.96nm. To 

achieve this, the laser diode was biased at 165mA with sinusoidal modulation frequency of 
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31 kHz. The laser diode wavelength change with current was measured to be 23pm/mA by 

calibrating laser diode wavelength at different injection currents using an optical spectrum 

analyser. The laser diode modulation amplitude was 5.2mA p-p giving a wavelength tuning 

of 115pm p-p.  

To establish a wavelength calibration, the centre wavelength of the laser diode was scanned 

across methane gas line while simultaneously applying the sinusoidal dither. The detector 

output was then fed into the lock-in amplifier and the third harmonic was measured as shown 

in Figure 5.26 below: 

 

Figure 5.26 Methane 3f signal from gas cell used for wavelength measurement  

The zero crossing at y=0 and x=165.8mA, the x-axis of the 3f signal, corresponds to the peak 

of the methane gas line. To make sure that the line centre had been identified, the calibration 

process was repeated while observing the 1f, 2f and 3f signals. 

The change in laser diode wavelength with injection current in terms of methane gas line can 

be derived from the relation below  

 𝑑(3𝑓 𝑠𝑖𝑔𝑛𝑎𝑙)

𝑑(𝐼𝑓)
=

𝑑(3𝑓 𝑠𝑖𝑔𝑛𝑎𝑙)

𝑑(𝐼𝑓)
×

𝑑(𝐼𝑓)

𝑑(𝜆)
 

     (5.16) 

Where, λ is the wavelength and 
d(If)

d(λ)
 is given by the tuning coefficient. The gradient of the 

linear region of the 3f signal is expanded in the Figure 5.29 below: 
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Figure 5.27 Gradient measurement of the 3f signal linear region 

The gradient of the 3f signal with injection current was1.904V/mA. By substituting the 

gradient of the 3f signal linear region and the tuning coefficient, the laser diode wavelength 

was calibrated in terms of the methane gas line.  

By this method, the voltage output from the 3f lock-in amplifier was established to have a 

calibration coefficient of  
d(3f signal)

d(λ)
  = 83mV/pm 

5.3.4.3  Results and discussion  

The lock-in amplifier 3f signal was recorded and converted into wavelength using the 

calibration procedure described above in section (5.3.3.2). Figure 5.28 shows the long-term 

wavelength stability of the laser diode using junction voltage at 20ºC and injection current of 

165.8 mA for duration of one hour. The deviation of the laser diode central peak wavelength 

from the 3f signal horizontal zero axis gave the measure of the laser diode wavelength 

stability. 

An optical spectrum analyser (Yokogawa AQ6370D) was also used to confirm that there 

were no wavelength changes that would take the emission outside the linear region of the 3f 

output /current curve in Figure 5.27. 
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Figure 5.28 Laser diode wavelength stability as a function of time using junction voltage 

based control 

The laser diode remained stable over a period of one hour with a centre wavelength deviation 

of σ = 0.7pm. The long term wavelength stability of the laser diode with forward voltage is 

comparable to that of the thermistor control and forward voltage control methods. 

The junction voltage control technique was also tested for wavelength stability with changes 

in ambient temperature in the range of 15 - 35°C over shorter periods of approximately 5 

min. 

 

Figure 5.29 Laser diode wave length stability at 15˚C ambient temperature 
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Figure 5.30 The effect of ambient temperature on the laser diode wavelength stability at 

35 ˚C 

Figures 5.29 and 5.30 shows the effect of ambient temperature on the laser diode wavelength 

at 15˚C and 30˚C, respectively. In both figures, the laser diode wavelength remained close to 

the zero crossing point on the x- axis, indicating the laser diode wavelength was near the 

centre of the methane gas line.   

Table 5.6 shows the laser diode wavelength drift with varying ambient temperature. The laser 

diode wavelength remained stable with an ambient temperature coefficient of less than 

0.03pm / °C. The laser diode wavelength stability with ambient temperature using junction 

voltage is therefore 2 orders of magnitude better than that achieved using conventional 

thermistor control and using the forward voltage control technique. 

Table 5.6 Laser diode wavelength stability with ambient temperature  

Ambient Temperature(°C) Wavelength Deviation (pm) 

15 ±0.3 

20 ±0.7 

25 ±0.8 

30 ±0.5 

35 ±0.9 
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5.4  Discussion and conclusion  

Laser diode series resistance can be calculated from the I-V characteristics of the laser diode. 

The laser diode is operated in DC conditions and the voltage drop across the laser diode 

terminals is measured with the help of a digital multimeter. By taking the derivative of the 

laser diode voltage at different operating temperatures, the laser diode resistance of the two 

DFB lasers (one T08 Can package and the other butterfly packaged) was calculated. Three 

different techniques were used to calculate to the resistance of these two DFB laser diodes 

and the results of these techniques were compared.  For a T08 Can packaged laser, the 

standard method, and the Cheung and Cheung method gave approximately similar results 

whereas the Werner methods gave relatively lower resistance values for this laser. In contrast 

to the T08 Can package laser, the butterfly packaged showed higher resistance with the 

standard method, whereas the Werner method, and Cheung and Cheung method gave similar 

resistance values. The resistance of both laser diodes increased with increasing temperatures 

using the three different techniques. Both the Cheung and Cheung and the Werner methods 

show lower increase in the series resistance with temperature compared to the standard 

method. Based on the calculation results of the series resistance, due to the low error bars, the 

Cheung and Cheung method was used to calculate the series resistance of the laser diode for 

use in junction voltage based control. 

The laser diode wavelength stability was investigated using three temperature control 

techniques i.e. the conventional thermistor control, the forward voltage method and the newly 

developed junction voltage control technique. 

