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‘’Whatever you do in life will be insignificant, but it's very important that you 

do it 'cause nobody else will...’’  

~ Mahatma Gandhi ~ 
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ABSTRACT 

 

        Blackheart (BH) is a non-pathogenic internal physiological disorder induced in potato 

tubers during storage. It is usually associated with oxygen (O2) depletion and/or carbon 

dioxide (CO2) accumulation. BH symptoms are characterized by a dark brown to black 

discoloration in the central portion of the tuber tissues. It is believed that phenolic compounds 

are related to tuber tissue discoloration and development of BH. In recent years, this disorder 

has been a particular problem for the UK fresh and packed potato industry and to date there is 

still no true understanding of the causal factors that govern BH susceptibility in stored potato 

tubers. Accordingly, the aim of this project was to elucidate the physiological and 

metabolomic mechanisms involved in potato blackheart disorder and to have a better 

understanding of the factors which contribute to BH development in order to alleviate this 

problem for the UK fresh potato industry. 

        The symptoms of BH may be absent in potato tubers during storage and become more 

evident after washing, conditioning and packing, and thus only during the subsequent shelf-

life and home-life period. Physiological and biochemical analysis of potato stocks cv. Maris 

Piper with different susceptibility to BH (two susceptible to BH stocks and one non-

susceptible) was performed. All Maris Piper stocks used were grown in different locations 

and growing conditions. In 2011-2013, an attempt to mimic the shelf life conditions was 

evaluated by initially storing potato tubers at very low temperatures (1.5 or 3
o
C) and then 

transferring them to air (21% O2) and/or various O2 and CO2 concentrations using a CA 

system at 15 or 20
o
C for shelf-life evaluation. In 2013-2014, micro-Computed Tomography 

scanning was used for better visualization of the intercellular spaces of tuber tissues. The O2 

diffusion in flesh and heart tuber tissues was measured using a gas diffusion measurement 

model set up coupled with optical sensors for the first time. Four experiments were conducted 
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over three years (2011-2014). This study showed that the cold initial storage temperature was 

the main factor affecting both physiological and biochemical changes in potato tubers with 

different susceptibility to BH. Respiration rate recorded at 15
o
C was greater for those tubers 

that had been held under 10% CO2 and lower when tubers were stored at 5% O2 at 20
o
C due 

to CO2 efflux and O2 depletion respectively. However, a relationship between respiration rate 

and the incidence of BH was not found as it was expected. The BH incidence was quite low 

proportional to the number of potato tubers used in this project where less and more intense 

brown discolorations were observed in the tuber heart tissues of these susceptible stocks to 

BH. BH incidence was greater in those tubers stored in air (21% O2) compared to those that 

have been held under various gas combinations. Also, it was unclear whether those 

discolorations were stimulated or induced at very low initial storage temperature and then 

exacerbated during shelf-life evaluation at either 15 or 20
o
C. The temperature and exposure 

period in which BH showed greatest incidence could not readily be predicted. Biochemical 

analysis revealed that sugars tended to be more accumulated in those samples of stocks with 

BH susceptibility and that might be an indicator of stock susceptibility. Chlorogenic acid and 

isomers thereof and specific amino acids (tyrosine, phenylalanine and tryptophan) tended to 

be more accumulated in tuber heart tissue samples derived from stocks with increased 

susceptibility to BH. However, it is still unclear whether tyrosine or chlorogenic acid or other 

phenolic compounds that were not quantified contributed to these brown tissue discolorations 

found in this project. Furthermore, untargeted metabolomic analysis on selected flesh and 

heart samples showed a plethora of known and unknown metabolites. Significant differences 

in the metabolome regulation were shown between discoloured and control samples. Yet, the 

presence of glycoalkaloid and flavonoid content in those samples of stocks with no 

susceptibility to BH might suggest differences in gene expression under the storage 

conditions studied and could be indicators of potato stock susceptibility or possible indicators 

of geographical provenance of potato stocks cv. Maris Piper. 
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        Also, in 2013-2014 both micro-CT scans and 3D images showed a variation in the 

structure and connectivity of the intercellular spaces in tuber tissues. A large variation in O2 

diffusivities was shown and it was suggested that this might be due to the discontinuity of the 

gas-filled intercellular spaces. Due to the large variability, no differences between flesh and 

heart tissue were observed. Furthermore, the fact that there were no indications of tissue 

discoloration in these samples susceptible to BH, a comparison in stock susceptibility was not 

possible.  

        It is still difficult to explain the real factors that govern the BH disorder development 

and the symptoms that differentiate the disorder from similar internal physiological disorders 

induced in potato tubers. Further physiological and biochemical research is required in order 

to confirm whether those findings are related with BH disorder. 
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CHAPTER ONE: 

GENERAL INTRODUCTION 

 

1.1. Project background 

          The potato crop (Solanum tuberosum L.) is considered the most important member of 

the nightshades family (Solanaceae) and currently ranks sixth around the world and fifth in 

the UK (FAO, 2013). Potato is a high value crop supplying dietary energy and is widely 

produced and consumed in the UK. However, its quality can be influenced, under adverse 

environmental and undesirable storage conditions, leading to physical and chemical quality 

losses affecting consumer acceptability and subsequently economic losses. Potato tubers may 

be susceptible to more than 100 external or internal diseases and disorders. The internal 

physiological disorders in potatoes are mainly related to tuber tissue discoloration resulting in 

cell necrosis (Sowokinos, 2007). 

       An internal disorder named blackheart was initially observed and reported in the 

Northern USA when shipping or transporting potato tubers (Bartholomew, 1916). Blackheart 

is a non-pathogenic disorder resulting in an internal brown to black discolouration (normal 

tuber flesh colour to pink, brown and finally black) of mainly medullary tuber tissues (pith) 

and rarely cavity formation (Davis, 1928). Kumar Chaurasia (2009) characterized the 

symptoms as a dark grey to purplish discoloration. The discoloration may be irregular in 

shape or more circle-like when induced by air exclusion or exposure to high temperatures, 

respectively (Stewart and Mix, 1917). Sometimes blackheart may diffuse into the unaffected 

perimedulla area without reaching the cortex of the tuber (Hooker, 1981). The affected flesh 

tissue remains firm and odourless and no external symptoms are apparent, thus an intact but 

affected tuber looks healthy. It has been hypothesized that phenolic compounds such as 
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chlorogenic acid and derivatives and tyrosine causing tissue discoloration may possibly be 

linked with blackheart development (Bartholomew, 1916; Reeve, 1968). In 1980, Jadhav et 

al. reported that tubers with slight blackheart incidence contained higher glycoalkaloid 

content with this being increased when severe blackheart symptoms were observed. It has 

also been reported that blackheart may either be developed by tuber exposure to high 

temperatures (Bartholomew, 1916; Davis, 1928; Kumar Chaurasia, 2009) or at low or very 

low temperatures (Stewart and Mix, 1917; Lipton, 1967; Hooker, 1981).  

        Blackheart is usually associated with a lack of oxygen (O2) and/or carbon dioxide (CO2) 

accumulation (Davis, 1928; Hooker, 1981). It has been hypothesized that when O2 supply is 

depleted and is unable to reach the tissue internally, blackheart is induced. Furthermore, at 

extremely high or low temperatures the disorder may be developed as result of delayed gas 

diffusion within tissue, thus CO2 is formed and more rapidly accumulated in the internal 

atmosphere. According to Lipton (1967), storing potato tubers at 15-20
o
C in 0.5-1% O2 

blackheart being induced. Potato tubers held at under 10% CO2 also showed incidence 

(Butchbaker et al., 1967). The study of the intercellular space in potato tuber and gas 

diffusion through it has been of interest since the late 1890’s until the late 1990’s. In 1988, 

Banks and Kays proposed that further research on tuber resistance to O2 diffusion is needed 

in order to investigate the disorder. However there has been a paucity of research since then. 

Still there remains no true understanding of the causal factors that govern blackheart 

susceptibility in potato tubers.  

       This disorder is a particular problem for the UK fresh and packed potato industry. 

Customer complaints due to blackheart disorder mainly start in January, peaking in May, 

June and July. Blackheart affected tubers look normal externally and thus can easily pass the 

quality control procedures undermining consumer confidence later. Among those potato 

cultivars produced in the UK, it was reported that Maris Piper which is the dominant main-
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crop produced (accounting for 15% of UK plant area) has the greatest susceptibility to 

blackheart disorder followed by cvs. Marfona, Estima and Vales Sovereign.  

 

1.2. Aim and objectives 

1.2.1. Aim 

 

            The overall aim of this project was to elucidate the physiological and metabolomic 

mechanisms involved in potato blackheart disorder and to have a better understanding of the 

factors which contribute to the development of blackheart disorder in order to alleviate this 

problem for the UK fresh potato industry. 

 

1.2.2. Objectives 

 

1. to examine the effect of different storage conditions on respiration rate of tubers from 

potato stocks cv. Maris Piper with different susceptibility to BH and the possible link 

with the incidence of blackheart disorder 

2. to identify compounds related or involved with tuber tissue discoloration 

3. to determine the basis and temporal change of gaseous permeability of potato tissue in 

relation to blackheart disorder. 

 

1.3. Thesis structure 

         Nine chapters in total comprise this PhD thesis. The general introduction is presented in 

this Chapter One. Chapter Two includes the literature review and Chapter Three, the 

Materials and Methods of all four large scale experiments conducted at Cranfield University 

throughout this PhD project. Results of experiment 1 conducted in year 1 (2011-2012) are 
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presented in Chapter Four, while Chapter Five includes the results of both experiments 

conducted in year 2 (2012-2013). Untargeted metabolomics analysis applied on selected 

samples from year 1 and also samples derived from the 1
st
 experiment in year 2 is presented 

in Chapter Six. Chapter Seven represents the gas diffusivity experiment which was carried 

out in year 3 (2013-2014) at the Department of Metallurgy and Materials Engineering 

(MTM/MME) and the Faculty of Bio-science Engineering (K.U.Leuven, Belgium). In 

Chapter Eight the general discussion and the conclusions are presented, while the literature 

cited is provided in Chapter Nine. Appendix A includes example images of discoloured 

potato tubers from both years 1 and 2. All statistical analysis tables from experiments in year 

1 are presented in Appendix B corresponding to Chapter Four. Appendix C includes all 

statistical analysis tables from both year 2 experiments which correspond with Chapter Five. 

In Appendix D and E, example figures of total ion chromatograms (TIC) and all ANOVA and 

fold-change analysis tables of untargeted metabolomics analysis applied in year 1 and year 2, 

respectively, are included corresponding to Chapter Six.  

Results from this project have already been presented at the following International 

Conferences: 

Elisavet Kiaitsi, Leon A. Terry. Storage temperature and simulated shelf-life conditions 

influence respiration rate and incidence of blackheart disorder in potatoes. XI International 

Controlled & Modified Atmosphere Research Conference, Trani, Italy, 3-7 June 2013 (oral 

presentation). 

 

José Juan Ordaz Ortiz, Elisavet Kiaitsi, Leon A. Terry. Discovery, identification and 

metabolite variation in potato tubers with blackheart symptoms: taking metabolomics into 

postharvest. VI International Conference on Managing Quality in Chains (MQUIC), 

Cranfield, England, U.K., 2-5 September 2013 (oral presentation). 
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1.4. Declaration 

         Blackheart disorder development was conducted using a severe method at Sutton Bridge 

Crop Storage Research (SBCSR,  UK) by Adrian Briddon in order that susceptible and non-

susceptible blackheart potato stocks cv. Maris Piper could be selected and transferred to 

Cranfield University (UK) during all three years of this project (Chapter 3; Section 3.2 and 

3.7). Phenolic content analysis and untargeted metabolomics analysis (Chapter 3; Section 3.6) 

using the Liquid Chromatography Mass Spectrometry (LC/MS) instrument was carried out 

under the supervision of Dr. Jose Juan Ordaz Ortiz. All statistical analysis was conducted 

with the assistance from the statistician Dr. Patricia Bellamy. 
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CHAPTER TWO:  

LITERATURE REVIEW 

 

2.1. Introduction  

           It is believed that losses during potato storage in the UK are around 3 – 5%, the main 

causes of which are detailed in Figure 2.1 (Terry et al., 2011). Blackheart disorder (BH) has 

been identified as a significant cause of waste in the Great Britain (GB) potato industry; 

however, its impact is probably under-estimated since it tends to only manifest itself during 

shelf-life and home-life. There is no reliable data on the incidence of blackheart in the GB 

potato industry, yet there is consensus amongst industry leaders that the disorder is a growing 

problem and one that should be addressed in order to safeguard against possible product 

displacement by imports. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Resource map of UK potato yield losses (Terry et al., 2011 – more information 

available on http://www.wrap.org.uk/retail_supply_chain/research_tools/research/report_resource.html). 

http://www.wrap.org.uk/retail_supply_chain/research_tools/research/report_resource.html
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2.2. The blackheart disorder 

           Blackheart is a physiological non-pathogenic disorder resulting in an internal brown to 

black discolouration indicated mainly in the medullary tuber tissues (pith) and rarely cavity 

formation (Fig. 2.2 a, b and c) associated with O2 depletion and/or CO2 accumulation. This 

physiological disorder was initially introduced by Bartholomew in 1916 when the author 

observed dark brown or black tissue discolorations in potato tubers during shipment and 

transport. Bartholomew believed that BH is developed due to overheating at shipping and 

suggested that exposure to high temperatures < 35
o
C cause changes in respiration rate 

resulting in cell suffocation due to high levels of O2 demanded, CO2 accumulation in the 

interior of the central tuber tissues and eventually death (Bartholomew, 1916). A few years 

later, Stewart and Mix (1917) after a three year study on BH based on Bartholomew’s 

observations they concluded that BH disorder may be induced at any temperature by O2 

depletion as was able to be developed by storing  tubers in hermetically sealed jars after 20 

days at 12-15
o
C. Furthermore, they showed that tuber size was not necessarily an important 

factor contributing in BH susceptibility.  

        In those cases, when O2 supply is depleted and is unable to reach the tissue internally, 

blackheart is induced. Furthermore, at extremely high or low temperatures the disorder may 

develop as a result of delayed gas diffusion within tissue, with CO2 accumulating more 

rapidly in the internal atmosphere. To date it is still believed that BH may either be developed 

by tuber exposure to high temperatures (> 35
o
C) without O2 deprivation (Hiller, 2002; Kumar 

Chaurasia, 2009) or at low or very low temperatures (Link et al., 1932; Lipton, 1967; 

O’Brien and Rich, 1976; Smith; 1978; Hooker, 1981; Wale et al., 2008). According to Lipton 

(1967), storing potato tubers cv. White Rose at 15-20
o
C in 0.5-1% O2 induced blackheart 

disorder. Potato tubers cv. Kennebec held under 10% CO2 also showed incidence 

(Butchbaker et al., 1967).   
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        The disorder poses a particular problem for the GB potato industry where a large 

proportion of the crop is marketed from store. Symptoms may also be absent in crops 

throughout storage and only become apparent after washing, conditioning and packing. 

However, during the subsequent shelf-life and home-life period BH becomes evident. 

Blackheart is a particular problem for the fresh potato industry because quality control (QC) 

procedures cannot adequately check for the defect. That is, they cannot adequately predict 

which consignment will be at risk. This failure is undermining consumer confidence. It is 

believed that blackheart does not cause any nutritional losses to potato tubers but it is 

estimated to account for 25-30% of consumer complaints (David Walker, Chairman FPSA, 

personal communication) due to it being aesthetically unappealing. BH does not show 

external symptoms and only becomes apparent when tubers are sliced open. Thus tubers look 

superficially healthy from the first point of view. Upon cutting brown or black tissue 

discoloration is evident (severity depended), but sometimes a longer time is required for the 

discoloration to progress (normal tuber flesh colour to pink, brown and finally black 

discoloration) (Davies, 1928; O’Brien and Rich, 1976). Therefore, it seems that BH 

discoloration symptoms vary and may be formed irregularly or more circle-like shape when 

induced by air exclusion or exposure to high temperatures respectively (Stewart and Mix, 

1917). Kumar Chaurasia (2009) characterized the symptoms as a dark grey, black or purplish 

discoloration at high temperature exposure. Sometimes it may diffuse into the unaffected 

perimedulla area without reaching the cortex of the tuber (Hooker, 1981). However, it is 

unknown at which temperature and exposure time BH is initiated and reaches maximum 

levels of incidence. Sowokinos (2007) has pointed out that internal physiological disorders 

might be slowly expressed. Due to brown or black tissue discoloration (severity depended) 

sometimes the disorder is mistakenly referred to as incipient hollow heart, brown centre, 

brown heart or sugar heart (Bussan, 2007), and this diversity in nomenclature has led to some 
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confusion over identifying any underlying causal factors which may promote the specific 

disorder (Link et al., 1932; Wolcott and Ellis, 1956, 1959; Reeve, 1968; Sowokinos, 2007). 

 

 

 

 

         

 

 

 

 

 

Figure 2.2 Potato tubers with symptoms of blackheart showing discolouration and cavitation 

in central tissues (a, b and c) (source A. Briddon).  

 

        It is more likely that BH is induced during storage and does not tend to occur in crops 

from the field; however, it has been suggested that physiological disorders and tissue 

discolorations may be initiated at pre-harvest conditions such as growth conditions, soil 

temperature and type (silts) and water logging (flooding) (Link et al., 1932; O’Brien and 

Rich, 1976; Bussan, 2007; Wale et al., 2008; Palta, 2010; Zommic et al., 2013). Other factors 

have been highlighted as being potentially linked to blackheart and other internal browning 

disorders. These include tuber maturity, drought stress, high temperatures, large tuber size 

a) b) 

c) 
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and the use of some plastic packaging films (Larson and Albert, 1945; Walcott and Ellis, 

1959), but none of these causal factors reliably affect blackheart incidence. There is still no 

true consensus on the causal factors which makes one particular tuber stock more or less 

susceptible than another. Although seasonal variations are observed, the incidence of 

blackheart is reported to have increased in the last five years (David Walker, Chairman 

FPSA, personal communication). It is believed that the increased efficacy in logging 

consumer complaints does not fully account for this apparent increase, such that a change or 

combination of changes has occurred in the last five years that may be responsible for 

increased incidence of the disorder. Some candidates persist, for example, the increased 

usage of plastic packaging. Yet, it is likely that a combination of factors is responsible. 

        To reiterate, blackheart is a particular problem for the fresh, packaged potato industry, 

because typically only central tissues become necrotic and tubers appear otherwise healthy. 

Crops may pass QC checks and be marketed with defects only becoming apparent to the 

consumer after preparation during cooking (e.g. baked potatoes). Customer complaints from 

blackheart have increased in recent years. FPSA estimate that currently there are 

approximately 2,500 consumer complaints annually (D. Walker, personal communication) 

and it is likely that this level of dissatisfaction is much higher, but not reported. Customer 

complaints can start in January and peak in May, June and July. Some supermarkets have 

indicated that crops of critical cultivars in GB, for instance Maris Piper, which is the 

dominant main-crop produced (accounting for 15% of UK plant area), will be sourced from 

abroad if the incidence of blackheart cannot be substantially reduced. 
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2.2.1. Biochemistry basis of the disorder 

 

          Blackheart manifests itself as a darkening of central tissues in the tuber (Figure 2.2).  

However, the colour change can be progressive from light reddish or brown with areas 

mainly confined to the central pith. Indeed, these smaller areas are not always evident 

immediately after cutting (Reeve, 1968). The brown to black coloration indicates a phenolic-

based reaction. Phenolics are any compound which contain an aromatic carbon ring and 

associated hydroxyl group and thus include phenolics acids and flavonols within the 

phenylpropanoid pathway (Vogt, 2010).   

         Initially, Bartholomew (1916) suggested that black discoloration is caused by tyrosine 

oxidation via polyphenol oxidase (PPO or tyrosinase). Later, Reeve (1968) first demonstrated 

that cells surrounding affected tissue could be highly stained with Sudan IV in histological 

studies, indicating the presence of suberin and other phenolics. Additional histochemical tests 

for both chlorogenic acid and tyrosine showed more intensive positive colour reaction in 

blackheart affected tissue than did normal healthy parenchyma tissue from the central region 

in unaffected tubers. Unfortunately, there is no information which is publically available 

which has attempted to show there to be a correlation between other phenolics found in 

potato (viz. caffeic acid, p-coumaric acid, ferulic acid and trans-cinnamic acid; Yao et al., 

1995; Mattila and Hellstrom, 2007; Im et al., 2008; Andre et al., 2009) and blackheart.  

        It is not clear whether chlorogenic acid, other phenolics (known and unknown) and/or 

tryptophan are indicators of blackheart or are produced as a result of blackheart.  It is thought 

that tryptophan may affect phenolics accumulation (Yao et al., 1995), but whether this is 

significant is unclear. That is, it is still not known whether tryptophan or phenolics are the 

cause or effect of the disorder. It is possible that phenylalanine ammonia lyase (PAL) the 

enzyme to the phenylpropanoid pathway (Gerasimova et al., 2005; Payyavula et al., 2013) 
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may be regulated following gaseous induced stress (Joos and Hahlbrock, 1991; Geigenberger 

et al., 2000, 2003). Even though chlorogenic acid is the dominant phenolic found in potato 

(Dao and Friedman, 1992; Friedman. 1997; Brown et al., 2005; Navarre et al., 2011, 2013) 

this does not translate into it having a mechanistic role in blackheart. It is likely that other 

compounds (e.g. plant growth regulators) are involved, since these are up or down regulated 

according to storage stress and physiological age (storage life). 

        Blackheart tends to only manifest itself at certain times of the year, especially after 

longer term storage and conditioning, and can be exacerbated by inappropriate packaging.  

Thus, distinct chemical changes must be taking place during postharvest life, which make 

some tubers more susceptible to the disorder. Given that blackheart tends to only manifest 

itself from January onwards, it is probably that the transition from endodormancy (true 

dormancy) to ecodormancy (sprout suppression phase) may be significant, and this might 

point to a role for plant growth regulators and their metabolites as these are known to flux 

during storage. Targeted and non-targeted metabolomics might provide an insight and 

ultimately a greater mechanistic understanding of blackheart allowing for presymptomatic 

risk assessment by establishing predictive biomarkers. To date, no detailed metabolomics 

have been conducted. 

 

2.3. Gaseous diffusion and role of packaging 

         It has long been recognised that insufficient gas exchange between tubers and the 

external atmosphere is associated with blackheart. Gas exchange is caused by differences in 

gas composition between the applied external atmosphere and the internal atmosphere due to 

O2 consumption and CO2 production during respiration. The latter phenomenon is caused by 

overall gradients which may develop due to the large difference in CO2 and O2 diffusivity 

during inappropriate modified atmosphere packaging (MAP). In contrast to other crops which 
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suffer from internal storage disorders (e.g. core breakdown in controlled atmosphere stored 

conference pears, Ho et al., 2006) no recent research has been conducted on understanding 

gaseous diffusion in potato tissue. 

        It has been proposed that where gaseous exchange cannot keep pace with increased 

respiration rate (e.g. during conditioning) then blackheart incidence will increase (Davis, 

1928). High respiration is associated with higher temperatures. Bartholomew (1916) believed 

that high temperatures resulted in an accumulation of CO2 and a lack of O2 in the central 

tissues.  He believed that higher temperatures would act upon the enzyme PPO, and that 

greater enzyme activity would produce black melanic substances. He showed that he could 

induce the disorder by holding tubers between 38-44
o
C for 15-24 hours. However, high 

temperature is not a necessary precondition for blackheart to occur. Indeed, Stewart and Mix 

(1917) where able to induce blackheart by storing tubers in hermetically sealed jars for about 

20 days at 12-15
o
C. Later, Davis (1926) showed that blackheart could be induced by holding 

tubers at 45
o
C in a carbon dioxide free atmosphere with abundant oxygen available. He 

showed that during the time preceding the appearance of the disorder, the internal level of 

CO2 rose to 50% whilst O2 was reduced to 4%. What can be noted is that the work by 

Bartholomew, Stewart and Mix, and Davis is nearly 100 years old. This does not mean it is 

any less valid, but was conducted on older varieties grown predominantly in the USA, and 

clearly did not benefit from the recent advances in genomics and metabolomics. It was only 

with the pioneering work of Kidd (1919) and Barker (1936) and then subsequently by Burton 

and colleagues between 1950 and 1970 (Burton, 1958; 1962) that research focussed once 

more on elucidating the effects of gaseous composition on tuber physiology. However, in the 

main, this more recent work was centred on extending storage life (i.e. sprout suppression) 

without increasing sugar accumulation in processing varieties. For instance, Khanbari and 

Thompson (1994) cured potato tubers cv. Record for three weeks at 10°C before being 
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transferred to controlled atmosphere storage at 4°C for six months. Concentrations of 0.7 – 

1.8% CO2 in combination with low O2 (2.1-3.9%) gave the best results with light crisp colour, 

low sprout growth and few rotted tubers compared with 0.9% CO2 and 21% O2. Burton 

(1959) found that increasing CO2 concentration was negatively correlated with sprout growth 

where levels as high as 20% CO2 completely eliminated sprout growth after 4 months at 

10°C. This was confirmed many years later by Khanbari and Thompson, (1994) who found 

higher CO2 resulted in better sprout inhibition, however fry colour became darker. Only, 

Lipton (1967) has provided evidence on the effects of gaseous composition on blackheart. He 

showed that cv. White Rose tubers developed blackheart if they were held at 1 and 0.5% O2.  

No more information was available on defining gaseous compositions which encourage 

blackheart. 

        Early work by Burton (1965) investigated the amount of dissolved gases in the cell sap 

of tubers and found that the optimum CO2 concentration for growth to be 2-4 % or 0.04-0.05 

ml CO2 ml
-1

 sap whereas inhibition of growth was achieved at much higher CO2 

concentrations. The author also found that low O2 stimulated growth especially around 5% 

which equates to 0.0006 ml O2 ml
-1

 sap. It was concluded that since temperature affects the 

solubility of gases, increasing the storage temperature above 10°C in an air atmosphere 

would increase the amount of dissolved gases in the cell sap and the resulting sprout growth 

may be no more than would be expected as a result of the increased CO2 in solution. Even 

though this work was not done in the context of blackheart, it remains the only piece of work 

that has systematically detailed gas exchange in potatoes. 

       Despite indications that packaging may influence the incidence and severity of 

blackheart, there is no literature in the public domain which has evaluated the effect and 

mechanisms involved. Only one piece of work has researched the effect of packaging on 

tuber composition (Gosselin and Mondy, 1989) and this was not focussed on blackheart.  
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However, they did report that cvs. Russet Burbank and Chieftain packaged in polyethylene 

and held at 20
o
C had lowest weight loss, ascorbic acid and nitrate-nitrogen but highest in 

discoloration, phenols and glycoalkaloids than those packaged in mesh or paper. Potatoes 

packaged in paper had the lowest discoloration and phenols and highest ascorbic acid. 

Anecdotally, it is believed that loose tubers suffer less risk of blackheart than tubers packaged 

in MAP. Ironically, it may be that inappropriate MAP may inhibit sprouting but encourage 

blackheart.  

 

2.4. Other internal physiological disorders in potato tubers 

        Along with BH disorder, similar internal physiological disorders resulting in tissue 

discoloration incidence are induced in potato tubers that pose a problem to both fresh and 

processing markets. Internal physiological disorders share a common feature which is that of 

the brown or black tissue discoloration localized either in the central part of the tuber (pith) or 

randomly in the perimedulla zone as a result of cell membrane damage. Most of those 

physiological disorders are developed due to adverse environmental and growing conditions. 

Sometimes these disorders may overlap, thus difficulties in diagnose are caused due to 

similar evidence of initial or severe symptoms indicated internally in the tuber tissues (Reeve, 

1968; Wale et al., 2008). It would be useful to mention some of those disorders that might 

coexist with BH or act as precursors. Brown Centre (BC) which may also referred as sugar 

heart or brown heart is characterized by brown tissue discoloration with necrotic lesions in 

the central pith part of the tuber. It has been reported that this disorder may be caused at pre-

harvest period due to stressful growth conditions such as cool temperature soils (<10 – 15
o
C) 

and nutrient deficiency mainly calcium (Ca
2++

) and potassium (K) (Van Denburgh et al., 

1980, 1986; Davies, 1998; Bussan, 2007; Sowokinos, 2007, Palta, 2010). Calcium has a 

crucial role in plant growth maintaining the cell membrane integrity and providing cell wall 
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strength. Palta (2010) reported that efficient calcium pre-harvest may reduce the incidence of 

internal physiological disorders. An alternative but similar to that of BH induction hypothesis 

has been proposed for BC where limited supply of O2 and/or CO2 accumulation internally in 

the tissue leads to cell damage and maybe death; however, more research is needed to that 

hypothesis. BC may be the initiator of hollow heart (HH), another physiological disorder 

resulting in cavities formed up to 2 or more cm in diameter in the pith tuber area and may be 

accompanied with brown tissue discoloration around the cavities (Levitt and Minn, 1942; 

Gunter, 2002; Bussan, 2007; Elbatawi, 2008). Larger tubers may be more prone to HH 

caused by rapid tuber bulk, but small tubers may also be affected where osmoregulation may 

be disturbed. Thus the perimedulla tuber area is rapidly enlarged causing a separation in the 

pith later leading to HH formation (Crumbly et al., 1973; Mogen and Nelson, 1986; Rex and 

Mazza, 1989; Elbatawi, 2008). Tai and Misener (1994) have previously pointed out that the 

narrowness of the pith is positively associated with the tuber length and longer tubers have 

narrow pith and pith cells localized in various tuber parts (namely central, stem and dub end) 

may vary in size (Reeve et al., 1971; Mogen and Nelson, 1986). Another disorder which has 

been studied in more detail is the internal brown spot (IBS) or internal- browning, rust spot, 

brown fleck, necrosis or chocolate spot. IBS is characterized by irregular brown or rust 

coloured spots or blotches indicated mainly in the perimedulla zone (Reeve, 1968; Davies 

and Monk-Talbot, 1990; Davies, 1998; Sowokinos, 2007; Hiller and Thornton, 2008; Vanoli 

et al., 2012). IBS often overlaps with internal heat necrosis (IHN) due to similar symptoms 

induced internally of the potato tubers (Sterrett and Henninger, 1997). 
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2.5. Metabolomic approaches on potatoes 

2.5.1. Introduction 

  

         The scientific field of ‘’-omics’’ refers to the functional genomics (gene expression) 

and the importance of integrating molecular data combined with the analysis of 

transcriptomics (mRNA), proteomics (proteins) and metabolomics (metabolites) (Dunn and 

Ellis, 2005; Vorst et al., 2005, Shepherd et al., 2011). The parallel analysis of mRNA and 

proteins as products of gene analysis (Fiehn et al., 2000) has become established. However 

the metabolites are defined as the missing link of the functional genomic approaches (Hall et 

al., 2002) since the metabolome represents the final measurable response of an organism. 

        The metabolite profiling was initially developed in the early 1970’s by the Baylor 

College of Medicine (Sumner et al., 2002). In the 1980’s, there was a development of 

analytical techniques applied such as Soft Ionization, GC-MS and NMR and an increase in 

publications annually which led to the adaption and use of the new technology. However, in 

terms of the plant system the use of metabolite profiling as a diagnostic technique started in 

the early 1990’s (Maloney, 2004).  

        The major path of metabolomics is defined as the comprehensive profiling of all 

metabolites aiming to identify a much larger possible number of these molecules (Genga et 

al., 2008) to better understand them in a biological system (Tolstikov, 2003). Metabolomic 

study is therefore defined as the non-biased quantification of metabolites that provides a 

better understanding of how an organism responds or a tissue functions. Metabolites are low 

molecular weight molecules that are presented in a cell and are required for metabolic 

reactions and the collection of these metabolites is called the metabolome (Dunn and Ellis, 

2005). In terms of the size of primary and secondary metabolites with various chemical 

structures (Genga et al., 2008) present in plants has estimated ca. 50000 and about 200000 
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metabolites are predicted for the plant kingdom in total and it is estimated that currently 

metabolite identification amounts ca. to 10% (Allwood et al., 2008; Hall et al., 2002; 

Alliferis and Jabaji, 2012; Patti et al., 2012). For example, 300 metabolites were found after 

metabolomics application on Arabidopsis thaliana (Fiehn et al., 2000), a plant model which 

is widely being used for functional genomics (Dunn and Ellis, 2005; Kusano and Saito, 

2012). Several steps are required for a metabolomic procedure starting from sample 

preparation and extraction, instrumental analysis, statistical analysis, metabolite identification 

and data interpretation. 

 

2.5.2. Metabolomic studies on potatoes 

          

         Potatoes have previously been used as a model plant for targeted or untargeted 

metabolomics analysis. Genetically modified (GM) potatoes have also been extensively 

examined using metabolite profiling for compositional changes and comparison with 

conventional potatoes. Defernez et al. (2004) examined the effects of genetic modifications 

on tuber metabolites between 40 GM lines and control samples of 4 groups derived from 

Record and Desiree potato cultivars by Proton Nuclear Magnetic Resonance (1HNMR) and 

High Performance Liquid Chromatography with Ultraviolet (HPLC-UV) detection. There 

were some significant differences between GM lines and their control samples, however, the 

largest differences were observed between the two cultivars. A similar metabolomics study 

by Catchopole et al. (2005) on GM potatoes cv. Desiree using Flow Injection Electrospray 

Ionization-Mass Spectrometry (FIE-MS) showed a compositional similarity between GM and 

traditional potatoes. FIE-MS technology has also been used by Beckmann (2007) for 

metabolomics analysis applied on potatoes in order to investigate differences of the chemical 

composition and quality traits of potato cultivars. Carreno-Quintero et al. (2012) has also 

reported an untargeted metabolomics study on quantitative trait loci (QTL). Furthermore, 
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Vorst et al. (2005) reported an untargeted metabolomics analysis applied on potato genotypes 

featured with highly breeding population using the LC-MS technique.  

        Additionally, phytochemical diversity of potato genotypes (group Andigena, Phureja, 

Stenotomum and Tuberosum respectively) cultivars and Chilean landraces were examined by 

Dobson et al. (2007, 2008, and 2010) using a GC-MS based metabolite profiling study. As 

previously mentioned GC-MS is the most common and mature widely applied analytical 

technology and has successfully been applied to access changes in metabolites present in 

potatoes. Roessner et al. (2000) developed a method applied on soil-grown and artificially 

induced potatoes (cv. Desiree) using GC-MS technology for detection and simultaneous 

analysis of unexpected changes in metabolites. Initially, the method was applied in soil-

grown and in vitro potatoes tubers which were extracted in methanol/water solution followed 

by methoximation and silylation and more than 150 polar compounds -by which 77 with a 

known chemical structure (amino acids, organic acids, sugars, sugar alcohols and aromatic 

amines) were identified. In general, this method revealed significant differences in the 

metabolism among the soil-grown compared to in vitro potato tubers with the latter to contain 

higher amounts of amino acids and also higher amount of compounds indicative of osmotic 

stress. Furthermore, unexpected changes in disaccharides and sugar alcohols were revealed 

after metabolite profiling application in transgenic lines modified with their respect to either 

sugar or starch metabolism (Roessner, 2000; 2001). Later, Shepherd et al. (2007) based on 

Roessner’s method (Roessner, 2000), described the validation of GC-MS approach on the 

potato metabolite profile by using either Time-of-flight mass spectrometry (GC-TOF-MS) or 

Quadrupole-mass spectrometry. The method included oximation conditions, identification of 

metabolites derived from four tissue types (pith, inner and outer cortex and skin) selected 

from different positions of the tuber (radially and longitudinally slices) selected and a 

comparison between fresh and freeze-dried (FD) samples. About 180 polar and non-polar 
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metabolites in total were identified and analysed. Significant differences were observed in 

both radial and longitudinal tuber slices; however, most metabolites were detected between 

the different tissue types. A few significant differences were also found for 11 polar and 22 

non-polar metabolites between fresh and FD samples. Although the use of FD material 

provides several advantages such as higher linearity and repeatability; however the author 

found that both fresh and FD materials are equally applicable for metabolite profiling of 

cross-sample comparisons. 

        Another recent metabolomics analysis on potatoes (cv. Desiree) has been reported by 

Shepherd et al. in 2010, where six potato tuber life stages including the effect of storage 

temperature (5 or 10
o
C) on mature tubers and also the impact of developing tubers excised 

from mother plant were examined by using a range of MS approaches. The combination of 

analytical techniques such as Direct Infusion Electrospray Ionisation (DI-MS), GC-MS and 

LC-MS was able to identify 161 metabolites (by which 134 showed significant differences) 

showing differentiate changes in metabolite profiling of tuber life cycle. Moreover, 

metabolite profiling applied on tubers excised and attached the mother plant respectively, 

showed the impact of source-sink relations on metabolism and also when applied on stored 

mature tubers was able to distinguish those tubers stored at 5 than those at 10
o
C due to the 

sugar content differences. 

        Metabolite profiling has also been applied on potato suberization. Matsuda (2003) 

reported a new LC-MS method for the determination of the metabolic flux of two 

hydroxycinnamic acid conjugates, (S)-N-pcoumaroyloctopamine and chrologenic acid 

contained in wound-healing potato tuber tissue. Later, a GC-MS based metabolite profiling 

study on suberin biosynthesis was carried out by Yang (2007) using potatoes as wound-

healing model. More recent publications on potato metabolomics refer to the potato 

metabolome changes affected by different agricultural production systems and the regulation 
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of metabolome by polyphenol oxidase in genetically modified potato tubers using LC- and 

GC/MS by Shepherd et al. in 2013 and 2014 respectively. In addition, the effect of storage 

upon polar and non-polar compounds in six potato cultivars was examined by Uri et al. 

(2014). 

  

2.6. Conclusions 

        In conclusion, it is clear that there is a complete dearth of research which has 

investigated blackheart in potato; much of the literature is between 40 and 90 years old.  

Although some of the information is still relevant there is still no true understanding of the 

causal factors that govern blackheart susceptibility. More importantly, there is no 

understanding of the physiological, biochemical and indeed genetic mechanisms underlying 

resistance/susceptibility. Identification of predictive biomarkers of blackheart and elucidation 

of the role and effect that respiration and gaseous exchange have will ultimately enable 

storage practitioners and packers to reduce incidence and severity.  If the mechanisms behind 

blackheart can be better understood, then specific consignments which are believed to be at 

risk (e.g. by having higher levels of predictive pre-symptomatic biomarkers) may be released 

in advance of blackheart becoming a problem later in storage. 
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CHAPTER THREE:  

MATERIALS AND METHODS 

 

3.1. Overview of work 

        Physiological and biochemical analysis of potato (Solanum tuberosum L.) stocks cv. 

