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Abstract: This paper describes an extended and improved theory of the 

displacement of the objective speckle pattern resulting from displacement 

and/or deformation of a coherently illuminated diffuse object. Using the 

theory developed by Yamaguchi [Opt. Acta 28, 1359 (1981)], extended 

expressions are derived that include the influence of surface shape/gradients 

via the first order approximation of the shape as linear surface gradients. 

Both the original Yamaguchi expressions and the extended form derived 

here are shown experimentally to break down as the detector position 

moves away from the z-axis. As such, improved forms of the expressions 

are then presented, which remove some of the approximations used by 

Yamaguchi and can be used to predict the objective speckle displacement 

over a wide range of detector positions and surface slopes. Finally, these 

expressions are then verified experimentally for the speckle shifts resulting 

from object translations. 
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1 Introduction 

The properties of laser speckle are of great interest in many areas of non-contact optical 

instrumentation, including strain measurements, for example electronic speckle pattern 

interferometry (ESPI) [2] and shearography [3] as well as surface contouring [4], medicine 

[5] and vibration detection [6]. A particularly elegant measurement philosophy, termed 

speckle pattern correlation, relates the deformation of an illuminated object to the translation 

and de-correlation of its observed speckle pattern and was first described in the 1980’s by 

Yamaguchi [1], who applied it to the measurement of object translation [7], rotation [8], 

strain [9] and surface roughness [10]. More recently, there has been renewed interest in the 

technique with researchers investigating new applications in industry, including vibration 

[11], surface slope [12], topology measurements [13] and robotic vehicle odometry [14,15]. 

In many of these applications knowledge of how the illuminated surface shape affects the 

observed speckle translation is of fundamental importance. For example, in robotic vehicle 

velocimetry systems a shaped surface has been observed to cause significant errors in the 

measured velocities. 

Expressions for the speckle shift have in the past been derived by Jacquot [16], 

Yamaguchi [1] and later by Světlík [17] and Horvath et al. [18,19] and have varying degrees 

of complexity. Jacquot [16] used a method based upon the concept of homology, i.e. that 

given an initial point in the diffracted field, there exists a point where the amplitude is 

identical after the displacement of the object, while Yamaguchi [1,8] and others [17–19] used 

an approach based upon the cross-correlation of the speckle pattern intensities before and 

after deformation. Světlík [17] compared the results of these two approaches and presented an 

alternative cross-correlation based derivation to Yamaguchi’s, that gives equivalent 

expressions to those found by Jacquot. More recently, Horvath et al. [18,19] have presented a 

more general and detailed derivation based on the method of Yamaguchi. However these 

present theories only address the limited cases of surfaces parallel to the detector plane, or for 

a cylindrical surface [8]. Yamaguchi [20] has also recently applied computer simulations in 

an attempt to model the speckle displacement from curved surfaces. 

In this paper, the methodology of Yamaguchi is applied to extend the theory to include the 

influence of surface shape on the shift of the observed speckle pattern under deformation, via 

the approximation of the surface shape as first order surface gradients. A brief derivation of 

the theory developed by Yamaguchi [1] is presented in section 2. Then the same methodology 

and approximations are applied to give an extended theory that includes the influence of 

surface shape/gradients on the observed speckle shift. In section 3, experimental 

measurements of the translational scaling factors (the ratios of speckle shift to object 

translations) are presented and the expressions derived using Yamaguchi’s approximations 

are shown to be only valid for on-axis detector positions. As a consequence, in section 4, 

improved expressions are derived, removing the need for some of the approximations used by 

Yamaguchi that are valid over a wider range of detector locations and include the influence of 

surface shape/gradients. Finally, further experimental measurements of the translational 
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scaling factors are presented confirming the validity of these new expressions for various 

detector positions and surface gradient magnitudes and directions. 

2 Speckle shift theory developed using Yamaguchi’s approximations 

For the general geometry shown in Fig. 1, a light source located at S, illuminates the point R 

on the mean object surface, and the objective speckle pattern is observed by a detector at 

point D located at z = L0. 

 

Fig. 1. General representation of the geometry used in the development of the speckle shift 
theory via cross-correlation of speckle intensities. 