In conventional laser diode temperature control, a thermistor placed at a distance from the 

gain chip is used to sense the temperature of the laser diode chip. The thermistor measures 

the temperature of its immediate surroundings. However, there is a temperature gradient 

between the chip and the thermistor resulting in laser diode wavelength drift due to the chip 

being at a different temperature .It was demonstrated experimentally in the thermistor based 

temperature control section that with variable ambient temperature the laser diode 

wavelength decreased with increasing ambient temperature.  

The approximately linear relationship between DFB laser diode for voltage and temperature 

can be used as a temperature sensor and to stabilise the central wavelength of the laser diode. 

The laser diode forward voltage decreased approximately linearly with increasing operating 

temperature. It was experimentally demonstrated that the voltage across the laser diode can 
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be used to stabilise the central wavelength of the laser diode. The performance of the forward 

voltage control technique was comparable to that of a conventional thermistor control system 

as tabulated in Table 5.7. However, with variable ambient temperatures the laser diode 

wavelength drifted due to the temperature dependence of the laser diode series resistance. 

The laser diode forward voltage decreased with increasing temperature, whereas laser diode 

resistance increased with increasing temperature. Therefore, when the ambient temperature 

was increased, the forward voltage decreased, resulting in laser diode wavelength drift 

towards longer wavelengths. 

 The laser diode resistance increased with increasing temperature in contrast to a decrease in 

voltage drop across the laser diode with increasing temperature. Therefore, a new system was 

developed based on the measurement of the junction voltage of the laser diode to stabilise its 

wavelength. The laser diode resistance was dynamically measured by modulating the 

injection current at a DC bias above threshold. The laser diode was modulated at a high 

frequency (31 kHz) with small amplitude to minimise the additional heat generated due to the 

modulation current. The 1f demodulated output was scaled and subtracted from the voltage 

drop measured across the laser diode. The resulting junction voltage was subtracted from a 

voltage setpoint and the result used as an error signal in a PID loop.  

Due to the limited resolution of the spectrum analyser and sampling rate and the fact that the 

laser diode was modulated, a methane gas line was used to check the wavelength stability of 

the laser diode. The centre wavelength of the laser diode was checked for long-term stability 

and under variable ambient temperatures. The laser diode central wavelength remained 

stable, similar to that of the forward voltage and thermistor in the long term stability testes as 

shown below in Table 5.7. For wavelength stability with variable ambient temperature, 

junction voltage control has wavelength stability 2 orders of magnitude better than that of 

either thermistor or forward voltage control. 
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 Table 5.7 Comparison of laser diode wavelength control stability techniques  

Wavelength Control 

Technique 

Long Term Stability  Wavelength Drift with 

Ambient Temperature  

Thermistor Control ±2.2 pm (±242MHz) 3.8pm/ºC (418MHz/ºC) 

Forward voltage Control ±1.32 pm (±145MHz) 4.5 pm/ºC (495MHz/ºC) 

Junction Voltage control ±0.7pm (±77MHz) 0.03 pm/ºC (3.3MHz/ºC) 

In TDLAS, generally molecular gas absorption lines is used to stabilise the laser diode 

wavelength as reported in section 2.3.4, where Sudo et al [7] reported a wavelength stability 

of 500kHz for a DFB laser using an acetylene absorption line. The wavelength stability 

achieved with this method is higher than the junction voltage control method. However, this 

wavelength locking method for stabilising laser diode wavelength is tedious and requires an 

extra reference cell 

Tuneable laser diode spectroscopy requires a very stable laser diode wavelength with 

wavelength stability of better than 10% of the full width half maximum as the gas absorption 

lines are very narrow, e.g. the  methane absorption at 1650.96nm has a linewidth (HWHM) of 

50pm for 100% concentration. For an ambient temperature change of 20°C, conventional 

thermistor control would suffer a wavelength change of 76 pm, greater than the methane gas 

linewidth at 1650.96nm. Using junction voltage control would bring this down to a more 

manageable 0.6 pm, which is much smaller than the gas linewidth and similar to the level of 

wavelength stability over time at a fixed temperature. 

This technique has been successfully applied to the TO can – packaged DFB described here. 

Based on the information here, this technique could be extended to other types of light 

sources such as VCSEL and UV LED.     
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6 Wavelength control with tuneable diode laser 

spectroscopy 

Tuneable laser diode absorption spectroscopy using wavelength modulation (wavelength 

modulation spectroscopy) is described in this chapter. The laser diode wavelength stability in 

wavelength modulation spectroscopy (WMS) is critical in high resolution gas absorption 

spectroscopy. To achieve wavelength stability several frequency references based on atomic 

lines, optogalvanic effects, gas molecular absorption lines and interferometers have been 

implemented as in previous work as reviewed in chapter 2. 

In this chapter a novel technique will be described based on measurement of laser diode 

junction voltage, to stabilise the emission wavelength of the laser diode in WMS, by 

accurately stabilising the operating temperature of the laser diode. The performance of this 

junction voltage controlled system is evaluated at different gas concentrations and variable 

ambient temperatures and is compared with a conventional thermistor controlled system.  

In the beginning of this chapter, WMS will be briefly described. Then the basic setup for 

TDLS using WMS technique will be used to characterise the initial bench top system for 

WMS.  

6.1  Wavelength modulation spectroscopy  

Wavelength modulation spectroscopy is a popular gas absorption detection technique with 

good sensitivity and selectivity. In WMS, the laser diode emission wavelength is modulated 

with sinusoidal signal and the modulated wavelength is scanned across the gas abortion line 

using a slowly moving ramp. For optimum WMS, the modulation index should be 2.2 times 

the full width half maxim (FWHM) of the probed gas absorption line [1]. A detailed 

description of WMS was given in chapter 2. 

The sensitivity of WMS can degrade with temperature and time in the absence of a 

wavelength locking reference due to the drift in the laser diode emission wavelength. 