Maris Piper that had different susceptibility to blackheart (BH) was performed in order to 

identify factors involved in the development of this physiological disorder. The potato stocks 

for all experiments were selected and transported from Sutton Bridge Crop Storage Research 

(SBCSR, UK) to Cranfield University (year 1 and 2) or to K.U. Leuven (Leuven, Belgium) 

(year 3). During year 1 (2011-2012) and year 2 (2012-2013), tuber respiration rate was 

examined in order to interpret the level of CO2 produced when tubers were stored under 

different storage conditions (air or CA). Tuber weight and size (length and maximum 

equatorial diameter) were also recorded. O2 diffusion in tuber tissues was measured in year 3 

(2013-2014). Regarding the biochemical analysis, non-structural carbohydrates (sugars) and 

phenolic analysis were carried out in order to identify a possible link between these targeted 

compounds and tuber tissue discoloration. Untargeted metabolomics analysis was also 

applied with the possibility of discovering differences in those metabolites identified in flesh 

and heart tissues and tissue discoloration. Potato stock susceptibility in BH was also assessed 

using untargeted metabolomics analysis which was applied on control (sound samples 

showing no discoloration) samples derived from one susceptible and one non-susceptible 

stock. Biochemical analysis was not carried out for those samples of 2
nd

 experiment in year 2 

or in year 3. 

        In year 1 (2011-2012) three potato stocks with different susceptibility to BH were stored 

at 15
o
C for shelf-life evaluation in air and/or CA on three sampling days. Those tubers were 
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initially stored at 1.5 or 3
o
C and sampled at seven sampling points (outturns). For the whole 

experiment 1512 tubers were required in total. Respiration rate was measured in 1215 tubers 

in order the experiment to be balanced. That was because outturn 1 was conducted in air 

storage only and outturn 6 was conducted using tubers that were initially stored at 1.5°C only 

so this issue made the experiment to be unbalanced. 7560 samples in total including flesh, 

heart and peel tissues were cut, snap-frozen and stored pending further processing. From 

those samples only 648 (flesh and heart tissues) were selected from those tubers that have 

been stored in air only and initially stored at 1.5
o
C and used for sugar and phenolic analysis. 

For untargeted metabolomics analysis 94 selected samples were used in total. 

         A similar pattern to year 1, for year 2 (2012-2013) experiments was followed. Three 

Maris Piper potato stocks with different susceptibility to BH, two susceptible and one non-

susceptible were used. Approximately 1000 potato tubers were initially stored at 1.5
o
C until 

required. For the 1
st
 experiment 324 tubers were required in total. The experiment (from 

7/12/2012 to 10/05/2013) was slightly different compared to that of year 1, where potato 

tubers were stored at 20
o
C in air only, initially stored at 1.5

o
C and sampled on two sampling 

days. All tubers were also used for respiration rate which was measured for each tuber 

separately. 1620 samples (flesh, heart and peel tissues) in total were snap-frozen and cut, yet 

only 96 were used for sugar and phenolic analysis. Untargeted metabolomics analysis was 

applied on 112 samples in total. For the 2
nd

 experiment 459 potato tubers were used in total. 

Those tubers were initially stored at 1.5
o
C for ca. 8 months. The purpose of this experiment, 

which started on the 19
th

 June 2013 and lasted 14 days (ending on the 3
rd

 July 2013), was to 

store tubers at 20
o
C under various gas combinations (viz. A: 21% O2, B: 10% CO2, C: 10% 

O2 and D: 5% O2) in order to see whether different environmental conditions would influence 

the incidence of blackheart in potatoes. The respiration rate was recorded for each tuber 

separately.  
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         In Year 3 (2013-2014) a gas diffusivity experiment was conducted from the 30
th

 of May 

2014 until 13
th

 of June 2014 at the Faculty of Bio-science Engineering (K.U.Leuven) in 

Leuven, Belgium. The idea of this experiment was to use two potato stocks cv. Maris Piper 

(one susceptible and one non-susceptible) and to record the O2 levels in potato tuber tissues 

(flesh and heart) in order to find any possible relation with the blackheart disorder induction. 

40 potato tubers (20 tubers / stock) were needed for the whole experiment.  

            

3.2. Plant material and experimental design 

3.2.1. Year 1 (2011-2012)  

 

          A method was developed at Sutton Bridge Crop Storage Research (SBCSR, UK) for 

BH induction in order susceptible and non-susceptible to BH potato tuber stocks to be 

selected and transferred at Cranfield University (UK). Fifteen stocks of potato (Solanum 

tuberosum L.) cv. Maris Piper (supplied by FPSA member companies) were initially stored at 

3.5
o
C and sealed in chambers at 30

o
C for 60 h incubation. Thus, potato stocks were adjudged 

by SBCSR to be either susceptible or non-susceptible to BH. Three stocks of potato tubers of 

which stock 20 and stock 23 were considered particularly susceptible to BH (Fig. 3.1 a, b) 

and stock 12 was proposed as non-susceptible to BH (Fig. 3.1c) were collected from SBCSR 

and transported to Cranfield University on the 24
th

 of November 2011 within two hours. 

Baseline and six sampling points (outturns) were conducted at Plant Science Laboratory 

(PSL) from November 2011 to May 2012.  

        According to the experimental design (Fig. 3.2) two different initial storage temperatures 

were selected (1.5 and 3
o
C). The warmer temperature was considered as a typical storage 

temperature for pre-pack industry whilst the storage temperature of 1.5
o
C was selected as 

being more challenging for the tubers. The duration of the experiment was 24 weeks (viz. 4, 8, 
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12, 16, 20 and 24 weeks). Assessments were made on one baseline and six sampling point 

(outturns). Tubers were sampled at three different sampling days (viz. 0, 3 and 7 days) per 

four weeks (outturn) at 15
o
C for shelf-life evaluation, whilst the rest of the stocks remained 

stored at 1.5
 
and 3

o
C until required. On each sampling day 0 tubers were always stored in air 

(21% O2) and on each sampling days 3 and 7 storage took place in air or controlled 

atmosphere (CA) (18-19% O2 and 10% CO2) (Fig. 3.2). Storage at 15
o
C in air and/or CA was 

conducted in six (6) sealed boxes 300 L each (3 with air conditioning and 3 with CO2 

conditioning) using a CA system (Fig. 3.6) where sampling replicates of each stock were 

divided, respectively. Baseline was conducted without initial storage temperature as the 

tubers were sampled directly after their arrival at Cranfield University. The arrival day was 

considered as sampling day 0, whilst the rest of the tubers required for the baseline 

measurements were directly stored at 15
o
C in air or CA in order to be processed on sampling 

days 3 and 7. Using a pocket thermometer (Fig. 3.1d) three hours were required for 

conditioning when tubers transferred from 1.5 or 3
o
C to 15

o
C (temperature equilibrium 

establishment). For the whole experiment 1512 tubers were required (504 tubers / stock). 

 

 

 

 

 

 

 

 

Figure 3.1 Potato tubers cv. Maris Piper stock 20 (a), stock 23 (b) (both susceptible to BH) 

and stock 12 (non-susceptible to BH) (c). Pocket thermometer (d). 

 

 

a) b) c) d) 
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3.2.2. Year 2 (2012-2013) 

 

3.2.2.1. Experiment 1 

 

            Three stocks of potato tubers cv. Maris Piper [stock 7 (susceptible to BH) (Fig. 3.4a), 

stock 12 (susceptible to BH) (Fig. 3.4b) and stock 3 (non-susceptible to BH) (Fig. 3.4c)] were 

transported from SBCSR to Cranfield University on the 7
th

 of December 2012 within four 

hours. Tuber stocks were adjudged by SBCSR to be either susceptible (stock 7 and stock 12) 

or non-susceptible (stock 3) to BH. According to the experimental design (Fig. 3.3) 

assessments were made on a baseline and five sampling points (outturns) where each outturn 

was conducted every four weeks. This experiment was conducted at Plant Science Laboratory 

(PSL) from December 2012 to May 2013 and lasted 20 weeks (viz. 4, 8, 12, 16 and 20 

weeks). Tubers were sampled at two different sampling days per outturn (viz. 0 and 7 days) in 

air (21% O2) only at 20
o
C for shelf-life evaluation. No initial storage temperature took place 

during baseline measurement as the arrival day of the tubers was considered as sampling day 

0 and tuber subsamples (n= 9 tubers / stock) were immediately sampled. Another subsample 

of 27 tubers was transferred directly to 20
o
C in air to be processed on sampling day 7. For the 

baseline measurement 54 tubers were used in total. The rest of the stocks remained stored at 

1.5
o
C pending further processing. The tubers had to be warmed up for five to six hours when 

transferred from 1.5 to 20
o
C (temperature equilibrium establishment). A pocket thermometer 

was used to control the temperature equilibrium (Fig. 3.4d). For the whole experiment 324 

tubers were required in total (108 tubers / stock) (Fig. 3.3).  
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3.2.2.2. Experiment 2 

 

            As previously mentioned in section 3.2.2.1., three stocks of potato tubers (Solanum 

tuberosum L. cv. Maris Piper) [stock 7 (susceptible to BH), stock 12 (susceptible to BH) and 

stock 3 (non-susceptible to BH)] (Fig. 3.4) were transported from SBCSR to Cranfield 

University. Potato tuber stocks were stored at cold storage (1.5
o
C) for ca. 8 months. 

According to the experimental design (Fig. 3.5), assessments were made on five sampling 

days [viz. 0 (baseline), 3, 7, 10 and 14 days]. Baseline (sampling day 0) was carried out using 

27 tubers (9 tubers / stock) that were placed on plastic trays, stored in air, equilibrated at 20
o
C 

and sampled, whilst the rest of the tubers (n= 432) were stored in various gas combinations 

(viz. A: 21% O2, B: 10% CO2, C: 10% O2 and D: 5% O2) in order to be sampled on days 3, 7, 

10 and 14 at 20
o
C. Using a pocket thermometer five to six hours were required for the tubers 

to warm up when transferred from 1.5 to 20
o
C (temperature equilibrium establishment). 

Storage under various gas combinations took place in 12 sealed boxes (300 L each box) using 

the CA system (Fig. 3.6). Three (3) boxes were used as replicates per gas combination. For 

the whole experiment 459 tubers were required (153 tubers / stock) (Fig. 3.5). 

 

 

 

 

 

 

 

Figure 3.4 Potato tubers cv. Maris Piper stock 7 (a), stock 12 (b) (both susceptible to BH) and 

stock 3 (non-susceptible to BH) (c). Pocket thermometer (d).  

a) b) c) d) 
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Figure 3.5 Experimental design Year 2 – Experiment 2 (2012-2013) 
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3.3. Shelf-life evaluation 

        Shelf life evaluation was carried out by storing potato tubers in air or controlled 

atmosphere (CA) using the ICA6000 system (International Controlled Atmosphere Ltd., 

Paddock Wood, Kent, UK) (Fig. 3.6a). The ICA6000 system (an automated sample 

sequencing system) was able to measure and control the gas concentration in storage boxes. 

Each box (300 L) was connected to the CA system with three tubes (sample in- and out-let, 

gas in-let) and a small fan was fixed in each box to circulate the gases in the boxes. This 

system was equipped with a carbon dioxide sensor where CO2 could be measured over the 

range of 0 to 20% using an Infra-Red sensor and an oxygen sensor that the O2 was measured 

over the range of 0 to 25% O2 using an electrochemical measuring cell.  

        CA storage in year 1 (2011-2012) was conducted at 15
o
C in six sealed boxes (Fig. 3.6b). 

Three boxes were used for air atmosphere where O2 was measured approximately to 21% and 

CO2 below 0.04% and the other three boxes were used for CA with a CO2 concentration of 

about 10% in combination with O2 between 18-19%. For the 2
nd

 experiment in year 2 (2012-

2013) potato tubers were stored at 20
o
C in four (4) different gas combinations (viz. A: 21% 

O2, B: 10% CO2, C: 10% O2 and D: 5% O2) and CA storage took place in 12 sealed boxes 

(Fig. 3.6b). Three (3) boxes were used as replicates per gas combination. 

 

 

 

 

 

 

 

 

Figure 3.6 ICA6000 system (a), boxes (300 L each) (b). 

a) b) 
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3.4. Real time respiration rate 

        Using a Sable Respirometry System (Sable Systems, NV, USA) (Fig. 3.7) which was 

configured as a push mode respirometry on a dynamic system, potato tuber respiration rate 

measurements were carried out. The Sable Respirometry System was equipped with Gas 

Analyzers [(FC-10 Oxygen Analyzer (Fig. 3.7G), CA-10 Carbon Dioxide Analyzer (Fig. 

3.7F) and RH-300 Water Vapour Analyzer (Fig. 3.7E)] and Gas Flow Switchers [(MUX 

Flow Multiplexer (Fig. 3.7B) and FB8 Flow Measurement System (Fig. 3.7C)] and it was 

calibrated using 10.06% CO2 and 1.99% O2 (10% CO2, 2% O2, 88% N2; certified standard 

from BOC, Surrey, UK). Initially, sampled air was analysed by a RH-300 water vapour 

detector for water vapour pressure (WVP) determination and then passed through a water 

scrubber (Drierite). Subsequently, carbon dioxide and oxygen of the sampled air were 

analysed by a CA-10 carbon dioxide detector and a FC-10 oxygen detector respectively. Flow 

rate (FR, mL/min) and barometric pressure (BP, kPa) were recorded as well. The UI-2 

universal interface (Fig. 3.7H) was connected to the subsampler (Fig. 3.7D), multiplexer and 

detectors, allowing the recording data to be interpreted and analysed by the computer (Fig. 

3.7I) using the ExpeData software. 

        Potato tubers were placed in eight sealed jars (1 jar= 3 L) (Fig. 3.7A) one of which was 

dedicated as the baseline measurement (empty jar without tuber). Jars were ventilated with a 

known air flow (1 L/min) pushed throughout the system (use of gas flow switchers). Baseline 

measurements were carried out in order to prevent cross contamination occurring between 

samples and allowed for the initial CO2 and O2 levels to be accurately determined. The 

duration of the baseline measurement was recorded over 2 minutes. After, the subsampled air 

from each jar was analysed over a 2 minutes period, three times (cycles-repetitions), to 

provide one average reading. The mean CO2 value was determined for the first baseline 
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measurement recorded during each analysis to allow normal atmospheric CO2 concentrations 

to be removed from the respiration rate calculations. The Sable System was able to calculate 

the levels of CO2 in ml h
-1

 based on the subsampling flow rate. Finally values were then 

adjusted for potato tuber weight (kg) to determine the respiration rate in ml CO2 kg
-1

 h
-1

 for 

each jar. In year 1 (2011-2012) respiration rate was recorded by placing 3 tubers per jar. 

However, in both experiments in year 2 (2012-2013) only one tuber was placed in each jar 

separately. 
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Figure 3.7 Picture and schematic diagram of Sable Respiratory System set up 

3L jars 
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3.5. Sample preparation  

        On removal from storage, potato tubers were carefully washed with tap water, wiped 

using roll paper and further left to air dry. Tubers were weighed using a balance, labelled and 

placed on plastic trays according to the sampling replicates of each stock (9 tubers / tray). 

Tuber size was also recorded and determined by measuring the length (mm) and the 

maximum equatorial diameter (mm) using a digital calliper. Then, real time respiration rate 

measurement was carried out using the Sable Respirometry system (Fig. 3.7). After this 

procedure, one tuber slice (10 mm in thickness) was cut longitudinally with a sharp knife 

from the central part of each tuber (Fig. 3.8a). The thickness of the sample was measured 

with a digital calliper. Using a cork borer a cylinder disc (24 mm in diameter) from the 

central part of the slice (heart; Fig. 3.8a) was cut and then divided in two half equatorial semi 

circles. The rest of the tuber slice was divided into flesh and peel (Fig. 3.8b). All tuber 

sections were immediately snap frozen in liquid nitrogen and one half of heart and flesh 

samples were stored at -80
o
C (stock samples) whilst the other halves (second half heart and 

flesh) and whole peel were stored at -40
o
C pending further processing (Fig. 3.8b). Fresh 

weight (FW) was recorded. Samples stored at -40
o
C were freeze-dried in the dark 

(lyophilisation) using a digital freezing-drier (Scanvac, Lynge, Denmark) at -50
o
C for seven 

days. After lyophilisation, dry weights (DW) of the samples were also recorded and then 

samples were stored back at -40
o
C until required for biochemical assessments. 
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Figure 3.8 Tuber slice (10 mm in thickness) and heart (24 mm in diameter) (a), flesh, heart and 

peel samples before snap-freezing procedure (b). 

 

3.6. Biochemical assessments 

        Biochemical assessments such as sugar analysis, phenolic analysis and untargeted 

metabolomics analysis were carried out in both years 1 and 2. In year 1 (2011-2012) sample 

selection for sugar and phenolic analysis was carried out from potato tubers cv. Maris Piper 

[Stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non-susceptible to 

BH)] (Fig. 3.1a, b and c, respectively) that had been stored in air only at 15
o
C on three 

sampling days (viz. 0, 3 and 7 days). Potato tubers were initially stored in air at 1.5
o
C for 8, 

16 and 20 weeks. Baseline samples were also included. Sample selection was based on 

greater BH incidence observed in those tubers initially stored at 1.5
o
C. Tissue discoloration 

was classified in four terms. The first one was called brown centre light (BCL); a light brown 

discoloration found in the heart part of the tuber, the second one brown centre (BC); a more 

distinguished brown discoloration in the very centre of the tuber, the third one pith; a light 

brown discoloration formed along the pith tuber area and the last one was named dark brown 

to black (BH); a dark brown to black more intense discoloration presented mainly in the 

centre tuber area. Figure 3.9 shows example of tuber samples of stock 23 (susceptible to BH) 

indicating tissue discolorations [viz. brown centre light (BCL) (Fig. 3.9a), pith (Fig. 3.9b), 
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brown centre (BC) (Fig. 3.9c) and dark brown to black (BH) (Fig. 3.9d)]. Further example 

figures of discoloured samples of stock 20 and stock 23 are present in Appendix A. Control 

samples (sound tubers showing no discolorations) were also included (Fig. 3.9e). 648 

samples in total were used. Untargeted metabolomics analysis was conducted using selected 

samples of stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) (see section 

3.6.3.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

Figure 3.9 Examples of affected potato tubers cv. Maris Piper indicating tuber tissue 

discoloration as brown centre light (BCL) (a), pith (b), brown centre (BC), dark brown to 

black (BH) (d). Control tuber showing no discoloration (e). 

 

          In year 2 (2012-2013), biochemical analysis was only conducted on those samples of 

the 1
st
 experiment and only two potato stocks were used [stock 7 (susceptible to BH) and 

stock 3 (non-susceptible to BH) (Fig. 3.3a and 3.3c, respectively). Tubers were stored in air 

a) b) c) 

d) e) 
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only at 20
o
C on two sampling days 0 and 7 and initially stored at 1.5

o
C for 4, 8, 12, 16 and 20 

weeks. Baseline samples were also included. Stock 7 showed pith, brown centre light (BCL) 

and brown centre (BC) tissue discolorations (further info in Appendix B). Examples of 

affected potato tubers are pictured in Figure 3.10. Control samples were also included. Sugar 

and phenolic analysis was conducted on 96 samples in total that further used for untargeted 

metabolomics analysis (see section 3.6.3.). 

 

 

 

 

 

 

 

 

 

Figure 3.10 Examples of affected potato tubers cv. Maris Piper indicating tuber tissue 

discoloration as brown centre light (BCL) (a), pith (b) and brown centre (BC). 

 

3.6.1. Extraction and quantification of non-structural carbohydrates 

3.6.1.1. Sample extraction 

 

            Freeze-dried flesh and heart tuber tissue samples (50 mg) (Fig. 3.14a) were powdered 

using a grinder (Restch Gmbh, Haan, Germany), weighed in 1.5 ml microtubes (Eppendorf 

type polypropylene microtubes, Deltalab, Rubi, Barcelona, Spain) and extracted with 0.75 ml 

of 62.5:37.5 HPLC grade methanol:water (v/v). The microtubes were placed in a shaking 

water bath at 55
o
C for 15 min and every 5 min they were removed and vortexted (Vortex 

Genie 2, Scientific Industries, NY) at room temperature for 20 sec. After cooling, the samples 

were centrifuged for 10 min at 10,000 rpm (rotations per minute). Subsequently, the 

a) b) c) 
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supernatant was filtered through a 0.2 μm filter (Cronus PTFE filters, Jaytee Biosciences 

Ltd., Kent, UK) driven by a 3 ml syringe (Fig. 3.14c) and stored at -40
o
C until further 

analysis. 

 

3.6.1.2. HPLC-ELSD parameters 

 

            Sugar (fructose, glucose and sucrose) analysis was conducted using a High 

Performance Liquid Chromatography Agilent 1260 series coupled to Infinity Evaporative 

Light Scattering Detector (ELSD) (Cheshire, UK) (Fig. 3.11). Initially, the extracts were 

diluted (1:4). Year 1 (2011-2012) and year 2 / 1
st
 experiment (2012-2013) samples (20 μl) 

were injected into a Prevail Carbohydrate ES 5u (GRACE) 250 mm x 4.6 mm column at a 

flow of 1.0 mL/min and the column temperature was set at 30
o
C. Gradient elution was 

performed with a mobile phase HPLC grade water (solution A) and HPLC grade acetonitrile 

(solution B) as follows: time 0-15 min, 20% A, 80% B; 15-20 min, 50% B, 50% A; 32% B; 

20 min, 20% A, 80% B. Run time per sample was 20 min. Sugar concentrations were 

calculated against authentic calibration standards of fructose, glucose and sucrose ranging 

from 0.1 to 5 mg mL
−1

 (Sigma, Dorset, UK) (Fig. 3.12). 

 

 

 

 

 

 

 

Figure 3.11 High Performance Liquid Chromatography (HPLC) Agilent 1260 series coupled 

to Infinity Evaporative Light Scattering Detector (ELSD) instrument. 
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p1 

p2 

p3 

 

 

 

 

 

 

 

 

 

Figure 3.12 Example of standard chromatogram with elution order: Fructose (peak 1), 

glucose (peak 2) and sucrose (peak 3). 

 

3.6.2. Extraction and quantification of phenolic compounds 

          

         Targeted analysis of phenolic compounds in potato tubers cv. Maris Piper stocks from 

year 1 and 2 was conducted using a Liquid Chromatography (LC) Agilent Technology 1290 

Infinity coupled with Agilent Technologies 6540 GHD Accurate-Mass Quadrupole Time of 

Flight (Q-ToF) mass spectrometer (MS) instrument (Cheshire, UK) (Fig. 3.13). Individual 

phenolic compounds such as hydroxycinnamic acids and derivatives (chlorogenic, neo-

chlorogenic, crypto-chlorogenic, caffeic, ferulic, p-coumaric and p-coumaroylquinic acid), 

caffeoyl-D-glucose, flavonols [rutin, quercetin-3,4-O-diglucoside (Q-3,4-O-di), isorhamneti-

3-rutinoside and isorhmanetin-3-glucoside], hydroxycinnamic acid amides 

(caffeoylputrescine and ferulyolputrescine) and aromatic amino acids (tyrosine, 

phenylalanine and tryptophan) were detected and quantified in flesh and heart  tuber tissues.  
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Figure 3.13 Liquid Chromatography (LC) coupled with Accurate-Mass Quadrupole Time of 

Flight (Q-ToF) mass spectrometer (MS) instrument. 

 

3.6.2.1. Sample extraction 

 

            Freeze-dried flesh and heart tuber tissue (50 mg) samples (Fig. 3.14a) were powdered 

using a grinder (Restch Gmbh, Haan, Germany), weighed in 2 ml microtubes (Eppendorf 

type polypropylene microtubes (Deltalab, Rubi, Barcelona, Spain) and extracted with 1.5 ml 

of 50:50 HPLC grade methanol:water (v/v) + 1% formic acid (HCOOH) (Fig. 3.14b). The 

microtubes were placed in a shaking water bath at 35
o
C for 15 min and every 5 min they were 

removed and vortexted (Vortex Genie 2, Scientific Industries, NY) at room temperature for 

ca. 20 sec. After cooling, the samples were centrifuged for 10 min at 10,000 rpm (rotations 

per minute). Subsequently, the supernatant was filtered through a 0.2 μm filter (Cronus PTFE 

filters, Jaytee Biosciences Ltd., Kent, UK)  driven by a 3ml syringe (Fig. 3.14c) and stored at 

-40
o
C until analysis. 648 and 96 samples from year 1 (2011-2012) and experiment 1 in year 2 

(2012-2013) respectively were extracted.  
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a) b) c) 

 

 

 

 

 

 

Figure 3.14 50 mg freeze dried powder (a) mixed with 1.5 mL of 50:50 (v/v) Methanol:water 

+ 1% HCOOH (formic acid) (b) and filtered through 0.2 μm (c). 

 

3.6.2.2. Liquid Chromatography/Mass Spectrometry (LC/MS) parameters 

 

            Phenolic analysis of potato tuber samples (10 μl injection) was conducted using an 

ElectroSpray Ionisation (ESI) source in negative mode on an Agilent Technology 1290 

Infinity UPLC coupled with Agilent Technologies 6540 GHD Accurate-Mass Quadrupole 

Time of Flight (Q-ToF) mass spectrometer (Fig. 3.13). Chromatography was performed on a 

WATERS – ACQUITY UPLC C18 2.1 x 150 mm 1.7 Micron column (WATERS, Ireland, 

UK) with a gradient of eluent A: 0.1% (v/v) formic acid for LC/MS in HPLC grade water and 

eluent B: acetonitrile for LC/MS + 0.05% formic acid for LC/MS. Flow rate was set at 0.4 

ml/min. The mobile phase was as follows: time 0 min, 95% A, 5% B; 0.5 min, 95% A, 5% B; 

2.5 min, 81% A, 19% B; 6 min, 81% A, 19% B; 15 min, 60% A, 40% B; 15.50 min, 60% A, 

40% B; 15.6 min 100% B; 17.6 min; 100% B; 17.65 min, 95% A, 5% B; 20 min. 95% A, 5% 

B. Run time per sample was 21 min.  

 

3.6.2.3. Quantification 

 

            Quantification of phenolic compounds was carried out using chromatographic peaks 

that were identified according to their retention times compared against external standard 

compounds ranging from 20 to 10000 ng ml
-1 

and then concentrations of phenolic compounds 

were calculated in µg g
-1

 DW. Two standard calibration curves were used for better 
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separation of chlorogenic acid and crypto-chlorogenic due to their same molar mass 

[353.0878 (M-H)
-
] and close retention time (Fig. 3.15). However, crypto-chlorogenic acid is 

eluted some seconds earlier than chlorogenic acid. 

           The first mix contained neo-chlorogenic acid (Fig. 3.15 p4), chlorogenic acid (Fig. 

3.15 p6), caffeic acid (Fig. 3.15 p7), quercetin-3,4-O-diglucoside (Fig. 3.15 p8), p-coumaric 

acid (Fig. 3.15 p9), ferulic acid (Fig. 3.15p11), isorhamnetin-3-rutinoside (Fig. 3.15 p12) and 

isorhamnetin-3-glucoside (Fig. 3.15 p13). The second mix contained tyrosine (Fig. 3.15 p1), 

phenylalanine (Fig. 3.15 p2), tryptophan (Fig. 3.15 p3), crypto-chlorogenic acid (Fig. 3.15 

p5) and rutin (Fig. 3.15 p10). Each external standard compound, except Tyrosine, was 

dissolved with 50:50 methanol:water (v/v). Tyrosine dialysis was conducted using 1 M HCl 

combined with heating. 500 mg of tyrosine powder were weighed in a beaker and then 5 ml 

of 1M HCl added in order to have a final concentration of 100 mg ml
-1

. Heating at 50
o
C 

followed for ca. 10 min until complete dialysis of tyrosine. 

 

 

 

 

 

     

 

 

 

 

 

 

 

Figure 3.15 Example of LC/MS chromatogram of external standards (mix1 and 2 

combined). 
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a) 

b) 

             Furthermore, tandem mass spectrometry (MS/MS) was applied on a few samples 

(flesh and heart) derived from both first years (1 and 2) in order to identify five more 

phenolic compounds existed in potato tuber tissue and can be quantified with previous 

external standards used. Caffeoylputrescine, ferulyolputrescine (hydroxycinnamic acid 

amides) and p-coumaroylquinic acid could not be detected in those samples analysed. 

However, great abundance of caffeoyl-D-glucose and feruloylquinic acid was observed. 

Quantification of those compounds identified was carried out using linear equations (y= 

ax*b, R
2
= 0.999) derived from calibration curves provided when external standards that have 

been previously used to quantify relevant compounds using the Agilent Quantitative Q-ToF 

software. Caffeoyl-D-glucose and feruloylquinic acid were quantified using corresponding 

linear equations of caffeic acid (Fig. 3.16a) and ferulic acid (Fig. 3.16b), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Examples of caffeic acid (a) and ferulic acid (b) calibration curves respectively. 

Linear equations are shown. 
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3.6.3. Untargeted metabolomic analysis 

 

         Untargeted metabolomic analysis was applied on potato tubers cv. Maris Piper derived 

from both year 1 and year 2 (experiment 1) in order to identify compounds which are 

possibly related to tissue discoloration and linked with blackheart development. The analysis 

was performed using a Liquid Chromatography (LC) Agilent Technology 1290 Infinity 

coupled with Agilent Technologies 6540 GHD Accurate-Mass Quadrupole Time of Flight 

(Q-ToF) mass spectrometer (MS) instrument (Fig. 3.13). Data were collected in positive and 

negative mode. 

In both years, the analysis was separated in 2 sections.  

        The first section was carried out for metabolite identification between affected and non-

affected tuber tissues (flesh and heart) derived from only one susceptible stock. Potato tubers 

from year 1 (2011-2012) that had different susceptibility to BH disorder were selected from 

tubers which were initially stored at 1.5
o
C in air only for 12, 16 and 20 weeks of storage 

(outturn 3, 4 and 5 respectively). That was due to the highest BH incidence observed under 

those initial storage conditions. Tuber samples were chosen from stock 23 (susceptible to 

BH) which showed greater BH susceptibility during all outturns compared to stock 20 

(susceptible to BH). Tuber tissue discolorations were classified as, brown centre light 

discoloration (BCL) (Fig. 3.9a), pith discoloration (Fig. 3.9b) brown centre discoloration 

(BC) (Fig. 3.9c) and dark brown to black discoloration (BH) (Fig. 3.9d). 12 affected tubers (3 

tubers = 3 biological replicates/discoloration). Control samples (sound samples showing no 

discoloration) (Fig. 3.9e) were also included. Three non-affected tubers (as control) were 

selected from outturn 4 (week 16) on sampling day 7. A total of 30 samples were used in total 

(15 flesh and 15 heart tissues). Potato tuber selection for year 2 (experiment 1) was carried 

out from stock 7 (susceptible to BH). The tubers were initially stored at 1.5
o
C for 4, 8, 12, 16 
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and 20 weeks of storage. In the 1
st
 experiment, the tissue discoloration classification was 

carried out differently compared to year 1. That was due to the balance needed for statistical 

analysis later. So, tuber tissue samples (flesh and heart) were categorized as affected (A) and 

non-affected (control) samples. 64 samples were used in total (n=16 

samples/tissue/discoloration). 

        The second section was conducted using control samples only derived from one 

susceptible against another one non-susceptible to BH stock in order to find metabolic 

differences in stock susceptibility. In terms of the parameter ‘susceptibility’ control samples 

that were derived from a susceptible stock were categorized as Y (yes = susceptible) and 

from a non-susceptible stock as N (no = non-susceptible). Year 1 control sample selection 

was carried out from tubers that have been stored in air only at 15
o
C and initially stored at 

1.5
o
C for 8, 12, 16 and 20 weeks of storage (outturn 2, 3, 4 and 5 respectively). At each 

outturn control samples (flesh and heart) from the susceptible stock 23 (n= 12 flesh and 12 

heart samples) were matched with those control ones from the non-susceptible stock 12 (n= 

12 flesh and 12 heart samples). 48 samples in total were analysed. Control sample selection 

for year 2 was carried out from tubers of stock 7 (susceptible to BH) and stock 3 (non-

susceptible to BH) that were stored in air at 20
o
C and initially stored at 1.5

o
C for 4, 8, 12, 16 

and 20 weeks of storage (outturn 1, 2, 3, 4 and 5 respectively) Baseline samples were also 

included. Similar with year 1, at each outturn control samples (flesh and heart) from both 

stocks were matched. 64 samples (16 flesh and 16 heart samples/stock/susceptibility) were 

analysed in total. 
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3.6.3.1. Data Filtering, Statistical Analysis and Visualization 

            The multivariate software Agilent Mass Profiler Professional 12.6 (MPP) was used 

for data filtering, visualization and advanced statistical significance analysis. Principal 

Component Analysis (PCA; unsupervised analysis), Analysis of Variance (ANOVA), and 

Fold Change analysis were used as statistical tools.  

             Initially, all chromatograms were extracted from LC/MS in both ion modes (negative 

and positive) exported as Extracted Compound Chromatogram (ECC) using the Agilent 

MassHunter Qualitative Analysis B.06.00 software and then converted as ‘compound 

exchange formatted’ (cef) files and eventually exported to the MPP software for statistical 

analysis and interpretation (see example chromatograms from years 1 and 2 in Appendix D; 

Figure 1.1-1.8 and Appendix E; Figure 1.1-1.2 respectively). At each year, four ‘experiments’ 

were created (n = 2 experiments / ion mode) (see Chapter 3: section 3.6). Independent 

variables and the attribute values of the independent variables must be specified to define 

grouping of the samples. Tuber tissue parameters (flesh and heart) and tissue discoloration 

[BC, brown centre; BCL, brown centre light; BH, dark brown to black; pith and control) 

parameters (non-numeric) were referred as ‘conditions’. MPP software allows the creation of 

several interpretations between the ‘conditions’ with the option of pairing the parameters and 

single interpretation of one ‘condition’ only within an ‘experiment’. In order to assess 

metabolomic differences between affected and non-affected tuber tissues, ‘experiments A, B 

and E, F’ of year 1 and year 2 respectively (discoloration only and tissue vs. discoloration 

interpretations) were created and seven interpretations were made in year 1 and two in year 2 

(Table 6.1 and 6.2 respectively). In both years, assessment of metabolomic differences 

between control samples of potato stocks with different susceptibility to BH, two 

‘experiments’ (C, D for year 1 and G, H for year 2) (susceptibility only and tissue vs. 
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susceptibility interpretations) were created and conducted using tuber tissue (flesh and heart 

control samples only) and stock susceptibility [Y = yes (susceptible stock) and N = no (non-

susceptible stock)] as conditions (Table 6.3). In total, four experiments (n = 2 / ion mode) and 

14 interpretations (n = 7 / ion mode) in total were conducted in year 1. Four experiments (n = 

2 / ion mode) and 8 interpretations (n = 4 / ion mode) in total were carried out in year 2 

(Table 6.3).  

 

Table 3.1 Conditions and interpretations used in both ‘experiments A (negative mode) and B 

(positive mode)’ of year 1 samples of stock 23 (susceptible to BH) (BC, brown center; BCL, 

brown centre light; BH, dark brown to black discoloration).  

Conditions Interpretations 

Tuber tissue 
Tissue 

discoloration 
Discoloration only Tissue vs. discoloration 

FLESH (F) BC BC vs. control 
FBC vs. FC 

HBC vs. HC 

HEART (H) BCL BCL vs. control 
FBCL vs. FC 

HBCL vs. HC 

 BH BH vs. control 
FBH vs. FC 

HBH vs. HC 

 pith pith vs. control 
Fpith vs. FC 

Hpith vs. HC 

 control (C)   

 

Table 3.2 Conditions and interpretations used in ‘experiments E (negative mode) and F 

(positive mode)’ of year 2 [samples of stock 7 (susceptible to BH)]. 

Conditions Interpretations 

Tuber tissue 
Tissue 

discoloration 
Discoloration only Tissue vs. discoloration 

FLESH (F) Affected (A) 
A vs. control 

FA vs. FC 

HA vs. HC HEART (H) control (C) 
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Table 3.3 Conditions and interpretations used in ‘experiment C (negative mode) and D (positive 

mode)’ of year 1 and ‘experiment G (negative mode) and H (positive mode)’ of year 2 (control 

samples only). 

 Conditions Interpretations 

Tuber tissue Susceptibility Susceptibility only Tissue vs. Susceptibility 

Y
ea

r 
1

 

FLESH (F) 

HEART (H) 

Stock 23 (susceptible to BH);  

Y vs. N 
FN vs. FY 

HN vs. HY 

Y = yes susceptible 

Stock 12 (non-susceptible to 

BH);  

N = no susceptible 

     

Y
ea

r 
2

 

FLESH (F) 

HEART (H) 

Stock 7 (susceptible to BH);  

Y vs. N 
FN vs. FY 

HN vs. HY 

Y = yes susceptible 

Stock 3 (non-susceptible to 

BH);  

N = no susceptible 

 

             Many steps need to be followed in order to perform the analysis with the MPP 

software. At each interpretation of an ‘experiment’, quality control on samples was 

performed and all metabolites were initially filtered based on their frequency of presence in 

those samples interpreted where that filtering removed irreproducible metabolites. Filtering 

conditions included detainment of metabolites that appeared in at least 100% of samples in at 

least one condition. Then metabolites were additionally filtered based on a coefficient of 

variation of 10 or 25%. 

            After quality control on samples, statistical evaluation of the data was performed 

using two distinct statistical tools. Firstly, Principal Component Analysis (PCA) was 

conducted in order to summarize all those metabolites remained after quality control 

generating the components on a 3D scatter plot for visualization and the PCA scores were 
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presented in x, y and z axes. Then, ANOVA was followed using either Moderated T-tests or 

two-way ANOVA depended on the interpretation, and finally fold change analysis as 

statistical tools. A cut-off value of P < 0.05 (default) was considered statistically significant 

in ANOVA using the Benjamini and Hochberg False Discovery Rate set to 5% for multiple 

testing corrections. P value can be adjusted developing a better understanding of how the P 

value cut-off affects the results. The larger the P value the larger metabolite list arises. 

Statistical evaluation was completed with fold change analysis providing significant up or 

down metabolite regulations. Such small sample data sets can result in P-values of 

questionable statistical validity. For that purpose, the fold-change setting was used as a 

further filtering to look for significant differences. Basically, compounds were further filtered 

based on their abundance ratios that were greater than a specified cut-off value of 2. Fold 

change may be calculated between two conditions where both are treated as a single group 

and may also be referred to as a parameter value or an attribute value. In this study, fold 

change was calculated using normalized abundance evaluating the absolute difference 

between the normalized intensities of the conditions (FC = Condition 1 – Condition 2). All 

metabolites were identified using METLIN (a metabolite database used in metabolomics) 

however; they were not verified by authentic standards.  