The intensity observed at the detector is given, in terms of the complex amplitude of the 

scattered light, ( )U D , by
2

( ) ( )I UD D  and the complex amplitudes of the scattered light 

before, 1 1( )U D and after deformation or displacement, 2 2( )U D  can be written in terms of the 

path lengths as [1]: 

 
      

        
0 ( )exp

exp

n TnU I i

ik dxdy

   

     



,a a

n

S n D n n

D R R R

L R R L R D R
 (1) 

Where the vectors, LS(R) and LD(R,Dn) point from the mean object surface R to the light 

source S and observation point Dn respectively. The vector representing the displacement of 

the actual scattering surface from the mean object surface is given by an(R) and 

  0 TnI R R represents the intensity of the illuminating light at the surface point, where 

 Tn R  is the projection of  a R
n

onto the x-y plane. ( ) R and  exp i are the macroscopic 

and microscopic reflection functions of the object and are related to the diffusing properties of 

the object [1] and k is the wavenumber. 

Following the assumptions of Yamaguchi [1] that the displacement of the scattering 

surface is much smaller than the paths from the source to surface-point and surface-point to 

observation point, these can be approximated by: 
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         

         

S

D D

L

L

  

  , , ,

L R a R R a R s R

L R D a R R D a R d R D 

S n n

n n n n n

 (2) 

Here, s(R) and d(R,Dn) are unit vectors in the direction of LS(R) and LD(R,Dn) respectively 

and LS(R) and LD(R,Dn) are the magnitudes. Substituting these expressions 

and      , , p R D s R d R D
n n

into Eq. (1) gives: 

 
      

        

0 exp

exp

n Tn

S D

U I i

ik L L dxdy

  

    


, ,

D R R

R R D a R p R D 

n

n n n

 (3) 

An expression for the speckle shift resulting from a small object translation/deformation is 

then found from the cross-correlation function of the scattering intensities 

 1I 1
D and  2 2I D at instances before and after the deformation which can be written as: 

            
22 2* *

1 2 1 2 2 1 2I I U U U U 
1 2 1 1 2

D D D D D D  (4) 

However, only the second term in Eq. (4) is of interest in determining the speckle shift, as this 

represents the cross-correlation function of the fluctuation of the intensity about the mean, i.e. 

the speckles. If the detector is originally located at D1 = D then the maximum of this term will 

occur at the shifted detector position that corresponds to the speckle shift A, i.e. D2 = D + A. 

Replacing D1, D2 and setting αT1(R) = 0, gives the following expression for the cross-

correlation of the intensity fluctuations: 

 

        

   

       

*

1 2 0 0 2

1 2

exp

T

D D

U U I I

L L
ik dxdy

 

  
   
    


, , +

, + , +

1 2
D D R R R

R D R D A

p R D a R p R D A a R

   (5) 

Yamaguchi [1] then uses the assumption that for small displacements and neglecting higher 

terms the following can be substituted: 

 
            

   

1 2 2 1  , + , + ,

= ,

p R D a R p R D A a R p R D a R a R

p R D a R
 (6) 

Where a(R) = a2(R) - a1(R) is the net displacement of the surface point occurring during the 

deformation. By assuming the displacement/deformation is homogeneous within the 

illuminated region and can be approximated at the centre point, the Taylor expansion 

about 0R can be used, again ignoring terms higher than first order. 

            
0

, 0, 0 ,    p R D a R p D a p R D a R R  (7) 

Finally, Yamaguchi uses a parabolic approximation to approximate the LD(R,D) and LD(R,D 

+ A) terms: 

 

 

 
2

0

0

2

0

0

,

,  
2

2

D

D L
L

L L
L

L

 
 


 



R D
R D

R D A
R D A

 (8) 
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Applying the assumptions given in Eqs. (6)-(8) yields: 
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 

 
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,
1 2

DA
D D p D a

R R R

R
A p R D a R

 (9) 

From this it can be seen that the cross-correlation function will be a maximum where the 

second exponential term is zero, hence: 

    0 0
,L    A p R D a R  (10) 

This can be expanded in terms of the partial derivatives, and the derivatives of a further 

expressed in terms of the components of the strain tensor and rotation vector: 