The laser diode emission wavelength is conventionally locked to a gas absorption line, where 

the control loop feedback is used to correct the laser wavelength. However, this scheme is 

extremely sensitive to alignment, is difficult to set up and is bulky. 



139 

 

The wavelength control scheme proposed in chapter 5 has the potential to overcome the 

challenges of the conventional control locking scheme used in WMS as mentioned above. 

The challenges faced in the integration of the wavelength control scheme based on junction 

voltage were  

 The use of a slowly moving current ramp for scanning the modulated laser diode 

wavelength,  which modulated the junction voltage in addition to the junction voltage 

variation due to the modulating sinusoidal signal 

  A synchronisation mismatch between analogue modules such as the lock-in amplifier 

and filters with the software based module such as the PID loop and averaging filters.  

6.2  Equipment for WMS based setup for initial  bench top system  with 

thermistor control  

The WMS based system comprised the following main elements: 

1. Light Source and related drive electronics 

 A 1651nm distributed feedback (DFB) laser diode (Laser Components HHI) 

miniature thermo electric controller (MTE) module TO8 can packaged 

mounted on a custom built mount. 

 The injection current to the laser diode was provided using a current driver 

(Thorlab LDC 200) and the operating temperature was controlled using 

temperature controller (Thorlabs TED 200). 

2. The injection current to the laser diode was modulated at a frequency of 31kHz with a 

sinusoidal output form SR850 (Stanford) lock-in amplifier. A custom built 

proportional-integral-differential (PID) circuit was used to add a ramp to the 

modulation signal to scan the gas lines. The ramp signal at a frequency of 2Hz was 

provided by a signal generator (Stanford DS345).  

3. A gas cell containing methane gas at different concentrations with a path length of 

10cm was used to evaluate the bench top WMS system. This gas cell was equipped 

with conventional wedged (2 degrees beam deviation angle) and anti-reflection coated 

windows (Thorlabs “c” coating <0.5% at 1650nm) in order to reduce the interference 

fringes.  

4. The detection system comprised an amplified detector (Thorlabs PDA400) and 

Stanford lock-in amplifier (Stanford SR850) for 1st, 2nd, and 3rd harmonic detection. 
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5. Data acquisition system was carried out with two data acquisition card (National 

Instruments PCI 6251 and usb 6281). The data was analysed in the LabVIEW 2013 

environment. 

 Description of the operation of WMS based bench top system  6.2.1

Light from the DFB laser diode was coupled into single mode fibre (SMF28) using three anti 

reflection (AR) coated aspheric lenses. The light output from the laser diode was elliptical 

and highly divergent, so an aspheric lens with a short focal length of  ≈3mm was used to 

collect light from the laser diode with a more uniform Gaussian spot, this lens was kept as 

close as possible to the laser to increase coupling efficiency into the lens. Then a 2
nd

 aspheric 

lens with focal length of  ≈11mm was used to collimate the light from the 1
st
 aspheric lens 

near the laser diode. The third aspheric lens with ≈18mm focal length was used to couple 

light into the single mode fibre and then to the gas cell using a fibre coupling system with 

translation stages as shown in the line diagram and in the picture below in Figure 6.1 and  

Figure 6.2 respectively. 

 

Figure 6.1 Line diagram for the setup of collimating and coupling light from the 

laser diode into a single mode fibre 
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Figure 6.2 Description of the laser diode light collimation and coupling of light 

into single mode optical fibre 

The laser diode was modulated at f = 31 kHz and the modulated light was coupled into a gas 

cell. The output from the photo detector at the other end of the gas cell was fed into a lock-in 

amplifier with phase sensitive detection at the 2
nd

 harmonic (2f) of the modulating signal.    

Figure 6.3 Gas cell and its implementation in WMS 
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Gas to the gas cell was supplied from certified gas cylinders supplied by BOC, one with 

100% synthetic air and the other with 2.5% methane concentration. The flow of the gas to the 

gas cell was controlled with a bank of mass flow controller (Teldyne Hasting HFC-302 and 

THPS-400 four channel power supplies), as shown in Figure 6.4 

Figure 6.4 Line diagram and picture of the gas flow control system setup 

Figure 6.5 represents the experimental setup for evaluation of the initial WMS bench top 

system. 

  

Figure 6.5 Schematic of the experimental setup for wavelength modulation 

spectroscopy using conventional laser diode control 
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6.3  Characterisation of the WMS bench  top system 

The initial WMS bench top system was optimised in two stages. The first stage was to 

determine the optimum current modulation amplitude for the laser diode and then in the 2
nd

 

stage the efficiency of the wavelength modulation coefficient was measured.  The final stage 

of this initial bench top system will be to evaluate the performance of this setup by measuring 

different concentrations of methane gas. 

 Optimum current modulation coefficient for WMS bench top system  6.3.1

The bench top WMS based system was used to optimise the current modulation amplitude. 

The amplitude of the 2f signal is dependent on the modulation index 𝑚[1] as reviewed in 

section 2.4.2  

 𝑚 =
𝑖𝑚𝑜𝑑

𝛿𝑣
 (6.1) 

Where imod is the modulation amplitude and δv is the half width at half maximum of the 

absorption line) [1]. For detailed theory on the modulation index refer to chapter 2 of this 

thesis. The emission wavelength of the laser was varied by adding a sinusoidal signal to the 

DC injection current of the laser diode. Figure 6.6 shows the 2f signal plotted at different 

modulation amplitude. 

 

Figure 6.6 2f signal as function current amplitude modulation  
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By analysing Figure 6.6, it can be observed that the peak of the 2f signal increased with 

increasing modulation amplitude and the width of the 2f signal remained narrow. However, 

for modulation amplitudes over 0.180Vrms, the 2f broadened and the peak of the signal 

decreased. This was the modulation amplitude at which the modulation index was bigger than 

the half width of the absorption profile and beyond this point, the 2f signal was broad with a 

low signal to noise ratio. This optimum modulation will scan the laser diode emission 

wavelength 2.2 times the FWHM of the gas absorption line. The following Tables 6.1and 6.2 

show the settings for the ramp signal generator and the lock-in amplifier used in the bench 

top WMS setup. 