 

3.6.3.2. Sample extraction 

 

            Freeze-dried potato flesh and heart tissue samples (50 mg) (Fig. 3.14a) were 

powdered using a grinder (Restch Gmbh, Haan, Germany) and weighed in 2 ml microtubes 

(Eppendorf type polypropylene microtubes, Deltalab, Rubi, Barcelona, Spain) (Fig. 3.14b) 

and extracted with 1.5 ml of 50:50 HPLC grade methanol:water (v/v) + 1% formic acid 

(HCOOH). Subsequently, the supernatant was filtered through a 0.2 μm filter (Cronus PTFE 
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filters, Jaytee Biosciences Ltd., Kent, UK)  driven by a 3 ml syringe (Fig. 3.14c) and stored at 

-40
o
C until analysis.  

 

3.6.3.3. Liquid Chromatography Mass Spectrometry (LC/MS) parameters 

 

            Samples (10 μl injection) were run using an ElectroSpray Ionisation (ESI) source in 

positive and negative mode on an Agilent Technology 1290 Infinity UPLC coupled with 

Agilent Technologies 6540 GHD Accurate-Mass Quadrupole Time of Flight (Q-ToF) mass 

spectrometer (Fig. 3.11). Chromatography was performed on a WATERS Acquity UPLC 

column CSH C18 1.7 µm 2.1 x 150mm column (Ireland, UK) column with a gradient of 

eluent A: 0.1% (v/v) formic acid for LC/MS in HPLC grade water and eluent B: acetonitrile 

for LC/MS + 0.05% formic acid for LC/MS. Flow rate was set at 0.4 ml/min. The mobile 

phase was as follows: time 0 min, 95% A, 5% B; 5 min, 95% A, 5% B; 15 min, 10% A, 90% 

B; 15.10 min 100% B; 18.10 min, 100% B; 18.15 min, 95% A, 5% B; 21 min, 95% A, 5% B. 

Run time per sample was 21 min. 

 

3.7. Gas diffusivity experiment (Year 3, 2013-2014)  

        A gas diffusivity experiment of two potato stocks cv. Maris Piper with different 

susceptibility to blackheart (BH) disorder [one susceptible stock (stock 10) and one non-

susceptible (stock 4)] was conducted from the 30
th

 of May 2014 till 13
th

 of June 2014 at the 

Faculty of Bio-science Engineering (K.U.Leuven) in Leuven (Belgium). 40 potato tubers in 

total (20 tubers / stock) were delivered by courier on the 27
th

 of May 2014 from Sutton 

Bridge Crop Storage Research (SBCSR, UK) to Leuven within four days. Potato tubers that 

were packed in Kraft paper bags directly placed on plastic trays and stored at 4
o
C pending 

further processing. Tubers were initially stored at 3.5
o
C for ca. 8 months at SBCSR. 
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       This experiment was divided in two parts. First part of experiment was the micro- and 

nano-computed tomography scanning (micro-CT and nano-CT respectively) using x-rays that 

carried out on the 28
th

 & 29
th

 of May and 6
th

 of June 2014 respectively at the Department of 

Metallurgy and Materials Engineering (MTM/MME, K.U.Leuven). Seven tubers were used 

for scanning in total. The second part of the experiment was the O2 diffusivity measurement 

which took place at the Faculty of Bio-science Engineering (K.U.Leuven). Potato tuber 

volume and density were recorded. Respiration rate of tuber disks was also measured and 

used for O2 diffusivity calculation. 10 tubers per stock were used in total. 

 

3.7.1. Sample preparation before micro- and nano-computed tomography scanning 

 

         On the 28
th

 of May 2014 micro-CT scanning test was carried out using micro-CT 

Skyscan instrument (Skyscan 1172, Brucker, Belgium) (Fig. 3.17). One potato tuber from 

stock 4 (non-susceptible to BH) was randomly selected and prepared for scanning. One 10 

mm in thickness tuber slice was cut longitudinally with a sharp knife and then a cylinder was 

cut using a small cork borer (3 mm in diameter) (Fig. 3.18a). The cylinder was further cut in 

half (5 mm in thickness) and rolled with parafilm in order to prevent any sample dehydration. 

Then the sample was fitted into a cylinder shaped plastic holder and placed onto the scan 

stage for rotation (Fig. 3.18b). Scans were initially set at 1.4 µm, but increased to 2 µm for 

better image definition. Scanning time was ca. 75 min / sample.  

         After scanning test, on the 29
th

 of May 2014 four (4) tubers in total (2 tubers / stock) 

were taken out from storage at 4
o
C and used for micro-CT scanning. One flesh and one heart 

tissue sample from each tuber were scanned (8 samples in total) (Fig. 3.18a). Flesh tissue 

samples were mainly taken from the perimedullary zone of the tuber, whilst heart tissue 

samples derived from the pith area (Fig. 3.18a). After scanning, data was collected and 
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pictures were reconstructed using NRecon RECONSTRUCTION software and further 

converted to binary images (500 images / sample) using CTAn (v.1.14.4) + CTVol (v.2.2) 

software and used for three-dimensional (3D) microstructure modelling.  

 

 

          

 

 

 

 

 

 

Figure 3.17 SkyScan 1172 High Resolution Micro-CT instrument (Brucker, Belgium). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Tuber slice and cork borer (3 mm in diameter) (a) and scan rotation stage with 

parafilm covered sample on the top (b).  

 

         Nano-CT scanning was carried out using a Phoenix nanotom S system (GE 

Measurement & Control, USA) (Fig. 3.19). One potato tuber of stock 10 (susceptible to BH) 

and one from stock 4 (non-susceptible to BH) were randomly selected and used for scanning. 

Sample 

Plastic holder 

Scan rotation stage 

b) 

Flesh tissue 

Heart tissue 

a) 
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b) a) 

One slice 10 mm in thickness was cut longitudinally using a sharp knife. Then three heart 

tissue samples in cube shape (ca. 2 x 2 x 3 mm) were further cut using a razor blade. The 

scanning time was 60 min for the first heart sample, 90 min for the second and 180 min for 

the third one. However, nano-CT scans were unsuccessful due to the long scanning time and 

also the high radiation applied. 

 

 

 

 

 

 

 

 

 

Figure 3.19 Phoenix nanotom S nanofocus computed tomography (nano-CT) instrument (a) 

and sample scan stage (b).  

 

3.7.2. Sample preparation for respiration rate measurement 

 

          Two potato tubers per stock [stock 10 (susceptible to BH) and stock 4 (non-susceptible 

to BH) were randomly selected and taken out from storage at 4
o
C. Each tuber was cut in half 

(Fig. 3.20b) and 5 mm in thickness slices (Fig. 3.20c) were further cut using an electric 

professional slice cutter (EH 158-L, Graef, Germany) (Fig. 3.20a). Afterwards, disk shaped 

samples with 24 mm diameter were taken using a cork borer (Fig 3.20d) and ca. 60 g were 

weighed using an electronic balance (Sartorius, surrey, UK) (Fig. 3.20e). Then disks were 

placed on wire trays and fitted in 1.8 L glass jars (Fig. 3.20f and g). Three jars per stock were 

used as replicates. The samples were incubated for ca. 1.5 h at 20
o
C (baseline) (Fig. 3.20h) 
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and then O2 and CO2 concentrations were measured using the Checkmate II gas analyser (PBI 

Dansensor A/S, Ringsted, Denmark) (Fig. 3.21).The apparatus was equipped with a needle 8 

mm in diameter The internal pressure of each jar was also measured with a pressure sensor 

(DPI 142, GE, Druck). After baseline measurement, the jars were placed back in the 

incubator and remained there for 18 h at 20
o
C (Fig. 3.20h). The O2 and CO2 percentages were 

converted to partial pressures by multiplying with the internal pressure of the jar. 

 

3.7.2.1. Respiration rate 

 

         Respiration rate in terms of O2 consumption (RO2) was calculated using the equation 

(Quang Tri Ho, personal communication, K.U. Leuven): 

RO2 = ∆p * Vfree / Vpotato * ∆t * R * T (mol m
3
 s

-1
) 

∆p = partial pressure difference (kPa) 

Vfree = Vjar – Vpotato (m
3
) 

Vpotato = tuber density / tuber mass (m
3
) 

∆t = time difference (sec) 

R = universal gas constant = 8.314 J mol
-1

 K
-1

 

T = temperature (K) 

         CO2 production (RCO2) was also calculated using a similar equation (formula not 

shown).  The calculated tuber densities were averaged (n = 3) and used for the RO2 equation. 

The densities averaged for those tubers of stock 10 (susceptible to BH) and those of stock 4 

(non-susceptible to BH) were 1.095 and 1.075 g ml
-1 

respectively. Respiration rate 

measurement of potato tuber disk samples from stock 10 (susceptible to BH) and stock 4 

(non-susceptible to BH) were recorded after 1.5 h (baseline) and 18h at 20
o
C and results 
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tabulated in Table 3.4 and 3.5 below. O2 consumption measurements were further used for O2 

diffusion calculation later. 
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Table 3.4 O2 consumption (RO2) and CO2 production (RCO2) of potato disk samples from stock 10 (susceptible to BH).  

 After 1.5 h After 18 h    

Rep. 
V jar 

(m
3
) 

Pot. disks 

weight 

(Kg) 

Density 

(Kg/m
3
) 

Vpot 

(m
3
) 

O2  

(%) 

CO2  

(%) 

p  

(kPa) 

O2  

(%) 

CO2  

(%) 

p  

(kPa) 

∆t 

(sec) 

T 

(K) 

RO2 

(mol m
3
 s

-1
) 

Average 
RCO2 

(mol m
3
 s

-1
) 

Average 

1 0.001683 0.05837 1095 5.33E-05 20.5 0.2 101.75 17.2 3.1 101.07 69000 293 0.000631  0.000607  

2 0.001697 0.05976 1095 5.45E-05 20.4 0.3 101.65 16.6 3.8 99.72 69000 293 0.000748  0.000733  

3 0.001683 0.0647 1095 5.90E-05 20.2 0.3 100.9 15.9 4.2 99.97 69000 293 0.000733 0.000704 0.000736 0.000691 

 

Table 3.5 O2 consumption (RO2) and CO2 production (RCO2) of potato disk samples from stock 4 (non-susceptible to BH). 

 After 1.5 h After 18 h    

Rep. 
V jar 

(m
3
) 

Pot. disks 

weight 

(Kg) 

Density 

(Kg/m
3
) 

Vpot 

(m
3
) 

O2  

(%) 

CO2  

(%) 

p  

(kPa) 

O2  

(%) 

CO2  

(%) 

p  

(kPa) 

∆t 

(sec) 

T 

(K) 

RO2 

(mol m
3
 s

-1
) 

Average 
RCO2 

(mol m
3
 s

-1
) 

Average 

1 0.001728 0.05864 1075 5.45E-05 20.3 0.4 99.92 16.1 4.1 99.53 77580 293 0.000691  0.000727  

2 0.001673 0.0585 1075 5.44E-05 20.4 0.3 100.98 16.3 4 99.54 77580 293 0.000688  0.000674  

3 0.001673 0.05951 1075 5.54E-05 20.2 0.3 100.84 16.1 4.2 99.98 77580 293 0.000660 0.000680 0.000696 0.000699 
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Figure 3.20 Sample preparation before respiration rate measurement.

a) Slice cutter  b) Tuber slicing  c) 5mm in thickness tuber 

slices 

d) 24 mm in diameter disk 

shaped samples 

e) 60 g sample weight f) Samples on wire tray g) Glass jar 

h) Jars in the incubator at 

20
o
C 
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Figure 3.21 PBI Checkmate II gas analyser. 

 

3.7.3. Sample preparation for O2 diffusivity measurement 

 

          Initially, each potato tuber was cut in half longitudinally with a sharp knife (Fig. 

3.22a). A cylinder shaped sample was taken radially using a cork borer (24 mm in diameter) 

and further cut into smaller cylinders using a razor blade (Fig 3.22a). The thickness of the 

samples was measured with a digital calliper (Mitutoyo Ltd, Hampshire, UK) and ranged 

from 1.99 to 2.85 mm. The samples were dried using roll paper and then each one was glued 

on a polyvinyl chloride (PVC) ring with cyano-acrylate glue (Superglue
®
, Loctite-Henkel, 

Brussels, Belgium) (Fig. 3.22c). Also, a rubber O-ring was fitted on the PVC ring (Fig. 

3.22b). Then, a petroleum jelly based product (Vaseline) was applied on the rings sideways. 

 

 

 

 

 

 

 

 

 

Figure 3.22 Example of potato tuber sampled and cylinder shaped samples (a). PVC and rubber rings 

(b). Disk shaped tissues attached on PVC rings covered with vaseline sideways (c).  

Flesh  

Heart  

a) b) 

c) 
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a) b) 

3.7.4. Diffusion system set-up 

 

         O2 diffusivity was measured using a diffusion system consisted of two metal chambers 

(measurement chamber and flushing chamber) (Fig. 3.23a) separated from a disk shaped 

potato tissue sample. The chambers were screwed together holding a PVC ring with a tissue 

sample attached on it. Also, a rubber O-ring was fitted on the PVC ring for perfect sealing 

between the chambers. Both rings were covered with vaseline to avoid any gas leakage and to 

ensure that gas was transported only through the sample.  Once the sample was attached in 

the diffusion system then tubing connection took place between chambers and pressure 

sensors. The chambers were also connected together with tubes (Fig. 3.23b). Two inlet and 

outlet gas channels were used for flushing the gases into the measurement chamber and the 

flushing chamber. Pressure changes in each chamber were monitored using pressure sensors 

(PMP 4070, Dimed N.V., Antwep, Belgium). 

        

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23 Diffusion chambers before (a) and after set-up (b).  
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         Before each measurement, the O2 sensor was calibrated at 5, 20 and 30 kPa O2 for ca. 

30 min. The flushing chamber was always kept at 5 kPa of O2 (Fig. 3.24). After calibration, 

the in- and out- valves (green tubes) of the measurement chamber were closed to stop 

flushing and the decrease in O2 partial pressure and total pressure of the measurement 

chamber were recorded for ca. 3 h (Fig. 3.24). The flow rate used in both chambers was set at 

10 L h
-1

. After measurement, the in- and out- valves were opened and re-calibration was 

followed at 30, 20 and 5 kPa O2 (Fig. 3.24). The O2 concentration was measured in the 

measurement chamber using fluorescent optical probes (Foxy-Resp, Ocean Optics, Duiven, 

The Netherlands). This principle was based on fluorescence quenching of a ruthenium 

compound (Ru) by O2 which diffuses into a dye covering the optic tip of the fibre optic 

probe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 Example of O2 calibration and diffusion measurement curve of flesh and heart 

tuber tissue of stock 10 (susceptible to BH) and stock 4 (non-susceptible to BH). Recording 

time (sec) and O2 concentration (kPa) are shown on x and y axis respectively. 
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3.8. Statistical and multivariate analysis 

 

       Analysis of variance (ANOVA), two- sample T-tests, Principal Component Analysis 

(PCA; an unsupervised multivariate technique) and General Linear Model (GLM) were 

performed with GenStat 16
th 

Edition (VSN International Ltd, Herts., UK). All metabolomics 

data was statistically analysed using Agilent Mass Profiler Professional (MPP) software. The 

statistical tools used were moderated T-test, two-way ANOVA and PCA analysis. 

       General Analysis of variance (ANOVA) was used in order to estimate the interactions 

between the levels of factors on CO2 production of potato tubers to a significance of P < 0.05 

in both years (1 and 2). Sugar and phenolic data sets were also analysed by general ANOVA. 

Least significant differences (LSD; P = 0.05) were also calculated from each data analysis. 

Two sample t-tests were used in order to find significant differences between respiration rate, 

tuber length, tuber diameter and tuber size with the blackheart incidence respectively and 

one-sided (y<0) correlations were further used when needed.  

        General Linear Model (GLM) was used in the 2
nd

 experiment of year 2 (2012-2013) in 

order to identify significant differences in blackheart incidence between those tubers stored 

under various gas combinations on five sampling days (section 3.2.2.2). PCA was used for a 

better visual representation by clustering groups of data sets analysed after sugar, phenolic 

and untargeted metabolomics analysis.  

         Moderated T-test and two-way ANOVA were applied on untargeted metabolomics data 

sets in order to identify significant differences in metabolite abundance to a significance of P 

< 0.001, 0.01, 0.02 or 0.05 depended on the interaction between the parameters analysed. 
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CHAPTER FOUR: 

The effect of storage temperature and shelf-life conditions on the 

physiological and biochemical changes of potato stocks with 

different susceptibility to blackheart disorder (Year 1: 2011-2012) 

 

4.1. Introduction 

        Blackheart disorder (BH) is a physiological internal disorder induced in potato tubers 

resulting in brown to black tissue discoloration (severity depended) and cell necrosis. It has 

previously been proposed that this disorder is caused due to O2 depletion and/or CO2 

accumulation in the central tuber tissues at any temperature. BH disorder is considered as a 

severe problem for potato packing industry causing economic losses to the markets as tissue 

discoloration becomes apparent when tubers are sliced open. However, it is still unclear how 

this disorder is induced and which pre- and post-harvest factors contribute to its development. 

In this study, an attempt to mimic shelf-life conditions was evaluated by initially storing 

potato tubers of Maris Piper stocks with different susceptibility to BH at very low 

temperatures (1.5 or 3
o
C) and then transferring them in air and/or CA storage (10% CO2) at 

15
o
C for shelf-life evaluation. The aim of this study was to discover physiological and 

biochemical changes in potato tubers with different susceptibility to BH. 

 

4.2. Materials and methods 

        Sample preparation for respiration rate measurement, non-structural carbohydrate 

content (sugars) and phenolic content analysis were described in Chapter 3; Sections 3.4, 3.5 

and 3.6. 
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4.3. Respiration rate 

        Potato tuber respiration rate was recorded after baseline (sampling days 0, 3 and 7) and 

at outturn 2, 3, 4 and 5 on sampling days 0, 3 and 7 and studied at 15
o
C. After baseline, 

tubers were initially stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks. Statistical analysis of 

results was performed using variance analysis (ANOVA) in order to estimate the interactions 

between the levels of factors on CO2 production of potato tubers. These factors included 

stock [stock 20 (susceptible to BH), stock 23 [(susceptible to BH) and stock 12 (non-

susceptible to BH)], storage condition (air or CA), initial storage temperature (1.5 or 3
o
C), 

outturns (baseline included), sampling days (0, 3 and 7) and replication. Interactions of the 

above factors were statistically significant in particular combinations (Table 4.1). It is worth 

noted that efflux of CO2 was included in respiration rate for those tubers held under 10% CO2 

and O2 consumption was not calculated during this experiment.  

        According to Figure 4.1, a similar trend in respiration rate was followed over storage 

time. That was an increase in respiration rate on sampling day 3 and then a slight decrease on 

sampling day 7 (Fig. 4.1). Generally, stock 23 (susceptible to BH) recorded the lowest 

respiration rate when compared to stock 20 (susceptible to BH) and stock 12 (non-susceptible 

to BH). Tubers stored under CA (10% CO2) had a greater respiration rate compared to those 

stored in air only and that was due to the CO2 efflux. Moreover, respiration rate was higher in 

those tubers initially stored at 1.5
o
C compared with those at 3

o
C and this was more 

pronounced in CA conditions (Fig. 4.1). However, there was a variation in respiration rate 

between the stocks analysed over storage time.  

         It should be noted that respiration rate measurement was carried out at 15
o
C during the 

whole experiment. On sampling day 0, stock 12 (non-susceptible to BH) had ca. 2- and 3-

times higher respiration rate compared to stock 20 (susceptible to BH) and stock 23 
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(susceptible to BH) (6.6, 4.2 and 2.25 ml CO2 kg
-1

 h
-1 

respectively). On sampling day 3 after 

storage in air only, respiration rate was significantly reduced for those tubers of stock 12 and 

stock 23, but significantly increased 2-fold for stock 20 (3.7, 3.7 and 6.4 ml CO2 kg
-1

 h
-1

) 

(Fig. 4.1a). After storage in CA on day 3, comparison between the stocks showed that stock 

20 had the highest CO2 concentration (15.1 ml CO2 kg
-1

 h
-1

) and stock 23 the lowest (9.3 ml 

CO2 kg
-1

 h
-1

) (Fig. 4.1). On sampling day 7 in air storage, the CO2 rate of stock 12 

significantly increased (5.5 ml CO2 kg
-1

 h
-1

)
 
 but remained steady for stock 20 (6.1 ml CO2 

Kg
-1

 h
-1

)
 ) 

and stock 23 (3.8 ml CO2 kg
-1

 h
-1

) compared with those rates recorded on day 3 (air 

storage). Also, on day 7 only (CA), comparison between the stocks showed that stock 23 had 

the lowest CO2 rate compared with stock 12 and stock 20 (8.6, 11.2, 13.4 ml CO2 kg
-1

 h
-1 

respectively). In general, the CO2 production after CA storage in both sampling days 3 and 7, 

were 2- to 3 –fold higher compared to storage in air only due to CO2 efflux (Fig 4.1).  

       For a better visualization and interpretation of the results, respiration rate graphs were 

separated and visualized according to stock per sampling day (0, 3 or 7) per storage condition 

(air or CA) after storage at 1.5 or 3
o
C over storage time as respiration rate was always 

significant higher in CA compared to air storage over storage time (Fig. 4.2A and 4.3A). 

Alternative visualization of respiration rates recorded after air and CA storage conditions are 

shown in Figure 4.2B and 4.3B, respectively.   

        Briefly, on each sampling day 0 (air only) there were no significant differences between 

the stocks at outturn 2, 3 and 4 namely after initial storage at very low temperature for 8, 12 

and 16 weeks. After 8, 12 and 16 weeks of cool storage at 1.5 or 3
o
C, the mean CO2 rates 

recorded on sampling days 0 at 15
o
C were 2.62 and 2.56 ml CO2 kg

-1
 h

-1
 for stock 20 

(susceptible to BH), 2.88 and 2.39 ml CO2 kg
-1

 h
-1

 for stock 23 (susceptible to BH), 3.52 and 

2.8 ml CO2 kg
-1

 h
-1

 for stock 12 (non-susceptible to BH) respectively.  Comparing air storage 

only, on sampling day 3 respiration rate produced was ca. 2- to 4-times higher (stock 
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depended) compared to those rates recorded on sampling day 0 and 2- to 3-times higher for 

those tubers initially stored at 1.5
o
C when compared with those initially stored at 3

o
C. On 

each sampling day 7, it was observed that respiration rate was lower for those tubers initially 

stored at 1.5
o
C than 3

o
C for 8 and 12 weeks of storage. In contrast, after 16 and 20 weeks of 

cold storage, respiration rate was higher for initial storage at 1.5 compared to 3
o
C. A similar 

trend in respiration rate between the stocks was not really distinguished due to large or small 

variation in CO2 rates recorded after sampling days 3 and 7. In terms of the CA storage (10% 

CO2), it seemed that those tubers initially stored at 1.5
o
C showed higher respiration rate 

compared with those initially stored at 3
o
C recorded on sampling days 3 and 7, but still a 

similar pattern in CO2 production between those stocks analysed was not distinct due to 

variation in respiration rate recorded on those sampling days.  

         

Table 4.1 Interactions of the factors on potato tuber respiration rate (Appendix B; Table 1). 

Factor d.f. s.s m.s v.r. F pr. 

Stock (1) 2 215.258 107.629 32.26 < 0.01 

Condition (2) 1 3453.628 3453.628 1035.26 < 0.01 

Temperature (3) 2 573.517 286.759 85.69 < 0.01 

Days (4) 2 0.101 0.051 0.02 0.440 

Outturn (5) 6 75.072 12.512 3.75 0.001 

      

Interactions 

1 x 2 2 87.172 43.586 13.07 < 0.01 

2 x 5 3 137.224 45.741 13.71 < 0.01 

4 x 5 3 84.875 28.292 8.48 < 0.01 

2 x 4 x 5 3 43.565 14.522 4.35 0.005 

3 x 4 x 5 3 68.210 22.737 6.82 < 0.01 

1 x 2 x 3 x 4 x 5 6 7.996 1.333 0.40 0.765 
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Figure 4.1 Respiration rate (ml CO2 kg
-1

 h
-1

) of potato cv. Maris Piper stock 20 [brown (susceptible to BH)], stock 23 [orange (susceptible to BH)] and stock 

12 [green (non- susceptible to BH)] recorded after baseline, outturn 2, 3, 4 and 5 at 15
o
C on sampling days 0 (air only)*, 3 (air or CA)**,  and 7 (air or 

CA)**. Tubers were initially stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks. Values are means (n = 3).General LSD is shown. [*air (O2 = 21%), **CA (O2 = 

18-19%, CO2 = 10%)]. Black line (-) shows all sampling days 0. 

 

a) b) 

c) d) 
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Figure 4.2A Respiration rate (ml CO2 kg
-1

 h
-1

) of potato cv. Maris Piper stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non- 

susceptible to BH) recorded after baseline, outturn 2, 3, 4 and 5 at 15
o
C in air only on sampling days 0, 3 and 7. Tubers were initially stored at 1.5 or 3

o
C 

for 8, 12, 16 and 20 weeks. Values are means (n= 3). General LSD is shown. 

 

a) b) c) 

d) e) f) 

h) g) i) 
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Figure 4.2B Alternative visualization of respiration rate (ml CO2 kg
-1

 h
-1

) of stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non- 

susceptible to BH) recorded over storage time in air only at 15
o
C on sampling days 0, 3 and 7. Initial storage temperature and general LSD is shown. 
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Figure 4.3A Respiration rate (ml CO2 kg
-1

 h
-1

) of potato cv. Maris Piper stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non- susceptible to 

BH) recorded after baseline, outturn 2, 3, 4 and 5 at 15
o
C on sampling days 0 (air only)*, 3 (CA)**,  and 7 (CA)**. Tubers were initially stored at 1.5

o
C for 8, 12, 16 

and 20 weeks. Values are means (n= 3). General LSD is shown. [*air (O2 = 21%), **CA (O2 = 18-19%, CO2 = 10%)]. 

 

 

a) b) c) 

d) e) f) 

h) g) i) 
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Figure 4.3B Alternative visualization of respiration rate (ml CO2 kg
-1

 h
-1

) of stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non- 

susceptible to BH) recorded after storage in CA (10% CO2) at 15
o
C on sampling days 3 and 7 over storage time. Initial storage temperature and general LSD is 

shown. 
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4.4. The incidence of blackheart 

        BH incidence for potato tubers cv. Maris Piper stock 20, stock 23 (both susceptible to 

BH) and stock 12 (non-susceptible to BH) after 163 days storage in total are tabulated in 

Table 4.2. Tubers were sampled at 3 different sampling days per four weeks [viz. day 0 (air 

only), 3 (air or CA) and 7 (air or CA)] at 15
o
C (n = 1512 tubers in total). No indications of 

discoloration were shown at baseline and after 27 days of storage (week 4). However, 

incidence of BH was initially observed after the 49
th

 day of storage (8.1%). peaking in March 

(11.8%) and in May (15.5%) after 20 and 24 weeks of storage, respectively (Table 4.2). It 

should be noted that outturn 1 (4 weeks of storage) was conducted in air only. Also, the last 

outturn 6 (24 weeks of storage) was carried out with tubers that were initially stored at 1.5
o
C 

only (n = 135). That happened because tubers that were initially stored at 3
o
C became mouldy 

and had to be discarded. Table 4.3 shows the percentage of BH incidence for each stock 

separately per storage condition (air or CA), storage time and initial storage temperature. The 

incidence of BH was greater for stock 23 (susceptible to BH) at both storage conditions over 

storage time compared to stock 20 (susceptible to BH) and stock 12 (non-susceptible to BH) 

(Table 4.3). In particular, BH incidence was ca. 3 times greater in stock 23 compared to stock 

20. Example figures of potato tubers showing tissue discolorations are presented in Appendix 

A; Figure 1.1 – 1.7. 

         However, in order to find any difference in BH susceptibility between those two 

susceptible stocks (stock 20 and 23) Chi Square tests were performed using GenStat 16
th 

Edition (VSN International Ltd, Herts., UK). The susceptibility in BH was assessed at each 

storage condition (air or CA) per initial storage temperature (1.5 or 3
o
C) separately over 

storage time from outturn 2 -in which tuber tissue discoloration was initially indicated- to 

outturn 5 (8 to 20 weeks of storage, respectively) (Table 4.4). Chi Square tests results 
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revealed that the susceptibility in BH was significantly higher in stock 23 compared to stock 

20 in both storage conditions (air or CA) when initially stored in either 1.5 or 3
o
C (Table 4.4). 

 

Table 4.2 Total percentage of BH incidence over storage time. 

Sampling point Month Year 
Tubers 

used 

BH incidence 

(%) 

BL 
Baseline 

(days 0, 3 and 7) 
November 2011 135 0 

Outturn 1 
Week 4 

(days 27, 30 and 34) 
December 2011 162 0 

Outturn 2 Week 8 

(days 49, 52 and 56) 
January 2012 270 8.1 

Outturn 3 Week 12 

(days 77, 80 and 84) 
February 2012 270 5.2 

Outturn 4 Week 16 

(days 102, 105 and 109) 
March 2012 270 11.8 

Outturn 5 Week 20 

(days 130, 133 and 138)  
April 2012 270 5.9 

Outturn 6 Week 24 

(days 156, 159 and 163) 
May 2012 135 15.5 

 TOTAL 
  

1512 9.6 
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Table 4.3 Percentage of BH incidence for potato cv. Maris Piper stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non-susceptible 

to BH) after storage in air or CA at 15
o
C. Tubers were initially stored at 1.5 or 3

o
C for 8, 12, 16, 20 and 24 weeks. 

BH (%) AIR  CA  

Weeks of storage 
Stock 20 Stock 23 Stock 12 Stock 20 Stock 23 Stock 12 

1.5
o
C 3

o
C 1.5

o
C 3

o
C 1.5

o
C 3

o
C 1.5

o
C 3

o
C 1.5

o
C 3

o
C 1.5

o
C 3

o
C 

Week 8 3.7 14.8 7.4 14.8 0 0 11.1 11.1 27.7 11.1 0 0 

Week 12 7.4 3.7 11.1 14.8 3.7 0 5.5 5.5 0 5.5 0 0 

Week 16 7.4 7.4 37 33.3 0 0 5.5 0 5.5 38.8 0 0 

Week 20 3.7 3.7 25.9 18.5 0 0 0 0 5.5 5.5 0 0 

Week 24 7.4 - 33.3 - 0 - 22. - 33.3 - 0 - 

TOTAL 5.9 7.4 22.9 20.3 0.7 0 8.8 4.2 14.4 15.3 0 0 
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Table 4.4 Chi-Square test results of BH incidence for potato tubers cv. Maris Piper stock 20 

and stock 23 after storage in air at 15
o
C. Tubers were initially stored at 1.5 or 3

o
C for 8, 12, 

16, 20 and 24 weeks (P < 0.05) (Appendix B; Table 2.1 – 2.4). 

 AIR 

 BH (%) 
Probability 

BH (%) 
Probability 

 1.5
o
C 3

o
C 

Stock 20 5.5 
0.001 

7.4 
0.005 

Stock 23 20.3 20.3 

CA 

 BH (%) 
Probability 

BH (%) 
Probability 

 1.5
o
C 3

o
C 

Stock 20 5.5 
0.013 

4.2 
0.020 

Stock 23 9.7 15.3 

 

4.4.1. Effect of tuber size and tuber weight on BH incidence  

 

          Potato tuber size was determined by measuring the length (mm) and the maximum 

equatorial diameter (mm) using a digital calliper. Tuber weight (g) was measured using a 

balance. Statistical analysis was performed with GenStat 16
th

 Edition (VSN International 

Ltd., Herts., UK) using ‘Two-sample’ t-tests in order to estimate a possible link between the 

incidence of BH with the tuber size and weight respectively. Potato tubers with indications of 

BH or BH-like symptoms were initially detected after 8 weeks of storage According to Table 

4.5, a significant effect of the tuber length (P = 0.011), equatorial diameter (P = 0.016) and 

weight (P < 0.001) on the BH incidence respectively, was observed in those tubers of stock 

20 (susceptible to BH) which were initially stored at 1.5
o
C for 16 weeks and then stored in air 

at 15
o
C (Table 4.5). Affected tubers of stock 20 had greater length (mean = 104.90 mm), 

diameter (mean = 78.78 mm) and weight (mean = 313.20 g) than those that were unaffected. 

Moreover, weakly positive correlations were found between the BH incidence and the tuber 

length (r = 0.44), diameter (r = 0.42) and weight (r = 0.58), respectively (Table 4.6). There 
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was also a significant effect of the tuber length on BH incidence in those tubers of stock 20 

(susceptible to BH) after storage in CA during week 8 (P = 0.034). Those tubers that were 

also derived from 1.5
o
C and had greater length (mean = 103.30 mm) than those which were 

unaffected (Table 4.7).  However, no significant correlations were found regarding the tuber 

length and the BH incidence (Table 4.8). Regarding stock 23 (susceptible to BH), no 

significant effects of tuber length, equatorial diameter and weight on BH incidence were 

observed in those tubers of stock 23 (susceptible to BH) in both storage conditions (air or 

CA) and both initial storage temperatures (1.5 or 3
o
C) (Table 4.9 and 4.10). 

 

Table 4.5 Two-sample t-test results of tuber length, diameter and weight with BH incidence 

for potato cv. Maris Piper stock 20 (susceptible to BH) after storage in air at 15
o
C. Tubers 

were initially stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks (P < 0.05) (Appendix B; Table 

3.1 – 3.12). 

 1.5
o
C 3

o
C 

Sampling point Length Diameter Weight Length Diameter Weight 

Week 8 - - - 0.805 0.552 0.743 

Week 12 0.334 0.505 0.365 - - - 

Week 16 0.011 0.016 < 0.001 0.326 0.255 0.284 

Week 20 - - - - - - 

 

Table 4.6 Correlation matrix comparing the tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 20 after storage in air at 15
o
C. Tubers were initially 

stored at 1.5
o
C for 16 weeks (P <  0.05)* (Appendix B; Table 3.13). 

 BH Length (mm) Diameter (mm)  Weight (g) 

Blackheart - 0.4378* 0.4155* 0.5765* 

Length  - 0.4716* 0.8671* 

Diameter   - 0.7298* 

Weight    - 

 



77 

 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Table 4.7 Two-sample t-test results of tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 20 (susceptible to BH) after storage in CA at 15
o
C. 

Tubers were initially stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks (P < 0.05) (Appendix B; 

Table 4.1 - 4.6). 

 1.5
o
C 3

o
C 

Sampling point Length Diameter Weight Length Diameter Weight 

Week 8 0.034 0.238 0.361 0.236 0.327 0.346 

Week 12 - - - - - - 

Week 16 - - - - - - 

Week 20 - - - - - - 

 

Table 4.8 Correlation matrix comparing the tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 20 after storage in CA at 15
o
C. Tubers were 

initially stored at 1.5
o
C for 8 weeks (P < 0.05)* (Appendix B; Table 4.7) 

 BH Length (mm) Diameter (mm)  Weight (g) 

Blackheart - 0.4402 0.1792 0.2620 

Length  - 0.7400* 0.8173* 

Diameter   - 0.8578* 

Weight    - 

 

Table 4.9 Two-sample t-test results of tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 23 after storage in air at 15
o
C.Tubers were initially 

stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks (P < 0.05) (Appendix B; Table 5.1 - 5.24). 

 1.5
o
C 3

o
C 

Sampling point Length Diameter Weight Length Diameter Weight 

Week 8 0.227 0.498 0.480 0.614 0.331 0.247 

Week 12 0.450 0.916 0.754 0.230 0.244 0.328 

Week 16 0.775 0.672 0.659 0.414 0.083 0.118 

Week 20 0.771 0.117 0.463 0.531 0.244 0.328 
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Table 4.10 Two-sample t-test results of tuber length, diameter and weight for potato cv. 

Maris Piper stock 23 after storage in CA at 15
o
C. Tubers were initially stored at 1.5 or 3

o
C for 

8, 12, 16 and 20 weeks (P < 0.05) (Appendix B; Table 6.1 – 6.9). 

 1.5
o
C 3

o
C 

Sampling point Length Diameter Weight Length Diameter Weight 

Week 8 0.479 0.146 0.411 0.288 0.117 0.279 

Week 12 - - - - - - 

Week 16 - - - 0.831 0.463 0.443 

Week 20  - - - - -  

 

4.5. Biochemical assessments 

4.5.1. Non-structural carbohydrate content analysis  

 

         Unsurprisingly, results revealed an increase in reducing sugar (fructose and glucose) 

accumulation over storage time due to the very low initial storage temperature (1.5
o
C). 

Although there was an increase through storage time, both sucrose and reducing sugar content 

varied among sampling days 0, 3 and 7 (Fig. 4.4). However, during baseline measurements   

there were no significant differences in fructose, glucose and sucrose content between the 

three stocks and yet between heart and flesh tissue samples. That was because no cold storage 

temperature applied at baseline. In general, it was observed that higher sugar content was 

accumulated more in the heart when compared to flesh tissue samples. Therefore, stock 23 

(susceptible to BH) had greater sugar accumulation in comparison with stock 20 (susceptible 

to BH) and stock 12 (non-susceptible to BH).  
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4.5.1.1. Fructose 

            According to Figure 4.4a, the concentration of fructose was significantly increased in 

both tissue samples and yet accumulated more in the heart tissue for all three stocks after 8 

weeks of storage. Flesh fructose of stock 20 (less susceptible to BH) and stock 12 (non-

susceptible to BH) was slightly higher after 8 weeks of storage. However, after 16 weeks of 

storage, fructose increased almost 2-fold in both tissue samples of stock 20 (susceptible to 

BH) and stock 12 (non-susceptible to BH). Interestingly, stock 23 (susceptible to BH) 

accumulated the highest fructose content which was ca. 3 to 4 times higher after 8 and 16 and 

20 weeks of storage compared to that measured at baseline before storage at cold temperature 

(Fig. 4.4a). The highest fructose concentrations were observed in heart tissue of stock 23 

ranging from 103.9 to 130.4 mg g
-1

 DW. 

