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ABSTRACT  

This paper describes an extended theory of the displacement of the objective speckle pattern resulting from displacement 

and/or deformation of a coherently illuminated diffuse object where the influence of the surface shape is included via the 

linear surface gradients.  An experimental system capable of measuring the translational scaling factors, the ratios of 

speckle shift to object translations, to an accuracy of ± 0.02 and a repeatability of approximately ± 0.008 is described 

which was used to experimentally measure the speckle shift for a range of detector positions and surface gradients. The 

original expressions developed by Yamaguchi
1
 and the new extended expressions

2
 are then compared with experimental 

results for measurements on zero surface gradients, i.e. the mean surface lying in the x-y plane. The divergence of 

Yamaguchi’s expressions from experimental results for off-axis detector positions that was first observed by Světlík
3
 

was confirmed, and the new expressions shown to successfully predict translational scaling factors for off-axis positions. 

The new expressions are then compared to the experimental results for a range of surface gradient magnitudes and 

directions, as well as detector positions both on and off-axis, and shown to successfully predict the observed speckle 

shift. 
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1. INTRODUCTION 

In many areas of non-contact optical measurement the properties of laser speckle are of great interest in particular in the 

measurement technique termed laser speckle pattern correlation
1
 where the deformation of an illuminated object is 

related to the translation and de-correlation of its observed speckle pattern. The method was first described in the 1980’s 

by Yamaguchi
1
, who applied it to the measurement of object translation, rotation and strain

4–6
 and surface roughness

7
. 

More recently, there has been renewed interest in the technique with researchers investigating new applications in 

industry, including vibration
8
, surface slope and topology measurements

9
 and robotic vehicle odometry

10,11
. In many of 

these applications knowledge of how the illuminated surface shape affects the observed speckle translation is of 

fundamental importance. For example, in robotic vehicle velocimetry systems a shaped surface has been observed to 

cause significant errors in the measured velocities (see section 2). The expressions for the speckle shift that have been 

previously presented
1,3,12,13

  have not addressed the cases of shaped or sloped objects, apart from cylindrical surfaces
5
, 

although  Yamaguchi
14

 has also recently applied computer simulations in an attempt to model the speckle displacement 

from curved surfaces. This paper first presents results demonstrating the effect that surface shape can have in objective 

speckle correlation measurements using example data from a speckle velocimeter
11

. Then new extended expressions
2
 

with the surface shape included by means of the linear surface gradients are presented and the results of this extended 

theory compared to experimental measurements of the translational scaling factors (the ratios of speckle shift to object 

translations) for a variety of detector/source configurations and surface gradients. 

2. OBSERVATION OF THE EFFECT OF SURFACE SHAPE IN SPECKLE 

VELOCIMETRY 

From our recent work in applying speckle correlation to the velocimetry of space exploration rovers
10,11

  it became 

apparent that the surface shape is an important source of errors, which in the case of a rover cannot be corrected as the 

surface terrain is unknown. For example Figure 1 shows the influence of  the surface tomography on the velocity signal 

measured when a linear translation stage is used to translate an objective speckle velocimeter
11

 across a range of surfaces 

at a constant speed of 50mm/s. Figure 1 (a) shows measurements made on smooth laboratory vinyl floor surface and a 

sandy surface strewn with small rocks (~10-50mm in dimension), here the fluctuations about the translation mean stage 

speed can be seen, with the standard deviation increasing from 2.1mm/s to 2.6mm/s,  although the signal is dominated by 
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the stage vibrations the additional error is predominantly due to the influence of surface shape changing the magnitude of 

the speckle displacement. In Figure 1 (b) a more controlled test was performed using a cardboard ramp consisting of a 

30° incline, an upper platform at z=30mm, and a 30° decline. Here the signal was recorded using a lower stage speed to 

reduced stage vibrations, and at a higher data rate to allow temporal filtering (kernel of length = 100 samples = 0.4ms). 

This allows the underlying change in the measured velocity to be clearly seen, without being masked by stage vibrations 

or random measurement noise. It can be seen that the magnitude of the measured velocity drops when the laser spot is 

traversing the up-ramp, before returning to approximately the same value when on the upper platform, the slight 

remaining difference here can be accounted for by the changing in working distance (+30mm) of the velocimeter from 

the surface. On the down-slope the measured velocity can be been seen to increase before returning the original value for 

traversing the floor surface. It can be seen that the magnitude of this effect can be large, from Figure 1 (b) ~±3.5% of the 

actual velocity, therefore to better understand the technique and how a speckle velocimeter can be optimized the theory 

described in section 3 below was developed. 