Table 6.1 Ramp settings for WMS 

Amplitude Frequency 

0.8V 2Hz 

 

Table 6.2 Lock-in amplifier settings for WMS 

Time constant(τ) sensitivity Sampling rate 

3ms 20mV 512Hz 

The lock-in amplifier was used as a signal generator to modulate the laser diode and its 

internal reference was used to achieve the 1f, 2f and 3f signals for the detected light after 

passing through the gas cell. 
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Figure 6.7  2f signal plotted as a function of current amplitude modulation 

amplitude 

Figure 6.7 shows the plot of the peak of each 2f signal against the current modulation 

amplitude. The curve initially increased linearly with increasing modulation current 

amplitude and reached its maximum value with current amplitude modulation of 5.1mA. 

When the current amplitude modulation was increased further, the amplitude of the peak 

signal reduced. This phenomenon can be compared to the broadening of 2f signal with the 

reduction of peak amplitude as shown in Figure 6.6. In Figure 6.5, the experimental data was 

compared with a theoretical data fit to equation 2.34. The experimental curve was following 

the same pattern as the theoretical curve with the experimental points matching theoretical 

data points.  

 Wavelength modulation tuning coefficient efficiency  6.3.2

The laser diode wavelength modulation tuning coefficient is described by the relation ∆λ/∆i 

(pm/mA), where ∆i is the current modulation amplitude and ∆λ  is the modulated wavelength. 
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Figure 6.8  Laser diode emission wavelength as a function of injection current at 

operating thermistor temperature of 25 ̊C 

 For the laser diode used in this experiment, the ∆λ/∆I was 24pm / mA under DC conditions, 

which was determined experimentally from the slope of laser diode wavelength as a function 

of DC current as shown in Figure 6.8. 

The wavelength tuning coefficient efficiency for this WMS experiment was determined 

experimentally using an experimental procedure developed by S. Schilt et al [2] as described 

in chapter 2 section 2.4.2. In this experimental procedure, the peak of the 2f signal as a 

function of current modulation amplitude determines the efficiency of the wavelength 

modulation. 

By plotting the peak 2f signal s2, max against the modulation index using a known FWHM of 

an air broadened methane gas, the optimum modulation index for this bench top system was 

calculated. 
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Figure 6.9 Peak 2f signal plotted as function of the modulation index 

Figure 6.9 shows a plot of the modulation index and the peak 2f signal s2, max .This graph was 

plotted by modifying the graph in Figure 6.7, where, instead of current modulation amplitude, 

the 2f signal was plotted against the modulation index.  The modulation index for this bench 

top system was calculated using the known air broadened methane HWHM of 2.2GH [2][3]. 

The optimum modulation index for this bench top system was calculated to be 2.3 which is 

close to the theoretical optimum modulation index of 2.2.Therefore the optimum current 

amplitude modulation was 0.180 vrms (5.15mA). 

 Gas detection performance  6.3.3

The performance of the initial bench top system which used the thermistor based temperature 

control, was evaluated by measuring different concentrations of methane gas. Air and 

methane gas were supplied from BOC cylinders with 100% synthetic air and 2.5% methane 

respectively. The mixture of air and methane were supplied to the 10cm gas cell using a mass 

flow controller as described in section 6.2.1.   
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Figure 6.10 2f signal as a function of different methane gas concentration  

Figure 6.10 shows the plot of the detected 2f signal at different methane concentrations. The 

relationship between the measured signal and the concentration of the gas supplied was 

approximately linear with gas detection in the range of 0.2% to 2.5%. 

6.4  Effect of ambient temperature on  thermistor controlled based  WMS 

bench top system 

The laser diode emission wavelength is highly sensitive to temperature. Therefore a precise 

control of the temperature is required to stabilise the laser diode wavelength [4].  The 

temperature of the laser diode is usually stabilised with a thermistor based Peltier with 

stability of 0.1 ºC. The effect of ambient temperature on the wavelength stability has been 

previously reported in chapter 5. In this section, the effects of ambient temperature on the 

performance of the WMS bench top system were investigated. The laser diode was placed in 

the custom built environmental chamber and the ambient temperature was varied. 

The injection current and the thermistor temperature of the laser diode were kept constant. 

The setup for this experiment was similar to that shown in Figure 6.5. The operating 

temperature was 26˚C and the DC injection current was 165.28mA. 
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Figure 6.11 The effect of ambient temperature of the 2f signal detection of the 

WMS bench top system 

The ambient temperature was varied in step of 5˚C in the range of 15-35˚C. Figure 6.11 is the 

plot of the detected 2f signal using WMS bench top system at various ambient temperatures. 

The 2f signal in Figure 6.11 was normalised with the DC signal at the detector. The detector 

had a DC offset which was subtracted from the DC signal. By analysing this plot, it can be 

observed that, with increasing ambient temperature, the detected peak 2f signal shifted 

toward higher current. The peak of the 2f signal was detected at a ramp current 162.1mA at 

15ºC, and as the temperature was increased, the 2f signal was detected at a ramp current 

164.3mA at 35ºC. The laser diode drifted 2.2 mA with a drift of σ = 0.11mA / ºC. The laser 

tuning coefficient for this laser was 24pm / mA, therefore the emission wavelength drift was 

53pm. This is larger than the FWHM of the methane line, which is 50pm at 1atm pressure 

according to the Hitran database [3]. This drift in laser diode wavelength with ambient 

temperature will potentially limit the detection accuracy for the laser diode using thermistor 

based temperature controller. 