 

4.5.1.2. Glucose 

            A similar pattern was observed for glucose whereby there was an increase in both 

tissue samples of all three stocks over storage time and no significant differences in glucose 

were indicated between the stocks at baseline regardless of tissue (Fig. 4.4b). Also, glucose 

content in flesh tissue of stock 20 (less susceptible to BH) had almost the same concentrations 

(36.9 to 67.4 mg g
-1

 DW) to stock 12 (non-susceptible to BH) (42.9 to 61.6 mg g
-1

 DW) from 

8 to 20 weeks of storage. Once more stock 23 (susceptible to BH) had the greater glucose 

accumulation in both tissue samples and that was ca. 2-fold higher when compared to stock 

20 and stock 12 after 8 and 16 weeks of storage. The highest glucose content was shown in 

flesh tissue (84.7 to 121.6 mg g
-1

 DW) and slightly higher in heart tissue (111.8 to 137.04 mg 

g
-1

 DW) of stock 23 after 16 weeks of storage (Fig. 4.4b). After 16 and 20 weeks of storage, 

glucose content was significantly higher in heart samples of stock 20 (ca. 76.8 mg g
-1

 DW) 

and stock 12 (68 mg g
-1

 DW) compared to their corresponding flesh samples (58.5 and 49.2 
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mg g
-1

 DW respectively). On the other hand, flesh and heart glucose content of stock 23 was 

significantly higher after 20 weeks of storage (77.6 and 98.7 mg g
-1

 DW respectively). 

 

4.5.1.3. Sucrose 

            In terms of sucrose content, generally stock 23 (susceptible to BH) had significantly 

higher concentrations (mean = 21.79 mg g
-1

 DW) compared to stock 20 (susceptible to BH) 

(mean = 16.8 mg g
-1

 DW) and stock 12 (non-susceptible to BH) (mean = 17.6 mg g
-1

 DW). 

Figure 4.4c shows that flesh sucrose of stock 20 (susceptible to BH) was significantly higher 

(17.1 mg g
-1

 DW) compared to stock 23 (susceptible to BH) (14.1 mg g
-1

 DW) and stock 12 

(non-susceptible to BH) (15 mg g
-1

 DW) after baseline measurements. Also at baseline, there 

were no significant differences in sucrose between flesh and heart tissue samples of stock 20 

and stock 12, however sucrose content was significantly higher in heart samples (19.9 mg g
-1

 

DW) of stock 23 and lower in flesh samples (14.1 mg g
-1

 DW) (Fig. 4.4c). After 8 weeks of 

storage, stock 23 had significantly higher sucrose content compared to stock 20 and stock 12. 

However, there were no significant differences in sucrose accumulation between flesh and 

heart tissue of stock 23 after 8 and 16 weeks of storage, but the highest concentrations of 

sucrose were recorded in flesh and heart tissue of stock 23 after 16 weeks of storage (27.8 and 

27.2 mg g
-1

 DW, respectively). Heart sucrose content of stock 20 was significantly higher 

when compared to flesh after 8 and 20 weeks of storage. A similar pattern was followed for 

those tissue samples of stock 12 after 16 and 20 weeks of storage (Fig. 4.4c).   
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Figure 4.4 Fructose (a), glucose (b) and sucrose (c) concentrations (mg g
-1

 DW) in flesh and heart tissue of potato tubers Maris Piper stock 20 

(susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) at baseline and after storage in air only at 15
o
C on 

sampling days 0, 3 and 7. Tubers were initially stored at 1.5
o
C for 8, 16 and 20 weeks. Values are means (n= 3). LSDs are shown (P < 0.05) 

(Appendix B; Table 7.1 – 7.3). 

a) b) c) 
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4.5.2. Phenolic content analysis  

4.5.2.1. Hydroxycinnamic acid derivatives 

            Results indicated that chlorogenic acid was the major hydroxycinnamic acid 

accumulated in potato tubers. According to Figure 4.5a, chlorogenic acid tended to be more 

accumulated in the flesh rather than the heart tissue samples of stock 20 (susceptible to BH) 

and stock 12 (non-susceptible to BH) but this trend was not followed by stock 23 (susceptible 

to BH) over storage time. In general, flesh chlorogenic acid was ca. 2-3 times higher than in 

heart tissue samples of stock 20 and stock 12 while its concentration in flesh and heart of 

stock 23 was about the same indicating that heart chlorogenic acid was significantly higher in 

stock 23 compared to those heart samples of stock 20 and stock 12. However, the content of 

chlorogenic acid varied in stocks on different sampling days. At baseline, flesh chlorogenic 

acid was ca. 2-3 times significantly higher in stock 12 (199 - 266 µg g
-1

 DW) compared to 

stock 20 (92 - 116.5 µg g
-1

 DW) and stock 23 (91.2 - 119.4 µg g
-1

 DW) respectively on 

sampling days 0 and 3, and ca. 6–fold significantly higher than in heart tissue samples (19.9 - 

45.2 µg g
-1

 DW). A similar trend was followed by stock 20 where flesh chlorogenic acid was 

ca. 3 times higher than in heart samples. On the other hand, no significant differences 

between flesh and heart samples of stock 23 were observed at baseline; however, heart 

chlorogenic acid content of stock 23 was 2-3 times higher (55 - 76.7 µg g
-1

 DW) compared to 

those heart samples of stock 20 (23.6 - 49.2 µg g
-1

 DW) and stock 12 (19.9 - 45.2 µg g
-1

 DW) 

(Fig.4.6a). After 8 and 16 weeks of storage, a similar trend was followed by stock 20 and 

stock 12 where flesh chlorogenic acid was significantly higher compared to heart samples. 

However, chlorogenic acid was slightly decreased in those flesh samples of stock 12 and 

slightly increased in those heart samples of stock 20 after 16 weeks of storage. In terms of 

stock 23, there were no significant differences in chlorogenic acid content between flesh and 
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heart samples after 8 and 16 weeks of storage, but it was 2-3 times significantly higher in 

heart compared with those heart samples of stock 20 and stock 12 at the same period of 

storage time while there were no significant differences between the flesh samples of all 

stocks (Fig. 4.5a). After 20 weeks of storage, there was an increase in flesh chlorogenic acid 

of stock 20 and no significant differences between flesh and heart samples of stock 12 and 

stock 23. Additionally, there were no significant differences in chlorogenic acid between 

heart samples of all stocks after 20 weeks of storage (Fig. 4.5a).  

          Although, chlorogenic acid isomers neo- and crypto-chlorogenic acid are at very low 

levels in potato tubers, significant differences in both phenolic acids were observed by 

comparing susceptible (stock 20 and 23) and non-susceptible stocks (stock 12). Neo-

chlorogenic acid was always significantly higher in flesh tissue of stock 12 (non-susceptible) 

when compared to stock 20 and 23 (both susceptible to BH) over storage time (Fig. 4.5b). In 

general, flesh and heart neo-chlorogenic acid ranged from 0.19 to 4.9 and 0-1.3 µg g
-1

 DW for 

stock 20, 0.4 - 2.9 and 0.6 - 3 µg g
-1

 DW for stock 23 and 1.3 - 8.6 and 0.1 - 4.2 µg g
-1

 DW 

for stock 12 respectively. At baseline, neo-chlorogenic acid content in flesh was ca. 3-times 

increased in stock 12 and significantly decreased in stock 20 while there were no significant 

differences between those heart samples of all three stocks (Fig. 4.5b). After 8, 16 and 20 

weeks of storage there was a significant increase in neo-chlorogenic acid content where it was 

significantly higher in flesh samples of stock 20 and yet even higher in flesh samples of stock 

12. Heart neo-chlorogenic acid content was significantly higher in stock 23 after 8 weeks of 

storage (2.42 µg g
-1

 DW) while after 16 weeks of storage its concentration (2.41 µg g
-1

 DW) 

was similar to that of heart samples of stock 12 (2.66 µg g
-1

 DW). After 20 weeks of storage, 

it was observed that neo-chlorogenic acid concentrations were significantly lower in those 

heart samples of stock 23 compared to its flesh samples. Furthermore, the content of neo-
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chlorogenic acid was always lower in those heart samples of stock 20 over storage time (Fig. 

4.5b).  

        A similar pattern was followed for crypto-chlorogenic acid where it was highly 

accumulated in flesh tissue of stock 12 (non-susceptible) compared to both susceptible stocks 

(stocks 20 and 23) over storage time (Fig. 4.5c). Significant differences were shown between 

both tissue samples of stock 12 where crypto-chlorogenic acid was ca. 5 to 10 times higher in 

flesh than the heart tissue samples over storage time ranging from 10.57 to 55.42 µg g
-1

 DW 

and 1.47 - 7.16 µg g
-1

 DW respectively. This trend (crypto higher in flesh compared to heart 

tissue) was also observed in stock 20 (less susceptible to BH) after baseline where flesh tissue 

had ca. 2 to 9 greater crypto-chlorogenic acid content ranging from 3.5 to 43.58 µg g
-1

 DW 

and from 0.89 to 11.37 µg g
-1

 DW respectively. In terms of stock 23, there were no significant 

differences in crypto-chlorogenic acid among tissue samples over storage time, however, 

heart crypto-chlorogenic acid content of stock 23 was always significantly higher compared 

to those heart samples of stock 20 and stock 12 along the storage time ranging from 4.85 to 

23.44 µg g
-1

 DW (Fig. 4.5c). No statistical analysis was carried out for the rest of the 

hydroxycinnamic acids examined (caffeic, p-coumaric and ferulic acids) because those 

compounds were either undetectable or very low in abundance and quantification was 

unattainable. Both flavonoids rutin and quercetin-3,4-O-diglucoside were identified and 

quantified in some samples, mainly in flesh tissue,  however, due to a high proportion of 

missing values no statistical analysis was attainable. Therefore, there was zero abundance in 

isorhmanetin-3-rutinoside and isorhmanetin-3-glucoside.   
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Figure 4.5 Chlorogenic acid (a), neo-chlorogenic acid (b) and crypto-chlorogenic acid (c) concentrations (µg g
-1 

DW) in flesh and heart tissue of 

potato tubers cv. Maris Piper stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) at baseline and  

after storage in air only at 15
o
C on sampling days 0, 3 and 7. Tubers were initially stored at 1.5

o
C for 8, 16 and 20 weeks. Values are means (n= 

3). LSDs are shown (P < 0.05) (Appendix B; Table 8.1 – 8.3). 

a) b) c) 
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        According to Figure 4.6a, it was shown that caffeoyl-D-glucose content varied among 

the three stocks examined [Stock 20 (susceptible to BH), stock 23 (susceptible to BH) and 

stock 12 (non-susceptible to BH) over storage time. At baseline and after 8 weeks of storage, 

caffeoyl-D-glucose was significantly higher in heart tissue of those samples of stock 23 (0.9-

1.3 µg g
-1

 DW) when compared to heart tissue of stock 20 (0.83 - 0.89 µg g
-1

 DW) and stock 

12 (0.75 - 0.97 µg g
-1

 DW), but no significant differences were found in flesh tissue of all 

stocks during that period of storage time. However, after 16 weeks of storage the 

concentration of caffeoyl-D-glucose was ca. 2 times higher in flesh tissue when compared 

with heart tissue of those tubers of stock 20 ranging from 0.73 - 0.77 and 0.28 - 0.5 µg g
-1

 

DW respectively. Similar trend (caffeoyl-D-glucose higher in flesh samples) was followed by 

stock 12 (Fig. 4.6a). After 20 weeks of storage, caffeoyl-D-glucose concentration was 

significantly decreased in flesh and increased in heart tissue of stock 23 ranging from 0.27 - 

0.42 and 0.44 - 1.25 µg g
-1

 DW respectively (Fig. 4.6a). 

          In terms of feruloylquinic acid content, that was found being more accumulated in the 

flesh tissue samples of stock 20, stock 23 (both susceptible to BH) and stock 12 (non-

susceptible) ranging from 4.59 - 21.6, 5.66 - 12.08 and 1.33 - 15.75 µg g
-1

 DW respectively 

compared to those heart tissue samples of all stocks (Fig 4.6b). After baseline, flesh 

feruloylquinic acid content was ca. 2 times higher when compared to heart samples of all 

stocks analysed and yet even higher in flesh samples of stock 20 (19.74 - 216 µg g
-1

 DW). 

There were no differences of feruloylquinic acid content in both susceptible stocks (stock 20 

and stock 23) after 8 and 16 weeks of storage. Feruloylquinic acid concentrations in heart 

tissue of stock 12 were significantly lower on sampling day 3 after 8 weeks of storage and 

also significantly lower in flesh tissue on sampling day 7 after 16 weeks of storage 

respectively (Fig. 4.6b). After 16 weeks of storage, it was observed that heart feruloylquinic 

acid (15.43 µg g
-1

 DW) was significantly increased compared to flesh (9.38 µg g
-1

 DW) 
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samples of stock 23. Furthermore, after 20 weeks of storage, feruloylquinic acid content in 

flesh samples of stock 20 and stock 23 (both susceptible to BH) was significantly higher on 

sampling day 0 when compared to sampling day 7. At the same period of storage time, it was 

shown that heart feruloylquinic acid content of stock 23 decreased on sampling day 7. 

However, on sampling days 0 and 3, flesh feruloylquinic acid of stock 12 (non-susceptible to 

BH) was significantly higher (ca. 2 times) than in heart tissue (Fig. 4.6b). 
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Figure 4.6 Caffeoyl-D-glucose (a) and feruloylquinic acid (b) concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris 

Piper stock 20 (susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) at baseline and after storage in air only at 

15
o
C on sampling days 0, 3 and 7. Tubers were initially stored at 1.5

o
C for 8, 16 and 20 weeks. Values are means (n= 3). LSDs are shown (P < 

0.05) (Appendix B; Table 8.4 – 8.5).  

a) b) 
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4.5.2.2. Aromatic amino acids      

            A variation in content of those three amino acids quantified (tyrosine, phenylalanine 

and tryptophan) was shown along storage time. Tyrosine content was significantly higher in 

stock 20 (susceptible to BH) (mean = 0.8 µg g
-1 

DW) and lower in stock 12 (non-susceptible 

to BH) (mean = 0.4 µg g
-1 

DW) at baseline. After 8 weeks of storage, flesh tyrosine was 

significantly decreased in stock 20 (0.27 µg g
-1 

DW) and stock 23 (susceptible to BH) (0.26 

µg g
-1 

DW), but heart tyrosine of stock 20 was ca. 2 times higher (0.54 µg g
-1 

DW) (Fig. 4.7a). 

Furthermore, heart tyrosine content was ca. 3 times higher in stock 20 (1.74 µg g
-1 

DW) after 

16 weeks of storage and flesh tyrosine was also higher (0.94 µg g
-1 

DW). A similar trend for 

tyrosine content in heart samples of stock 23 was followed after 16 and 20 weeks of storage 

(1.42 and 1.3 µg g
-1 

DW respectively). There were no really differences in flesh tyrosine 

concentrations in stock 12 overs storage time (Fig. 4.7a).   

          Phenylalanine content was significantly lower in stock 12 (11.4 µg g
-1 

DW) compared 

to stock 20 (23.7 µg g
-1 

DW) and stock 23 (21.9 µg g
-1 

DW) at baseline and yet there were no 

significant differences between the latter stocks (Fig. 4.7b). After 8 weeks of storage, flesh 

phenylalanine was significantly decreased in stock 20 (11.9 µg g
-1 

DW) and stock 23 (9.7 µg 

g
-1 

DW) but there were no differences compared to stock 12 (8.53 µg g
-1 

DW) while heart 

phenylalanine significantly increased in stock 20 and stock 23 (22.67 and 21.2 µg g
-1 

DW 

respectively). Flesh phenylalanine concentration was increased in all stocks after 16 weeks of 

storage but there were no significant differences between the stocks. However, heart 

phenylalanine was significantly higher in heart compared to flesh samples of stock 23 after 16 

weeks of storage (30.8 and 21.3 µg g
-1

 DW respectively). After 20 weeks phenylalanine 

content varied among the stocks (Fig. 4.7b).  
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        Generally, tryptophan content, was significantly lower in stock 12 (mean = 72.3 µg g
-1 

DW) compared to stock 20 and stock 23 (means = 118.2 and 121 µg g
-1 

DW respectively) and 

yet lower in heart compared to flesh samples with a mean of 95 and 111 µg g
-1 

DW 

respectively. Stock 12 (non-susceptible to BH) had the lowest amount in tryptophan (ca. 2- to 

3-fold lower) at baseline and after 16 and 20 weeks of storage when compared to both 

susceptible stocks (stock 20 and 23) (Fig. 4.7c). 
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Figure 4.7 Tyrosine, phenylalanine and tryptophan concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris Piper stock 20 

(susceptible to BH), stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) at baseline and after storage in air only at 15
o
C on 

sampling days 0, 3 and 7. Tubers were initially stored at 1.5
o
C 8, 16 and 20 weeks. Values are means (n= 3). LSDs are shown (P < 0.05) 

(Appendix B; Table 8.6 – 8.8).  

b) a) c) 
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4.5.3. Multivariate analysis 

 

          Principal Component Analysis (PCA) was used as an unsupervised multivariate 

technique finding differences between sample groups converting a number of possible 

correlated variables into a smaller number of uncorrelated variables called principal 

components or clusters. Three sugar variables (fructose, glucose and sucrose) combined with 

eight phenolic compounds (chlorogenic acid, neo-chlorogenic acid, crypto chlorogenic acid, 

caffeoyl-D-glucose, feruloylquinic acid, tyrosine, phenylalanine and tryptophan) were 

considered as analytical data for PCA. PCA was performed for a better visualization of sugar 

and phenolic accumulation in flesh and heart tissue samples of all three stocks analysed 

[stock 20 (susceptible to BH), stock23 (susceptible to BH) and stock 12 (non-susceptible to 

BH)] at each sampling point separately. All three stocks had been stored in air only at 15
o
C, 

sampled on three days (viz. day 0, 3 and 7) per four weeks and initially stored at 1.5
o
C for 8, 

12, 16 and 20 weeks of storage (sampling points). It is worth reminding the reader that there 

was no cold initial storage temperature at baseline. In addition, general PCA biplots of flesh 

and heart samples were designed over storage time (Fig. 4.12a and b respectively). In all PCA 

biplots flesh and heart tissue samples were labelled according to stock [1= stock 20 

(susceptible to BH), 2= stock 23 susceptible to BH) and 3= stock 12 (non-susceptible to BH)] 

corresponded with tissue discoloration [viz. dark brown to black (BH), brown centre (BC), 

brown centre light (BCL) and pith] BH-like discoloration was only observed in stock 23 

samples. Control samples of stock 20 and stock 23 were further labelled as ‘C’ meaning 

control= no discoloration. It should be noted that those flesh samples of both stocks 20 and 23 

labelled according to tissue discoloration (i.e. 1PITH or 2BC) did not show any tissue 

discoloration, but labelling was carried out in that way in order to clarify the affected tuber 

from which they derived and to show any possible similarities or differences in sugar and 

phenolic content compared to control samples. Samples of stock 12 considered as non-
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susceptible showing no tissue discoloration were labelled as 3. At baseline there were no 

indications of tissue discoloration, so labelling was carried out according to stock only.  

        At baseline before transferring the tubers at cold storage temperature, the PCA on flesh 

tissue samples showed a separation of all three stocks analysed on PC1 (captured 55.50% of 

the variance) and PC2 (captured 38.35% of the variance) capturing, in total, almost 94% of 

the variance (Fig. 4.8a).  A clear separation for those flesh samples of stock 12 was observed 

which according to the biplot corresponded with high chlorogenic acid and its isomers (neo- 

and crypto- chlorogenic acid) (Fig. 4.8a). Flesh samples of stock 20 tended to have more 

sucrose and feruloylquinic acid content while an accumulation of the three amino acids was 

also observed. No clear separation for flesh samples of stock 23 was observed. The PCA on 

heart tissue samples was shown on PC1 (captured 71.10% of the variance) and PC2 (captured 

20.95% of the variance) capturing almost 92% of the variance in total (Fig 4.8b). Chlorogenic 

acid with its isomers and caffeoyl-D-glucose seemed to be important variables for separating 

stock 23 and reducing sugars for differentiating stock 20 from the other stocks (Fig. 4.8b). 

        The PCA on the flesh tissue data after 8 weeks of storage at 1.5
o
C showed a clear 

separation of all three stocks on PC1 (captured 57.94% of the variance) and PC2 (captured 

25.17% of the variance) capturing, in total, almost 83% of the variance (Fig. 4.9a). Again, 

stock 12 was mainly grouped according to chlorogenic acid and its isomers and caffeoyl-D-

glucose as well. Feruloylquinic acid and phenylalanine was the main variable for 

differentiating stock 20 from the other stocks analysed According to the biplot, it was 

observed that sugars started to be more accumulated in flesh of stock 23 and also tryptophan 

seemed to be less important variable for separating stock 23 from the other stocks (Fig. 4.9a). 

After 8 weeks of storage, indications of pith discolorations were initially observed in heart 

samples of stock 20 and stock 23. The PCA on the heart tissue data after 8 weeks of storage at 

1.5
o
C was shown on PC1 (captured 55.91% of the variance) and PC2 (captured 26.88% of the 
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variance) capturing, in total, almost 83% of the variance (Fig. 4.9b). A good grouping was 

only observed for those control heart samples stock 23 corresponded with higher chlorogenic 

acid and isomers contents, phenylalanine and caffeoyl-D-glucose and also high sugar content. 

Also, sugar content tended to be more accumulated in those heart samples of stock 23 

showing pith discoloration. A clear separation for those heart samples from stock 20 and 

stock 12 was not observed (Fig. 4.9b). 

        After 16 weeks of storage at low initial storage temperature (1.5
o
C), sugar and phenolic 

content tended to accumulate more in stock 23 (susceptible to BH). According to Figure 

4.10a, the PCA on flesh data was shown on PC1 (captured 59.21% of the variance) and PC2 

(captured 26.82% of the variance) capturing, in total, almost 86% of the variance. The most 

important variables for separating flesh samples of stock 23 were sugars, tryptophan and 

tyrosine and the less important were phenylalanine, feruloylquinic acid and caffeoyl-D-

glucose (Fig. 4.10a). Once again, chlorogenic acid and its isomers were the main variables for 

differentiating those flesh samples of stock 12 (non-susceptible to BH). No clear separation 

for stock 20 was distinguished. According to Figure 4.10b, the PCA on heart tissue data was 

shown on PC1 (captured 53.27% of the variance) and PC2 (captured 33.63% of the variance) 

capturing, in total, almost 87% of the variance. In general, stock 23 was differentiated by all 

the variables examined. Most of the discoloured heart samples of stock 23 tended to be 

grouped according to sugars (mainly sucrose), caffeoyl-D-glucose and neo-chlorogenic acid 

while chlorogenic acid, crypto-chlorogenic acid, reducing sugars, amino acids and 

feruloylquinic acid were those important variables for separating those control heart samples 

of stock 23. Control heart samples of stock 20 tended to be grouped according to tyrosine and 

tryptophan (Fig. 4.10b). 

        At the last sampling point (20 weeks of storage), the PCA on flesh tissue data showed a 

separation of stocks on PC1 (captured 58.38% of the variance) and PC2 (captured 31.28% of 
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the variance) capturing, in total, almost 90% of the variance (Fig. 4.11a). Sugars were the 

most important variables and tyrosine less important for differentiating stock 23 (susceptible 

to BH) from stock 20 (susceptible to BH) and stock 12 (non-susceptible to BH). Stock 12 was 

mainly grouped according to caffeoyl-D-glucose, neo- and crypto-chlorogenic acids. Flesh 

samples of stock 20 tended to have higher concentration of feruloylquinic acid and 

phenylalanine (Fig. 4.11a). According to Figure 4.11b, the PCA on heart data was shown on 

PC1 (captured 55.03% of the variance) and PC2 (captured 30.83% of the variance) capturing, 

in total, almost 86% of the variance (Fig. 4.11b). Control heart samples of stock 23 were 

mainly separated according to phenylalanine, chlorogenic acid and its isomers while 

discoloured heart samples were mainly grouped according to sugars and tryptophan and less 

to caffeoyl-D-glucose, feruloylquinic acid and tyrosine (Fig. 4.11b). 

        A general PCA of flesh data over storage time showed a stock separation on PC1 

(captured 51.62% of the variance) and PC2 (captured 33.21% of the variance) capturing, in 

total, almost 85% of the variance (Figure 4.12a). According to the PCA biplot, sugars were 

the main variables for separating stock 23 (susceptible to BH) and chlorogenic with its 

isomers for stock 12 (non-susceptible to BH) (Fig. 4.12a). Furthermore, a general PCA was 

performed on heart data over storage time which was shown on PC1 (captured 44.57% of the 

variance) and PC2 (captured 37.94% of the variance) capturing, in total, almost 82.5% of the 

variance (Fig. 4.12b). Over storage time, control heart samples of stock 23 were mainly 

clustered according to chlorogenic acid and its isomers, but a few control and discoloured 

samples tended to be more accumulated according to sugar content and amino acids (Fig. 

4.12b). 
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Figure 4.8 PCA biplot of flesh (a) and heart (b) tuber tissue labelled by stock [1= stock 20 (susceptible to BH), 2= stock 23 (susceptible to BH) 

and 3= stock 12 (non-susceptible to BH)]. Tubers were stored at 15
o
C in air on sampling days 0, 3 and 7 at baseline. There was no initial storage 

temperature at baseline. 
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Figure 4.9 PCA biplot of flesh (a) and heart (b) tuber tissue labelled by corresponding to tissue discoloration [1= stock 20 (susceptible to BH), 

2= stock 23 (susceptible to BH) and 3= stock 12 (non-susceptible to BH); C= non-affected (control) samples of stock 20 and stock 23. PITH, 

brown centre light (BCL), brown centre (BC), dark brown to black (BH) = affected samples of stock 20 and stock 23. Tubers were stored at 

15
o
C in air on day 49, 52 and 56 (sampling days 0, 3 and 7 respectively), and initially stored at 1.5

o
C for 8 weeks.  
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Figure 4.10 PCA biplot of flesh (a) and heart (b) tuber tissue labelled by corresponding to tissue discoloration [1= stock 20 (susceptible to BH), 

2= stock 23 (susceptible to BH) and 3= stock 12 (non-susceptible to BH); C= non-affected (control) samples of stock 20 and stock 23. PITH, 

brown centre light (BCL), brown centre (BC), dark brown to black (BH) = affected samples of stock 20 and stock 23. Tubers were stored at 

15
o
C in air on day 102, 105 and 109 (sampling days 0, 3 and 7 respectively), and initially stored at 1.5

o
C for 16 weeks. 
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Figure 4.11 PCA biplot of flesh (a) and heart (b) tuber tissue labelled by corresponding to tissue discoloration [1= stock 20 (susceptible to BH), 

2= stock 23 (susceptible to BH) and 3= stock 12 (non-susceptible to BH); C= non-affected (control) samples of stock 20 and stock 23. PITH, 

brown centre light (BCL), brown centre (BC), dark brown to black (BH) = affected samples of stock 20 and stock 23. Tubers were stored at 

15
o
C in air on day 130, 133 and 138 (sampling days 0, 3 and 7 respectively), and initially stored at 1.5

o
C for 20 weeks. 

b) 

PC1 (55.03 %) 

P
C

2
 (

3
0
.8

3
 %

) 

a) 

PC1 (58.38 %) 

P
C

2
 (

3
1
.2

8
 %

) 

Diagnostic Biplot

3

1C

3

1C

3

1C3

1C

3

1C

3
1C

3

1C
3

1C

3

1C

3

2C

3

2C

3

3

3

2PITH

1C

2C

1C

2BC

1C

2C

1C

2C

1C2C

1C

2C

1C

2C

1PITH

2C

1C

2BC

3

2C

3

2C
3

2C

32PITH 3

2C

1C

2BH

1C

2C

1C

2BCL

1C

2C

3

2C

3

2C

3
2BCL

1C

2C
1C

2C

3

2C

1C

1C

3

1C

3

3
3

Tryptophan

SUCROSE

Phenylalanine

Neo

GLUCOSE

Ferquinic

FRUCTOSE

Crypto

Chloro

Caff_D_gluc

Tyrosine

0.0

-0.5

0.5

0.0

-0.5

0.5

1.0

-1.0 1.0

Diagnostic Biplot

2C

3

1C
2C

1C

2BCL

1C

2C

1C

3

1C

3

1C

3

1C
3

1C

3

1PITH

3

1C

3

1C

3

1C

3

1C

3

1C

3

1C 3

1C

3

1C

3

1C

1C

1C

1C

1C

1C

2C

2C2C

2C

2PITH

3

2C 3

2BC

3

2C

3
2C

3

2C

2C

1C

2C

1C

2C

2C

2BC

3

2C

3

2C

3

2C

1C

2PITH

3

2C

3

1C

3

3

2BH

2C

2BCL

Caff_D_gluc

Chloro

Crypto

FRUCTOSE

Ferquinic

GLUCOSE

Neo

Phenylalanine

SUCROSE Tryptophan

Tyrosine

-1.5

-1.0

-2.0

-2.0

0.0

-0.5

0.5

0.5

1.0

-0.5

-1.5

1.0-1.0 0.0



100 

 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 General PCA biplot of flesh (a) and heart (b) tuber tissue time labelled by corresponding to tissue discoloration [1= stock 20 

(susceptible to BH), 2= stock 23 (susceptible to BH) and 3= stock 12 (non-susceptible to BH); C= non-affected (control) samples of stock 20 and 

stock 23. PITH, brown centre light (BCL), brown centre (BC), dark brown to black (BH) = affected samples of stock 20 and stock 23. Biplots 

formed over storage time. 
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4.6. Discussion 

4.6.1. Effect of storage temperature and shelf-life conditions on the respiration rate of potato 

stocks with different susceptibility to BH 

 

         Shelf-life of potatoes as affected by previous conditions and storage that in turn are 

related with temperature and atmospheric conditions. Respiration rate is considered a key 

indicator of the potato physiological activity. Fresh potatoes are commercially stored at low 

temperatures (3-4
o
C) in order to extend their storage life providing year round availability 

and thus creating desirable conditions for better shelf-life (Gast, 1991; Kleinkopf, 1995; 

Mathooko, 1996; Thompson, 1996; Fennir et al., 2003; Nourian et al., 2003). In this study, 

potato tuber stocks with different susceptibility to BH were stored in air (21% O2) or CA 

(10% CO2 and 18-19% O2), sampled at 15
o
C and initially stored at 1.5 or 3

o
C with the former 

cold temperature selected as more challenging for the tuber respiration rate and yet greater 

potential of the BH development. According to the results, it seems that when tubers were 

transferred from the coldest initial storage temperature (1.5
o
C) to 15

o
C in either air or CA 

storage (10% CO2) and stored for a further 3 or 7 days there was a greater effect on the tuber 

respiration rates compared to those that had initially been stored at 3
o
C. That was evident 

after 8 weeks of storage at cold temperature, as during baseline assessment there was no 

initial storage temperature. Once initial storage temperature was applied, then that 

temperature change effect from cold to warmer storage temperature influenced in a similar 

way the respiration rate of all stocks analysed. Similar trends in respiration rate were 

observed by Craft (1963) studying the influence of initial storage temperature on potato 

respiration rate. After initial storage at 0
o
C or 12.8

o
C for 2 months, respiration rate was 

recorded at 25
o
C for 6 days with a 12 – 16 h prior warming up. The CO2 production and O2 
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uptake were higher after initial storage at 0
o
C than at 12.8

o
C where an increase in respiration 

rate was shown from day 0 to day 1 and then gradually declined reaching those respiration 

rates recorded by tubers initially held at 12.8
o
C that remained stable after 6 days. Craft (1963) 

called this increase a ‘respiration burst’ and concluded that is actual respiration rate. Changes 

in respiration rate caused by temperature fluctuations have previously been reported by 

Schippers (1977a) where it was said that initial storage at low temperatures stimulated the 

respiration rate recorded at warmer temperatures after, but there are also a lot other factors 

affecting those changes in respiration rate such as storage time, potato cultivar, sprouting, 

tuber size etc. The author also stated that respiration rate will eventually stabilize after 

fluctuations in storage temperature, but this requires some time to occur (Schippers, 1977a). 

Herein, indications of dormancy break and sprouting were expected due to storage at 15
o
C 

and observed on each sampling days 3 and 7 initiating after storage in either air or CA and 

initial storage at 1.5 or 3
o
C for 8 to 20 weeks, thus it might have an effect on increasing the 

respiration rate (Schippers, 1977a; Dwelle and Stallknecht, 1978; Fennir et al., 2002), but the 

fact that CO2 rates were lower and sprouting more evident after initial storage at 3
o
C, a direct 

relation between respiration and sprouting cannot be concluded. Similarly, sugar 

accumulation at very low temperature may be correlated with increased respiration rate 

(Dwelle and Stallknecht, 1979; Workman et al., 1979; Sherman and Ewing, 1982; Duplessis 

et al., 1996; Zhou and Solomos, 1998); however, sugar content quantification was only 

carried out for those tubes stored in air only and initially stored at 1.5
o
C where BH incidence 

was more evident. 

         It is well known that higher temperatures effectively increase the rate of respiration of 

tubers as do very cold storage temperatures (< 5
o
C) (Dwelle ans Stallknecht, 1978; Workman 

et al., 1979; Duplessis et al., 1996; Zhou and Solomos, 1998; Kumar, 2011). BH disorder 
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does not occur under optimal storage temperatures when O2 is efficiently supplied, is induced 

at extremely high or low temperatures demanding higher O2 levels and development may also 

occur at around 5
o
C but longer time is required (Bartholomew, 1916; Davis, 1928; Link et 

al., 1932; O’Brien and Rich, 1976; Smith, 1978; Hooker, 1981; Wale et al., 2008; Kumar 

Chaurasia, 2009; Voss, UC Davis; Robinson and Secor, NDSU). However, in this present 

study a similar pattern distinguishing significant differences in respiration rate between 

potato stock susceptibility to BH was not clearly shown over storage time except during 

baseline measurements. There were some significant differences in CO2 production between 

the stocks analysed but these were not consistent across sampling days during storage. That 

might happen due to low BH incidence indicated at 15
o
C or because respiration rates were 

recorded in a jar containing both affected and non-affected tubers in the case of the 

susceptible stocks (20 and 23) and also three tubers were placed in the jar (see Chapter 3, 

session 3.4). Moreover, it could be said that O2 was not really depleted in those chambers 

used during air storage where O2 concentrations were at 21% and under 10% CO2 with 18-

19% O2. After storage in air at 15
o
C and initial storage at 1.5

o
C respiration rate ranged from 

ca. 3 - 4, 7 - 8 and 6 - 7 ml CO2 kg
-1 

h
-1

 and initial temperature 3
o
C 2.4 - 3, 3.8 - 4.5 and 3.6 - 

5 ml CO2 Kg
-1 

h
-1

 on sampling days 0, 3 and 7 respectively, increasing 2-3 fold from day 0 to 

day 3 and then slightly decreasing from day 3 to day 7. Voss (UC Davis) suggested that 

respiration rate in mature tubers may range between 5 – 12 ml CO2 kg
-1 

h
-1

 at 15
o
C and 

Fennir et al. (2002) reported that CO2 rates of potato tubers cv. Chieftain ranged from 6 – 7.6 

ml CO2 kg
-1 

h
-1 

after 29 days at 15
o
C. Furthermore, that increase in respiration rate observed 

after storage at 10% CO2 was more likely due to the CO2 absorption as a similar trend in 

respiration rate was followed by all stocks analysed. Yet, BH incidence did not differ 

between different storage conditions. So, after storage in CA at 15
o
C and initial storage at 1.5 

or 3
o
C respiration rate ranged from ca. 12.3 – 15.4 and 9.4 – 12.6 ml CO2 kg

-1 
h

-1
 respectively 
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on sampling days 3 and 10.7 – 15.4 ml CO2 kg
-1 

h
-1

 and 9.4 – 13.4 ml CO2 kg
-1 

h
-1

 

respectively on sampling days 7 over storage time. In their early work, Perez-Trejo et al. 

(1981) also examined the influence of high CO2 concentrations on respiration rate of potato 

tubers cv. Norchip revealing that at 10% CO2 respiration rate was stimulated and ranged from 

more than 10 and less than 20 ml CO2 kg
-1 

h
-1

 due to CO2 absorption whereas respiration rate 

recorded in air (21% O2) was ca. 5 ml CO2 kg
-1 

h
-1

 at 23
o
C.  

 

4.6.2. The effect of storage temperature and shelf-life conditions on the incidence of BH of 

potato stocks with different susceptibility to BH 

 

          Blackheart disorder (BH) is a particular problem for the potato packing industry and 

customer complaints arising around the end of winter peaking in spring time. However, due 

to similar tissue discolorations occurred in the tubers, sometimes those discolorations might 

confuse and mislead differentiating the disorder. That happens due to the overlapping with 

other physiological internal disorders induced in potato tubers showing similar symptoms 

with BH, severity depended (i.e. brown centre, BC; internal necrosis; hollow heart, HH etc.). 

It has been proposed that BC is the precursor for HH development and possibly the initial 

step for BH induction (Reeve, 1968) but this statement is misleading as almost all internal 

physiological disorders induced in potato tubers share a common feature; that of brown tissue 

discoloration and yet cell necrosis in some cases (Dinkel, 1963; Van Denburgh et al., 1980, 

1986; Bussan, 2007; Sowokinos, 2007; Wale et al., 2008). Furthermore, it has been suggested 

that physiological disorders and tissue discolorations may be initiated at pre-harvest 

conditions such as growth conditions, soil temperatures and types, water logging (flooding), 

calcium deficiency (Link et al., 1932; O’Brien and Rich, 1976; Bussan, 2007; Wale et al., 

2008; Palta, 2010; Zommic et al., 2013). It was previously stated that cool growing 
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conditions at 10 - 15
o
C soil temperatures BC may be expressed in growing potatoes cv. 