 

1

2

1

2

y yx x

xx yy xy yx

y xz z
x y z

a aa a

x y y x

a aa a

y x x y

  
   

   
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 
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 

 
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 

 (11) 

Giving in matrix form: 

 

     
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0

x x xx

x

y y xy

y
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a
A
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A

a

s ds d s d

x x x
T L

s ds d s d

y y y

s d s d
R L

s d s d

s d s d
D L

s d s d






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 

  
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      
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 
 

 
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 

 
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 
 
 

 (12) 

Where the matrices [T], [R], and [D] give the coefficients relating the speckle pattern 

translation, Ax and Ay, to surface translations, rotations and strains respectively. 

2.1 Speckle shift for a surface lying in the xy-plane 

For the case described by Yamaguchi [1] and Horvath et al. [19], only diffuse surfaces with 

the mean surface lying in the xy-plane are considered. The expressions governing the speckle 

shift in these cases can then be found by setting; S = (Sx,Sy,Sz), R = (x,y,0), and D = (Dx,Dy,Dz) 

then computing the partial derivatives required in Eq. (12): 
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s s
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Substituting these into the expression for [T] and applying LD~L0 gives the final result for the 

speckle shift due to translations: 

  

           

           
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s d s s d d s s d d
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T L

s ds s d d s s d d
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 
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 

 (14) 

Equation (12) and the matrices [T],[R], and [D] defined above correspond to the Eqs. given by 

Yamaguchi [1], and later Horvath and Hrabovsky [18,19]. 

2.2 Extended equations for the speckle shift for a shaped/sloped surface 

To extend the theory to include the influence of mean surface shape, the surface can be 

approximated by the linear surface gradients ,x ym z x m z y      of the surface. Hence 

the surface points can now be written as, R = (x,y, mxx + myy) and the partial derivatives are 

now: 
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S
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D
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     
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s

s

d

d

 (15) 

By substituting the modified partial derivatives into Eq. (12) and rearranging, an expression 

for the speckle shift of a shaped object approximated by its linear surface gradients can then 

be found: 

         '

x x xx

x

y y xy

y

z z yy

a
A

T T a R D
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  

   

   

2 2

0
2 2

1 1

'
1 1

z zy z y zx z x z

x x x

S D S D S D

z zy z y zx z x z

y y y

S D S D S D

s ds s d ds s d d
m m m

L L L L L L
T L

s ds s d ds s d d
m m m

L L L L L L

      
       

         
      
       

        
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Here [T’] is a matrix relating surface gradients to the additional speckle shift due to surface 

translations and the matrices [T], [R], and [D] remain unchanged from the standard 

Yamaguchi derivation given by Eqs. (12) and (14) 

3 Validity of the Yamaguchi approximations 

To experimentally test the above relations, an experimental system was constructed using an 

aluminum profile support structure above a test object mounted on a translation stage 

positioned in the xy-plane at z = 0mm. The three-dimensional support structure allowed the 

positions of the laser source and camera to be varied over a wide range of geometries (~ ± 

80mm in x,y and up to 400mm in z) that are typical of practical applications of the speckle 

correlation method such as speckle velocimetry [14,15]. The test objects used were custom 

3D printed ramps with gradients of 0.0 (flat), 0.2, 0.4, 0.6, 0.8 and 1.0 (45° slope) as shown in 

Fig. 2. The ramps were constructed with an octagonal cross-section allowing the gradients to 

be rotated in 45° increments to vary both components of the surface gradient in a controlled 

manner. The quoted precision of the 3D printing process was ± 0.1mm over a ramp 

dimension of 30mm giving a precision of the gradients of ± 0.003. The translation stage used 

in this work was a Physik Instrumente M-110.1DG linear translation stage with a quoted 

unidirectional repeatability of 0.1µm. The camera was a Baumer HXC-13 CMOS camera 

with 14x14µm pixels. A laser line filter was located in front of the camera sensor to block 

background light and ensure high contrast speckle images. The laser source used was a diode-

pumped solid state (DPSS) laser module producing approximately 30mW at 532nm. The 

collimated output of the laser was expanded onto the surface of the test object using an f = 

45mm lens to produce a speckle size of around 5 pixels on the camera. 