 The shift of the peak detected 2f signal with ambient temperature could be attributed to the 

shift of the emission wavelength to shorter wavelengths due to the overcooling by the 

thermistor controlled peltier. The graph in Figure 6.11, suggested a thermal gradient between 

the chip, peltier, thermistor and the ambient temperature.  
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In chapter 5, the laser diode wavelength drift was calculated to be 3.8pm ±0.6/ ºC, whereas in 

the WMS, the wavelength drift was calculated to be 2.64 pm / ºC. The higher wavelength 

drift in chapter 5 could be attributed to interference fringes compared to the results in Figure 

6.5. 

6.5  WMS based on junction voltage control  

This section chapter deals with WMS based gas detection system using the laser diode 

wavelength control technique as described in chapter 5. The laser diode wavelength control 

was achieved by using junction voltage of the laser diode as a measure of laser diode chip 

temperature. The aim of this method was to overcome the wavelength drift of the laser diode 

with temperature.  

The description of the WMS system utilising junction voltage based wavelength control 

system starts with equipment and description of the system. Then, the performance of this 

system is evaluated system by detecting different concentration of methane.  

This section of the chapter is completed with analysis of the effect of ambient temperature 

WMS using junction voltage based wavelength control technique. 

 Equipment 6.5.1

The following are the equipment used in this experiment. 

1. Light Source and related drive electronics 

 The light source is similar to the one described in section 6.2. 

 The laser current driver is the same as the one used in previous section. The 

temperature of the laser diode was controlled with a current source to the 

Peltier using current driver (Thorlab ITC510). 

2. Gas cell was the same as section 6.2 

3. The injection current to the laser diode was modulated at a frequency of 31 kHz with 

a sinusoidal output from a lock-in amplifier (Stanford SR850). A custom built 

proportional-integral-differential (PID) circuit was used to add the ramp to the 

modulation signal to scan the gas lines in the gas cell. Another lock-in amplifier 

(SR850) was used to measure the dynamic series resistance of the laser diode.  

4. The detection System was the same as that was used in section 6.2. 

5. Data Acquisition system was same that used in 6.2. 



151 

 

6. A low pass filter (Kemo dual variable filter) with attenuation of 48dB/octave and a  

high pass filter (Stanford SR560)  with attenuation of 12dB/octave were used for low 

frequency and high frequency changes to the forward voltage 

7. The ambient temperature of the laser diode was varied with the custom built 

environmental chamber.  

 Description and experimental setup of the system  6.5.2

Figure 6.12 shows WMS utilising junction voltage based wavelength control technique. The 

laser diode was modulated with a 31 kHz sinusoidal signal with amplitude of 10.2mA peak to 

peak. The modulated signal was scanned across the methane gas line with a ramp signal of 

2Hz frequency and amplitude of 16mA peak to peak. The forward voltage drop Vf across the 

laser anode and cathode terminals was measured and acquired with a data acquisition card in 

LabVIEW environment. As  Vf contained both the ramp signal and sinusoidal signals, Vf was 

filtered with a high pass filter, where the filtered signal was sent to a lock-in amplifier for 

dynamic series resistance measurement. Vf signal was also low pass filtered to provide DC 

forward voltage Vf  by averaging out the ramp signal and sinusoidal modulation.  

 

 

 

Figure 6.12 TDLS using junction voltage based wavelength control technique  
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Figure 6.13 Laser diode wavelength stability flow chart using junction voltage based 

control 

Figure 6.13 shows the flow chart for the junction voltage based control system. The laser 

diode DC injection current was 165.28mA and the forward voltage drop measured at 26 ºC 

was used as a set point for wavelength control at variable ambient temperature Table 6.3 

shows the setting of the low pass and high pass filters for removing the ramp signal from the 

measured forward voltage Vf.  

Table 6.3 Filter setting for WMS using junction voltage based wavelength 

control system 

Filter type Cut off frequency(3dB point) / Hz 

Low pass filter (kemo) 0.1Hz 

High pass filter (SR560) 10kHz 

Table 6.4 shows settings for the two lock-in amplifier used in the WMS setup, where lock-in 

amplifier 1 was used for detecting the 2f signal of the detected laser light after passing 

through a gas cell. On the other hand, Lock-in amplifier 2 was used to calculate the dynamic 

series resistance of the laser diode. 



153 

 

Table 6.4 Lock-in amplifier settings for WMS using junction voltage based 

wavelength control system 

Type Application Time constant Sampling rate 

Lock-in amplifier 1 2f 3ms 512Hz 

Lock-in amplifier 2 Dynamic series 

resistance measurement 

1s 512Hz 

Table 6.5 contains the LabVIEW based PID control settings. The LabVIEW based code for 

implementing the junction voltage based wavelength control system could be found in 

Appendix B. 

Table 6.5 PID settings for WMS using junction voltage based wavelength 

control system 

P I D 

8 0.48s 0 s 

Initial PID values were determined using Cohen-Coon method [5] and the optimum values 

were determined by trial and error. 

The performance of this junction voltage based wavelength control system in WMS was 

investigated by measuring the 2f signal for different methane concentrations and different 

ambient temperatures. 

The next section will deal with the measurement of different concentration of methane gas, 

followed by analysing the performance of this system at several ambient temperatures while 

tested for methane gas detection. 

 Gas concentration measurement  6.5.3

The performance of this WMS system using junction voltage based wavelength control 

technique was evaluated for detecting different concentrations of methane gas. Mixtures of 

100% synthetic air and 2.5% concentration of methane gas were supplied to the gas cell using 

a mass flow controller as described in section 6.2.1. The optical path length of the gas cell 

was 10cm as previously described in section 6.5.1. 
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Figure 6.14 2f signal as a function of different methane gas concentration  

The peak of the 2f detected signal had a linear relationship with methane concentration as 

expected. This ability to detect different methane gas concentration while using junction 

voltage based control suggested that this system could be implemented in WMS. 