Russet Burbank (Van Denburgh et al., 1980, 1986). In his recent work on translucency 

(physiological disorder of potatoes), Zommic et al. (2013) reported that warm soil 

temperatures during potato bulking resulted in severe BH incidence 270 days after harvest 

after storage at 9
o
C. In this study, less and more intense brown tissue discolorations localized 

in the central pith part of the tuber were mostly indicated in both susceptible to BH stocks 

(stock 20 and stock 23) starting in December 2012 after 8 weeks of storage at very low 

temperature (1.5 or 3
o
C) peaking after a few months during springtime. However, the total 

percentage of BH incidence was quite low (< 10%) corresponding to the total number of 

tubers used in this experiment. Stock 23 had significantly (ca. 3-fold) greater BH incidence 

compared to stock 20 and yet BH-like symptoms namely a dark brown to blackish 

discoloration were indicated in just three tubers of stock 23 after 16 to 20 weeks of storage at 

1.5
o
C. Furthermore, no indications of discoloration were observed at baseline where no initial 

storage temperature occurred (November 2011) which probably suggests that the initial 

storage at very low temperatures after baseline may trigger the brown tissue discoloration. In 

a similar study on storage trials of 15 Maris Piper stocks (including stock 20, 23 and 12 used 

in this present study) conducted by A. Briddon at Sutton Bridge Crop Science Research 

(SBCSR) in 2011, it was reported that BH symptoms were not detected directly after storage 

at very low temperatures (1.5 and 3.5
o
C). However, he also reported that stock 23 

(susceptible to BH) had ca. 6-fold higher BH incidence compared to stock 20 (susceptible to 

BH) and stock 12 (non-susceptible to BH) after packaging trials (Adrian Briddon, personal 

report, SBCSR). Also, those discolorations indicated during this present experiment were 

sometimes accompanied with brown scattered blotches similar to those symptoms observed 

in other physiological disorders named as brown centre, physiological necrosis, internal 

brown spot (Reeve, 1968). Craft et al. (1958) reported brown tissue discolorations in the 
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central tuber tissues developed due to the low temperature injury in potatoes cvs. Russet 

Rural and Kennebec packed in ventilated polyethylene bags and stored at 0
o
C for ca. 4 

months. Low temperature injury in potato tubers may be caused after storage at those cold 

temperatures slightly above the freezing point (0 - 2.5
o
C), but the disorder may also be 

induced at 3.8 – 4.4
o
C depended on the cultivar. Brown tissue discoloration initially occurs in 

vascular ring and the outer part of the tuber, but severe damage may result in grey and brown 

to black discoloration symptoms in the internal tuber tissue. However, its symptoms may 

overlap with other physiological disorders and pathogen diseases (Smith, 1978; Hooker, 

1981; Wale et al., 2008; UNECE 4
th

 session note, 2011). Also, those tissue discolorations in 

the central tuber part observed from Craft et al. (1958) were similar to those of BH symptoms 

(dark internal discoloration in the central tuber part) and not symptoms of low temperature 

injury. 

         Mimicking the shelf-life conditions by transferring the tubers from a low initial storage 

temperature (1.5 or 3
o
C) to 15

o
C and storing them unwashed and unpacked in either air only 

or CA (10% CO2) in sealed chambers with regular gas circulation, did not seem to show great 

differences in BH incidence as similar brown tissue discolorations were observed in both 

storage conditions used and yet these were more evident after storage in air (21% O2). It has 

been reported that BH development can occur at any temperature by O2 deprivation, but at 

low temperatures (5
o
C) its development requires longer time. However, it is believed that the 

disorder may rapidly develop at 0 - 2.5
o
C (Link et al., 1932; O’Brien and Rich, 1976; Smith, 

1978; Hooker, 1981; Wale et al., 2008). In 1967, Lipton carried out an experiment by storing 

packed potatoes cv. White Rose (24 h after harvest) in CA chambers with 0.5, 1, 5 or 21% O2 

at various temperatures (5, 15, 20 and 22
o
C) and reported that incidence of BH (10 - 13%) 

occurred after storage in very low O2 levels (0.5 and 1% O2) at 5 and 15
o
C after 8-16 days of 
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storage. The author also reported no indications of BH in storage at 5 and 21% O2 (air) at 

higher temperatures. Furthermore, Butchbaker et al. (1967), reported severe incidence of BH 

in unwashed packed potatoes cv. Kennebec after storage in CA chambers with 10% O2 and 

10-24% CO2 at 4
o
C for six months.. Those findings suggest that packaging combined with 

storage at lower O2 levels and/or high CO2 concentrations, poses also a significant barrier by 

further promoting the O2 restriction (Beaudry, 2000; Fonseca et al., 2000; Watkins, 2000). 

However, in this present experiment, it seems that O2 was  not really restricted in those 

chambers used where tubers were respiring normally somehow and respiration rate recorded 

by all stocks was mainly affected from the cold initial storage temperature, the efflux of CO2 

for those tubers held under CA conditions and a combination of both factors. Nevertheless, a 

relation between respiration rate and BH incidence could not be carried out as the former was 

measured placing three tubers in a jar using the Sable Respiratory System (see Chapter 3; 

session 3.4). After packaging trials on 15 Maris Piper stocks conducted in 2011, A. Briddon 

reported that BH incidence was 2-fold higher in punched polythene packed potatoes 

compared to those unpacked after storage at 20
o
C for 13 days. He also concluded that initial 

storage temperature at 1.5
o
C effectively increased BH incidence mainly in packed potatoes 

compared to 3.5
o
C, but BH symptoms were accompanied with grey diffusion (suggested as 

total % of BH symptoms) were more evident in unpacked tubers (Adrian Briddon, personal 

report, 2011). It is obvious that low initial storage temperature may influence the incidence of 

BH-like symptoms. However, it is still unclear whether brown tissue discolorations indicated 

herein were stimulated or induced at very low initial storage temperature and then 

exacerbated in both storage conditions at 15
o
C. The temperature and exposure period in 

which BH shows greater incidence cannot readily be predicted (Zhou et al, 2003) and 

therefore BH incidence was also evident on sampling days 0, but in general was randomly 

evident in all three sampling days (viz. 0, 3 and 7). 
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        It is worth mentioning that when potatoes were transferred unwashed from the cold 

temperature in order to be sampled on day 0 at 15
o
C, a prior 3 hour warming up for the tubers 

was required before sampling. It is well known that when potatoes transferred from a cooler 

to warmer temperature then condensation phenomenon occurs on their skin surface due to 

temperature difference and a restriction in O2 diffusion arises due to the water film formed on 

their skin (Burton and Wigginton, 1970; Hooker, 1981; Pringle et al., 1996, 2009; Wale et 

al., 2008). However, during this experiment condensation did not occur. 

           Additional factors examined in this study were the possible effects of tuber size 

(namely length and maximum equatorial diameter) and tuber weight on the incidence of BH. 

Potato tubers from all three stocks examined were about same in size (ca. 102 mm in length, 

70 mm in diameter) and weight (ca. 240 g). As previously mentioned, stock 23 (susceptible to 

BH) showed ca. 3-fold greater BH incidence compared to stock 20 (susceptible to BH), 

however, none of those dimensions measured nor the weight had any effect on BH incidence. 

On the other hand, a weak positive correlation was shown between BH incidence with tuber 

size and weight measured in affected and non-affected tubers of stock 20 after storage in air 

at 15
o
C and initial storage at 1.5

o
C for 8 weeks. Tuber length (mean= 104.9 mm), diameter 

(mean= 78.78 mm) and weight (mean= 313.2 g) were significantly greater in those affected 

tubers. Also, after 8 weeks of storage, tuber length was also greater (mean= 103.3 mm) in 

affected tubers of stock 20 stored at CA and have also been previously stored at 1.5
o
C but no 

correlations between tuber length and BH incidence were observed. Once those brown tissue 

discolorations are initiated in the central part of the tuber (pith), it could be hypothesized that 

the narrowness of the pith which is positively associated with the tuber length as Tai and 

Misener (1994) pointed out and combined with the osmoregulation might have a possible role 

in tissue discoloration. However, longer tubers have narrow pith and pith cells localized in 
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various tuber parts (namely central, stem and bud end) may vary in size (Reeve et al., 1971; 

Mogen and Nelson, 1986). From those findings it cannot truly be said that heavier and bigger 

sized tubers have greater incidence to brown tissue discoloration (Stewart and Mix, 1917). It 

has been reported that brown tissue discolorations may be developed in newly formed tubers 

as well (Van Denburgh et al., 1980, 1986; Bussan, 2007; Zotarelli et al., 2012) and therefore 

BH symptoms are more evident in medium sized tubers with ca. 60-70 mm in diameter 

(unpublished survey). 

 

4.6.3. The effect of storage temperature and shelf-life conditions on the sugar content of 

potato stocks with different susceptibility to BH 

 

           Results indicated that flesh and heart tuber tissues derived from potato stocks with 

different susceptibility to BH may be well divided according to PCA on their sugar and 

phenolic content along storage time. Therefore, the effect of cold initial storage temperature 

(1.5
o
C) on both sugar and phenolic contents was evident; this occurring from 8 to 20 weeks 

of storage. In general, chlorogenic acid and its isomers tended to be more accumulated in 

flesh samples of stock 12 (non-susceptible to BH) over storage time and also in those heart 

samples of stock 23 (susceptible to BH). Additionally, sugar content was highly accumulated 

in those samples of stock 23 when initial storage temperature occurred namely after 8 weeks 

of storage until the end of the storage period (20 weeks). 

        In terms of sugar content, unsurprisingly reducing sugars namely fructose and glucose 

were initiated and rapidly accumulated after baseline where tuber subsamples have initially 

been stored at 1.5
o
C. This cold-induced phenomenon known as ‘low temperature sweetening’ 

(LTS) or ‘cold-induced sweetening’ (CIS) has been extensively studied and to date is still of 
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great interest (Muiller-Thurg, 1882; Pressey, 1969; Sowokinos, 2001; Malone et al., 2006; 

Kaul et al., 2010; Janksy et al., 2014; Zhang et al., 2014, etc.). Sucrose, the substrate for 

fructose and glucose biosynthesis, may either be catalysed by sucrose synthase or invertase 

enzymes. At cold storage temperatures, inactivation of invertase inhibitor leads to expression 

of invertase resulting in rapidly sucrose degradation to reducing sugar accumulation (Zhou 

and Solomos, 1998; Bologa et al., 2003; Kumar, 2011). At baseline, flesh sucrose was 

significantly higher in stock 20 (susceptible to BH) compared to stock 23 (susceptible to BH) 

and stock 12 (non-susceptible to BH) and heart sucrose higher in those samples of stock 23. 

In general, fructose and glucose were ca. 2 times higher in heart than in flesh tissue of stock 

20 and stock 12 with no really significant differences between those stocks and that pattern 

was followed after 8 weeks increasing from 16 to 20 weeks of storage. On the other hand, the 

cold temperature effect on sugar content was more evident in both control and discoloured 

flesh and heart tissue samples of stock 23 (susceptible to BH) from 8 to 20 weeks of storage. 

Although increased sugar content in potato tubers is related with brown to black 

discoloration; however, that is caused upon frying via Maillard reactions (Shallenberger et 

al., 1958; Mackay et al., 1990; Cottrell et al., 1993; Stark et al., 2003; McKenzie et al., 2005; 

Zommick et al., 2013). To date, no relation of reducing sugar accumulation and BH disorder 

has ever been reported. It has previously been pointed out that tuber tissues can be affected 

by other internal physiological disorders in potatoes such as brown centre, hollow heart and 

internal brown spot may accumulate reducing sugars (Davies, 1998; Bussan, 2007). In the 

present study, brown discolorations were mostly indicated in heart tissue samples of both 

susceptible to BH stocks (stock 20 and stock 23), but a few heart samples of stock 23 showed 

more intense brown to black tissue discoloration. It was observed that stock 23 which showed 

greater tissue discoloration (ca. 3-fold compared to stock 20) had also higher reducing sugar 

content compared with stock 20 and stock 12 (non-susceptible to BH) after 8 to 20 weeks of 
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storage. In fact, after 16 and 20 weeks of storage stock 23 had significantly higher fructose 

and glucose concentrations and yet the greatest BH incidence at that period of storage time. 

That high sugar accumulation in stock 23 was observed in both tissue samples suggesting that 

the whole tuber was affected after storage at low cold temperature. Sugar content may vary 

from cultivar to cultivar but it has been shown that it might be more accumulated in the pith 

indicating that its mobilization is more active towards this tuber area (Baijal and Van Vliet, 

1966; Weaver et al., 1978). When Weaver et al. (1978) examined the reducing sugar content 

in different tuber parts of six potato cultivars they reported sugar content variation between 

those cultivars after storage at 7
o
C for 2 – 4 months and/or after reconditioning at 20

o
C for 3 

weeks; however, it was shown that cvs. Kennebec and White Rose had higher reducing sugar 

content in the core tuber part while Russet Burbank the lower. Dwelle and Stallknecht (1978) 

also reported slightly higher total and reducing sugar content in central pith tissue samples of 

Kennebec compared to Russet Burbank after storage at 1.7
o
C. Those three potato cultivars 

seem to have different susceptibility to physiological disorders. O’Brien and Rich (1976) 

suggested that Russet Burbank cultivar is resistant to BH while according to Robinson and 

Secor (NDSU, 2014) this cultivar is susceptible to internal heat necrosis (IHN) and brown 

centre (BC) as Van Denburgh et al. (1980, 1986) has previously pointed out. Kennebec 

cultivar was found being susceptible to low temperature injury as Craft et al. (1958) observed 

brown tissue discoloration in the central pith part of packed tubers after storage at 0
o
C for ca. 

4 months and Butchbaker et al. (1967), severe BH symptoms after storage in CA chambers 

with 10% O2 and 10-24% CO2 at 4
o
C for six months. Also, Lipton (1967) reported BH 

incidence in White Rose potato tubers after storage in 0.5 – 1% O2 at 15 – 20
o
C with ca. 2-

fold lower glucose concentration in the outer and inner parts of the tubers compared to those 

held in air (21% O2). Furthermore, Zhou and Solomos (1998) showed increase in sugar 

content of Russet Burbank potatoes in air at 1
o
C, but strong inhibition after storage in 1.5% 



112 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

O2 at 1
o
C due to hypoxia. However, in this present study sugars were much higher compared 

to those results previously published, but it seems that different storage conditions and 

storage temperature affect the sugar accumulation. 

        Additionally, it should be reminded that in the present study, potato tuber stocks have 

been initially stored at 1.5
o
C from 8 to 20 weeks and sugar content studied at 15

o
C every four 

weeks, thus storage time may have an effect on its accumulation (Butchbaker et al., 1967; 

Spychalla and Desborough, 1990; Cottrell et al., 1993). Moreover, storage at cold 

temperatures may lead to cellular stress response by negatively affecting the membrane lipid 

composition and subsequently leading to changes in fatty acid degradation, ion leakage thus 

greater membrane permeability and cell dysfunction are caused (Sowokinos et al., 1985, 

2001; Wills, 1989; Berkel et al., 1994; Davies, 1998; Wismer et al., 1998; Blenkishop et al., 

2004; Kumar, 2011). Shekhar et al. (1979) stated that membrane permeability is greater for 

tubers stored at cold temperatures than those held at higher. Lojkowska (1988) has pointed 

out that lipid content at post-wounding phase and after aging varied between different potato 

cultivars. Thus, potato stocks with different susceptibility to BH and similar physiological 

disorders may also show susceptibility to lipid peroxidation (Davies, 1998) as it has been 

reported that some potato cultivars with higher unsaturated fatty acid content have lower 

sugar accumulation (Spychalla and Desborough, 1990). From those findings, it could be 

hypothesized that reducing sugar may be increased due to brown tissue discolorations and be 

related with BC and similar disorders. Although, it is likely that tuber tissues showing more 

intense brown tissue discoloration may contain higher sugar content as it was observed for 

both tuber tissue samples of stock 23 (susceptible to BH), that cannot really highlight a 

relation with BH due to very low indication of dark brown to black symptoms indicated in 

this study and believed to be BH symptoms.  
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4.6.4. The effect of storage temperature and shelf-life conditions on the phenolic content of 

potato stocks with different susceptibility to BH 

 

          It is well known that the shikimate pathway is responsible for the aromatic amino acid 

biosynthesis namely phenylalanine, tyrosine and tryptophan (Herrmann, 1955; Dewick, 2002; 

Vogt, 2010; Payyavula et al., 2012). Phenylpropanoid pathway is initiated by deamination of 

phenylalanine via the enzyme phenylalanine ammonia lyase (PAL) (Joos and Halbrock, 

1992; Gerasimova et al., 2005) generating a large amount of secondary metabolites including 

phenolic compounds such as hydroxycinnamic acids and flavonoids considered as a great 

source of antioxidants (Brown et al., 2005). In terms of hydroxycinnamic acids, it is believed 

that chlorogenic acid which is a combination of caffeic and quinic acid comprises about 80 – 

90% of the total phenolic content in potato tubers (Dao and Friedman, 1992) and along with 

its isomers neo-chlorogenic acid (3-O-caffeoyl-quinic acid) and crypto-chlorogenic acid (4-

O-caffeoylquinic acid) may count up to 96 – 98% (Im et al., 2008; Hamouz et al., 2010). 

        In this experiment, among the chlorogenic acids studied chlorogenic acid (5-O-

caffeoylquinic acid) was the major phenolic acid quantified followed by its isomers crypto- 

and neo-chlorogenic acid that showed appreciable quantities. Similar concentrations of both 

isomers have previously been reported in white fleshed potato cultivars (Lachman and 

Hamouz, 2005; Navarre et al., 2011; Payyavula et al., 2013). In contrast Ferndandez et al. 

(1996) observed that chlorogenic, neo- and crypto-chlorogenic acids have a quantity ratio of 

8:5:1. Significant differences between flesh and heart tissue samples and potato stocks with 

different susceptibility to BH were shown. It should be noted that phenolic content 

quantification was carried out in flesh and heart samples according to potato susceptibility to 

BH and both control and discoloured samples were merged and averaged in the case of both 
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susceptible stocks 20 and 23 due to low BH incidence indicated. Chlorogenic acid 

accumulation varied between different tuber tissues and it has been reported that is more 

accumulated in the outer tuber parts than the inner with the peel and cortex accumulating the 

highest content (Craft et al., 1958; Zucker and Levy, 1958; Dao and Friedman, 1992; 

Friedman, 1997). In general, its content may range from 33 to 12746 µg g
-1

 DW (Evers and 

Deußer, 2009) with the highest content accounting for coloured fleshed potatoes, in particular 

purple fleshed cultivars (Lewis et al., 1998; Brown et al., 2005; Andre et al., 2007; 2009; 

Navarre et al., 2011). Chlorogenic acid biosynthesis is not fully understood as several 

pathways have previously been proposed (Niggeweg et al., 2004). In this study it was 

observed that caffeoyl-D-glucose which might be a precursor for chlorogenic acid synthesis 

via hydroxyl cinnamoyl D-glucose:quinate hydroxycinnamoyl transferase (HCGQT) (Shakya 

and Navarre, 2006) varied in content but according to PCA biplots it was shown that 

caffeoyl-D-glucose was mainly accumulated when chlorogenic acid and its isomers were 

highly accumulated as well. That might happen because caffeoyl-D-glucose was quantified 

against authentic standards of caffeic acid. According to Aksamit-Stachurska et al. (2008) 

this chlorogenic acid biosynthetic pathway seems to function in transgenic lines; however, it 

is believed that in Solanaceous species chlorogenic acid is synthesized from caffeic acid via 

the enzyme hydroxycinnamoylcoenzyme A quinate hydroxycinnamoyl transferase (HQT) 

(Andre et al., 2009; Navarre et al., 2013) and in their recent study Payyavula et al. (2014) 

concluded that HQT enzyme is responsible for chlorogenic acid biosynthesis. Furthermore, it 

is well documented that due to low storage temperature a cold-induced PAL enzyme triggers 

the biosynthesis of phenolic compounds that accumulate in response to stress (Cheynier et al. 

2009). Potatoes contain ca. 40 – 50 PAL enzymes divided in two sub-families PAL1 and 

PAL2 (Andre et al., 2009). Cheynier et al. 2009 has pointed out that low temperature effect 
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should trigger both PAL activity and those enzymes involved in the phenylpropanoid 

pathway in order the phenolic compounds to be accumulated. Low storage temperature also 

triggers the accumulation of reactive oxygen species (ROS) that negatively affect the cellular 

membrane integrity. Plants have the ability to react against those ROS developing membrane 

repair mechanisms, but this ability depends on many factors. It is well known that phenolic 

compounds have scavenging activities along with vitamin C against reactive oxygen species 

(ROS) (Brown et al., 2005; Takahama et al., 2002). Also, it has been reported that vitamin C 

in potatoes decreases at low storage temperature (Kawakami et al., 2000; Dale et al., 2003) 

and that scavenging system may be also lowered, thus leading to greater cell membrane 

degradation and lipid peroxidation. Further, cell membrane stability may negatively be 

affected by calcium deficiency (Palta, 2010). Although vitamin C and scavenging system 

properties were not examined in this present study, it may be hypothesized that non-affected 

tuber tissues may be adapted differently under low storage temperature (Purvis and Shewfelt, 

1993) and also have greater scavenging activity. Therefore, it is believed that sugars may also 

affect the phenylpropanoid metabolism (Koch, 1996; Navarre et al., 2011; Payyavula et al., 

2013) and due to low storage temperature effect on sugar content, carbon sources may be 

provided for further biosynthesis of phenolic compounds such as chlorogenic acid in potatoes 

(Kulen et al., 2013). However this hypothesis has not clearly proved (Kumar, 2011). Craft el 

al. (1958) reported that total phenolic content in packed potato tubers cvs. Kennebec and 

Russet did not show any increase after storage at 0, 4 or 13
o
C for 5 months but that increase 

was due to brown tissue discoloration caused by low temperature injury. Later, Hasegawa et 

al. (1966) stated that increased chlorogenic acid content in the pith of potato cvs. Kennebec 

and Katahdin was due to sugar accumulation after storage at 4
o
C. More recent, Zhou and 

Solomos (1998) showed a 3-fold increase in chlorogenic acid after storage at 1
o
C but 

inhibition of both sugar and chlorogenic content due to hypoxia (1.52% O2) at 1
o
C was 
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observed. According to the PCA biplots, it seems that chlorogenic acid and its isomers were 

mostly accumulated in the heart samples of stock 23 and that was evident over storage period 

even though no indications of tissue discolorations were observed during baseline but there 

were no really differences between flesh and heart samples of stock 23. Further, both 

chlorogenic isomers were significantly higher in those flesh samples of stock 12 (non-

susceptible to BH) (up to 8.6 µg g
-1 

DW) with low accumulation in its heart samples and a 

similar trend was followed by stock 20 (susceptible to BH). A chlorogenic isoform was 

identified and quantified in the middle, stem and apical tuber part of Korean potato cultivars 

ranging from 1.6 – 2, 2.5 – 3.4 and 13.8 – 27.6 µg g
-1

 FW respectively (Im et al., 2008). On 

the other hand, it seems that flesh chlorogenic acid content was similar for all three stocks 

analysed after 8 weeks of storage when the initial storage temperature (1.5
o
C) occurred and 

that was probably because no discoloration in flesh tissue were indicated. In contrast, 

chlorogenic acid was significantly higher in those heart samples of stock 23 which showed 

greater BH incidence. Im et al. (2008) reported that chlorogenic acid was lower in the inner 

tuber part (pith) than in the outer. Additionally sugar content was affected by the initial 

storage temperature and that was observed in all three stocks, but it was more evident in both 

tissue samples of stock 23. 

        The amino acid phenylalanine which is the precursor for phenolic compound 

biosynthesis it was more expressed in those heart samples of stock 23 and that was more 

evident after 16 and 20 weeks of storage where stock 23 showed greater BH incidence. Also, 

tryptophan content varied between the stocks analysed but was significantly lower in stock 12 

(non-susceptible to BH), but was increased in heart samples of stock 20 and stock 23 after 16 

and 20 weeks of storage and yet according to the biplots, tryptophan was mainly accumulated 

in those discoloured heart samples of stock 23 after 20 weeks of storage. Yao et al. (2005) 
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reported that both phenylalanine and tyrosine amino acids may positively be activated by 

tryptophan. In terms of tyrosine, its content varied across storage time but after 8 and 16 

weeks of storage it significantly increased in heart samples of stock 20 (susceptible to BH) 

and a similar trend was followed by those heart samples of stock 23 (susceptible to BH) after 

16 and 20 weeks where BH incidence was greater as well. Generally, Maris Piper potatoes 

contain ca. 450 – 1190, 130 - 940 and 340 - 1190 µg g
-1 

DW phenylalanine, tryptophan and 

tyrosine after storage at room temperature ranging from 10 – 20
o
C (Davies, 1976). However 

in this study tyrosine and phenylalanine were much lower in concentration.  

        In terms of tissue discoloration, it was previously mentioned that stock 23 showed ca. 3-

times higher BH incidence compared to stock 20 (susceptible) and stock 12 (non-susceptible) 

and that was more apparent after 16 and 20 weeks of storage. In general, less and more 

intense brown tissue discolorations were indicated in the heart tissue samples. According to 

the results, after 16 and 20 weeks most of the phenolic compounds and reducing sugars 

quantified were mostly accumulated in those heart samples of stock 23. Further, PCA biplots 

performed on heart tissue samples showed that after 16 and 20 weeks of storage chlorogenic 

acid and its isomers were mainly accumulated in control heart samples of stock 23 whereas 

reducing sugars grouped in those discoloured heart samples. Also the general PCA on heart 

samples revealed that indeed control heart samples of stock 23 were well grouped according 

to chlorogenic acid and its isomers while sugars, phenylalanine and tyrosine were those 

variables differentiating the discoloured heart samples. The biochemistry of the BH disorder 

is scarce. Initially, Bartholomew (1916) reported that tyrosinase is activated at high 

temperatures (< 38
o
C) thus tyrosine is being oxidized resulting in black tissue discoloration. 

Later, Reeve (1968) after histochemical studies on affected tuber tissues showing BH 

symptoms concluded that both chlorogenic acid and tyrosine were present. It is well known 
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that both chlorogenic acid and tyrosine are the major phenolic compounds present in potato 

tubers with tyrosine being more accumulated in the inner part (Craft et al., 1958; Reeve, 

1968) and both compounds are adequate substrates for enzymatic oxidation; tyrosine by 

polyphenol oxidase (PPO or tyrosinase) and chlorogenic acid by PPO or peroxidase (POD) 

(Takahama et al., 2004; Adams, 2007). Also, black discoloration is mainly caused by tyrosine 

oxidation while chlorogenic acid oxidation results in brown pigments (Adams et al., 2007). 

However, there is confusion between substrates and enzyme activity related to tissue 

discoloration and the final colour of the oxidation products (Werij et al., 2007). Chlorogenic 

content was much higher than that of tyrosine, thus ideally it could be hypothesized that the 

former compound has greater possibility to be involved in tissue discoloration. However, it 

was more accumulated in those control heart samples of stock 23. It is still unclear if tyrosine 

or chlorogenic acid or other phenolic compounds that were not quantified contributed to 

those brown tissue discolorations indicated in this study and it is more likely that caused due 

to initial storage temperature as BH incidence was observed in both storage conditions and 

yet was greater in those tubers stored in air than in CA (10% CO2).  

 

4.7. Conclusions 

        In conclusion, the cold initial temperature was the main factor influencing both 

respiration rate and compositional changes in potato tubers from stocks with different 

susceptibility to BH. Respiration rate could not be related with BH incidence but a similar 

trend was followed by all stocks analysed where CO2 production was greater in those tubers 

initially stored at 1.5 than 3
o
C and this trend was more evident when tubers held 10% CO2. 

BH incidence was not observed at baseline but brown tissue discolorations in the heart part of 

both susceptible stocks (20 and 23) were indicated after 8 weeks of storage at 1.5 or 3
o
C. 
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Similar brown tissue discolorations were observed in both air and CA storage conditions 

suggesting that 10% CO2 did not affect the BH incidence as it was expected and yet tissue 

discoloration was mainly observed in those tubers stored in air and initially stored at 1.5
o
C 

suggesting that O2 was not really depleted. It seems that initial storage temperature had a 

greater effect on stock 23 which also showed significantly higher BH incidence compared to 

stock 20 (susceptible to BH) and stock 12 (non-susceptible to BH). Stock 23 showed greater 

sugar accumulation in both flesh and heart tissue samples suggesting that the whole tuber was 

affected and yet higher sugar content in discoloured samples was observed and that could be 

a biomarker of susceptibility. It was also observed that amino acids and chlorogenic acid 

tended to be more accumulated in those heart samples of stock 23 which had greater BH 

incidence and increased when BH incidence was higher as well indicating differences in gene 

expression between the potato stocks with different susceptibility to BH. Also, it seems that 

brown tissue discolorations were triggered and induced due to low storage temperature, but 

the fact that BH incidence was very low during this experiment it cannot be concluded that 

those tissue discolorations observed were precursors of BH as the temperature and time 

exposure in which BH is increased could not be predicted. 
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CHAPTER FIVE: 

The effect of storage temperature and shelf-life conditions on the 

physiological and biochemical changes of potato stocks with 

different susceptibility to blackheart disorder (Year 2: 2012-2013) 

 

5.1. Introduction 

        Similar experiments to that of year 1 (2011-2012) were conducted in this year 2 study 

with some modifications. Three potato stocks cv. Maris Piper with different susceptibility to 

BH (two susceptible stocks and one non-susceptible) were also selected and used for 

physiological and biochemical analysis. In this study, potato tubers were initially stored at 

1.5
o
C only. Two experiments were conducted within a period of seven months. The first 

experiment (December 2012 – May 2013) was similar to that of year 1, but in year 2 potato 

stocks were transferred from a cold temperature (1.5
o
C) to 20

o
C for shelf-life evaluation 

where storage took place in air only (21% O2) and tubers sampled at two sampling days (0 

and 7). The second experiment was carried out in June 2013 by storing potato tubers under 

various gas combinations at 20
o
C for 14 days and only physiological assessments were 

evaluated. 

 

5.2. Materials and methods 

        Real time respiration rate measurement and sample preparation were provided in 

Chapter 3: Section 3.4 and 3.5 respectively. In Chapter 3; Section 3.6, sample extraction and 

quantification for non-structural carbohydrate content (sugars) and phenolic content analysis 

was described. 
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5.3. A) Experiment 1 

5.3.1. Respiration rate 

 

         Tuber respiration rate for potatoes cv. Maris Piper stock 7 (susceptible to BH), stock 12 

(susceptible to BH) and stock 3 (non-susceptible to BH) was analysed using ANOVA. 

Factors included the potato stock [stock 7, stock 12 (both susceptible to BH) and stock 3 

(non-susceptible to BH)], outturns [baseline, week 4, week 8, week 12, week 16 and week 20 

(OT)] on sampling days (day 0 and 7) and corrected replication (n = 3). The structure used 

was STOCK*OT*DAY.  

          In general, stock 3 (non-susceptible to BH) scored the highest respiration rate with 

mean of 7.62 ml CO2 kg
-1

 h
-1 

compared to stock 7 and stock 12 (both susceptible to BH) 

(means = 5.32 and 5.14 ml CO2 kg
-1

 h
-1 

respectively). CO2 rates were ca. 2 times significantly 

higher in stock 3 after 4, 8 and 12 weeks of storage (Fig. 5.1), However, there were no 

significant differences between stock 7 and stock 12 over storage time and their respiration 

rate ranged from 4.22 to 6.41 and 4.72 to 6.79 ml CO2 kg
-1

 h
-1 

respectively. According to 

Table 5.1 respiration rate was ca. 2 times higher for those tubers of stock 3 (non-susceptible 

to BH) when compared to both susceptible stocks 7 and 12 on sampling day 0. However, 

there were no significant differences between the susceptible stocks 7 and 12 neither on day 0 

nor on day 7. Therefore, on sampling day 7, the respiration rate was almost the same for all 

stocks with no significant differences observed (Table 5.1). 
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Figure 5.1 Respiration rate (ml CO2 kg
-1

 h
-1

) of potato stocks cv. Maris Piper [stock 7 

(susceptible to BH), stock 12 (susceptible to BH) and stock 3 (non-susceptible to BH)] 

recorded after baseline (BL) and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C 

for 4, 8, 12, 16 and 20 weeks. Values are means (n = 3). General LSD is shown.  

 

Table 5.1 Mean respiration rate (ml CO2 kg
-1

 h
-1

) of potato tubers cv. Maris Piper stock 7 

(susceptible to BH), stock 12 (susceptible to BH) and stock 3 (non-susceptible to BH) 

recorded after baseline and storage in air at 20
o
C on sampling days 0 and 7 (Appendix C; 

Table 1).  

STOCK 
SAMPLING DAY 

0 7 

Stock 7 5.77 4.87 

Stock 12 5.69 4.59 

Stock 3 10.12 5.13 

 

5.3.2. The incidence of blackheart 

 

          Results of BH incidence for potato tubers cv. Maris Piper stock 7 (susceptible to BH) 

stock 12 (susceptible to BH) and stock 3 (non-susceptible to BH) across storage time are 
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tabulated in Table 5.2. Tubers were sampled at two different sampling days (0 and 7) each 

four weeks at 20
o
C (n = 324 in total). Tubers were initially stored at 1.5

o
C for 4, 8, 12, 16 and 

20 weeks. Incidence of BH was initially observed after the baseline (9.3%) peaking in March 

(13%) and in May (13%) after 12 and 20 weeks of storage, respectively (Table 5.2). Example 

figures of tubers with tissue discoloration indications are present in Appendix A; Figure 2.1 – 

2.5. 

         According to Table 5.3, it was shown that stock 7 (susceptible to BH) had a greater 

susceptibility to BH compared to stock 12 (susceptible to BH) and stock 3 (non-susceptible to 

BH) (Table 5.3). However, Chi Square test results showed no significant differences in BH 

incidence between stock 7 and stock 12 over storage time (Table 5.4). The only significant 

differences in BH incidence were found between the susceptible stocks (7 and 12) when 

compared to the non-susceptible to BH stock 3 (Table 5.4). 

 

Table 5.2 Total percentage of BH incidence for potato tubers cv. Maris Piper stock 7, stock 

12 (susceptible to BH stocks) and stock 3 (non-susceptible to BH stock) after 154 days of 

storage in air. 

Sampling point Month Year Tubers used  BH incidence 

(%) 

Baseline 

(days 0 and 7) 
December 2012 54 9.3 

Week 4 

(days 28 and 35) 
January 2012 54 9.3 

Week 8 

(days 56 and 63) 
February 2013 54 1.9 

Week 12 

(days 84 and 91) 
March 2013 54 13 

Week 16 April 2013 54 11.1 
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(days 119 and 126) 

Week 20 

(days 147 and 154)  
May 2013 54 13 

TOTAL 
  

324 9.6 

 

Table 5.3 Percentage BH incidence of potato cv. Maris Piper stock 7, stock 12 (susceptible to 

BH stocks) and stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. 

Tubers were initially stored at 1.5
o
C for 4, 8, 12, 16 and 20 weeks.  

 Stock 7 Stock 12 Stock 3 

 Day 0 Day 7 Day 0 Day 7 Day 0 Day 7 

Sampling 

point 
BH % 

Baseline 0 22.2 0 22.2 0 0 

Week 4 22.2 11.1 11.1 11.1 0 0 

Week 8 0 11.1 0 0 0 0 

Week 12 11.1 11.1 44.4 0 0 0 

Week 16 11.1 33.3 11.1 11.1 0 0 

Week 20 22.2 22.2 11.1 11.1 0 0 

TOTAL % 11.1 18.5 13.0 9.3 0 0 

 

Table 5.4 Chi-square test results of BH incidence for potato tubers cv. Maris Piper between 

stock 7, stock 12 (susceptible to BH stocks) and stock 3 (non-susceptible to BH) after storage 

in air at 20
o
C over storage time (baseline included). Tubers were initially stored at 1.5

o
C for 

4, 8, 12, 16 and 20 weeks (P < 0.05) (Appendix C; 2.1 – 2.3). 

Storage time BH % 

All outturns 
Stock 7 Stock 12 Probability 

14.8 11.1 0.418 

All outturns 
Stock 7 Stock 3 Probability 

14.8 0 < 0.001 

All outturns 
Stock 12 Stock 3 Probability 

11.1 0 0.0004 
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5.3.2.1. Effect of tuber respiration rate, tuber size and tuber weight on BH incidence 

 

           ‘Two-sample’ t-tests were used in order to estimate a possible link between tuber 

respiration rate and BH incidence. However, no significant differences were observed 

comparing tuber respiration rate with BH incidence for stock 7 and 12, after baseline and 4, 

8, 12, 16 and 20 weeks of storage (Table 5.5). According to Table 5.5, there were no 

significant effects of tuber size and weight on the incidence of BH for those tubers of stock 7 

(Table 5.5). A significant effect of tuber weight on BH incidence for those tubers of stock 12 

was observed after 16 weeks of storage (P = 0.007) (Table 5.6). Affected tubers of stock 12 

had greater weight (mean = 356.2 g) compared to unaffected ones (mean = 281.6 g).  

Therefore, a weakly positive correlation has been found between tuber weight and BH 

incidence (r = 0.58) (Table 5.7). 

 

Table 5.5 Two-sample T-test results for BH incidence with respiration rate, tuber length, 

diameter and weight of potato cv. Maris Piper stock 7 (susceptible to BH) after baseline and 

storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 12, 16 and 20 weeks (P < 

0.05) (Appendix C; Table 3.1 – 3.20). 

Sampling point CO2 Length (mm) Diameter (mm)  Weight (g) 

Baseline 0.797 0.893 0.188 0.759 

Week 4 0.704 0.494 0.969 0.842 

Week 8 - - - - 

Week 12 0.617 0.742 0.882 0.675 

Week 16 0.930 0.464 0.106 0.216 

Week 20 0.941 0.464 0.228 0.340 
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Table 5.6 Two-sample T-test results for BH incidence and respiration rate, tuber length, 

diameter and weight of potato cv. Maris Piper stock 12 (susceptible to BH) after baseline and 

storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 12, 16 and 20 weeks (P < 

0.05) (Appendix C; Table 4.1 – 4.20). 

Sampling point CO2 Length (mm) Diameter (mm)  Weight (g) 

Baseline 0.904 0.863 0.906 0.507 

Week 4 0.918 0.516 0.144 0.341 

Week 8 - - - - 

Week 12 0.091 0.758 0.23 0.551 

Week 16 0.529 0.058 0.409 0.007* 

Week 20 0.468 0.312 0.962 0.626 

 

Table 5.7 Correlation matrix comparing tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 12 after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 16 weeks *(P < 0.05) (Appendix C; Table 4.21). 

 BH Length (mm) Diameter (mm)  Weight (g) 

BH 
- 0.3838 0.0581 0.5723* 

Length 
  - -0.1786  0.7699 

Diameter 
    - 0.2314 

Weight 
     - 

 

5.3.3. Biochemical assessments 

5.3.3.1. Non-structural carbohydrates analysis 

  

           Fructose, glucose and sucrose, the major sugars present in potato tubers, were 

identified and quantified in flesh and heart tissue of discoloured and control samples of stock 

7 (susceptible to BH). Also, matched control samples of stock 3 (non-susceptible to BH) were 

also included.  
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Fructose 

          In general, fructose content was ca. 2-fold higher in heart than in flesh tissue samples of 

all stocks sampled (61.6 and 35.6 mg g
-1

 DW respectively). At baseline, the concentration of 

fructose was significantly higher in BC (brown center) heart compared to BC flesh and BCL 

(brown center light) samples. However all those affected samples had significantly lower 

fructose compared to control samples of stock 7 and stock 3 as well. Heart fructose of stock 3 

was ca.2-times greater (50.6 mg g
-1

 DW) compared to its flesh samples and yet ca. 2-3 times 

higher compared to those samples of stock 7 (Fig. 5.2). There were no significant differences 

in fructose content between both stocks analysed from 4 weeks to the end of storage time 

(Fig. 5.2). 