 

Fig. 2. The 3D printed test objects used in this experiment. From left to right mx,y = 1.0, 0.8, 

0.6, 0.4, 0.2 and 0.0 and the stage mounting plate. The ramps have a constant working height 
of 20mm above the stage at the centre point and can be rotated in 45° increments in the 

mounting plate to enable the surface gradient direction to be rotated in a controlled manner. 

The translational scaling factors (ratios of speckle shift to object translation), Ax/ax, Ax/ay, 

Ax/az and Ay/ax, Ay/ay, Ay/az, were experimentally measured by recording images before and 

after a known translation. The normalized cross-correlation [21] was computed and a 

Gaussian peak fitting [14] was performed to locate the peak and determine the speckle shift to 

0.1 pixel accuracy (1.4µm). This was repeated 10 times and the mean speckle shift was 

recorded for each object translation. This was then performed over a range of stage 

translations from 0 to 500 µm to avoid pixel locking [22] and/or stage positional bias errors, 

such as caused by unwanted stage roll, pitch or yaw, with the final translational scaling factor 

being determined by a linear fit to these recorded mean shifts. This allowed the scaling factors 

to be determined to within an estimated accuracy of ± 0.02. To improve the accuracy further, 

it would be necessary to carefully align the detector and stages axis to better than then current 

estimated 0.5° accuracy. This is because any misalignment will cause translations in the other 

two orthogonal components, resulting in an unwanted contribution to speckle shift. This 

angular misalignment comes from both misalignment of the stage with the support structure, 

#217014 - $15.00 USD Received 15 Jul 2014; revised 5 Sep 2014; accepted 15 Sep 2014; published 10 Oct 2014
(C) 2014 OSA 20 October 2014 | Vol. 22,  No. 21 | DOI:10.1364/OE.22.025466 | OPTICS EXPRESS  25472



which is constant, and from misalignment of the camera and support structure which can vary 

each time the camera is repositioned and was estimated at 0.5° by measurement of the length 

and transverse displacement possible when fixing the mounting brackets. The repeatability of 

the measurements of the scaling factors is approximately ± 0.008, and is limited by the pixel 

size of the detector and the 0.1 pixel peak fitting accuracy. 

When the experimental results were compared to the values predicted by the original 

Yamaguchi theory, Eq. (14), and the new extended equations given in Eq. (16), it was 

observed that both theories fail to accurately predict the speckle shift behavior when the 

detector is located away from the z-axis. For example, in Fig. 3 the measured speckle shift 

translational scaling factors are shown for a source located at S = (0,-150,265) mm and 

various detector positions along the x-axis, D = (Dx,0,300)mm and for three surface 

gradients,(a) mx = 0, my = 0, the case modelled by Yamaguchi and others, and (b) and (c) for 

the mx =  ± 1, my = 0 cases. In the case of zero surface gradients a divergence between the 

observed (data points) and predicted (solid lines) scaling factors can be seen as the detector 

location is moved away from the z-axis. This divergence is most noticeable in the Ax/ax, Ay/ay 

components and is further accentuated when the influence of surface gradients is included in 

the extended theory. 

 

Fig. 3. Comparison of measured and theoretical translational scaling factors for a source and 

detector positioned at S = (0,-150,265) mm and D = (Dx,0,300) mm, for three surface gradients 

(a) mx = my = 0; (b) mx =  + 1, my = 0 and (c) mx = 1, my = 0. The top row shows the scaling 

factors for the speckle shift in the x direction (Ax) resulting from the object translations (ax, ay 

and az) while the bottom row shows scaling factors for the speckle shift in the y direction (Ay). 
The data points are the experimental results; () Ax,y/ax, () Ax,y/ay and () Ax,y/az, and the 

dashed lines shows the values predicted by the Yamaguchi’s equations (for mx = my = 0) and 

the extended equations presented in section 2. The solid lines (green) are the values predicted 
by the improved equations presented in section 4. Here the thickness of the line denotes the 

minimum and maximum bounds predicted assuming an error in source and detector positions 

of ± 1mm in all directions. 