 Effect of ambient temperature  6.5.4

The performance of the junction voltage based wavelength control system was investigated 

by changing the ambient temperature of the laser diode integrated in a TDLAS based WMS 

setup as shown in Figure 6.13. The temperature of the environmental chamber was varied in 

steps of 5 ºC, while stabilising the wavelength of the laser diode using junction voltage. The 

2f signal of the lock-in amplifier was recorded for constant concentration of methane as 

shown in Figure 6.15. 
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Figure 6.15 Effect of ambient temperature on the 2f detected signal  

The peak of the 2f signal for all the temperatures was recorded at injection current of around 

157.4 mA with 0.01 mA / ºC, which corresponded to a change in a wavelength with 

temperature  0.24 pm / ºC . The performance of the junction voltage based wavelength 

control system in stabilising the wavelength of the laser diode was 10 times better than the 

conventional thermistor control. 

The performance of the junction voltage based control performed well, when this technique 

was not integrated in WMS resulting in wavelength drift of just 0.03pm / ºC as described in 

chapter 5 section 5.3.3. However, the laser diode wavelength is still far more stable when it 

was integrated in WMS than with the conventional temperature controller. The control 

system was not investigated for detection limit, however the control system should not  

adversely affect  the detection limit 

6.6  Summary 

WMS bench top system was set up and optimised by choosing suitable amplitude 

modulation. The wavelength of the laser diode was modulated by modulating the amplitudes 

of the injection current to the laser. The detected 2f signals were plotted at different 

modulation amplitude sand the behaviour of 2f signal was analysed. The experimental data 

was compared with the theoretical predictions. The experimental data followed the same 

pattern as the theoretical curve in the current range 3.5-7mA. The optimum wavelength 

modulation tuning coefficient was also calculated by plotting the maximum 2f detected signal 
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against the modulation index. The calculated modulation index was close to that of the 

theoretically calculated modulation index with an error of Δm ≈ 0.1 that is within the 

experimental error 

The bench top WMS system was evaluated for detecting different concentration of methane 

gas. The plot between the methane concentrations and the detected 2f signal was linear in the 

region 0- 2.5% vol in air. 

The effect of ambient temperature on the detection capability of the bench top WMS system 

was also investigated, where the temperature of the laser diode was controlled by the 

thermistor based Peltier. The 2f detected signal was recorded at constant injection current and 

operating temperature, while the ambient temperature was varied. The detected peak 2f signal 

was recorded at different DC currents, showing that the emission wavelength of the laser 

diode drifted with the ambient temperature.  A drift of 53 pm was recoded over the ambient 

temperature range 15-35ºC. This drift of the laser diode emission wavelength with variable 

temperature was larger than the line width of the methane gas absorption molecule, which 

can potentially limit the detection accuracy for the laser diode used in TDLS. 

 To overcome the issue of wavelength drift in WMS due to the ambient temperature, a new 

wavelength control method was introduced. This wavelength control used the junction 

voltage for measuring accurately the temperature of the gain chip, and then stabilising the 

wavelength of the laser diode. The laser diode series resistance was measured dynamically to 

compensate for the change in the laser diode resistance with temperature. 

Firstly, the suitability of the junction voltage based wavelength control technique in WMS 

was investigated by detecting different concentrations of methane gas. The relationship 

between the different methane concentrations and the detected 2f signal was linear within the 

range 0-2.5% vol in air. 

Then the effect of ambient temperature on the laser diode wavelength stability in WMS 

system using the wavelength control technique was investigated. The laser diode ambient 

temperature was varied by varying the environmental chamber temperature in the range 15-

35 ºC. The wavelength of the laser diode remained stable with the peak 2f signal detected at 

the same injection current with a drift of 0.01 mA / ºC, which corresponded to 0.24pm / ºC. 

The performance of the junction voltage based control system in stabilising the laser diode 

wavelength was 10 times better than the thermistor conrrol 
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Based on the performance of the junction voltage based control technique, it can be 

concluded that this wavelength control technique can be integrated in WMS. In conventional 

wavelength control, the zero crossing of a gas line 3f signal is used to reduce the drift of the 

laser diode wavelength in WMS. This method is complicated and requires additional optics. 

The junction based voltage control technique eliminates the need for reference gas cell. 

Therefore, this wavelength stability is simple and easy to implement, simplifying the 

wavelength control in WMS.   
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7. Conclusion and Future Work 

A laser diode’s emission wavelength is strongly dependent on the diodes operating 

temperature. The operating temperature varies the refractive index and the band gap energy 

of the gain medium. The change in wavelength due to band gap change is larger than the 

refractive index change. As the temperature is varied, the resultant change in lasing 

wavelength is small, however due to the large temperature coefficient of the gain peak 

wavelength, the lasing mode of the laser jumps from one mode to another mode (i.e. a mode 

hop). In DFB lasers, the grating selects the lasing frequency; therefore mode hopping in the 

laser is greatly reduced over wide temperature in contrast to Fabry-Perot laser. 

A laser diode can be temperature stabilised with the help of a Peltier element. A thermistor 

sensor is placed at a distance to sense the temperature of the laser chip. However, the location 

of the thermistor and the thermal design of the laser package can result in erroneous 

measurement of the temperature of the chip. The laser diode emission wavelength drifts with 

the change in ambient temperature, for example, the laser used in this thesis had a drift of 

3.8pm/ ºC as discussed in section 5.3.1. The linewidth of the gas absorption line at 1atm 

pressure and 22 ºC (10cm long path length) is ±36pm. Therefore, a more temperature stable 

laser is required for TDLAS.  