 
Figure 1. Influence of surface topography on the signal from an objective speckle velocimeter. 

(a) The measured velocity using an objective speckle velocimeter mounted on a linear translation stage moves above 

different surfaces at a constant velocity of 50mm/s  (red) a laboratory vinyl floor and (blue) sand with small rocks ~10-

50mm in dimension, the shaded regions show the ±3 standard deviation range in the signals for the two surfaces. 

(b) The measured velocity when traversing a 30o ramp at 10mm/s. Here the signal has been filtered with a kernel of length = 

100 samples = 0.4ms to reduce the random error and stage vibrations to allow the underlying change in measured velocity to 

be seen. 

 

3. EXTENDED THEORY FOR THE SPECKLE SHIFT FROM SHAPED SURFACES 

In this section we present a brief derivation of the extended theory for the speckle shift from shaped objects where a full 

derivation and comparison with previous methods can be found in
2
. The geometry of a speckle correlation experiment 

using objective speckle can be described by Figure 2, while the symbols used in the derivation can found in table 1. 

Where a light source located at S , illuminates the point R on the mean object surface, and the objective speckle pattern 

is observed by a detector at point D  located at 0z L . 



 

 
 

 

 

 
Figure 2. General representation of the geometry used in the development of the speckle shift theory via cross-correlation of 

speckle intensities. 

 

The intensity observed at the detector is given, in terms of the complex amplitude of the scattered light, ( )U D , by 

2
( ) ( )I UD D  and the complex amplitudes of the scattered light before, 

1 1( )U D and after deformation or displacement, 

2 2( )U D  can be written in terms of the path lengths as [1]: 
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Where 1,2n  , the vectors, sL (R)  and D nL (R,D )  point from the mean object surface R  to the light source S  and 

observation point nD  respectively. The vector representing the displacement of the actual scattering surface from the 

mean object surface is given by na (R)  and   0 TnI R R represents the intensity of the illuminating light at the 

surface point, where  Tn R  is the projection of na (R) onto the x-y plane. ( ) R and  exp i are the macroscopic and 

microscopic reflection functions of the object and are related to the diffusing properties of the object
1
 and k  is the 

wavenumber. 

 



 

 
 

 

Table 1. Notation used in derivation of expressions relating the deformation and translation of a shaped surface to the shift 

in the speckle pattern. 

Symbol Description 

S  Source position vector 

D  Detector position vector 

R  Position vector of the illuminated point on mean surface  

( )U D  Complex amplitude at detector 

2
( ) ( )I UD D  

Intensity at detector 

( , , )x y za a ana (R)  Displacement of point R from the mean surface 

 Tn R  the projection of na (R) onto the x-y plane 

k  Optical wavenumber 

( , ,0)x yA AA  Vector to shifted speckle pattern in the x-y plane at the detector. 

( ) ( ) ( ) 2 1a R a R a R  The surface translation vector at point R. 

 SL R  Vector from S to R 

 ,DL R D  Vector from R to D 

 ( , , ) ,x y z Ss s Lss(R) R  Unit vector and magnitude of LS(R) 

 , ,( , ) ,x y z Dd d Ldd(R,D R) D  Unit vector and magnitude of LD(R,D) 

      p R,D s R d R,D  Substitution used in derivation. 

 

An expression for the speckle shift resulting from a small object translation/deformation is then found from the cross-

correlation function of the scattering intensities  1I 1
D and  2 2I D at instances before and after the deformation which 

can be written as: 

            
22 2* *

1 2 1 2 2 1 2I I U U U U 
1 2 1 1 2

D D D D D D    (2) 

However, only the second term in (2) is of interest in determining the speckle shift, as this represents the cross-

correlation function of the fluctuation of the intensity about the mean, i.e. the speckles. If the detector is originally 

located at 1D D  then the maximum of this term will occur at the shifted detector position that corresponds to the 

speckle shift A, hence D2 = D + A. As in Yamaguchi’s original derivation we also set αT1(R) = 0, the surface translation 

vector,       2 1a R a R a R . Finally, the paths from the source to surface-point,    -
S n

L R a R  and surface-point to 

observation points,    , -D n n
L R D a R  before and after the deformation can be approximated by: 
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Here, s(R) and d(R,D) are unit vectors in the direction of LS(R) and LD(R,D) respectively and LS(R) and LD(R,D) are the 

magnitudes. Substituting these expressions,       p R,D s R d R,D and setting αT1(R) = 0 and a2(R) - a1(R) = a(R), 

the surface translation vector the following expression for the cross-correlation of the intensity fluctuations can be found: 
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Taylor series expansions, about R = 0 and ignoring terms higher than first order, are then used to expand the