  

Glucose 

          Similarly, glucose content was generally ca. 2 higher in heart than in flesh tissue 

samples (61.9 and 35.2 mg g
-1

 DW). At baseline BCL heart samples contained ca. 2-fold 

greater glucose (54 mg g
-1

 DW) compared to BC heart samples (24.2 mg g
-1

 DW), however, 

there were no significant differences between BCL and control heart samples of stock 7 and 

control samples of stock 3 (non-susceptible to BH) (Fig. 5.3). Flesh content in controls flesh 

samples of stock 7 was significantly higher than affected samples and flesh samples of stock 

3 at baseline. From 4 to 20 weeks of storage, a similar pattern was followed by all those 

samples of stock 7 where heart glucose was ca. 2-fold significantly higher than in flesh tissue. 

This trend (heart > flesh glucose) was also observed in those samples of stock 3 after 4 and 16 

weeks of storage. After 8 weeks of storage there was a significant decrease in flesh and heart 

glucose content of stock 3 (11.7 and 14 mg g
-1

 DW respectively) (Fig. 5.3). 
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Sucrose 

          In terms of sucrose, there were no significant differences between flesh and heart tissue 

samples regardless the stock. However, stock 3 (non-susceptible to BH) had significantly 

lower sucrose content along storage time compared to stock 7 (Fig. 5.4). At baseline and after 

4 weeks of storage, affected samples of stock 7 contained significantly higher sucrose than 

those control samples of stock 7 and stock 3. Sucrose content was similar for those affected 

and control samples of stock 7 after 12, 16 and 20 weeks of storage (Fig. 5.4). 
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Figure 5.2 Fructose unlogged and logged10 concentrations (mg g
-1

 DW) in flesh and heart tissue of potato tubers Maris Piper stock 7 

(susceptible to BH) and stock 3 (non-susceptible to BH) at baseline and after storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 

12, 16 and 20 weeks. Values are means (n = 3). General LSD is shown (Appendix C; Table 5.1 – 5.2) 
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Figure 5.3 Glucose unlogged and logged10 concentrations (mg g
-1

 DW) in flesh and heart tissue of potato tubers Maris Piper stock 7 

(susceptible to BH) and stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 

12, 16 and 20 weeks. Values are means (n = 3). General LSD is shown (Appendix C; Table 5.3 – 5.4). 
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Figure 5.4 Sucrose unlogged and logged10 concentrations (mg g
-1

 DW) in flesh and heart tissue of potato tubers Maris Piper stock 7 

(susceptible to BH) and stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 

12, 16 and 20 weeks. Values are means (n = 3). General LSD is shown (Appendix C; Table 5.5 – 5.6). 
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5.3.3.2 Phenolic content analysis 

Hydroxycinnamic acid derivatives 

           Results indicated that chlorogenic acid showed greater abundance of all 

hydroxycinnamic acids examined in potato tissue samples. At baseline and after 4 weeks of 

storage, a similar trend was followed by affected and control samples of stock 7 where heart 

chlorogenic acid was higher compared to flesh samples. Heart samples with BCL 

discoloration had significantly higher chlorogenic acid concentration at baseline (1204 µg g
-1

 

DW) and also after 4 weeks of storage along with control heart samples of stock 7 (919 and 

954 µg g
-1

 DW respectively) (Fig. 5.5). After 12 weeks of storage heart samples with pith 

discoloration had greater chlorogenic acid content (911 µg g
-1

 DW). However, after 16 weeks, 

BC and pith samples had significantly lower chlorogenic acid (Fig. 5.5). In terms of stock 3, 

oppositely chlorogenic acid was ca. 2 times significantly higher in flesh than in heart samples 

(422-583 and 152-217 µg g
-1

 DW respectively) at baseline and after 4 and 12 weeks of 

storage. However, after 8, 16 and 20 weeks chlorogenic acid content was lower and there 

were no differences between flesh and heart samples of stock 3 (Fig. 5.5).  

         Chlorogenic acid isomers neo- and crypto-chlorogenic acid were also identified and 

quantified. Neo-chlorogenic acid was ca. 4 times higher in flesh tissue of stock 3 when 

compared to stock 7 (Fig. 5.6). Flesh neo-chlorogenic acid content of stock 3 was 

significantly increased at baseline (7.87 µg g
-1

 DW), decreased after 4 weeks of storage (3.47 

µg g
-1

 DW) and then started increasing again along the storage time. According to Figure 5.6, 

flesh tissue samples had always higher neo-chlorogenic content compared to heart tissue over 

storage time and that was obvious in both stocks (Fig. 5.6). A similar trend followed where 

crypto-chlorogenic acid concentration was ca. 2 times higher in flesh tissue of stock 3 (non-

susceptible) compared to stock 7 (susceptible to BH) (Fig. 5.7). In contrast, crypto-
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chlorogenic acid was 2 times lower in heart tissue of stock 3 compared to stock 7. After 12 

weeks of storage flesh crypto-chlorogenic acid was significantly higher in stock 3 (66 µg g
-1

 

DW) and also in pith heart samples of stock 7 (54.7 µg g
-1

 DW). After 16 weeks of storage, 

there was a significant decrease of crypto-chlorogenic acid in control flesh samples of stock 7 

(5.8 µg g
-1

 DW). Furthermore, after 20 weeks of storage heart crypto-chlorogenic acid of pith 

samples of stock 7 was significantly higher (49 µg g
-1

 DW) (Fig, 5.7). 
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Figure 5.5 Chlorogenic acid unlogged and logged10 concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris Piper stock 7 

(susceptible to BH) and stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 

12, 16 and 20 weeks. General LSD is shown (Appendix C; Table 6.1 – 6.2).  
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Figure 5.6 Neo-chlorogenic acid unlogged and logged10 concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris Piper 

stock 7 (susceptible to BH) and stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 

4, 8, 12, 16 and 20 weeks. General LSD is shown (Appendix C; Table 6.3 – 6.4).  
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Figure 5.7 Crypto-chlorogenic acid unlogged and logged10 concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris Piper 

stock 7 (susceptible to BH) and stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 

4, 8, 12, 16 and 20 weeks. General LSD is shown (Appendix C; Table 6.5 – 6.6). 
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Flavonols        

        According to Figures 5.8 and 5.9, both flavonols; quercetin-3,4-O-diglucoside and rutin 

respectively, followed a similar pattern where they were ca. 2-3 times more accumulated in 

stock 3 (non-susceptible to BH) when compared to stock 7 (susceptible to BH) irrespective of 

the tissue sampled. However, both flavonols varied in content among storage time. The 

highest quercetin-3,4-O-diglucoside concentrations were observed in those samples of stock 3 

after 4 and 8 weeks of storage (12.8 and 12.2 µg g
-1 

DW respectively) (Fig. 5.8). Similarly, 

after 4 and 8 weeks of storage stock 3 contained the highest rutin concentrations ranging from 

96.4 and 111.5 µg g
-1 

DW respectively (Fig. 5.9).  

 

Aromatic amino acids 

         In terms of the three amino acids quantified, no statistical analysis was performed for 

tyrosine due to high number of missing values. However, significant differences in 

phenylalanine and tryptophan content were shown. In general, phenylalanine was greater in 

heart tissue samples but significantly higher only in those samples of stock 7. At baseline and 

after 16 weeks of storage, BCL heart samples had the highest phenylalanine content (29.68 µg 

g
-1 

DW respectively). Furthermore, high phenylalanine content was also observed in heart 

samples with BC and pith discoloration and also in control heart samples of stock 7 after 16 

weeks of storage (28.72, 21.44 and 25.24 µg g
-1 

DW respectively). Also, the lowest 

phenylalanine concentrations were shown in flesh and heart samples with BC after 12 weeks 

of storage (7.99 and 7.06 µg g
-1 

DW respectively). In terms of stock 3 (non-susceptible to BH) 

there were no significant differences in phenylalanine content between flesh and heart 

samples over storage time ranging from 8.44 - 11.31 and 11.58 - 14.79 µg g
-1 

DW 

respectively (Fig, 5.10). Tryptophan was only significantly higher in heart samples with BCL 
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after 8 and 16 weeks of storage (243 and 221 µg g
-1 

DW respectively). No significant 

differences between control samples of stock 7 and stock 3 were observed (Fig. 5.11). 

         No statistical analysis was carried out for caffeic, p-coumaric and ferulic acids because 

those compounds were either undetectable or very low in abundance and quantification was 

unattainable. Additionally, feruloylquinic acid and caffeoyl-D-glucose could not be 

statistically analysed due to large number of missing values. There was zero abundance of 

isorhamnetin-3-rutinoside and isorhamnetin-3-glucoside in both stocks sampled. 

 

 



139 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

STOCK 7 (affected)

BL 4 8 12 16 20

Q
-3

,4
-O

-d
ig

lu
co

si
d

e 
( 

g
 g

-1
 D

W
)

0

2

4

6

8

10

12

14

16

BC FLESH

BC HEART

BCL FLESH

BCL HEART

PITH FLESH

PITH HEART

STOCK 3 (weeks)

BL 4 8 12 16 20

FLESH

HEART
STOCK 7 (control)

Storage time (weeks)

BL 4 8 12 16 20

FLESH

HEART

BL 4 8 12 16 20

Q
-3

,4
-O

-d
ig

lu
co

si
d

e 
lo

g
1

0
 (


g
 g

-1
 D

W
)

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

LSD

Storage time (weeks)

BL 4 8 12 16 20

LSD

BL 4 8 12 16 20

LSD

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Quercetin-3,4-O-diglucoside unlogged and logged10 concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris 

Piper stock 7 (susceptible to BH) and stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 4, 8, 12, 16 and 20 weeks. General LSD is shown (Appendix C; Table 6.7 – 6.8). 
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Figure 5.9 Rutin unlogged and logged10 (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris Piper stock 7 (susceptible to BH) and 

stock 3 (non-susceptible to BH) after baseline and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 12, 16 and 20 weeks. 

General LSD is shown (Appendix C; Table 6.9 – 6.10). 
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Figure 5.10 Phenylalanine unlogged and logged10 concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris Piper stock 7 

(susceptible to BH) and stock 3 (non-susceptible to BH) after baseline (0 weeks) and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C 

for 4, 8, 12, 16 and 20 weeks. General LSD is shown (Appendix C; Table 6.11 – 6.12). 
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Figure 5.11 Tryptophan unlogged and logged10 concentrations (µg g
-1 

DW) in flesh and heart tissue of potato tubers cv. Maris Piper stock 7 

(susceptible to BH) and stock 3 (non-susceptible to BH) after baseline (0 weeks) and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C 

for 4, 8, 12, 16 and 20 weeks. General LSD is shown (Appendix C; Table 6.13 – 6.14). 
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5.3.3.3. Multivariate analysis 

 

             Sugar and phenolic compounds were quantified in 96 samples (flesh and heart tuber 

tissues) in total (section 5.3.3.1 and 5.3.3.2.). Three sugar variables (fructose, glucose and 

sucrose) combined with seven phenolic compounds (chlorogenic acid, neo-chlorogenic acid, 

crypto-chlorogenic acid, quercetin-3,4-O-diglucoside, rutin, tryptophan and phenylalanine) 

were used as analytical data for PCA. PCA was carried out in order to further visualize the 

accumulation of sugar and phenolic compounds in flesh and heart tissue samples of two 

stocks [stock 7 (susceptible to BH) and stock 3 (non-susceptible to BH)]. Both stocks were 

stored at 20
o
C in air only and initially stored at 1.5

o
C for 4, 8, 12, 16 and 20 weeks of storage 

(sampling points). There was no initial storage temperature at baseline. However, PCA 

biplots were formed over storage time and tuber tissues labelled according to stock [1= stock 

7(susceptible to BH) and 2= stock 3 (non-susceptible to BH)] corresponded with tissue 

discoloration [viz. pith, brown centre light (BCL) and brown centre (BC)]. Control samples of 

stock 7 were labelled as ‘C’ meaning control= no discoloration and even though no tissue 

discoloration was indicated in flesh samples of stock 7 labelling was carried out according to 

tissue discoloration just to clarify the affected tuber from which the samples were derived. 

Samples of stock 3 showing no tissue discoloration labelled as 2 (Fig. 5.12a and b).  

            The PCA on the flesh tissue data showed a clear separation of the stocks on PC1 

(captured 93.62% of the variance) and PC2 (captured 3.49% of the variance) capturing almost 

97% of the variance in total (Fig 5.12a). Stock 7 (susceptible to BH) was clearly clustered 

according to sugars. On the other hand, neo- and crypto-chlorogenic acids, rutin and 

quercetin-3,4-O-diglucoside contributed for separating stock 3 (Fig. 5.12a).  

             The PCA on the heart tissue data showed a clear separation of the stocks on PC1 

capturing 97.36% of the variance and PC2 only captured a further 1.52% of the variance 
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(98.8% of the variance in total) (Fig. 5.12b). A clear separation for those heart samples of 

stock 3 (non-susceptible to BH) was observed which according to the biplot corresponded 

with higher rutin and quercetin-3,4-O-diglucoside whereas phenylalanine was a less 

important variable separating stock 3 from stock 7. On the other hand, a separation between 

control and discoloured heart samples of stock 7 was not clearly observed. A few control 

samples were grouped according to crypto- and chlorogenic acid and reducing sugars along 

with some pith samples. BCL heart samples were randomly clustered according to tryptophan 

and sucrose (Fig. 5.12b). 
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Figure 5.12 General PCA biplot of flesh (a) and heart (b) tuber tissue labelled by stock [1= stock 7 (susceptible to BH) and 2= stock 3 (non-

susceptible to BH) corresponded with or without tissue discoloration [C= non-affected (control), PITH, brown centre light (BCL) and brown 

centre (BC)]. Tubers were stored at 20
o
C in air and initially stored at 1.5

o
C for 4, 8, 12, 16 and 20 weeks of storage. Biplots formed over storage 

time.  
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B) Experiment 2  

5.3.4. Respiration rate  

 

         Tuber respiration rate was recorded for potatoes cv. Maris Piper stock 7, stock 12 

(susceptible to BH stocks) and stock 3 (non-susceptible to BH) after baseline (day 0) in air 

only and after 3, 7, 10 and 14 days of storage at 20
o
C in four different gas combinations (viz. 

A = 21% O2, B = 10% CO2, C = 10% O2 and D = 5% O2). Tubers have initially been stored 

at 1.5
o
C for ca. 8 months. However, efflux of CO2 was included in respiration rate for those 

tubers treated with 10% CO2. Statistical analysis was performed with GenStat 16
th

 Edition 

(VSN International Ltd., Herts., UK) using ANOVA in order to estimate the interactions 

between factors on CO2 production of potato tubers. These factors included were the tuber 

stock [stock 7(susceptible to BH), stock 12 (susceptible to BH) and stock 3 (non-susceptible 

to BH)], sampling days (day 0, 3, 7, 10 and 14) and various gas combinations (viz. A = 21% 

O2, B = 10% CO2, C = 10% O2 and D = 5% O2). 

           In general, the highest and the lowest respiration rates were recorded after storage in 

10% CO2 and 5% O2 respectively along storage time (3 to 14 days). On sampling day 0 

(baseline), respiration rate was ca. two times higher for those tubers of stock 12 (susceptible 

to BH) when compared to stock 7 (susceptible to BH) and  stock 3 (non-susceptible to BH) 

with concentrations of 9.29, 5.2 and 6.14 ml CO2 kg h
-1 

respectively. Respiration rate was 

relatively constant for all three stocks after 3, 7 and 10 days of storage in air only (A = 21 % 

O2) and remained constant for stock 3 (non-susceptible to BH) until day 14 (Fig. 5.17a). 

However, a significant increase in CO2 production was observed for those tubers of both 

susceptible stocks (12 and 7) on sampling day 14 (Fig. 5.17a).  

        When tubers were held under 10% CO2, respiration rate did not change on sampling day 

3 for both susceptible stocks (12 and 7) compared to those rates after storage in air (21% O2), 
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but was significantly increased on day 7, remained constant on day 10 and then increased 

again on day 14. However, respiration rate recorded on sampling day 10 did not change for 

stock 7 after 10% CO2 compared to 21% O2 (Fig. 5.17a,b). The highest CO2 rates at that 

storage condition (10% CO2) were recorded by stock 3 (non-susceptible to BH). The 

respiration rate of stock 3 remained constant from day 3 to 10 and then significantly 

increased on day 14 (17.49 ml CO2 kg h
-1

) (Fig. 5.17b).  

          A ‘W’ shaped pattern was followed by both susceptible stocks (12 and 7) after storage 

in either 10 or 5% O2 where respiration rate was decreased on sampling day 3 and 10 and 

increased on day 7 and 14 (Fig. 5.17c,d). However, that pattern was only followed by stock 3 

(non-susceptible to BH) when stored in 10% O2 (Fig. 5.17c). A constant respiration rate 

remained for stock 3 after storage in 5% O2 for 3, 7 and 10 days ranging from 3.25, 3.74 and 

2.09 ml CO2 kg h
-1

 respectively, but significantly increased on day 14 (5.19 ml CO2 kg h
-1

) 

(Fig. 5.17d). Also, on sampling day 14 respiration rate was about the same for stock 3 (non-

susceptible to BH) after storage in either 5, 10 or 21% O2 (Fig. 5.17a,c,d). Furthermore, on 

sampling day 7 when tubers stored in 10% O2, respiration rate recorded by all stocks was 

significantly higher compared to storage at 21% O2 and there were no changes in CO2 

production between 10% O2 and 10% CO2 storage for both susceptible stocks 7 and 12 (Fig. 

5.17b,c). 
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Figure 5.17 Respiration rate (ml CO2 5 kg
-1

 h
-1

) of potato cv. Maris Piper stock 7 (susceptible 

to BH), stock 12 (susceptible to BH) and stock 3 (non- susceptible to BH) recorded after 

baseline (day 0) and storage in four gas combinations (viz. A: 21% O2, B: 10% CO2, C: 10% 

O2 and D: 5% O2) at 20
o
C on sampling days 3, 7, 10 and 14. Tubers were initially stored at 

1.5
o
C for ca. 8 months (Appendix C; Table 1). 

 

5.3.5. The incidence of blackheart 

 

         The BH incidence of potato stocks after storage in four gas combinations (viz. A: 21% 

O2, B: 10% CO2, C: 10% O2 and D: 5% O2) at 20
o
C was very low. Generally, BH incidence 

was greater for those tubers stored in 5% O2. The total number of discoloured tubers of stock 

7 (susceptible to BH) and stock 12 (susceptible to BH) are tabulated in Table 5.8 and Table 

5.9 respectively. Due to very low BH incidence in both susceptible stocks (stock 7 and stock 

12) through the storage period, Generalized Linear Models (GLM) analysis was used as 

a) b) 

c) d) 
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statistical tool using GenStat 16
th

 Edition (VSN International Ltd., Herts., UK). GLM 

analysis extends the usual regression framework to cater for non-normal distributions 

incorporating a link function which defines the transformation required to make the model 

linear. In this data set a binomial distribution and logit function were used in order a linear 

model to be fitted. 

        GLM were performed in order to assess the incidence of BH of each susceptible stock 

separately after tuber storage in those four gas combinations where tubers sampled on 

sampling days 3, 7, 10 and 14. Baseline data was not included due to zero BH incidence 

observed. Regarding stock 7 (susceptible to BH) results showed that the chi pr. value was 

greater than 0.05 (chi pr. = 0.09) which means that neither gas combination nor sampling day 

explained a significance in BH incidence (Appendix C; Table 8) However, results for stock 

12 (susceptible to BH) indicated a significance in BH incidence (chi pr. = 0.045) (Appendix 

C; Table 9) and that was due the highest indication of discoloured tubers of stock 12 on 

sampling day 10 (Table 5.9). Example figures of tubers showing tissue discolorations are 

presented in Appendix A; Figure 2.6 – 2.7). 

Table 5.8 Total number of discoloured potato stocks cv. Maris Piper stock 7 (susceptible to 

BH) after baseline (day 0) and storage in four gas combinations (viz. A= 21% O2, B= 10% 

CO2, C= 10% O2 and D= 5% O2) at 20
o
C on sampling days 3, 7, 10 and 14. 

Tubers 

used/3 

stocks 

DAY A= 21% O2 B= 10% CO2 C= 10% O2 D= 5% O2 TOTAL 

27 0 0 0 0 0 0 

108 3 0 2 1 1 4 

108 7 1 0 0 2 3 

108 10 0 1 0 3 4 

108 14 0 0 0 1 1 

 TOTAL 1 3 1 7 12 
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Table 5.9 Total number of discoloured potato stocks cv. Maris Piper stock 12 (susceptible to 

BH) after baseline (day 0) and storage in four gas combinations (viz. A: 21% O2, B: 10% 

CO2, C: 10% O2 and D: 5% O2) at 20
o
C on sampling days 3, 7, 10 and 14. 

Tubers 

used/3 

stocks 

DAY A: 21% O2 B: 10% CO2 C: 10% O2 D: 5% O2 TOTAL 

27 0 0 0 0 0 0 

108 3 0 1 0 1 2 

108 7 0 0 0 1 1 

108 10 0 1 3 2 6 

108 14 0 1 0 0 1 

 TOTAL 0 3 3 4 10 

 

5.4. Discussion 

5.4.1. The effect of storage temperature and shelf-life conditions on the respiration rate of 

potato stocks with different susceptibility to BH 

 

          Results from the 1
st
 experiment revealed that respiration rate recorded at baseline on 

sampling day 0 which was the arrival day of the potato stocks in the lab was ca. 8-9 ml CO2 

kg
-1

 h
-1

. However, when tuber sub-samples placed in chambers with regular air circulation 

and sampled at 20
o
C respiration rate significantly decreased to 4.6-5.3 ml CO2 kg

-1
 h

-1
 

showing no significant differences between those stocks with different susceptibility to BH 

on both sampling days. That decrease in respiration rate might possibly have occurred 

because on sampling day 0 namely the arrival day potato tubers experienced a variation of 

temperature changes until the time of respiration rate measurement, so when sampled on day 

7 respiration rates had already been stabilized (Craft, 1963; Schippers, 1977a). Also, it was 

observed that once tubers stored at initial cold storage temperature (1.5
o
C), stock 3 (non-

susceptible to BH) had the greater respiration rate on each sampling day 0 at 20
o
C after 4, 8 
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and 12 weeks of cold storage compared to both susceptible stocks whereas their respiration 

rates showing no significant differences. In comparison with year 1 analysis, those CO2 rates 

recorded of all stocks on sampling day 0 at 20
o
C were a bit higher than those of year 1 when 

tubers sampled on day 0 in air and have been initially stored at 1.5
o
C. On the other hand, 

respiration rates recorded on sampling day 7 were lower compared to those CO2 rates of year 

1 at the same storage conditions. Also, in year 1 it was shown that respiration rate was 

increasing from day 0 to 3 and then slightly decreasing from day 3 to 7; however, a similar 

pattern could not be observed in year 2 as respiration rate recorded on two sampling days 

(viz. 0 and 7). It should be noted that those CO2 rates in year 2 were recorded individually in 

a jar for each tuber whereas in year 1 three tubers were placed in a jar for respiration rate 

measurements (see Chapter 3; Section 3.4), so that might explain those differences in 

respiration rate and also the fact that all stocks analysed have been grown in different 

locations and under different growth conditions in both year analysis might have an impact 

on their physiology.  

        In the second experiment of year 2, potato stocks have already been initially stored at 

1.5
o
C and when sampled on day 0 considered as baseline stock 12 (susceptible to BH) 

showed greater respiration rate compared to stock 7 (susceptible to BH) and stock 3 (non-

susceptible to BH). When tuber subsamples were placed in chambers with various gas 

combinations (viz. A: 21% O2, B: 10% CO2, C: 10% O2 and D: 5% O2) and sampled on days 

3, 7, 10 and 14 respiration rate varied, but significant differences between those stocks 

analysed were more evident under storage at 10% CO2 where stock 3 scored the highest CO2 

rates compared to both susceptible stocks (7 and 12). However, the CO2 absorption of both 

susceptible stocks held under 10% CO2 was lower on sampling day 3 where respiration rates 

were lower for stock 7 and stock 12 compared to stock 3. Then, from day 3 to 7 there was an 

increase in respiration rate for both susceptible stocks which remained constant till day 10 
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and increased again on sampling day 14 reaching those CO2 rates of stock 3 (non-susceptible 

to BH). Those findings show the differences in CO2 tolerance between those stocks analysed 

(Mathooko, 1996; Kader, 2003). Also, those rates recorded by stock 3 were similar to those 

recorded in year 1 of tubers held under 10% CO2 and previously been stored at 1.5
o
C. 

Although respiration rates were lower after storage in 5% O2 as it was expected, however, 

there was a variation in CO2 rates produced by all stocks after storage in 10 or 5% O2 

including similarities and differences compared to the other gas combinations applied.  

        Those findings indicate no relation in respiration rate and potato stock susceptibility to 

BH; firstly because the non-susceptible stock 3 showed greater CO2 production when held 

under 10% CO2 storage in which is believed that tuber tissue discoloration being stimulated 

and secondly there were no significant differences in respiration rate between affected and 

non-affected samples of those susceptible stocks analysed (7 and 12) after ‘Two-sample’ t-

test performances.  

 

5.4.2. The effect of storage temperature and shelf-life conditions on the BH incidence of 

potato stocks with different susceptibility to blackheart disorder 

 

          The incidence of BH in both experiments was quite low proportionally to the total 

number of tubers used. In the 1
st
 experiment, BH incidence was initially indicated at baseline 

(December 2012) and peaked after a few months (March and May 2013); however, no 

significant differences in BH incidence were shown over storage time and yet between those 

susceptible to BH stocks 7 and 12. Brown tissue discolorations (BC, brown centre; BCL, 

brown centre light and pith) were only indicated in 16 out of 108 tubers of stock 7 

(susceptible to BH) and 12 out of 108 tubers of stock 12 (susceptible to BH) randomly on 

sampling days 0 an 7 over storage time. It could be said that low BH incidence was due to 
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more normal storage conditions without O2 exclusion, but on the other hand the BH incidence 

was equally low in the 2
nd

 experiment where potato tubers held under various gas 

combinations (viz. A= 21% O2, B= 10% CO2, C= 10% O2 and D= 5% O2) and only 12 out of 

153 tubers of stock 7 and 10 out of 153 tubers of stock 12 showed indications of tissue 

discoloration. In contrast with the year 1, in this year 2 dark brown to black discolorations 

were not observed in any of the experiments conducted and also in year 1 no discolorations 

were shown at baseline. This difference in BH incidence between year 1 and year 2 might be 

explained due to different growing seasons and growth conditions that all potato stocks 

analysed have been grown at (Davies, 1998). 

        Furthermore, the possible effect of tuber size and weight on BH incidence was also 

examined comparing affected and non-affected tubers of both susceptible stocks 7 and 12. In 

general, tubers derived from all three potato stocks and used in both year 2 experiments had 

similar tuber weight and tuber size. In the 1
st
 experiment tuber weight and size did not have 

an effect on BH incidence of stock 7 over storage time. However, after 16 weeks of storage 

tuber weight and BH incidence were weakly positive correlated for those tubers of stock 12 

where affected tubers had greater weight compared to those showing no affection, but there 

were no correlations regarding the tuber length and diameter and also no further significant 

effects on BH incidence according to tuber weight and size were shown for stock 12 over 

storage time. Thus, according to those findings and due to the low indication of tissue 

discoloration it cannot be concluded that tuber weight and size have an effect on the 

incidence of BH. 
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5.4.3. The effect of storage temperature and shelf-life conditions on the sugar content of 

potato stocks with different susceptibility to blackheart disorder 

 

         PCA results revealed that potato stocks with different susceptibility to BH could be well 

grouped according to sugar and phenolic content over storage time. Generally, stock 7 

(susceptible to BH) contained higher sugar content. On the other hand both flavonoid 

compounds (rutin and quercetin-3,4-O-diglucoside) were those variables separating stock 3 

(non-susceptible to BH). Moreover, chlorogenic acid isomers were highly contained in those 

flesh samples of stock 3 and chlorogenic and crypto-chlorogenic acids in heart samples of 

stock 7. It should be reminded that those flesh samples of stock 7 that were labelled 

according to tissue discoloration [viz. pith, brown centre light (BCL) and brown centre (BC)] 

they were not discoloured but that labelling was carried out in order to just clarify the 

affected tuber from which those flesh samples derived. 

          In general, reducing sugar content was ca. 2-fold higher in heart than flesh tissue 

samples of both stocks when measured at 20
o
C. Fructose accumulation was mainly increased 

after 4 weeks of storage where there was no initial storage temperature, but glucose was 

already highly concentrated in those discoloured heart samples of stock 7 and control heart 

samples of stock 3. Reducing sugar content of stock 7 (susceptible to BH) was similar to that 

of stock 23 (susceptible to BH) measured in year 1. However, in year 2 fructose and glucose 

did not increase during storage time. Sucrose content was significantly higher in discoloured 

samples of stock 7 after baseline and 4 and 8 weeks of storage, but there were no differences 

between discoloured and control samples after 12, 16 and 20 weeks. Also, changes in sucrose 

content of stock 3 (non-susceptible to BH) were not shown over storage time, but it was 

significantly lower compared to stock 7. Compared to year 1, sucrose content was slightly 

higher in year 2 and yet higher in discoloured samples after baseline, 4 and 8 weeks of 
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storage. In year 1, sugar content quantification in flesh and heart tissue was carried out 

regardless tissue discoloration, but according to PCA biplots it was shown that discoloured 

samples contained higher sugar content. Furthermore, in year 2 the fact that reducing sugar 

accumulation was similar between discoloured and control samples of stock 7, it cannot 

really highlight that sugars accumulate more due to tissue discoloration as it was shown in 

year 1 and that might happen due to low BH incidence indicated in this study. On the other 

hand, it seems that stock 7 is more susceptible to low storage temperature compared to stock 

3 and that was more evident due to high sucrose content observed over storage time.  

 

5.4.4. The effect of storage temperature and shelf-life conditions on the phenolic content of 

potato stocks with different susceptibility to blackheart disorder 

 

         In terms of phenolic content, chlorogenic acid was the major phenolic acid quantified in 

flesh and heart samples of both stocks analysed, accumulated more in stock 7 (susceptible to 

BH) and yet significantly higher in heart samples of stock 7 compared to stock 3 (non-

susceptible to BH). In addition, heart chlorogenic acid content of stock 3 was significantly 

lower almost over storage time. However, flesh chlorogenic acid accumulation varied 

between the stocks and that might happen because none of those flesh samples showed any 

tissue discoloration. It is worth noting though that similar trend in chlorogenic acid content 

was also shown in year 1 analysis where it was found being accumulated in those heart 

samples of stock 23 (susceptible to BH) which had greater susceptibility to BH. On the other 

hand, its content was much higher in this study as samples of stock 7 (susceptible to BH) and 

stock 3 (non-susceptible to BH) contained ca. 2-9 and 2-3 times higher chlorogenic acid 

compared to stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) in year 1 

respectively. It should be noted that all stocks analysed in both years have been grown at 

different locations and growing conditions and seasons, so that might have an impact on PAL 
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enzyme activity which is the precursor enzyme of the phenylpropanoid metabolism (Hamouz 

et al., 2010; Ieri et al., 2011; Adamo et al., 2012; Payyavula et al., 2012). Chlorogenic acid 

isomers neo-(3-O-caffeoylquinic acid) and crypto-chlorogenic acid (4-O-caffeoylquinic acid) 

showed greater accumulation in flesh samples of stock 3 (non-susceptible to BH) compared 

to stock 7 (susceptible to BH) and yet crypto-chlorogenic acid tended to be more accumulated 

in those heart samples of stock 7 regardless tissue discoloration. Interestingly, a similar trend 

in both isomers accumulation with similar concentrations was shown in flesh samples of 

stock 12 (non-susceptible to BH) in year 1.  

        Among those amino acids examined phenylalanine which is the precursor for the 

biosynthesis of phenylpropanoid compounds varied in content between stock 7 and stock 3. 

Similarly for tryptophan a distinct trend was not shown, but heart samples of stock 7 showing 

light brown discoloration (BCL) tended to accumulate more tryptophan. Unfortunately, 

quantification of tyrosine was not feasible due to large number of missing values. From those 

findings, a full conclusion on the amino acid accumulation cannot be made. 

        In order to further identify more phenolic compounds that possibly be related with tissue 

discoloration and/or potato stock susceptibility to BH, both flavonols rutin and quercetin-3,4-

O-diglucoside were quantified. Rutin is a flavonol with pathogen defence potential and 

commonly shared in potatoes (Kreft et al., 1999; Kroner et al., 2012). Further, quercetin-3,4-

O-diglucoside has previously been reported in onions (Takahama et al., 2004). Both 

flavonols showed greater accumulation in both tissue samples of stock 3 (non-susceptible to 

BH) and that was more evident after 4 weeks of storage where initial storage temperature 

(1.5
o
C) occurred. That increase in both flavonols could be result of cold-stress response as 

flavonoid pathway may be stimulated under low storage temperature (Cheynier et al., 2009). 

In general, rutin content in potatoes may range from 0 – 400 µg g
-1 

DW (Evers and Deußer, 

2009) and up to 800 µg g
-1 

DW in potato cv. Desiree (Lukaszewicz et al., 2004). In this 
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study, rutin in stock 3 ranged from 20 to 120 µg g
-1 

DW whereas samples of stock 7 

accumulated less than 40 µg g
-1 

DW.  

 

5.5. Conclusions 

         To conclude, a relationship between respiration rate and BH incidence was not observed 

and that can be said because stock 3 (non-susceptible to BH) showed greater CO2 levels in 

general and yet when held under 10% CO2 storage in which is believed that tuber tissue 

discoloration might be stimulated. Therefore, there were no significant differences in 

respiration rate between affected and non-affected samples of those susceptible stocks 

analysed (7 and 12) after ‘Two-sample’t-test performances. Furthermore, the incidence of BH 

was low proportionally to the number of tubers used; however brown tissue discolorations 

were observed in heart samples of both susceptible stocks (stock 7 and stock 12) but a 

significant difference in their susceptibility was not shown. It could be said that the storage 

conditions in the 1
st
 experiment where there was no exclusion of O2 contributed to low 

incidence of BH; however when tubers stored under various gas combinations (viz. A: 21% 

O2, B: 10% CO2, C: 10% O2 and D: 5% O2) during the 2
nd

 experiment BH incidence was 

equally low and tissue discolorations were observed under storage at 21% O2 as well as it was 

shown in year 1. It is still unclear whether those brown tissue discolorations were developed 

due to low initial storage temperature (1.5
o
C), as indications were also shown at baseline. 

Biochemical analysis was carried out only using flesh and heart tissue samples of stock 7 

(susceptible to BH) and stock 3 (non-susceptible to BH). Similar trends to those of year 1 

analysis in sugar and phenolic content were observed. Neo- and crypto-chlorogenic acid 

along with rutin and quercetin-3,4-O-diglucoside tended to be more accumulated in stock 3 

whereas chlorogenic acid and crypto-chlorogenic acid  along with sugars were more 

accumulated in stock 7. However, the results varied and a full conclusion cannot be made. 
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Also the fact that chlorogenic acid was highly accumulated in both control and discoloured 

samples of stock 7 makes unclear whether is a marker for susceptibility.   
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CHAPTER SIX:  

Untargeted metabolomics analysis on potato stocks with different 

susceptibility to blackheart disorder 

 

6.1. Introduction 

        Nowadays, metabolomics studies or ‘–omics’ approaches is a major path evolving in 

food science and other scientific fields aiming to comprehensively profile and identify as 

larger a number as of possible metabolites providing a better understanding of how an 

organism responds or a tissue functions (Dunn and Ellis, 2005; Vorst et al., 2005; Genga et 

al., 2008). Metabolomics analysis can be performed using targeted analysis which centred on 

selected classes of metabolites (e.g. amino acids, organic acids, glycoalkaloids etc.) or un-

targeted analysis in order to detect and identify the total content of a sample providing 

information on which metabolites are the most highly concentrated (de Voss et al., 2007; 

Patti et al., 2012). Metabolites are low molecular weight molecules present in a cell and are 

required for metabolic reactions and the collection of these metabolites is called the 

metabolome and it has been estimated that ca. 50.000 primary and secondary metabolites 

with various chemical structures present in plants and about 200.000 metabolites are 

predicted for the plant kingdom in total (Hall et al., 2002; Allwood et al., 2008; Genga et al., 

2008; Patti et al., 2012). Due to extensive chemical diversity and complexity, a full profiling 

of the whole metabolome cannot be obtained and it is estimated that currently metabolite 

identification amounts ca. to 10% (Sumner et al., 2002; Alliferis and Jabaji, 2012). However, 

several analytical techniques such as Mass Specrtometry (MS), Nuclear Magnetic Resonance 

(NMR), Fourier Transform Infared (FT-IR), have been applied in metabolomics analysis with 

Mass Spectrometry (MS) coupled with Gas Chromatography (GS-MS) or Liquid 
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Chromatography considered as the most applied technology for metabolomics analysis to 

date (Vorst et al., 2005; Hall, 2005; Shepherd et al., 2007). 

        In the last two decades, the potato crop has been extensively selected as a model plant 

for metabolomics analysis using a range of MS tools with GS-MS being the most utilised. 

Previous publications mainly referred to metabolite profiling for compositional changes and 

comparison among conventional and genetically modified (GM) potatoes (Roessner et al., 

2001; Deferenz et al., 2004; Catchpole et al., 2005; Lehesranta et al., 2005) or phytochemical 

diversities in various Solanum species (Dobson et al., 2000, 2007, 2008; Davies, 2007; Uri et 

al., 2014). Therefore, a small number of metabolomic studies on potato developmental 

processes, wounding metabolism and pathogen invasion/response, have also been reported 

(Yang et al., 2007; Shepherd et al., 2010; Aliferis and Jabaji, 2012; Pushpa et al., 2013).  

       Since the main object of metabolomics is to provide a comprehensive and thus more 

detailed molecular understanding of metabolite functions within a plant tissue by 

investigating the metabolome, it would be interesting to further identify as many as possible 

metabolites that might be related with tuber tissue discoloration and which may possibly be 

involved in the development of blackheart disorder (BH) in potato tubers. An untargeted 

metabolomic based approach on tuber tissues (flesh and heart) derived from potato cv. Maris 

Piper stocks with different susceptibility to BH was evaluated using a Liquid 

Chromatography (LC) coupled with an Accurate-Mass Quadrupole Time of Flight (Q-ToF) 

mass spectrometer (MS) instrument as a high-resolution tool. The purpose of this study was 

to find metabolic differences between discoloured and non-discoloured samples and morover 

the metabolic differences in potato stock susceptibility to BH. Although, there is some 

literature on the biochemistry of BH disorder in potatoes (Bartholomew, 1914; Reeve, 1968), 
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these references are old.  This does not been they are invalid but that with modern analytical 

tools a greater understanding of the BH should be possible. 