The aim of this thesis was to investigate the performance of a wavelength stabilization system 

for use in tuneable diode laser absorption spectroscopy (TDLAS).  The temperature of a DFB 

laser was stabilised with a thermistor based Peltier cooler under normal operating temperature 

and variable ambient temperature. The wavelength stability with ambient temperature was 

then examined to see whether the drift in wavelength due to the change in ambient 

temperature will affect the detection capability of TDLAS. It was shown in section 6.4 that 

the lasing wavelength drifted by ≈ 53 pm over the ambient temperature range 15-35 ºC, 

which is more than the width of the methane absorption line. 

 It was proposed in this project, that the laser diode forward voltage could be used to measure 

the temperature of the laser chip and then to stabilise the laser diode emission wavelength. 

In this thesis, an alternative method of measuring the temperature of the junction diode was 

analysed and investigated. This method has already been used for measuring the junction 

temperature of light emitting diodes and quantum dot lasers. In this method, the junction 
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temperature of the distributed feedback laser (DFB) diode was measured, by measuring its 

pulsed forward voltage as a function of operating temperature. The pulsed injection current 

had pulse width of 1µs and duty cycle of 0.1- 0.01 % (assuming negligible heat was 

generated during the pulse current).  This method was also extended for measuring the 

junction temperature of a vertical cavity surface emitting laser, which according to the 

author’s knowledge has not been reported in literature. 

Two different pulsed current sources were investigated to measure the junction temperature 

of the laser diodes from their forward voltage. A voltage - controlled current source provided 

a variable injection current. The results showed that the pulse voltage measured across the 

laser diode was deformed and could not be used for measuring the junction temperature. It 

was noted by the author that in many reported studies, a voltage controlled current source was 

commonly used to pulse the laser diode for measuring the junction temperature of a diode. 

This could lead to potentially erroneous results in measuring the junction temperature of the 

diodes. Instead, a current controlled current source was built to bias the laser and then 

measure the voltage drop across the laser diode for junction temperature measurement. 

A linear relationship was established between the laser diode forward voltage and the 

operating temperature under the pulse condition. This relationship was used to compare the 

measured temperature using the forward voltage method and the set operating temperature 

using a thermistor controlled Peltier. 

The effect of ambient temperature changes was investigated by varying the ambient 

temperature of the laser diode while keeping its pulsed injection current and thermistor 

Peltier temperature constant. It was confirmed in section 4.6.1that the thermistor did not 

sense the actual temperature of the laser gain chip as the forward voltage of the laser diode 

increased with increasing temperature rather than decreasing, indicating that the forward 

voltage changed while using the thermistor control.  

After confirming the inability of the thermistor to sense the actual temperature of the laser 

diode gain chip, a forward voltage based temperature controller was developed. In this 

temperature controlled system, the DC forward voltage drop was used to measure the 

temperature of the gain chip and used in a closed control feedback system to stabilize the 

temperature of the laser diode and thereby the emission wavelength. This feedback system 

had similar wavelength stability at constant operating temperature compared to the 

conventional thermistor control. However, when the ambient temperature was varied, the 
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laser diode emission wavelength again drifted despite the use of the forward voltage 

controlled based system. This wavelength drift was of similar magnitude to that of the 

thermistor controller but in the opposite direction. The wavelength drift measured using this 

technique was 4.5pm / °C, which is 90pm over the temperature range 15-35°C. The laser 

diode emission wavelength could potentially miss the gas absorption line which has a line 

width of 36pm. 

This wavelength drift of the laser diode with ambient temperature suggested that another 

factor was contributing to the junction temperature measured with forward voltage. The 

technique measured the full voltage drop across the laser diode and did not take into 

consideration the series resistance of the laser diode. The laser diode series resistance was 

calculated from the voltage / current relationship of the laser diode. It was shown that the 

laser diode series resistance was temperature dependent and increased with increasing 

temperature, in contrast to the forward voltage of the laser diode which decreased with 

increasing temperature. The change in the series resistance was relatively small (131mΩ over 

temperature range 10 – 40 °C), though it had profound effect on the wavelength stability of 

the laser diode with temperature as discussed in the previous paragraph. 

The laser diode series resistance was estimated experimentally using different methods such 

as a standard method, the Werner method and the Cheung and Cheung method. The laser 

diode series resistance was calculated above the threshold of the laser diode where the 

voltage drop increased linearly with increasing temperature. This temperature dependence of 

the laser diode series resistance was then incorporated in stabilising the laser diode emission 

wavelength in the junction voltage control technique. 

A new setup was developed to stabilise the emission wavelength of the laser diode using its 

junction voltage. In this setup, the voltage drop due to the series resistance of the laser diode 

was subtracted from the forward voltage of the laser diode. The laser diode dynamic series 

resistance was calculated from the 1f signal of the lock-in amplifier by modulating its 

injection current with a sinusoidal signal. The emission wavelength of the laser diode had a 

wavelength stability ±0.7pm, 2 orders of magnitude better than that of both thermistor and 

forward voltage control over a period of 1 hour. 

In TDLAS, the required wavelength stability of the laser diode emission is stringent. In a 

conventional TDLAS setup, the laser diode emission wavelength is locked to a reference 

wavelength such a gas molecular absorption line. The use of such a wavelength reference is 
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tedious and requires careful alignment of the laser light source to the reference gas cell. 

Previous work has shown that a wavelength stability of 1.6 kHz using methane and 40 kHz 

using acetylene gas absorption line can be achieved over a time period of few seconds. 

The final goal of the thesis was to develop a new wavelength stability method that was 

compatible TDLAS using wavelength modulation spectroscopy (WMS). The challenge in 

integrating the junction voltage based control was the use of a slow ramp (in Hz) and fast 

sinusoidal modulation (in kHz) which is typical for TDLAS. In addition, the amplitude of the 

ramp was high making it harder to integrate (High forward voltage and the resultant series 

resistance) in WMS. By averaging the forward voltage using a low pass filter, the voltage 

drop across the laser diode was measured, whereas for dynamic resistance measurement the 

forward voltage was fed into a high  pass filter and then  to a lock-in amplifier. Thus, the 

junction voltage was calculated and the error signal was fed in the closed loop to stabilise the 

wavelength. 