This divergence from the theory has also been noted by Světlík [17] although this work 

does not appear to be widely known about or cited. Indeed Světlík derives an alternative form 

of the equations, using a similar but different cross-correlation approach where the correlation 

function is approximated by a delta function. These successfully predict the speckle 

translations over a wider range of detector positions for the zero-gradient case and agree with 

those found by Jacquot [16] using a method based upon the concept of homology. An 

improved version of the speckle shift equations that can be used to predict the speckle shift at 

other detector locations can be found, in a different manner, by modifying Yamaguchi’s 
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approximations. This is presented in section 4 along with an extended form taking into 

account surface gradients. 

However the extended equations, presented in section 2.2 using Yamaguchi’s 

approximations, are still applicable when the detector is located at the z-axis (i.e. Dx = Dy = 

0). Figure 4 shows the measured translational scaling factors for a detector located at D = 

(0,0,300)mm and a source located at S = (0,-150,265)mm and shows the scaling factors 

compared to the theoretical values predicted by Eqs. (12) and (16). In Fig. 4 (a), the x surface 

gradient is varied between mx = 1.0 to + 1.0 with my = 0. The solid lines represent the values 

predicted by the extended theory. Figure 4 (b) shows the same, but with varying my with mx 

fixed. Finally, Fig. 4 (c) shows the scaling factors obtained for varying direction of a fixed 

magnitude gradient as it is rotated about the z-axis (mx = cos, my = -sin). It can be seen that 

there is good agreement between the predicted and experimental values, for a wide range of 

gradient magnitudes and directions. 

 

Fig. 4. Comparison of measured and theoretical translational scaling factors for a source at S = 

(0,-150,265) mm, and the detector positioned on the z-axis at D = (0,0,300) mm, for varying 

surface gradients; (a) for varying mx; (b) for varying my and (c) for varying directions of a fixed 

magnitude gradient as it is rotated about the z-axis (mx = cos, my = -sin). The top row shows 

the scaling factors for the speckle shift in the x direction (Ax) resulting from the object 

translations (ax, ay and az) while the bottom row shows scaling factors for the speckle shift in 
the y direction (Ay). The data points are the experimentally measured results; () Ax,y/ax, () 

Ax,y/ay and () Ax,y/az, and the solid lines show the values predicted by both the extended 

equations (section 2) and the improved equations (section 4), which are identical when the 
detector is located on the z-axis. Here the thickness of the line denotes the minimum and 

maximum bounds predicted assuming an error in source and detector positions of ± 1mm in all 

directions. 

4 Improved speckle shift equations for detector positions where (Dx, Dy)  (0,0) 

As demonstrated in section 3, the existing theory breaks down for measurement geometries 

where the detector is moved away from the z-axis. To address this, an improved theory with 

wider validity was developed. By starting from the expressions for the complex amplitudes 

Un(Dn) given by Eq. (1) where D1 = D and D2 = D + A and remembering that a shift in the 

detector position is equivalent to a shift of the surface in the opposite direction, the paths from 

the source to surface-point and surface-point to observation points before and after the 

deformation can now be approximated by: 
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 (17) 

Hence the complex amplitudes before and after deformation can then be written as: 

 

      

        

      

          

1 0 1

1

2 0 2

2

exp

exp

exp

exp

T

S D

T

S D

U I i

ik L L dxdy

U I i

ik L L dxdy

 

 

 

    

 

     





,

, ,

, +

, , ,

R D R R

R R D a R p R D

R D A R R

R R D a R p R D A d R D

 

 

(18) 

Substituting these expressions into to the cross-correlation of the intensity fluctuation and, as 

before, setting αT1(R) = 0 and a2(R) - a1(R) = a(R) gives: 
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However, unlike Eq. (5) in the original derivation above, the further approximations of 

       2 2, ,+p R D A a R p R D a R and the parabolic approximations used to approximate 

LD(R,D) and LD(R,D + A) are no longer required. As in Yamaguchi’s original derivation, a 

Taylor series expansion about R = 0 and ignoring terms higher than first order is used to 

expand the    ,p R D a R term to Eq. (7), and similarly the new  ,A d R D term is expanded 

to: 
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(20) 