   , p R D a R and  ,A d R D terms in equation (4) giving: 
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By examining this equation it can be seen that the cross-correlation will be a maximum where the exponential term is 

zero, hence: 

        
0 00

, , , 0x x y yA d A d                 
R D R D p R D a R    (6) 

Which can be solved to give: 
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Finally the
x





p a
 and 

y





p a
terms can be expanded in terms of the partial derivatives and components of the strain 

tensor and rotation vector, as in the original Yamaguchi derivation
1
: 

1
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When the surface shape is approximated by its linear surface gradients, ,x ym z x m z y     ; and x( , , )S y zL s s sS , 

x( , , )D y zL d d dD  then   , , x yx y m x m y R  and the partial derivatives required in equation (7) above can be written 

as: 
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Substituting these into equation  (7) are rearranging to a matrix form similar to that used by Světlík
3
 for compactness 

gives the final expressions: 
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Where: 
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4. EXPERIMENTAL MEASUREMENT OF SPECKLE SCALING COOEFIECENTS 

Experimental setup 

To experimentally test the above relations, an experimental system was constructed using an aluminum profile support 

structure above a test object mounted on a translation stage (Physik Instrumente M-110.1DG linear translation stage with 

a quoted unidirectional repeatability of 0.1µm) positioned in the xy-plane at z = 0mm. The three-dimensional support 

structure allowed the positions of the laser source and camera to be varied over a wide range of geometries (~ ± 80mm in 

x,y and up to 400mm in z) that are typical of practical applications of the speckle correlation method such as speckle 

velocimetry
10,11

. The test objects used were custom 3D printed ramps with gradients of 0.0 (flat), 0.2, 0.4, 0.6, 0.8 and 

1.0 (45° slope) as shown in Figure 3. The ramps were constructed with an octagonal cross-section allowing the gradients 

to be rotated in 45° increments to vary both components of the surface gradient in a controlled manner. The quoted 

precision of the 3D printing process was ± 0.1mm over a ramp dimension of 30mm giving a precision of the gradients of 

± 0.003. The camera was a Baumer HXC-13 CMOS camera with 14x14µm pixels with a laser line filter located in front 

of the camera sensor to block background light and ensure high contrast speckle images. The laser source used was a 

diode-pumped solid state (DPSS) laser module producing approximately 30mW at 532nm. The collimated output of the 

laser was expanded onto the surface of the test object using an f = 45mm lens to produce a speckle size of around 5 

pixels on the camera. 

 



 

 
 

 

 
Figure 3. The 3D printed test objects used in this experiment. From left to right mx,y = 1.0, 0.8, 0.6, 0.4, 0.2 and 0.0 and the 

stage mounting plate. The ramps have a constant working height of 20mm above the stage at the centre point and can be 

rotated in 45° increments in the mounting plate to enable the surface gradient direction to be rotated in a controlled manner. 

 

Method 

The translational scaling factors (ratios of speckle shift to object translation), Ax/ax, Ax/ay, Ax/az and Ay/ax, Ay/ay, Ay/az, 

were experimentally measured by recording images before and after a series of known translations, computing the 

normalized cross-correlation
15

 and applying Gaussian peak fitting
16

 to determine the speckle shift to 0.1 pixel accuracy 

(1.4µm). Each translation was repeated 10 times and the mean shift recorded. This was performed from stage translation 

between 0 and 500µm to avoid the effects of pixel locking
16

 and/or stage positional bias errors caused by unwanted stage 

roll, pitch or yaw. The final translational scaling factors were estimated to an accuracy of ± 0.02 using a linear fit to the 

recorded mean shift at each translation magnitude. The accuracy is limited by the ability to align the detector and stage 

axis, currently estimated at 0.5° by measurement of the length and transverse displacement possible when fixing the 

mounting brackets, any misalignment will cause translations in the other two orthogonal components, resulting in an 

unwanted contribution to speckle shift. This angular misalignment comes from both misalignment of the stage with the 

support structure, which is constant, and from misalignment of the camera and support structure which can vary each 

time the camera is repositioned. However although the accuracy of the scaling factors was limited to ± 0.02 the 

repeatability is approximately ± 0.008, and is limited by the pixel size of the detector and the 0.1 pixel peak fitting 

accuracy. 