The performance of the junction voltage based controller was analysed by detecting different 

concentration of methane (0-2.5%), confirming its utility in gas detection. In addition, the 

performance of this wavelength control system was analysed for the effects of variable 

ambient temperatures. The junction voltage based wavelength control performed 8 times 

better than the conventional thermistor based setup with a wavelength drift of 0.24pm /°C. 

In conclusion, the junction voltage of the laser diode can be used for the accurate temperature 

measurement of the laser junction temperature and can be used for stabilising laser diode 

wavelength. This method will overcome the complexity of placing the thermistor near the 

gain chip. Furthermore, junction voltage based wavelength stabilising technique can be 

implemented in TDLAS based WMS. 

 This project was successful in achieving its objective of stabilising the laser diode 

wavelength for application in TDLAS. This project has resulted in a patent for the newly 

developed method. 

7.1 Future work  

The wavelength stability scheme based on junction voltage control described in chapter 5 and 

6 used an error signal to vary the temperature of the laser diode to stabilise the wavelength. 

The response of the feedback loop is relatively slow due to the slow response time of the 

Peltier cooler (a few Hz).  In order to have a faster feedback loop, the error signal could be 
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fed into the laser diode injection current as reported in the frequency stabilization scheme 

using Fabry-Perot cavity by Favre et al [1] in chapter 2. Atomic transition or molecular 

absorption line frequency stabilisation schemes stabilise the laser diode frequency by feeding 

an error signal into the injection current of the laser diode. The current coefficient of a laser 

diode is smaller than that of the temperature coefficient. The disadvantage of feeding an error 

signal to the current source will cause the laser diode to operate above its maxing operating 

current. This may damage the laser diode and shortens its life time. 

Synchronising computer based digital signal processing with analogue signals can be 

complicated. In the junction voltage based wavelength control system, the laser was 

modulated with the internal signal generator of the analogue lock - in amplifier and averaged 

in software based moving averaged filter. There was de synchronisation between the two. In 

addition, the proportional, integral and derivative (PID) feedback loop for wavelength 

controller was designed in National Instrument software LabVIEW, which also resulted in a 

synchronisation mismatch between the analogue signal generator of the lock - in amplifier 

and the PID. Moreover, when the junction voltage base wavelength control was integrated in 

WMS, two analogue modules of low pass and high pass filters in addition to the software 

based filters were used for signal conditioning. These analogue and digital signal processing 

modules further complicated and increased the desynchronisation.   

To overcome the problem of the desynchronisation, all the signal processing and modulation 

module should be designed and implemented in software. To increase the resolution and 

response time, this could be implemented in a field programmable gate array (FPGA). The 

use of FPGA will not only overcome the problem of de synchronisation but also reduce the 

cost and size of the junction voltage control technique. In addition, an FPGA based junction 

voltage control module could easily be reconfigured for specific applications. 

This wavelength stability control technique could be extended to VCSEL and light emitting 

diodes. An initial investigation has been completed, stabilising the emission wavelength of 

the laser diode by using the forward voltage method. 
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Figure 7.1 Emission wavelength of a light emitting diode with forward voltage based 

wavelength control 

Figure 7.1shows the emission wavelength of LED at various ambient temperatures using a 

UV spectrometer (Avantes AvaSpec-ULS3648). The laser diode emission wavelength was 

controlled with forward voltage technique, similar to the one reported for laser diode in 

chapter 5. The LED emission drifted towards longer wavelength despite the forward voltage 

technique. This result suggests that, voltage drop due the series resistance of the diode is 

again contributing towards the forward voltage. Therefore, the contribution due to the series 

resistance should be subtracted from the forward voltage (resulting in junction voltage) and 

then used for stabilising the LED wavelength. 

The temperature design and location of thermistors with respect to the gain chip is an 

expensive and difficult part of laser design. As the laser diode electrical characteristics are 

investigated during the manufacture process so, an FPGA based module, using junction 

voltage based wavelength control mechanism can be implemented in that stage.  
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Appendix A 

 

The following figure shows the circuit diagram for the constant current pulse source used for 

measuring the forward voltage of the laser diode and light emitting diode. 

 

 

Figure (1) Schematic for the current controlled current pulse sorce used in forward 

voltage method 

Figure (1) is the schematic circuit drawn in LT spice IV. This circuit was then printed and 

built on a PCB. The two field effect transistors (FET) forming the current mirror circuit 

ensured a constant current pulse is delivered to the cathode ground laser diode. A BNC 555 

pulse generator was used to switch on the FET M3 to allow the current pass through the laser 

diode and to determine the width and the pulse rate of the current pulse applied to the laser 

diode. 

Figure (2) shows voltage pulse measured across the laser diode. This pulsed voltage was used 

to calibrate the laser diode for temperature measurement in forward voltage method. Figure 

(3) is the zoomed in voltage pulse measured across the laser diode. Figure (3) shows that the 

pulse delivered to the diode maintained its shape; despite the capacitive nature of the diode. 
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Figure (2) Pulsed voltage  measure across ta diode with pulse width of 1us and pulse 

rate of 1mS 

 

Figure(3) Zoomed in version of the pulsed voltage measured across the diode 
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Appendix B 

LabVIEW Code for Forward voltage 
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Figure (1) LabVIEW code for Forward voltage method 

 

Figure (2) Front panel for the forward voltage method LabVIEW code 
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LabVIEW code for Junction Voltage control method 

 

 

Figure (3) LabVIEW code for junction voltage control technique (block diagram) 
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Figure (4) Front panel of the LabVIEW code for junction voltage control technique 
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