Substituting Eqs. (7) and (20) into Eq. (19) gives: 
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(21) 

As before, by examining this equation it can be seen that the cross-correlation will be a 

maximum where the exponential term is zero, hence: 

        
0 00
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R D R D p R D a R  (22) 

Which can be solved to give: 
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(23) 

Finally the x p a  and y p a terms can be expanded in terms of the partial derivatives 

and components of the strain tensor and rotation vector, as in the original derivation. Giving 

in matrix form: 
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Where: 
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4.1 Improved equations for the speckle shift from a surface lying in the xy-plane 

For the standard case of a plane surface located in the z = 0 plane, the partial derivatives given 

in Eq. (13) can be substituted into the above expressions yielding: 
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 (25) 

The result given by Eq. (24) and the matrices [P],[T] defined in Eq. (25) gives the final 

expressions for the speckle shift for a mean surface located in the z = 0 plane. These match 

the expressions for speckle shift derived by Jacquot [16] and later by Světlík [17] and for the 
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case of a detector located on the z-axis, reduce to those derived by Yamaguchi [1]. Here we 

have adopted the matrix form used by Světlík for compactness, although it should be noted 

that there is an apparent typographical error in the [R] matrix in Eq. (15) of [17]. 

4.2 Improved equations for the speckle shift from a shaped/sloped surface 

As in section 2.2 this theory can then be extended to include the influence of the surface 

gradients by substituting the modified partial derivatives given in Eq. (15) into Eq. (24) and 

rearranging to give: 
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Where: 
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Where [T’] is a matrix relating surface gradients to the additional speckle shift due to surface 

translations and the matrices [T], [R], and [D] remained unchanged from Eqs. (24) and (26). 

These expressions derived here for the first time can be seen to reduce to the expressions 

given in Eq. (25) when the surface gradients (mx and my) are zero, and to the expression given 

in section 2, when the detector is located on the z-axis. 

5 Experimental verification of the improved equations 

The experimental system and process described in section 3 was used to test the validity of 

the improved equations given in section 4.1 and 4.2. The results are shown in Fig. 3 and Fig. 

4 above and in Figs. 5–8, here. From Fig. 3 it can be seen that the improved theory (solid 

lines) now successfully predicts the observed translation scaling factors within the tolerances 

of the measurements ( ± 0.02) over a wide range of detector positions along the x-axis for 

both zero gradient and sloped surface cases. This is in contrast to the expressions given in 

section 2.2, using Yamaguchi’s original approximations (dashed lines), that fail when the 

detector is positioned off-axis. It can also be seen that when the detector is positioned on the 

z-axis that the expressions given in sections 4.1 and 4.2 simplify to those given in section 2. 

Hence the scaling factors predicted by the improved equations are identical to those shown in 

Fig. 4. To further confirm the validity of the expressions, the scaling factors at three further 

detector positions, were measured for various surface gradients. The results, shown in 

Figs. 5–8, are presented in the same manner as Fig. 4, and again show excellent agreement 
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between the experimental and theoretical values. Other detector positions within the range 

x,y< ± 80mm have also been investigated and similarly found to be in agreement with the 

improved theory. 

 

Fig. 5. Comparison of measured and theoretical translational scaling factors for a source and 

detector positioned at S = (0,-150,265) mm and D = (80,0,300) mm for varying surface 

gradients; (a) for varying mx; (b) for varying my and (c) for varying directions of a fixed 

magnitude gradient as it is rotated about the z-axis (mx = cos, my = -sin). The top row shows 

the scaling factors for the speckle shift in the x direction (Ax) resulting from the object 

translations (ax, ay and az) while the bottom row shows scaling factors for the speckle shift in 
the y direction (Ay). The data points are the experimentally measured results; ()Ax,y/ax, () 

Ax,y/ay and () Ax,y/az and the solid lines show the values predicted by the improved equations, 

presented in section 4. Here the thickness of the line denotes the minimum and maximum 
bounds predicted assuming an error in source and detector positions of ± 1mm in all directions. 