 

6.2. Materials and methods 

        Materials and methods for Chapter 6 were described in Chapter 3; Section 3.6. 

 

6.3. Results 

A) Year 1 (2011-2012) 

6.3.1. Metabolomic differences between affected and non-affected potato tuber tissues 

 

          In both ‘experiments A and B’ (in negative and positive ion mode respectively), six 

samples per discoloration of stock 23 (susceptible to BH) were used for ‘discoloration only’ 

interpretation while those six samples halved to three for ‘tissue vs. discoloration’ 

interpretation (n = 3 biological samples / tissue / discoloration) (Fig. 6.1).  

 

 

 

 

Figure 6.1 Example of tuber tissue discoloration: a) BCL: brown centre light (heart part), b) 

pith, c) BC: brown centre, d) BH: dark brown to black and e) C: control – no affection. 

  

 

 

b) c) d) e) a) 
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Negative ionization mode 

         Generally, 374 metabolites in total were identified as known and unknown in negative 

mode. In terms of the general interpretation ‘discoloration only’ (regardless the tissue) quality 

control on samples showed that 97 reproducible metabolites remained after filtering by 

frequency. Further filtering followed using filter by sample variation (10%) and 30 out of 97 

metabolites left to be interpreted. PCA followed where all the possible principal components 

were calculated and visually represented per discoloration condition coloured-coded in a 3D 

scatter plot (Fig. 6.2). The PCA on the data showed a separation of tissue discoloration on x, 

y and z axis (capturing ca. 59% of the variance it total). A clear separation of BH 

discoloration was evident. Control and BCL discoloration were also well grouped; however, 

BC and pith discolorations were mixed with those conditions above mentioned (Fig. 6.2). 

Statistical analysis was performed on those 30 metabolites using Moderated t-test pairing 

each discoloration (BC, BCL, BH or pith) against control resulting in 19 known and unknown 

metabolites with a probability of P < 0.05 (95% that the metabolite was significant) 

(Appendix D; Table 2.1). Fold-change analysis was performed in order to look for significant 

differences between control compared with each discoloration and 13 out of 19 metabolites 

were either up or down regulated (Fig. 6.3). According to Figure 6.3, it was shown that 10 

metabolites including two unsaturated hydroxy fatty acids, purine and pyrimidine related 

metabolites were all down regulated in discolorations when compared with the control. Also, 

an unknown compound with formula [C7 H4 N4 O2] was up regulated in BC, BCL and pith 

but not in BH discoloration. An up regulation of 5-Acetamidovalerate (which is involved in 

lysine degradation III pathway) was observed in BCL only when compared with the control 

(Fig. 6.3). 
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Figure 6.2 3D Principal Component Analysis scatter plot showing differences between tuber 

tissue discolorations and control of stock 23 (susceptible to BH) in negative mode (x= 27.1 

%, y= 19.87%, z= 12.04%) (BC, brown centre; BCL, brown centre light; BH, dark brown to 

black discoloration).  
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Figure 6.3 Fold change analysis results of ‘discoloration only’ interpretation in ‘experiment A’. Metabolite regulation (log FC normalized) is 

shown in negative mode (BC, brown centre; BCL, brown centre light; BH, dark brown to black). (Appendix D; Table 2.2). 
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         In terms of ‘tissue vs. discoloration’, interpreting flesh and heart samples with BH 

discoloration against flesh and heart control samples results showed 130 out of 374 

reproducible metabolites left after frequency filtering and 65 out of 130 metabolites with 10% 

sample variation eventually remained. 3D PCA scatter plot showed one point per tissue 

sample colour-coded and shaped corresponding to BH discoloration or control. A clear 

separation on x, y and z axis (capturing ca. 70% of the variance in total) was observed (Fig. 

6.4). Two-way ANOVA was performed on 65 metabolites resulting in 28 significant 

metabolites with a probability of P < 0.05 (95% that the metabolite is significant) (Appendix 

D; Table 2.3). Fold change analysis results revealed that 24 metabolites were up or down 

regulated. Two unknown compounds [C8 H7 N3 O5 and C21 H43 N5 O14 S] were up-regulated 

in BH samples when compared with control samples. Furthermore, known metabolites as 

chlorogenic acid, 5-O-feruloylquinic acid, unsaturated fatty acids, glutathione oxidized and 4-

Hydroxyphenylacetylglutamine (involved in tyrosine metabolism) showed a down regulation 

in BH samples (Fig. 6.5).  

 

 

 

 

 

 

 

 

 

Figure 6.4 3D Principal Component Analysis scatter plot showing differences between BH 

(dark brown to black) and control samples of stock 23 (susceptible to BH) in negative mode 

(x= 35.39%, y= 22.81%, z= 12.22%). 
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Figure 6.5 Fold change analysis results of ‘tissue vs. discoloration’ interpreting BH (dark brown to black) vs. control in ‘experiment A’. Metabolite regulation 

(log FC normalized) is shown in negative mode (Appendix D; Table 2.4). 
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       Interpretation between BC and control flesh and heart samples, 120 out of 374 

metabolites remained after filter by frequency that were additionally filtered based on a 

coefficient of variation of less than 10%  and 55 out of 120 entities left to be interpreted. 

According to the 3D PCA, ca. 64% of variance in total was explained on x, y and z axis and 

clear group among tissue and tissue discoloration were shown (Fig. 6.6). Two-way ANOVA 

pairing BC flesh against control flesh samples and BC heart against control heart resulted in 5 

significant metabolites with a probability of P < 0.05 (Appendix D; Table 2.5). Fold change 

analysis results showed regulation of 4 metabolites where one unknown metabolite with 

formula (C7 H4 N4 O2) was up regulated in BC samples. 2,5 dioxopentanotate  

(involved in amino acid metabolism) and pseudouridine-5’phosphate (pyrimidine 

metabolism) showed down regulation  (Fig. 6.7).  

 

 

 

 

 

 

 

 

 

Figure 6.6 3D Principal Component Analysis scatter plot showing differences between BC 

(brown centre) and control tissue samples of stock 23 (susceptible to BH) in negative mode 

(x= 39.76%, y= 13.44%, z= 11.29%). 
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Figure 6.7 Fold change analysis results of ‘tissue vs. discoloration’ interpreting BC (brown 

centre) vs. control in ‘experiment A’. Metabolite regulation (log FC normalized) is shown in 

negative mode (Appendix D; Table 2.6). 

 

        BCL against control interpretation showed that 122 out of 374 and 54 out of 122 

metabolites remained after filter by frequency and filter by sample variation (10%) 

respectively. PCA showed on x, y and z axis captured almost 67% of the variance in total 

(Fig. 6.8). According to Figure 6.8, a clear grouping of control flesh and control heart was 

observed. However, flesh and heart tissues with BCL discoloration were grouped together 

(Fig. 6.8). Statistical analysis was carried out using two-way ANOVA pairing BCL flesh with 

control flesh samples and BCL heart with control heart and 13 out of 54 metabolites were 

significant (P < 0.05) (Appendix D; Table 2.7). Fold change analysis results on the same 

pairing revealed that 12 metabolites including unsaturated hydroxy fatty acids were all down 

regulated in BCL samples regardless of the tissue and that happened due to no changes in all 

those metabolites in BCL samples (Fig. 6.9). 
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Figure 6.8 3D Principal Component Analysis scatter plot showing differences between BCL 

(brown centre light) and control tissue samples of stock 23 (susceptible to BH) in negative 

mode (x= 30.75%, y= 25.95%, z= 10.29%). 

 

 

 

 

 

 

  

 

 

Figure 6.9 Fold change analysis results of ‘tissue vs. discoloration’ interpreting BCL (brown 

centre light) vs. control in ‘experiment A’. Metabolite regulation (log FC normalized) is 

shown in negative mode (Appendix D; Table 2.8). 

   

       The last interpretation of the ‘experiment A’ was between tissue samples with pith 

discoloration against control samples. Filter by frequency resulted in 128 out of 374 
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metabolites that were additionally filtered by sample variability (10%) and 68 metabolites 

finally remained. PCA showed a clear separation of tissue and discoloration conditions on x, 

y and z axis capturing almost 70% of the total variance (Fig. 6.10). Figure 6.10 shows a clear 

separation of tissue discoloration more distinctively between the pith and control heart 

samples. Two-way ANOVA was carried out pairing pith flesh with control flesh samples and 

pith heart and control heart samples showing that 10 metabolites were found to be significant 

(P < 0.05) (Appendix D; Table 2.9). Fold change analysis results were shown in Figure 6.11. 

Two unknown metabolites were up regulated in pith samples. However, five metabolites 

showed down regulation in pith samples (Fig. 6.11). Actually, chlorogenic acid, 2,5-

dioxopentanotate and 4-hydroxypheylacetylglutamine showed no changes in pith samples 

thus a down regulation was observed when compared with control. 

 

 

 

 

 

 

 

 

 

Figure 6.10 3D Principal Component Analysis scatter plot showing differences between pith 

and control tissue samples of stock 23 (susceptible to BH) in negative mode (x= 39.5%, y= 

19.12%, z= 10.69%). 
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Figure 6.11 Fold change analysis results of ‘tissue vs. discoloration’ interpreting pith vs. 

control in ‘experiment A’. Metabolite regulation (log FC normalized) is shown in negative 

mode (Appendix D; Table 2.10). 

 

Positive ionization mode 

 

        In general, 2516 known and un-known metabolites in total were detected. Interpreting 

discolorations (BC, BCL, BH or pith) with control irrespective of tissue condition. Filtering 

by frequency reduced the number of total metabolites to 517 that were further reduced to 151 

metabolites after filter by sample variability (10%). The 3D PCA on the data showed a 

separation of tissue discoloration on x, y and z axis (capturing ca. 53% of the variance in 

total). The separation of the tissue discoloration followed a similar pattern as it has also been 

seen in negative mode (Fig. 6.12). According to Figure 6.12, BH and BCL discolorations and 

control were grouped well, but a distinct group of BC and pith discoloration was not shown. 

Moderated T-test was used as statistical tool comparing each discoloration with the control 
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resulting in 42 significant metabolites (P < 0.001) (Appendix D; Table 3.1). Fold change 

analysis indicated that 33 metabolites varied in regulation between the samples analysed 

(Table 6.4).  

 

 

 

 

 

 

 

 

Figure 6.12 3D Principal Component Analysis scatter plot showing differences between 

control and tissue discolorations of stock 23 (susceptible to BH) in positive mode (x= 

23.25%, y= 19.37%, z= 10.65) (BC, brown centre; BCL, brown centre light; BH, dark brown 

to black). 
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Table 6.1 Fold-change analysis results of ‘discoloration only’ interpretation in ‘experiment B’ of year 1. Metabolite regulation (log FC normalized) 

is shown in positive mode (BC, brown center; BCL, brown center light; BH, dark brown to black; C, control) (Appendix D; Table 3.2) . 

Metabolite 
BC 

vs C 
log fc 

BCL 

vs C 
log fc 

BH 

vs C 
log fc 

PITH  

vs C 
log fc 

1434.9309@6.42445 up 5.24 up 8.03 down -7.89 up 8.10 

1508.1241@4.6621003 down -0.02 down -5.40 up 11.47 down -5.40 

16,16-dimethyl-PGD2 down -16.00 down -16.00 down -13.31 down -16.00 

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-oxide down -15.82 down -5.51 down -15.82 down -15.82 

4-Nitrotoluene down -3.09 down -2.88 down -16.39 down -0.31 

4'-Prenyloxyresveratrol down -3.33 down -0.35 down -16.45 down -0.16 

6Z-Octene-2,4-diynoic acid down -0.06 up 0.18 down -10.88 up 0.26 

6Z-Octene-2,4-diynoic acid + 1.3391001 up 5.46 up 15.99 down 0 up 5.45 

816.8409@5.68775 up 5.28 down 0 up 16.30 down 0 

817.042@5.688111 up 2.76 down -2.56 up 13.87 down -2.56 

8-Hydroxyadenine down -10.98 down -16.54 down -16.54 down -11.17 

8-methoxy-13-hydroxy-9,11-octadecadienoic acid down -14.26 down -16.95 down -16.95 down -11.47 

9-HOTE up 2.54 up 5.12 up 17.31 up 2.55 

9S,10S,11R-trihydroxy-12Z-octadecenoic acid down -0.26 down -0.36 up 1.84 down -0.08 

Adenine down 0 down 0 up 19.28 down 0 

C7 H13 N down -0.14 up 0.04 down -11.17 up 0.06 

C8 H9 N up 11.86 down -5.86 up 8.47 up 11.67 
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C9 H6 O3 down -0.09 up 0.18 down -1.24 up 0.23 

Chlorogenic Acid down -0.16 up 0.13 down -1.35 up 0.25 

Gln Phe Gln down -5.38 down -0.22 down -15.56 down -5.14 

Lagochilin down -14.05 down -16.70 down -14.07 down -11.32 

Mometasone Furoate up 2.71 up 2.80 up 17.77 up 2.78 

N-(6-aminohexanoyl)-6-aminohexanoic acid down -11.42 down -17.14 down -0.05 down -11.46 

N-(6-aminohexanoyl)-6-aminohexanoic acid + 2.6753333 down 0 down 0 up 16.72 down 0.00 

N-(6-aminohexanoyl)-6-aminohexanoic acid + 3.180625 down -11.51 down -17.15 down -0.74 down -11.49 

N-Hydroxypentobarbital up 0.03 down -2.56 up 14.22 down -0.01 

PRIMA-1 down -2.58 up 13.07 down -2.58 up 0.02 

Succinoadenosine down 0 up 5.07 up 17.10 down 0 

Trp Asp Gly down -5.16 down -5.13 up 9.48 down -7.76 

Trp Ser Gln up 10.32 up 16.14 down 0 up 10.44 

Val Ile down -11.13 down -16.62 up 0.36 down -11.22 

Val Ile + 1.5134287 down -2.63 down -2.63 up 14.66 down -2.63 

Val Ile + 1.953625 down -5.28 down -5.28 up 11.84 down -5.28 
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         Interpreting BH against control samples in positive mode, 688 out of 2156 and 439 out 

of 688 metabolites remained after filtering by frequency and filter by sample variation (10%), 

respectively. According to PCA, almost 65% of the variance in total showed in x, y and z axis 

and clear groups of tissue and discoloration conditions was observed (Fig. 6.13). Two-way 

ANOVA was performed on 439 metabolites pairing BH flesh with control flesh samples and 

BH heart with control heart samples resulting in 26 significant metabolites (P < 0.001) 

(Appendix D; Table 3.3). Fold change analysis results showed that those 26 metabolites 

varied in regulation (Fig. 6.14 and 6.15). According to Figure 6.14, three fatty acids were 

down regulated in BH flesh samples and five metabolites including Alpha-CEHC (or 2,5,7,8-

tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman; major metabolite of a-Tocopherol) were 

all up regulated in flesh BH samples. Similar metabolite regulations were observed in heart 

BH samples where fatty acids were down regulated and Alpha-CEHC and 4-oxo-nonenal 

(lipid peroxidation product) were up regulated (Fig. 6.15). 

 

 

 

 

 

 

 

 

Figure 6.13 3D Principal Component Analysis scatter plot showing differences between BH 

(dark brown to black) and control tissue samples of stock 23 (susceptible to BH) in positive 

mode (x= 28.71%. y= 26.08%, z= 10.04%). 
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Figure 6.14 Fold change analysis results of ‘tissue vs. discoloration’ interpreting flesh tissue with BH (dark brown to 

black) vs. control flesh tissue in ‘experiment B’. Metabolite regulation (log FC normalized) in is shown positive mode 

(Appendix D; Table 3.4). 
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Figure 6.15 Fold change analysis results of ‘tissue vs. discoloration’ interpreting BH (dark brown to black) vs. control (heart tissue) in 

‘experiment B’. Metabolite regulation (log FC normalized) is shown in positive mode (Appendix D; Table 3.4). 
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         The following interpretation was between tissue samples with BC against control tissue 

samples. Filter by frequency resulted in 626 out of 2156 entities where they were additionally 

filtered by sample variability (10%) and 357 entities remained. PCA showed a clear 

separation of tissue and discoloration conditions on x, y and z axis capturing almost 64% of 

the variance in total. Figure 6.16 shows a clear separation between flesh and heart tissues 

with BC discoloration. Control samples showed a clear clustering as well (Fig. 6.16). Two-

way ANOVA was carried out pairing BC flesh with control flesh samples and BC heart and 

control heart samples and 7 significant metabolites were indicated with a probability of P < 

0.001 (Appendix D; Table 3.5). Those 7 metabolites including a-CEHC were varied in 

regulation after fold change analysis (Fig. 6.17).  

 

 

 

 

 

 

 

 

Figure 6.16 3D Principal Component Analysis scatter plot showing differences between BC 

(brown centre) and control tissue samples of stock 23 (susceptible to BH) in positive mode 

(x= 30.95%, y= 21.12%, z= 11.71%). 
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Figure 6.17 Fold change analysis results of ‘tissue vs. discoloration’ interpreting BC (brown 

center) vs. control in ‘experiment B’. Metabolite regulation (log FC normalized) is shown in 

positive mode (Appendix D; Table 3.6). 

 

         Interpreting tissue samples with BCL against control tissue samples, filtering by 

frequency reduced the number of total metabolites (2156) to 628 that were further reduced to 

386 metabolites after filter by sample variability (10%). According to Figure 6.18, 63% of the 

total variance was observed on x, y and z axis showing a separation between BCL 

discoloration and control. Control heart and flesh tissue samples were well separated; 

however BCL flesh and heart tissue samples were grouped closely (Fig. 6.18). Two-way 

ANOVA was performed pairing BCL flesh with control flesh samples and BCL heart with 

control heart samples resulting in 12 significant metabolites (P < 0.01) (Appendix D; Table 

3.7). Fold change analysis results were shown in Figure 6.19. 
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Figure 6.18 3D Principal Component Analysis scatter plot showing differences between BCL 

(brown centre light) and control tissue samples of stock 23 (susceptible to BH) in positive 

mode (x= 27.05%, y= 21.33%, z= 14.33%). 

 

 

Figure 6.19 Fold change analysis results of ‘tissue vs. discoloration’ interpreting BCL 

(brown center light) vs. control in ‘experiment B’. Metabolite regulation (log FC normalized) 

is shown in positive mode (Appendix D; Table 3.8). 

 

         In positive mode, quality control on samples with pith discoloration against control 

samples indicated 622 out of 2156 and 349 out of 622 metabolites after filter by frequency 

and filter by sample variation (10%) respectively. The PCA on the data showed a separation 
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of samples on x, y and z axis capturing, in total, almost 65% of the variance (Figure 6.20). A 

clear clustering of control heart samples was observed. However flesh and heart tissue 

samples with pith discoloration and control flesh were clustered closely (Fig. 6.20). After 

performing two-way ANOVA pairing pith flesh with control flesh and pith heart with control 

heart samples only 12 significant metabolites with a significance of P < 0.01 remained 

(Appendix D; Table 3.9). Fold change analysis results showed that all 12 metabolites varied 

in regulation mainly in pith heart samples (Fig. 6.21). 

 

 

 

 

 

 

 

 

 

Figure 6.20 3D Principal Component Analysis scatter plot showing differences between pith 

and control tissue samples of stock 23 (susceptible to BH) in positive mode (x= 28.96%, y= 

25.79%, z= 10.76%). 
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Figure 6.21 Fold change analysis results of ‘tissue vs. discoloration’ interpreting pith vs. control in 

‘experiment B’. Metabolite regulation (log FC normalized) is shown in positive mode (Appendix D; Table 

3.10). 

 

6.3.2. Metabolomic differences between control samples of potato stocks with different 

susceptibility to blackheart disorder 

 

            In both ‘experiments C and D’ (in negative and positive mode respectively), 18 

control samples (n = 8 flesh and 10 heart) of stock 23 (susceptible to BH) against 23 (n = 11 

flesh and 12 heart) control samples of stock 12 (non-susceptible to BH) were used for 

analysis. ‘Susceptibility only’ interpretation was carried out regardless the tissue condition 

(18 against 23 samples), while ‘tissue vs. susceptibility’ interpretation was conducted 

comparing flesh samples of stock 23 (n = 8) against flesh samples of stock 12 (n = 11) and 

heart samples of stock 23 (n = 10) against heart samples of stock 12 (n = 12). 
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Negative ionization mode 

         Generally, 832 known and un-known metabolites were identified in this ‘experiment B’ 

in negative ion mode. Regarding the ‘susceptibility only’ interpretation (irrespectively the 

tissue) metabolites were filtered by frequency and 103 reproducible entities remained after 

filtering by sample variability (25%). PCA followed where all the possible principal 

components were calculated and visually represented per susceptibility condition coloured-

coded in a 3D scatter plot (Fig. 6.22). The PCA on the data showed a clear separation of 

potato stock susceptibility to BH on x, y and z axis (capturing it total 71% of the variance) 

(Fig. 6.22). Statistical analysis was performed using Moderated t-test comparing control 

samples of stock 23 (susceptible to BH) against control samples of stock 12 (non-susceptible 

to BH) with a probability of P < 0.05 resulting in 14 known and unknown significant 

metabolites (Appendix D; Table 4.1). Fold change analysis showed that 8 out of 14 

metabolites were significantly up or down regulated. Quinic acid was down regulated, but 

two polyhydroxyflavones [(3,5,7,8-tetrahydroxy-2-(3,4,5-trihydroxy phenyl)chromen-4-one 

or hibiscetin and 5,7,3',4',5'-Pentahydroxy-3,6,8-trimethoxyflavone] were both up-regulated 

in the stock with BH susceptibility (Fig. 6.23). 

 

 

 

 

 

 

 

Figure 6.22 3D Principal Component Analysis scatter plot showing differences between 

potato stock susceptibility in negative mode [N = stock 12 (non-susceptible to BH), Y = stock 

23 (susceptible to BH)] (x= 50.7%, y= 11.71%, z= 8.6%). 
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Figure 6.23 Fold change analysis results of ‘susceptibility only’ interpretation in ‘experiment 

C’. Metabolite regulation (logFC normalized) is shown in negative mode (Y = susceptible 

stock 23, N = non-susceptible stock 12) (Appendix D; Table 4.2). 

          

        Regarding the interpretation between tissue vs. susceptibility conditions, filtering by 

frequency decreased the number of total metabolites (n = 832) to 157 that were further 

reduced to 30 metabolites after filter by sample variability (10%). According to Figure 6.24, 

PCA on data showed a good separation of stock susceptibility on x axis (capturing ca. 29% of 

the variance) and y and z axis only captured a further 14 and 9% of the variance. There was a 

good grouping of flesh and heart samples of stock 12. However, clear groups of flesh and 

heart samples of stock 23 were less distinguished (Fig. 6.24). Two-way ANOVA was 

performed on samples pairing flesh tissue samples of stock 23 against flesh tissue samples of 

stock 12 and heart tissue samples of stock 23 against heart tissue samples of stock 12. Results 

showed one significant unknown metabolite [m/z= 887.4782 and retention time= 5.8079376] 

(P < 0.01) that was up regulated in flesh and heart samples of stock 12 (non-susceptible to 

BH) (Appendix D; Table 4.3 and 4.4). 
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Figure 6.24 3D Principal Component Analysis scatter plot showing differences between 

tissues of potato stocks with different susceptibility to BH in negative mode [N = stock 12 

(non-susceptible to BH), Y = stock 23 (susceptible to BH)] (x= 28.78%, y= 13.81%, z= 

8.97%). 

 

Positive ionization mode 

         In general, 845 known and un-known metabolites were identified in this ‘experiment D’ 

in positive ion mode. In terms of the ‘susceptibility only’ interpretation (irrespectively the 

tissue), metabolites were filtered by frequency and 103 reproducible entities remained with a 

sample variability of 25%. PCA followed where all the possible principal components were 

calculated and visually represented per susceptibility condition colour-coded in a 3D scatter 

plot (Fig. 6.25). According to PCA, 83% of variance in total was explained on x, y and z axis 

and a partial separation according to stock susceptibility to BH on x axis (captured 53% of 

variance) was observed (Fig. 6.25). Moderated t-test comparing control samples of stock 23 

(susceptible to BH) against control samples of stock 12 (non-susceptible to BH) was 

performed resulting in 10 significant metabolites with a probability of P < 0.05 (Appendix D; 

Table 5.1). Fold change analysis showed that 7 out of 10 metabolites have been significantly 

regulated. Solanine and alpha-chaconine (glycoalkaloids) and 4-oxoproline were down-

regulated in stock 23, but phenylpropiolic acid was up regulated (Fig. 6.26).  
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Figure 6.25 3D Principal Component Analysis scatter plot showing differences between 

potato stock susceptibility to in positive mode [N= stock 12 (non-susceptible to BH), Y= 

stock 23 (susceptible to BH)] (x= 53.4%, y= 19.23%, z= 10.35%). 

 

 

 

 

 

 

 

Figure 6.26 Fold change analysis results of ‘susceptibility only’ interpretation in ‘experiment 

D’. Metabolite regulation (log FC normalized) is shown in positive mode (Y = susceptible 

stock 23, N = non-susceptible stock 12) (Appendix D; Table 5.2). 

 

         In terms of the interpretation between tissue and susceptibility conditions, filtering by 

frequency reduced the number of total metabolites (n = 845) to 195 that were further reduced 

to 20 metabolites after filter by sample variability (10%). PCA on data showed a clear 

separation of tissue on x axis (captured ca. 62.14% of the variance) and y and z axis only 
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captured a further 17.88 and 4.6% of the variance (capturing 84.62% of the variance in total) 

(Fig. 6.27). There was a clear grouping of flesh tissue samples of stock 12. However, 

grouping of heart tissue samples of stock 12 were less distinguished. No clear separation 

between flesh and heart tissue samples of stock 23 was observed (Fig. 6.27). Two-way 

ANOVA was performed pairing flesh tissue samples of stock 23 against flesh tissue samples 

of stock 12 and heart tissue samples of stock 23 against heart tissue samples of stock 12. 

Results indicated 11 significant metabolites (P < 0.01) (Appendix D; Table 5.3) that were 

also up or down regulated after fold change analysis on the same sample pairing. According 

to Figure 6.28, all glycoalkaloids identified (solasonine, solanine and solanidine) were 

significantly up-regulated in flesh (mainly) and heart tissues of stock 12. In terms of 

phenylalanine, relatively speaking there were no changes in flesh samples of stock 12 thus a 

down regulation was showed when compared with flesh samples of stock 23. Moreover 

phenylalanine was abundant in all heart samples of stock 23 (Fig. 6.28).  

 

 

 

 

 

 

 

 

Figure 6.27 3D Principal Component Analysis scatter plot showing differences between 

tissues of potato stocks with different susceptibility in positive mode [N = stock 12 (non-

susceptible to BH), Y = stock 23 (susceptible to BH)] (x= 62.14%, y= 17.68%, z= 4.6%). 
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Figure 6.28 Fold change analysis results of ‘tissue vs. susceptibility’ interpretation in 

‘experiment D’. Metabolite regulation (log FC normalized) is shown in positive mode (Y = 

susceptible stock 23, N = non-susceptible stock 12 (Appendix D; Table 5.4). 

 

B) Year 2 (2012-2013) 

6.3.3 Metabolomic differences between affected and non-affected potato tuber tissues 

 

        In both ‘experiments E and F’ (in negative and positive mode respectively), 32 samples 

with tissue discoloration (affected) (n = 16 flesh and 16 heart) and 31 control samples (n = 15 

flesh and 16 heart) of stock 7 (susceptible to BH) were used for analysis. ‘Discoloration only’ 

interpretation was carried out regardless the tissue condition (32 affected against 31 control 

samples), while ‘tissue vs. discoloration’ interpretation was conducted comparing affected 

flesh samples (n = 16) against control flesh samples (n = 15) and affected heart samples (n = 

16) against control heart samples (n = 16). 
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Negative ionization mode 

         In general, 1286 known and un-known metabolites in total were detected in negative 

mode. Firstly, in terms of the interpretation ‘discoloration only’ regardless tissue condition 

(affected against control samples of stock 7), quality control on samples showed only 67 out 

of 1286 metabolites remained after filtering by frequency with sample variability of less than 

25%. However, those 67 metabolites were not statistically different (Appendix E; Table 2.1). 

        Secondly, interpreting ‘tissue vs. discoloration’ conditions filtering by frequency 

reduced the number of total metabolites to 124 based on a sample variation of less than 25%. 

According to PCA, almost 42% of the variance in total showed on x, y and z axis. A clear 

separation of tuber tissue was observed on x axis capturing ca. 23% of the variance. 

However, a clear separation between affected and control samples was not distinguished (Fig. 

6.29). Two-way ANOVA was not performed.  

 

 

 

 

 

 

 

 

 

 

Figure 6.29 3D Principal Component Analysis scatter plot showing differences between 

affected and control tissue samples of stock 7 (susceptible to BH) in negative mode (A= 

affected, control = no discoloration) (x= 22.66%, y= 13.34%, z= 5.98%). 
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Positive ionization mode 

        Generally, 2071 known and un-known metabolites have been identified in positive 

mode. Interpreting the ‘discoloration’ condition (regardless tissue condition), quality control 

showed that those 2071 metabolites were reduced to 268 using filter by frequency with a 

coefficient of variation of less than 25% (data not shown). Nevertheless, Moderated T-test 

showed no significant differences.  

        Regarding the interpretation between ‘tissue vs. discoloration’ conditions, frequency 

filtering resulted in 370 out of 2071 metabolites that they were additionally filtered by sample 

variability (10%) and finally reduced to 47. PCA on data showed a clear separation between 

tuber tissue only, capturing almost 66% of the variance in total (Fig. 6.30). Two-way 

ANOVA was not performed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30 3D Principal Component Analysis scatter plot showing differences between 

affected and control tissue samples of stock 7 (susceptible to BH) in positive mode (A = 

affected, control = no discoloration) (x= 45.07%, y= 13.12%, z= 7.65%). 
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6.3.4. Metabolomic differences between control samples of potato stocks with different 

susceptibility to blackheart disorder 

 

           In both ‘experiments G and H’ (in negative and positive mode respectively), those 31 

control samples (n = 15 flesh and 16 heart) of stock 7 (susceptible to BH) that have 

previously been used in those ‘experiments E and F’ were further compared with 32 (n = 16 

flesh and 16 heart) control samples of stock 3 (non-susceptible to BH). ‘Susceptibility only’ 

interpretation was carried out regardless the tissue condition (31 against 32 samples), while 

‘tissue vs. susceptibility’ interpretation was conducted comparing flesh samples of stock 7 (n 

= 15) against flesh samples of stock 3 (n = 16) and heart samples of stock 7 (n = 16) against 

heart samples of stock 3 (n = 16). 

 

Negative ionization mode 

          Generally, 1276 known and unknown metabolites have been identified in negative 

mode. Interpreting ‘susceptibility only’ condition frequency filtering reduced the total 

number of metabolites (n = 1276) to 90 based on a coefficient of variation of less than 25%. 

PCA showed a clear separation of stock susceptibility on x, y and z axis capturing almost 

45% of the total variance (Fig. 6.31). Moderated t-test was used comparing control samples 

of stock 7 (susceptible to BH) against control samples of stock 3 (non-susceptible to BH) 

resulting in 11 significant metabolites with a probability of P < 0.001 (Appendix E; Table 

3.1). Fold change analysis with the same sample pairing indicated that those 11 metabolites 

were all significantly regulated. Three flavonoid glycosides and diglycosides (Myricetin 3-

rutinoside, quercetin 3-glucoside-7-rutinoside and quercetin 3-glucoside-7-rhamnoside) and 

isoferulic acid have all been down regulated in stock 7 (susceptible to BH). The only up-
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regulated metabolite in the susceptible stock was the fatty acid 9S,10S,11R-trihydroxy-12Z-

octadecenoic acid (Fig. 6.32).  

 

 

 

 

 

 

 

 

 

Figure 6.31 3D Principal Component Analysis scatter plot showing differences between 

potato stock susceptibility in negative mode [N = stock 3 (non-susceptible to BH), Y = stock 

7 (susceptible to BH)] (x= 23.09%, y= 11.85%, z= 10.37%). 

 

 

 

 

 

 

 

 

Figure 6.32 Fold change analysis results of ‘susceptibility only’ interpretation in ‘experiment 

G’. Metabolite regulation (log FC normalized) is shown in negative mode (Y = susceptible 

stock 7, N = non-susceptible stock 3 (Appendix D; Table 5.4). 
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        Interpretation of ‘tissue vs. susceptibility’ results revealed that filtering by frequency 

reduced the number of total metabolites (n = 1276) to 151 with sample variability of 25%. 

PCA on data showed a clear separation of tuber tissue and tissue discoloration on x, y and z 

axis capturing 23.81% of the variance in total (Fig. 6.33). Two-way ANOVA was performed 

pairing flesh tissue samples of stock 7 (susceptible to BH) with flesh samples of stock 3 (non-

susceptible to BH) and heart tissue samples of stock 7 with stock 3 and results revealed 23 

significant metabolites with a probability of P < 0.001. Fold change analysis results showed 

16 known and unknown metabolites (Fig. 6.34). Three flavonoid glycosides and isoferulic 

acid were all up regulated in flesh and heart samples of stock 3 (non-susceptible to BH) thus 

a down regulation of those metabolites was previously observed in stock 7 (susceptible to 

BH) when interpreting ‘susceptibility only’ (Fig 6.32).  

 

 

 

 

 

 

 

Figure 6.33 3D Principal Component Analysis scatter plot showing differences between 

tissues of potato stocks with different susceptibility in negative mode [Y= susceptible stock 

7, N = non-susceptible stock 3) (x= 23.81%, y= 11.3%, z= 8.88%). 
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Figure 6.34 Fold-change analysis results of ‘tissue vs. susceptibility’ interpretation in ‘experiment G’. Metabolite regulation 

(log FC normalized) is shown in negative mode. [Y= susceptible stock 7, N = non-susceptible stock 3) (Appendix E; Table 3.2). 
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Positive ionization mode 

        In general, 2153 known and unknown metabolites in total were detected in positive 

mode. Firstly, interpreting the ‘susceptibility’ condition 285 out of 2153 metabolites 

remained after filter by frequency with a coefficient of variation of less than 25%. According 

to Figure 6.35, almost 84% of the total variance showed on x, y and z axis and stock 7 (Y) 

was partially separated from stock 3 (N). Statistical analysis was performed using Moderated 

T-test pairing control samples of stock 7 with control samples of stock 3 resulting in 11 

significant metabolites (P < 0.05) (Appendix E; Table 4.1). Results of fold change analysis on 

the same pairing indicated that five flavonoids were all down-regulated in stock 7 

(susceptible to BH) (Fig. 6.36). 

 

 

 

 

 

 

 

 

 

 

Figure 6.35 3D Principal Component Analysis scatter plot showing differences between 

potato stock susceptibility in positive mode [N = stock 3 (non-susceptible to BH), Y = stock 7 

(susceptible to BH)] (x= 48.93%, y= 21.66%, z= 13.69%). 
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Figure 6.36 Fold-change analysis results of ‘susceptibility only’ interpretation in ‘experiment 

H’. Metabolite regulation (log FC normalized) is shown in positive mode (Y = susceptible 

stock 7, N = non-susceptible stock 3) (Appendix E; Table 4.2). 

 

        Interpretation of ‘tissue vs. susceptibility’ in positive mode, filtering by frequency 

reduced the total number of metabolites (n = 2153) to 379 that they were additionally reduced 

to 82 metabolites based on a coefficient of variation of less than 10%. However, a clear 

separation of tuber tissue according to stock susceptibility to BH was not observed (3D 

scatter plot not shown) and Two-way ANOVA was not performed. 

 

6.4. Discussion 

        An untargeted mass spectrometry based metabolomic approach was evaluated in order 

to study the metabolite variation of different tuber tissues derived from potato stocks with 

different susceptibility to BH disorder selected from year 1 and year 2. In general, more than 

1000 and 3000 known and unknown metabolites in total were identified in negative and 

positive mode, respectively in year 1 analysis. In year 2 analysis, more than 2000 and 4000 
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known and unknown metabolites in total were detected in negative and positive ion mode 

respectively. 

    

6.4.1. Metabolomic differences between affected and non-affected potato tuber tissues 

 

          According to the first part of year 1 analysis, 3D PCA scatter plots showed a good 

separation between those samples showing tissue discolorations with intensity BH > BC > 

BCL > pith > control based on a coefficient of variation of 10% in both ion modes. In terms 

of the general interpretation (‘discoloration only’), BH samples were clearly separated from 

the other less intense discolorations (BC, BCL and pith) and the control. Also control and 

BCL were well grouped, but BC and pith were partially mixed with BCL and control. That 

was probably due to tissue discoloration difference as flesh tissue samples of those less 

intense discolorations were not discoloured. Additionally, more specifically interpretations 

(‘tissue vs. discoloration’) indicated clear separation between flesh and heart tissue samples 

with BH and BC discoloration when compared with the control. The other less intense 

discolorations (BCL and pith) did not show a very clear separation from the control samples.  

         However, fold change analysis results revealed a large variation in metabolite 

regulation among the interpretations. Generally, most of the known metabolites identified 

were fatty acids and also a plethora of unknown metabolites was observed. Few of the latter 

metabolites up regulated in discoloured tissue samples were observed. BH disorder in potato 

tubers may be easily distinguished due to the dark brown or black discoloration of the heart 

and flesh tuber tissue severity depended (Bartholomew, 1914; O’Brien and Rich, 1976; Wale 

et al., 2008; Kumar Chaurasia, 2009), so a greater metabolite regulation was observed in 

those samples as it was expected. Evidence of cell membrane lipid peroxidation and tissue 

damage was observed. Firstly, identification of unsaturated hydroxy fatty acids such as 
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9S,10S,11R-trihydroxy-12Z-octadecenoic acid, 12,13-dihydroxy-11-methoxy-9-octadecenoic 

acid, 9-HOTE (9-hydroxy-10,12,15(E,Z,Z) octadecatrienoic acid) and 17-hydroxy-linoeic 

acid in BH samples indicated degradation of linoleic acid. Linoleic acid can enzymatically be 

converted to di-and trihydroxy fatty acids by lipoxygenases (Hamberg and Hamberg, 1996; 

Kim et al., 2002; Gobel et al., 2003). In positive mode, a metabolite was up regulated in BH 

heart samples and identified as 4-oxo-nonenal. This metabolite has previously been 

characterized as a novel lipid peroxidation product (Rindgen et al., 1999; Lee et al., 2000). 