 

Results 

For the case of zero surface gradients, the expressions derived in equation (11) reduce to expressions that are different to 

those given by Yamaguchi
1
 and Horvath et al.

13
. However Světlík

3
 derives expressions for the speckle shift using a 

different approach that agree with those found above and those found by Jacquot
12

. A comparison of the measured and 

theoretical translation scaling factors for this case is shown Figure 4(a). As the detector location is moved along the x-

axis, away from the z-axis it can be seen that the experimental values diverge from the values predicted by Yamaguchi’s 

expressions
1
 (shown as dashed lines). This divergence from the theory was also noted by Světlík

3
 and is most noticeable 

in the Ax/ax, Ay/ay components. The values predicted by the expressions derived above are shown in Figure 4 as the thick 

green line, where the thickness denotes the minimum and maximum bounds predicted assuming an error in source and 

detector positions of ± 1mm in all directions. These values successfully predict the observed translation scaling factors 

within the tolerances of the measurements ( ± 0.02) over a wide range of detector positions along the x-axis for this zero 

gradient case, confirming the results reported by Světlík
3
. 

The case of non-zero surface gradients can be seen in Figure 4 (b) and (c), and Figure 5. In Figure 4 (b) and (c) the 

change in the scaling factors with varying detector position can be seen to be in good agreement with the new 

expressions presented in section 3. Likewise in Figure 5 the dependence upon the surface gradient can be seen to be in 

good agreement for both changing magnitudes (a) and (b), and changing direction (c). Other detector positions within the 

range x, y < ± 80mm have also been investigated
2
 and similarly found to be in agreement with the extended theory. 

 



 

 
 

 

 

Figure 4. Comparison of translational scaling factors for S = (0,-150,265) mm and D = (Dx,0,300) mm, for three surface 

gradients (a) mx = my = 0; (b) mx =  + 1, my = 0 and (c) mx = 1, my = 0. The top row shows the scaling factors for the speckle 

shift in the x direction (Ax) resulting from the object translations (ax, ay and az) while the bottom row shows scaling factors 

for the speckle shift in the y direction (Ay). The data points are the experimental results; () Ax,y/ax, () Ax,y/ay and () 

Ax,y/az, and the dashed lines in (a) show the values predicted by the Yamaguchi’s equations (for mx = my = 0). The solid lines 

(green) are the values predicted by the extended equations presented in section 3. Here the thickness of the line denotes the 

minimum and maximum bounds predicted assuming an error in source and detector positions of ± 1mm in all directions. 

 

Figure 5. Comparison of translational scaling factors for S = (0,-150,265) mm and D = (80,0,300) mm for (a) varying 

magnitude mx; (b) varying magnitude my and (c) varying directions of a fixed magnitude gradient as it is rotated about the z-

axis (mx = cos, my = -sin). The top row shows the scaling factors for the speckle shift in the x direction (Ax) resulting from 

the object translations (ax, ay and az) while the bottom row shows scaling factors for the speckle shift in the y direction (Ay). 

The data points are the experimentally measured results; ()Ax,y/ax, () Ax,y/ay and () Ax,y/az and the solid lines show the 

values predicted by the extended equations (section 3). Here the thickness of the line denotes the minimum and maximum 

bounds predicted assuming an error in source and detector positions of ± 1mm in all directions. 



 

 
 

 

5. CONCLUSIONS 

The observation of a dependence on the speckle shift to surface shape has been shown to lead to significant errors in the 

application of the speckle correlation method in speckle velocimetry and is likely to be fundamental importance in other 

applications. Expressions relating the observed objective speckle shift to the deformation of the illuminated object have 

been presented and verified experimentally for shaped surfaces approximated by the linear surface gradients. The 

original expressions developed by Yamaguchi
1
 and the new extended expressions are then compared with experimental 

results for measurements on zero surface gradients, i.e. the mean surface lying in the x-y plane. The divergence of 

Yamaguchi’s expressions from experimental results for off-axis detector positions that was first observed by Světlík
3
 

was confirmed, and the new expressions shown to successfully predict translational scaling factors for off-axis positions. 

These new expressions are then compared to the experimental results for a range of surface gradient magnitudes and 

directions, as well as detector positions, both on and off-axis, and shown to successfully predict the observed speckle 

shift. This knowledge of how the speckle shift varies will be of great use for future improvements to speckle 

velocimetry, to reduce the sensitivity to the unknown surface gradient, and in the application of laser speckle correlation 

for industrial metrology on shaped objects to ensure high positional accuracy. 
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