 

Fig. 6. Comparison of measured and theoretical translational scaling factors for a source and 

detector positioned at S = (0,-150,265) mm and D = ( + 80,0,300) mm for varying surface 

gradients; (a) for varying mx; (b) for varying my and (c) for varying directions of a fixed 

magnitude gradient as it is rotated about the z-axis (mx = cos, my = -sin). The top row shows 

the scaling factors for the speckle shift in the x direction (Ax) resulting from the object 
translations (ax, ay and az) while the bottom row shows scaling factors for the speckle shift in 

the y direction (Ay). The data points are the experimentally measured results; ()Ax,y/ax, () 

Ax,y/ay and () Ax,y/az and the solid lines show the values predicted by the improved equations, 
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presented in section 4. Here the thickness of the line denotes the minimum and maximum 

bounds predicted assuming an error in source and detector positions of ± 1mm in all directions. 

 

Fig. 7. Comparison of measured and theoretical translational scaling factors for a source and 

detector positioned at S = (0,-150,265) mm and D = (0,-80,300) mm for varying surface 

gradients; (a) for varying mx; (b) for varying my and (c) for varying directions of a fixed 

magnitude gradient as it is rotated about the z-axis (mx = cos, my = -sin). The top row shows 

the scaling factors for the speckle shift in the x direction (Ax) resulting from the object 

translations (ax, ay and az) while the bottom row shows scaling factors for the speckle shift in 
the y direction (Ay). The data points are the experimentally measured results; ()Ax,y/ax, () 

Ax,y/ay and () Ax,y/az and the solid lines show the values predicted by the improved equations, 

presented in section 4. Here the thickness of the line denotes the minimum and maximum 
bounds predicted assuming an error in source and detector positions of ± 1mm in all directions. 

 

Fig. 8. Comparison of measured and theoretical translational scaling factors for a source and 

detector positioned at S = (0,-150,265) mm and D = (20,-80,300) mm for varying surface 
gradients; (a) for varying mx; (b) for varying my and (c) for varying directions of a fixed 

magnitude gradient as it is rotated about the z-axis (mx = cos, my = -sin). The top row shows 

the scaling factors for the speckle shift in the x direction (Ax) resulting from the object 
translations (ax, ay and az) while the bottom row shows scaling factors for the speckle shift in 

the y direction (Ay). The data points are the experimentally measured results; ()Ax,y/ax, () 

Ax,y/ay and () Ax,y/az and the solid lines show the values predicted by the improved equations, 
presented in section 4. Here the thickness of the line denotes the minimum and maximum 

bounds predicted assuming an error in source and detector positions of ± 1mm in all directions. 
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6 Conclusions 

Expressions that relate the observed objective speckle shift to the deformation of the 

illuminated object have been presented and verified experimentally for four cases; 

I) A plane surface located in the xy-plane, for detectors located on the z-axis (section 2.1). 

II) A shaped surface approximated by its linear surface gradients, when the detector is 

located on the z-axis (section 2.2). 

III) A plane surface located in the xy-plane for an arbitrary detector location (section 4.1). 

IV) A shaped surface approximated by its linear surface gradients for an arbitrary 

detector location (section 4.2) 

Case I) corresponds to the results given by Yamaguchi [1] and Horvath [19] and is shown 

experimentally to break down for off-axis detector positions. Case II) corresponds to the 

theory extended to include surface shape/gradients and is derived here for the first time to our 

knowledge. It uses the same approximations as Yamaguchi and hence also fails when the 

detector position is not located on the z-axis. However for on-axis detector positions this 

extended theory can be used to accurately predict speckle shift. For cases III) and IV) 

improved expressions, that apply over a wider range of detector positions, are derived using a 

method analogous to Yamaguchi’s method, however certain approximations used by 

Yamaguchi are no longer required. The expression derived for case III), a plane surface 

located parallel to the xy -plane, agrees with the derivations of Jacquot [16] and Světlík [17] 

which were found via different routes. Finally, the expression for case IV), a shaped surface 

approximated by its surface gradients, is derived here for the first time and can be used to 

predict the speckle translation for a sloped object (Eq. (26) in section 4.2). The new extended 

and improved expressions are verified by experimental measurements of the in-plane 

translational scaling factors (the ratio of speckle translation to object translation) for a wide 

range of sloped surfaces and detector positions. 
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