Another interesting metabolite identified as 4-CEHC (2,5,7,8-tetramethyl-2-(2'-

carboxyethyl)-6-hydroxychroman) showed an up regulation in flesh (mainly) and heart 

samples of BH and BC discolorations in positive mode again. It is reported that this 

compound is a major metabolite of a-Tocopherol the most active form of vitamin E (Schultz 

et al., 1995; Sontag and Parker, 2002). Spychalla and Desborough (1990), reported that a-

Tocopherol in potatoes has a protective action on cell membrane polyunsaturated fatty acids 

from lipid peroxidation under stress. An increase of a-Tocopherol was showed after storage 

of potato tubers for 40 weeks at low temperatures (3 and 9
o
C) (Spychalla and Desborough, 

1990). Also, the down regulation of glutathione oxidized in BH heart samples which plays an 

important role in cellular redox status probably indicates an impairment of the 

glutathione/ascorbate pathway (Dipierro and De Leonardis, 1998; Pedreschi et al., 2009; 

Correa et al., 2012). However, those findings were related with the effects of long term 

storage of potatoes at low temperatures and subsequent aging as lipid peroxidation occurs due 

to free radical build up causing cell membrane deterioration and leakage (Lojkowska and 

Holubowska, 1988; Spychalla and Desborough, 1990; Dipierro and De Leonardis, 1998). In 

addition, the fact that some of the fatty acids were present in control samples in this study 

indicates that the initial storage contributed to tissue cell membrane deterioration as all the 

samples analysed have been stored for more than 16 weeks at 1.5
o
C.  
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         In terms of discoloration, it has previously been hypothesized that phenolic compounds 

such as tyrosine, chlorogenic acid and related compounds are involved in tissue discoloration 

development in potato tubers affected by similar to BH physiological internal disorders such 

as brown centre and internal heat necrosis (Reeve, 1968). However, in this study chlorogenic 

acid was down regulated in BH samples indicating a possible further enzymatic oxidation to 

O-quinones due to tissue wounding (Pierpoint, 1966; Pantington et al., 1999, Takahama et 

al., 1997, 1999, 2004). Moreover, a relationship between more intense (BH) and less intense 

tissue discolorations as initiators of BH cannot be confirmed as the metabolite identification 

and regulation did not show a similar pattern in brown discolorations (BC, BCL and pith) 

when compared to control samples. Another interesting known metabolite identified was the 

5-O-feruloylquinic acid (an ester of ferulic and quinic acid) which was showed to be down 

regulation in BH samples. This metabolite is considered a relative to chlorogenic acid as both 

are derivatives of quinic acid and caffeic acid. Ferulic acid (a hydroxycinnamic acid) and its 

esters confer cell wall adhesion and rigidity (Rechner et al., 2001; Nara et al., 2006; Leiss et 

al., 2011). 

       The BH severity in year 2 was not as much as in year 1, as BC, BCL and pith tissue 

discolorations were only observed. At a first attempt, each discoloration was separately 

compared with control but there was poor clustering according to 3D PCA scatter plots (data 

not shown). However, a second attempt was carried out through merging all the discoloured 

samples and creating a new ‘discoloration’ condition (A: affected). On this second attempt, 

3D scatter plots showed only a separation between tuber tissues regardless the discoloration 

in both ion modes and there were no significant differences after ANOVA performance.  
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6.4.2. Metabolomic differences between control samples of potato stocks with different 

susceptibility to blackheart disorder 

 

           In both years analysis, 3D PCA scatter plots showed a clear separation according to 

potato stock susceptibility to BH and indeed further separation between those tuber tissue 

samples from non- and susceptible stocks in some of the interpretations (‘tissue vs. 

susceptibility’) with a coefficient of metabolite variation of 10 or 25%. In general, fold 

change analysis revealed significant regulations of known secondary metabolites such as 

glycoalkaloids, flavonoids and other phenylpropanoid related metabolites. Flavonoids and 

steroidal glycoalkaloids both represent important groups of the secondary metabolism in 

plants and have extensively been studied in potatoes before (Harbone, 1959; Bostock et al., 

1982; Cantwell, 1996; Lewis et al., 1998; Friedman et al., 2006; Payyavula et al., 2012, 

2013).). 

         Glycoalkaloids are considered as the toxic group of the secondary metabolites and are 

stimulated by many factors such as light exposure, temperature, storage conditions and 

mechanical injury (Jadhav et al., 1980; Cantwell, 1996; Smith et al., 1996; Simonovska and 

Vork, 2000). A-chaconine and a-solanine are the principal glycoalkaloids in potatoes 

accounting ca. 95% of the total glycoalkaloids, distributed in all parts of the potato plant and 

their content varies in the potato tuber [(peel > cortex > flesh – pith (not detectable)]. A-

chaconine and a-solanine synergism results in toxic effects (Smith et al., 1996; Friedman, 

2006; Mammicka, 2008). Although it has been proposed that both metabolites are synthesised 

via the mevalonate/isoprenoid pathway sharing the same aglycone solanidine and differ in the 

sugar moiety bounded to the aglycone, however, the glycoalkaloid synthesis in potatoes has 

not been clearly elucidated yet (Väänänen, 2007; Mandimika, 2008; Khan et al., 2013).  
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        Fold change analysis results of year 1, revealed differences in glycoalkaloid content 

between stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) in positive mode. 

A down regulation of a-chaconine was observed in those samples of stock 23 regardless the 

tissue. On the other hand, interpretation between tissue and susceptibility conditions showed 

that solanine, solanidine and solasonine (another aglycone) were up regulated in flesh control 

samples of stock 12. Also, solanine and solanidine were up regulated in heart tissue samples 

of stock 12, but solasonine did not show any changes. In addition, no changes in 

glycoalkaloid content in heart control samples of stock 23 were observed. According to those 

findings, it is unclear whether the glycoalkaloid content may be related with potato stock 

susceptibility to BH. Jadhav et al. reported that total glycoalkaloid content was increased in 

potatoes cvs. Russet Burbank, Norgold Russet and Pontiac with slight and severe BH and 

hollow heart (HH: another internal physiological disorder in potatoes) incidence due to tissue 

damaged caused by BH and HH, but concluded that these were less potent factor stimulating 

the glycoalkaloid synthesis compared to other factors as light and mechanical injury (Jadhav 

et al., 1980). Increase in total glycoalkaloid content in potato cultivar Torrindon due to injury 

and tissue damage has previously been reported (Dale et al., 1998). Glycoalkaloids are 

localized and accumulated in the vacuoles and the cytoplasm and may be transferred if the 

tissue is damaged (Väänänen, 2007). However, in this assessment, only control samples were 

analysed and yet no indications of glycoalkaloid accumulation in discoloured samples were 

observed in the previous assessment (see 6.4.1.). Also, no significant differences were 

observed between those control samples of year 2 Maris Piper stocks [stock 7 (susceptible to 

BH) and stock 3 (non-susceptible to BH)]. All potato stocks in both years had initially been 

stored for a long period in air at 1.5
o
C and analysed after storage at 15 and 20

o
C in year1 and 

year 2, respectively. It has been reported that low storage temperature (0 – 5
o
C) increases the 

glycoalkaloid content in potatoes due to stress caused (Dale et al., 1998; Lawley, 2013). 
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However, Maris Piper stocks of each year have grown in different locations. Although it has 

been proposed that Maris Piper is light-insensitive cultivar, different growing conditions may 

affect the glycoalkaloid content in potatoes (Percival, 1999; Smith et al., 1998; Sengun et al., 

2004).  

       Another two metabolites of interest were identified in positive mode. Phenylpropiolic 

acid showed an up regulation in those samples of stock 23 regardless the tissue. It is reported 

that this natural compound occurs in plant pathways and is involved in pathogen resistance 

(La Camera et al., 2004). Interpretation between tissue and susceptibility revealed that 

phenylalanine which is the precursor for the phenylpropanoid pathway did not show any 

changes in flesh samples of stock 12 when compared with flesh samples of stock 23 and it 

was down regulated in heart samples of stock 12 compared to heart samples of stock 23.  

       Flavonoids were also identified in both years. Flavonoids are those metabolites that share 

the same backbone C6-C3-C6 consisted of two aromatic cycles (A and B) linked to a 

heterocycle (C) containing an oxygen atom and modifications (i.e. hydroxylations, 

glycosylations, methylations etc.) on the backbone allow the classification of those 

metabolites into flavonols, flavan-3-ols, flavanones, flavones, isoflavones and anthocyanins 

(Rice-Evans et al., 1996; Pourcel et al., 2006; Andre et al., 2009; Pinheiro and Justino, 2012, 

Petrussa et al., 2013). It has been reported that most of the flavonoids are present as 

glycosides synthesised by glycosylation namely a sugar attached to the aglyone using 

glycoyltransferases (Kim et al., 2006, 2013; Aksamit-Stachurska et al., 2008; Simkhada et 

al., 2010). Recent work on control and transgenic potato tubers cv. Desiree using 

glycoyltransferase gene isolated from several cold-induced clones derived from cold-resistant 

potato species Solanum sogarandinum showed that glycosyltransferases might control the 

phenylpropanoid pathway (Aksamit – Stachurska et al., 2008). In year 1 analysis, two 
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polyhydroxyflavones [(hibiscetin or 3,5,7,8-tetrahydroxy-2-(3,4,5-trihydroxy phenyl) 

chromen-4-one and 5,7,3',4',5'-pentahydroxy-3,6,8-trimethoxyflavone] showed an up 

regulation in those control samples of stock 23 (susceptible to BH) when compared with 

those control samples of stock 12 (non-susceptible to BH) in negative mode. Hibiscetin is a 

flavonol glycoside found in yellowish flower petals of Hibiscus Sabdariffa or roselle 

(Malvaceae family) an herb with antioxidant activity and functional properties (Rao et al., 

1941; Al-Hashimi, 2012; El-Saidy et al., 2014; Obouayeba Abba Pacôme et al., 2014). In 

negative mode still, a down regulation of the known quinic acid which is a key metabolite for 

chlorogenic acid synthesis was observed in stock 23. Furthermore, 4-oxoproline (involved in 

proline metabolism) showed down regulation in stock 23 (susceptible to BH). It has been 

suggested that proline may be accumulated in plants as a physiological response against to 

biotic and abiotic stress and might influence the adaptive responses to the stressors and its 

accumulation may provide protection of cell function, membrane and enzyme activity 

(Cheynier et al., 2009). 

          In year 2, fold change analysis results revealed that flavonoids were up regulated in 

those samples of stock 3 (non-susceptible to BH). In particular, up regulation of quercetin-3-

glucoside-7-rutinoside, quercetin-3-glucoside-7-rhamnoside (both diglycosides) and 

myricetin-3-rutinoside was observed in those flesh and heart samples of stock 3 when 

compared with flesh and heart samples of stock 7 (susceptible to BH) in negative mode. 

Similarly, quercetin-3-glucoside-7-rutinoside, myricetin-3-rutinoside, quercetin-3-rutinoside 

(or rutin) and two other flavonoids 3,5,7,2',5'-pentahydroxyflavone and 3,5,7,2',5'-

pentahydroxyflavone + 5.129875 were all up regulated in stock 3 (non-susceptible to BH) 

regardless the tissue. Rutin (quercetin-3-rutinoside), myricetin-3-glucoside and similar 

flavonol glycosides and diglycosides identified in year 2 analysis have previously been 

reported in white and coloured potatoes (Lewis et al., 1998; Navarre et al., 2011; Payyavula 



204 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

et al., 2012, 2013). Last but not least, it is worth noted that a down and up regulation of 

isoferulic and a trihydroxy unsaturated fatty acid (9S,10S,11R-trihydroxy-12Z-octadecenoic 

acid) respectively in stock 7 (susceptible to BH) was observed in negative mode. The 

identification of flavonoid compounds in both years and that of phenylalanine in year 1 

analysis suggest differences in gene expression and regulation of the phenylpropanoid 

compounds and their biosynthetic pathway. However a conclusion of how these metabolites 

may differentiate the potato susceptibility to BH cannot be achieved based only on this data.  

 

6.5. Conclusions 

        This study indicated that through an untargeted metabolomic approach it is possible to 

provide evidence about the involvement of number of interesting metabolites identified and 

to have a better understanding of the metabolite regulation. It was possible to separate tuber 

tissue discolorations from the control with the former tissue samples showing a greater 

metabolite regulation in year 1 analysis. However in year 2 analysis there were no significant 

differences in terms of tissue discoloration. Thus, it cannot be concluded that less intense 

brown discolorations are initiators of BH development. On the other hand, it seems plausible 

that the flavonoids identified could be used to differentiate potato stocks with different 

susceptibility to BH in both years and this group of phenylpropanoid compounds warrant 

further investigation.     
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CHAPTER SEVEN:  

Feasibility study into the gas diffusivity measurement of potato 

stocks with different susceptibility to blackheart disorder 

 

7.1. Introduction 

         Gas exchange in fruit and bulky organs is essential for metabolic processes and is 

caused by differences in gas concentrations between the applied external atmosphere and the 

internal atmosphere of plant tissues. Gas diffusion is the primary mechanism of gas exchange 

and is determined by many factors as the physiological status of the commodity and its 

respiratory activity, tissue permeability and also those barriers and pathways that gases need 

to follow within a tissue (Corey and Tan, 1990; Verboven et al., 2008; Ho et al., 2006b, 

2010).  

         In potato tubers, O2 diffusion initially occurs through the lenticels of the skin that are 

the dominant barriers, then passes through the flesh to the intercellular spaces where 

eventually the respiration takes place in the cytoplasm-mitochondria, while CO2 is released 

following the opposite path (Wigginton, 1973; Banks and Kays, 1988; Weber, 1990; 

Geigenberger et al., 2000; Ho et al., 2010). It is believed that gas-filled intercellular spaces 

pose the main pathway for gas diffusion. Since very early on, it was stated that tuber tissue 

contains small intercellular spaces showing some connectivity to one other (Devaux, 1891). 

Later, Woolley (1962) also reported after microscopic observations that the intercellular 

spaces of potatoes cv. Russet were almost all gas-filled with a diameter of 10-15 µm showing 

a connectivity path of 0.5 mm (ca. 3 to 6 cells diameters). Nevertheless, in contrast with other 

bulky crops, for instance apples and pears, potato tuber is more compact having low porosity 

with only 1-2% of intercellular space volume in the tissue (Banks and Kays, 1988; Scotsmans 
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et al., 2003; Ho et al., 2006). Also, it has previously been reported that adequate O2 

concentration is contained in the intercellular spaces of the tuber tissue due to low respiration 

rate of the tuber under regular storage conditions, but partial anoxia might occur at the centre 

of the tuber under adverse environments (Burton, 1950; Woolley, 1962; Wigginton, 1973; 

Abdul-Baki and Solomos, 1994). Insufficient gas exchange and limited supply of O2 might 

lead to hypoxic or anoxic atmospheres resulting in physiological changes and tissue cell 

impairment and yet cell death (Geigenberger et al., 2000; Ferreira de Souza et al, 2002; 

Verboven et al., 2008; Zabalza et al., 2009).  

          Early studies related to gas diffusivity of the potato were mainly focused on the gas 

composition of intercellular spaces or on its influence on sprouting. Several methods that 

have previously been used estimating the internal gas composition of tuber tissue showed 

accuracy limitations due to low porosity of the tuber making their estimations difficult 

(Devaux, 1891; Magness, 1920; Thornton, 1939; Gorter and Nadort, 1941; Burton, 1950, 

1968; Woolley, 1962). Later, other publications referred to gas diffusion through the potato 

skin and flesh (Wigginton, 1973; Banks and Kays, 1988; Abdul-Baki and Solomos, 1994). 

Currently, there is a dearth of information on estimating the gas diffusivity of different and 

specific regions of the potato tuber. Since it has been reported that blackheart disorder (BH) 

in potato tubers is induced when O2 is depleted and consumed faster than may be supplied 

resulting in cell necrosis mainly in the central part of the tuber (Lipton, 1967; Smith, 1978; 

Banks and Kays; 1988), thus it would be interesting to estimate the O2 diffusion in specific 

regions of the perimedullary and the central pith.  

        For the first time using a gas diffusion model set up combined with optical sensors (Ho 

et al., 2006a), this study aimed to investigate the O2 diffusivity in flesh and heart tissue discs 

of potato stocks cv. Maris Piper with different susceptibility to BH. That same set up has 

extensively been used to elucidate changes in gas diffusivities of pear fruit with or without 
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core breakdown disorder (Ho et al., 2006a,b 2007). As the gas exchange mechanism is 

largely dependent on the intercellular space and cell structural arrangement, three 

dimensional (3D) images using x-ray micro Computed Tomography (micro-CT) were 

obtained in order to visualize and better estimate the pore formation of different tuber tissues 

(flesh and heart). X-ray scanning has previously been used to detect hollow heart disorder in 

potatoes (Harvey, 1937; Nylund and Lutz, 1950; Finney and Norris, 1978; Watts and Russell, 

1985). Later, x-ray Micro-CT was performed to assess the induction of common scab disease 

in potato roots (Han et al., 2008) and also growth velocity of potato tuber was determined 

using comparative transcriptome analysis coupled with micro-CT (Ferreira et al., 2010). 

 

7.2. Materials and methods 

        Sample preparation before x-ray micro-computed tomography scanning and sample 

preparation for potato tuber volume, density and respiration rate measurement are described 

in Chapter 3; Section 3.7.1, 3.7.2 and 3.7.3, respectively. Sample preparation for O2 

diffusivity measurement and diffusion set up system are also described in Chapter 3: 

materials and methods (see Section 3.7.4 and 3.7.5, respectively).  

 

7.3. Results 

7.3.1. Example of micro-Computed Tomography (micro-CT) scans and three-dimensional 

(3D) images 

 

           Example of flesh and heart tuber tissue micro-CT scans (two dimensional – 2D) of 

stock 4 (non-susceptible to BH) and stock 10 (susceptible to BH) are shown in the figures 

below (Figs. 7.1 - 7.4). Micro-CT scans of flesh tissue of tuber 2 from stock 10 are not shown 
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due to poor scanning resolution. The images were segmented into cells, intercellular spaces 

and also starch granules based on a greyscale threshold. Intercellular spaces and starch may 

easily be distinguished as black hole shapes and light grey coloured granules, respectively. 

According to Figures 7.1 to 7.4 a variation in size and shape of the intercellular space it was 

shown. It was also observed that starch granules were more accumulated next to the 

intercellular spaces regardless of the tissue examined. It is worth noting that imaged potato 

tubers were initially stored at 3.5
o
C for ca. 8 months before analysis. Differences in starch 

accumulation in flesh and heart samples of stock 4 (non-susceptible to BH) compared to 

those samples of stock 10 (susceptible to BH) were observed. Starch tended to be more 

accumulated in flesh than in heart tissue of stock 4 (Figs. 7.1 and 7.2). Starch accumulation 

was similar in the flesh and heart samples of stock 10 (Fig. 7.3 and 7.4).  

         3D image reconstruction is based on a set of those 2D scans obtained after x-ray micro-

CT scanning. Example of 3D images of flesh and heart tuber tissue of stock 4 (non-

susceptible to BH) and stock 10 (susceptible to BH) are shown in Figures 7.5 and 7.6 

respectively. Regarding the intercellular space formation a large variability was observed 

among flesh and heart tuber tissue. That was due to the ‘noise’ caused by starch accumulation 

and also the sampling position of the potato tuber from which flesh and heart tissues were cut 

and scanned.   
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Figure 7.1 X-ray micro-CT scans of flesh (a) and heart (b) tissue (3 mm in diameter and 5 mm in thickness) of tuber 1 from stock 4 (non-

susceptible to BH) at 2 µm pixel resolution. Intercellular spaces are shown as a black hole shape. Suspected starch granules are shown in light 

grey colour. Selected regions of interest (500 x 500 pixels) are shown. 

 

a) b) 

a) b) 

starch  

granules 

starch  

granules 



210 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 X-ray micro-CT scans of flesh (a) and heart (b) tissue (3 mm in diameter and 5 mm in thickness) of tuber 2 from stock 4 (non-

susceptible to BH) at 2 µm pixel resolution. Intercellular spaces are shown as a black hole shape. Starch granules are shown in light grey colour. 

Selected regions of interest (500 x 500 pixels) are shown. 
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Figure 7.3 X-ray micro-CT scans of flesh (a) and heart (b) tissue (3 mm in diameter and 5 mm in thickness) of tuber 1 from stock 10 (susceptible 

to BH) at 2 µm pixel resolution. Intercellular spaces are shown as a black hole shape. Starch granules are shown in light grey colour. Selected 

regions of interest (500 x 500 pixels) are shown. 
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Figure 7.4 X-ray micro-CT scan of heart tissue (3 mm in diameter and 5 mm in thickness) of 

tuber 2 from stock 10 (susceptible to BH) at 2 µm pixel resolution. Intercellular spaces are 

shown as a black hole shape. Starch granules are shown in light grey colour. Selected regions 

of interest (500 x 500 pixels) are shown. 
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Figure 7.5 3D microstructure of flesh and heart tissue of tuber 1 (a) and tuber 2 (b) from stock 4 (non-susceptible to BH) reconstructed after 

micro-CT scanning. 
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Figure 7.6 3D microstructure of flesh and heart tissue of tuber 1 (a) and tuber 2 (b) from stock 10 (susceptible to BH) reconstructed after micro-

CT scanning. 
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7.3.2. Oxygen diffusivity 

 

          Oxygen diffusivity (DO2) of flesh and heart tissue of stock 10 (susceptible to BH) and 

stock 4 (non-susceptible to BH) was calculated using COMSOL Multiphysics
®
 with 

MATLAB
®
 Scripting software. The results were averaged (n = 8 / sample / stock) and 

tabulated in Table 7.3. During this experiment all tuber tissue samples were sound with no 

indications of discoloration except a brown centre (BC) discoloration that was surprisingly 

discovered in that tuber of stock 4 (non-susceptible to BH) at measurement on day 7 (Fig. 

7.7). According to Table 7.1, it was shown that the highest (1.08 x 10
-9 

m
2
 s

-1
) and the lowest 

(0.5 x 10
-9

 m
2
 s

-1
) average O2 diffusivity was observed in the heart and flesh tissue of stock 10 

(susceptible to BH), respectively. O2 diffusivity of heart tissue of stock 4 was slightly higher 

than that of flesh tissue (0.74 x 10
-9

 and 0.69 x 10
-9

 m
2
 s

-1 
respectively). Also, the O2 

diffusivity of that heart tissue of stock 4 with BC discoloration was 0.069 x 10
-9

 m
2
 s

-1 
(Table 

7.1). 

 

 

 

 

 

 

 

Figure 7.7 BC (brown center) discoloration in tuber of stock 4 (non-susceptible to BH) 

(a). Heart and flesh tissue samples of stock 10 (susceptible to BH) (b) and stock 4 (c) 

before O2 diffusion measurement on day 7. 
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Table 7.1 Oxygen diffusion [DO2 (m
2
 s

-1
)] of flesh and heart tissue from stock 10 (susceptible 

to BH) and stock 4 (non-susceptible to BH).  

Measurement 
Stock 10 Stock 4 

FLESH HEART FLESH HEART 

1 0.095 x 10
-9

 2.74 x 10
-9

 0.080 x 10
-9

 0.158 x 10
-9

 

2 0.105 x 10
-9

 2.70 x 10
-9

 4.81 x 10
-9

 0.094 x 10
-9

 

3 3.21 x 10
-9

 0.119 x 10
-9

 0.079 x 10
-9

 0.090 x 10
-9

 

4 0.196 x 10
-9

 0.172 x 10
-9

 0.087 x 10
-9

 0.131 x 10
-9

 

5 0.083 x 10
-9

 2.57 x 10
-9

 0.110 x 10
-9

 5.07 x 10
-9

 

6 0.075 x 10
-9

 0.081 x 10
-9

 0.087 x 10
-9

 0.069 x 10
-9

 

7 0.162 x 10
-9

 0.142 x 10
-9

 0.173 x 10
-9

 0.069 x 10
-9

 

8 0.070 x 10
-9

 0.126 x 10
-9

 0.095 x10
-9

 0.107 x 10
-9

 

Average 0.5 x 10
-9

 1.08 x 10
-9

 0.69 x 10
-9

 0.74 x 10
-9

 

 

7.4. Discussion   

        The results revealed large variation of O2 diffusivities in different tuber tissue samples 

of cv. Maris Piper potato stocks with different susceptibility to BH among the micro-CT 

scans. As gas-filled intercellular spaces are believed to pose the main pathway for gas 

diffusion, x-ray micro-computed tomography was initially used for a better visualization of 

the tissue structure in flesh and heart tuber tissue of stock 10 (susceptible to BH) and stock 4 

(non-susceptible to BH). According to micro-CT scans tissue cells could not be easily 

distinguished. However, accumulated starch granules and gas-filled intercellular spaces were 

clearly visualized. Differences in starch accumulation between the tuber tissues were 

observed, but those differences cannot be compared between stock 10 (susceptible to BH) 

and stock 4 (non-susceptible to BH) due to small sample replication (n = 2 samples / tissue / 

stock). Both micro-CT scans and 3D images showed that the gas-filled intercellular spaces of 

flesh and heart tissue were not well connected and varied in size and shape. Also, the 

intercellular space visualization was negatively influenced from starch granule accumulation 
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by creating ‘noise’ on the 3D image quality. A greater sample replication it would be more 

useful to better distinguishing the starch accumulation and yet to better estimate possible 

differences of intercellular space formation between specific regions of the tuber tissue. For 

the micro-CT scanning, the flesh tissue was derived from the perimedulla region and the 

heart tissue from the medullary regions (pith). Those two tuber regions differ because of the 

tissue cell structure as parenchyma cells of the perimedulla (flesh) are bigger and more starch 

abundant than of those cells present in the medullary zone (pith) and thus this difference in 

starch abundance may be responsible for that wet-translucent looking of the pith (Reeve et 

al., 1969; Sadowska et al., 2007). Microscopic analysis of flesh and pith cellular structure 

that has extensively been conducted in different Polish potato cultivars is in agreement with 

this size difference of tuber cells. The authors also showed some cell structure differences 

between those cultivars examined (Konstankiewicz et al., 2002; Gancarz et al., 2007, 2014). 

This might suggest that due to differences in cell structure, different intercellular space 

connectivity may be formed influencing further the gas diffusion within a tissue. Therefore, 

the gas-filled intercellular spaces might partially be filled up with water or sap posing an 

additional resistance to gas diffusion as the cell walls becoming hydrated. It has been 

previously hypothesized that CO2 diffusion has greater solubility in water and transports 

faster in the liquid phase while O2 mainly diffuses through the gas phase (Woolley, 1962; 

Himmelblau et al., 1965; Abdul-Baki and Solomos, 1994; Ho et al., 2006a, 2007, 2011; 

Licausi and Perata, 2009). 

         From this study, it is suggested that the discontinuity of the gas-filled intercellular 

spaces may be a factor governing large variation in O2 diffusivities between flesh and heart 

tuber slices of both stocks analyzed. Also, some very large values of O2 diffusivity measured 

might be explained due to possible gas leakage in the measurement chamber of the gas 

diffusion model set up used. Ideally, a lower O2 diffusion in heart tissue of stock 10 
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(susceptible to BH) it would be expected. However, in this experiment results showed that 

average O2 diffusivity of the heart tissue of stock 10 was the highest (1.08 x 10
-9

 m
2
 s

-1
). The 

fact that all the flesh and heart samples of stock 10 were sound without any indication of 

discoloration did not allow a comparison with those samples of stock 4 (non-susceptible to 

BH) as the O2 diffusivities varied the same. During the whole experiment, there was only one 

heart sample which showed BC discoloration and interestingly this was derived of stock 4 

(non-susceptible to BH), but that did not influence the results. Therefore, a further 

measurement of CO2 diffusivity it would be very useful to better understand the gas diffusion 

in those flesh and heart tuber tissues examined. Early studies on CO2 diffusivity in potato cv. 

Russet Burbank showed that the peel had a lower CO2 diffusivity when compared to the flesh 

(0.06-0.07 x 10
-9

 and 25-26 x 10
-9

 m
2
 s

-1 
respectively) (Abdul-Baki and Solomos, 1994). 

Also, gas diffusion studies on pear fruit also showed that gas diffusivities of the skin were 

lower than of those in the inner cortex (Lammertyn et al., 2001; Schotsmans et al., 2003; Ho 

et al., 2006a). In more recent work which is partially related to this study, Ho et al., 2006b 

studied the gas diffusivities of healthy and affected pears with core breakdown disorder 

induced under CA storage conditions. The authors compared flesh tissues of healthy pears 

versus affected pears showing that average O2 and CO2 diffusivities of affected flesh tissues 

with brown discoloration (0.185 x 10
-9

 and 0.142 x 10
-9

 m
2
 s

-1
 respectively) were lower 

compared to sound tissues (0.246 x 10
-9

 and 0.158 x 10
-9

 m
2
 s

-1
 respectively). They also 

concluded that there were no differences in gas diffusivities between healthy and sound pear 

tissues due to large variability observed between those samples analyzed.  
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7.5. Conclusions 

        The measurement of O2 diffusivity in flesh and heart tuber tissue samples of potato 

stocks with different susceptibility to BH (one susceptible and one non-susceptible) was 

carried out using a gas diffusion measurement model set up coupled with optical sensors for 

the first time. To better visualize the intercellular spaces in flesh and heart tissue of both 

potato stocks x-ray micro-CT scanning and 3D images were used. Both micro-CT scans and 

3D images showed a variation in the structure and connectivity of the intercellular spaces in 

tuber tissues. There was a large variation in O2 diffusivities and it is suggested that this may 

be due to the discontinuity of the gas-filled intercellular spaces. Also, starch granule 

accumulation was considered as diffusion in liquid posing an additional barrier of the 

diffusion. Due to the large variability, no differences between flesh and heart tissue were 

observed. Furthermore, the fact that there were no indications of discoloration in those 

samples of the susceptible to BH stock, a comparison in stock susceptibility was not possible. 

Also, to gain a better understanding of the gas diffusivity at different tuber tissues the 

measurement of CO2 diffusivity would be useful. 

 

 

 

 

 

 

 

 

 

 



220 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

CHAPTER EIGHT:  

General discussion 

 

         Consumer’s demand for nutritious, tasty and secure food has become topic of 

considerable recent interest. The potato is a high value crop and one of the most important 

staple foods worldwide and is widely produced and consumed in the UK. In recent years, 

potato blackheart disorder (BH) has been considered as a significant cause of storage losses 

(Kumar et al., 2009) the prevalence of which has been increasing in the UK potato industry. 

BH is a non-pathogenic disorder resulting in an internal brown to black discolouration mainly 

in the medullary tuber tissues (pith) and rarely formation of cavities and it is associated with 

O2 depletion and/or CO2 accumulation. From the consumer’s point of view, good potato 

quality is determined by firmness, smoothness, no indications of defects and sprouts and 

unfavourable colours thus being aesthetically appealing enchasing consumer’s confidence. 

On the other hand, BH disorder as for similar internal physiological disorders induced in 

potatoes show no external symptoms and only becomes apparent when tubers are sliced open. 

Thus, BH is considered as a particular problem for the fresh potato industry because quality 

control (QC) procedures cannot adequately check for the defect and this failure is 

undermining consumer confidence. To date, it is still believed that BH can develop at any 

temperature when O2 supply is insufficient and may either be developed by tuber exposure to 

high temperatures (> 35
o
C) without O2 deprivation (Hiller, 2002; Kumar Chaurasia, 2009) or 

at low or very low temperatures because under those conditions gas diffusion is restricted 

(Stewart and Mix, 1917; Link et al., 1932; Lipton, 1967; O’Brien and Rich, 1976; Smith; 

1978; Hooker, 1981; Wale et al., 2008). However, the storage temperature and exposure time 

in which BH is initiated and reaches the maximum levels of incidence cannot be predicted 

and it is unclear what pre- and/or post-harvest factors are involved in BH development. The 
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aim of this project was to study the physiological and metabolomic mechanisms involved in 

BH disorder by selecting potato stocks (cv. Maris Piper) with different susceptibility to BH 

and to have a better understanding of the factors which contribute to the development of BH 

disorder in order to alleviate this problem for the UK fresh potato industry. 

 

8.1. Effect of storage temperature and shelf-life conditions on the BH 

incidence of potato stocks with different susceptibility to BH 

 

         According to customer complaints, BH disorder in potato tubers is more evident by the 

end of the winter peaking in spring time.  BH becomes apparent only when tubers are sliced 

open namely during cooking preparation. It is assumed that inappropriate storage and shelf-

life conditions and probably the packaging material itself may contribute to BH development. 

In this project, an attempt to mimic the shelf-life storage was evaluated by storing potato cv. 

Maris Piper stocks with different susceptibility to BH at a very low storage temperature and 

then tuber subsamples transferred at a warmer temperature and stored in air and/or under 

various gas combinations using the CA system. Maris Piper cultivar is the dominant main-

crop produced in the UK (accounting for 15% of UK plant area) with various culinary uses.  

        In year 1 (2011-2012) less and more intense brown tissue discolorations localized in the 

central pith part of the tuber were mostly indicated in both susceptible to BH stocks (stock 20 

and stock 23) starting in December 2012 after 8 weeks of storage at very low temperature 

(1.5 or 3
o
C) peaking after a few months during springtime. However, the total percentage of 

BH incidence was quite low (< 10%) corresponding to the total number of tubers used. Stock 

23 had significantly (ca. 3-fold) greater BH incidence compared to stock 20 and yet BH-like 

symptoms namely a dark brown to blackish discoloration were found in just three tubers of 

stock 23. Furthermore, no indications of discoloration were observed at baseline where no 
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initial cold storage temperature occurred (November 2011). That might suggest that the initial 

cold storage at very low temperature after baseline may trigger the brown tissue 

discoloration. In a similar study on storage trials of 15 Maris Piper stocks (including stock 20, 

23 and 12 used in this present study) conducted by A. Briddon at Sutton Bridge Crop Science 

Research (SBCSR) in 2011, it was reported that BH symptoms were not detected directly 

after storage at very low temperatures (1.5 and 3.5
o
C). However, he also reported that stock 

23 (susceptible to BH) had ca. 6-fold higher BH incidence compared to stock 20 (susceptible 

to BH) and stock 12 (non-susceptible to BH) after packaging trials (Adrian Briddon, personal 

report, SBCSR). In year 2 (2012-2013) the incidence of BH in both experiments conducted 

was also quite low proportionally to the total number of tubers used. No significant 

differences in BH incidence were shown over storage time and yet between those susceptible 

to BH stocks 7 and 12. Brown tissue discolorations were only identified. Differences in BH 

incidence between year 1 and year 2 might be explained due to different growing seasons and 

growth conditions that all potato stocks analysed have been grown at (Davies, 1998).  

       Also, it is well known that when potatoes are transferred from a cooler to warmer 

temperature condensation occurs on their skin surface due to temperature difference and a 

restriction in O2 diffusion arises due to the water film formed on their skin (Burton and 

Wigginton, 1970; Hooker, 1981; Pringle et al., 1996, 2009; Wale et al., 2008). So, it is worth 

mentioning that when potatoes were transferred unwashed from the cold temperature in order 

to be sampled on day 0 at 15 or 20
o
C (in year 1 and year 2 respectively), a prior 3 - 5 hour 

warming up for the tubers was required before sampling. However, during this project 

condensation was not observed. 

       It has been reported that BH development is caused by gaseous differences and can occur 

at any temperature by O2 deprivation (Stewart and Mix, 1917), but at low temperatures (5
o
C) 

its development requires a longer time. However, it is believed that the disorder may rapidly 
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develop at extreme high (> 35
o
C) or very low (0-2.5

o
C) temperatures (Batholomew, 1916; 

Link et al., 1932; O’Brien and Rich, 1976; Smith, 1978; Hooker, 1981; Wale et al., 2008; 

Kumar Chaurasia, 2009). Lipton (1967) reported that incidence of BH (10 - 13%) occurred in 

packed potatoes cv. White Rose after storage in very low O2 concentrations (0.5 and 1% O2) 

at 5 and 15
o
C and no indications of BH in storage at 5 and 21% O2 (air) at higher 

temperatures were observed. Furthermore, Butchbaker et al. (1967), reported severe 

incidence of BH in unwashed packed potatoes cv. Kennebec after storage in CA chambers 

with 10% O2 and 10-24% CO2 at 4
o
C for six months. After packaging trials on 15 Maris 

Piper stocks conducted in 2011, A. Briddon reported that BH incidence was 2-fold higher in 

punched polythene packed potatoes compared to those unpacked after storage at 20
o
C for 13 

days. He also concluded that initial storage temperature at 1.5
o
C effectively increased BH 

incidence mainly in packed potatoes compared to 3.5
o
C, but BH symptoms were 

accompanied with grey diffusion (suggested as total % of BH symptoms) were more evident 

in unpacked tubers (Adrian Briddon, personal report, 2011). Those findings suggest that 

packaging combined with storage at lower O2 levels and/or high CO2 concentrations, seems 

to be a significant barrier by further promoting the O2 restriction (Beaudry, 2000; Fonseca et 

al., 2000; Watkins, 2000). In this project, it might be said that O2 was not restricted in those 

chambers used in both years where tubers were respiring normally and respiration rate 

recorded by all stocks was affected mainly from the initial cold storage temperature, the 

efflux of CO2 for those tubers held under CA conditions or a combination of both factors. 

Hooker (1981) suggested that at 1% O2 or lower levels at 14
o
C or higher temperatures will 

cause stimulation of anaerobic respiration, greater membrane permeability with result to 

decay and BH concluding that these effects might not be evident at lower temperatures. 

        BH symptoms are linked with black discoloration localized in the very central part of the 

tuber (pith), but sometimes may diffuse in the unaffected perimedulla tuber area without 
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reaching the cortex, depended on the severity (Hooker, 1981). However, there is still a 

confusion of which are the real symptoms that govern the disorder. Kumar Chaurasia (2009) 

characterized the BH symptoms as a dark grey to black-purplish discoloration and Hooker 

(1981) reported that black to black-blue irregular discolorations were indicated in the central 

part of the tuber. On the other hand it seems that exclusion of O2 leads to irregularities in 

shape discoloration across the pith, but at very high temperatures the discoloration may be 

formed in a circle-like shape (Stewart and Mix, 1917; Wale et al., 2008). As previously 

mentioned, in this project, less and more intense brown tissue discolorations localized in pith 

tuber area were mostly identified and sometimes accompanied with brown scattered blotches 

(Reeve, 1968). Due to similar tissue discolorations occurred in the tubers, sometimes these 

discolorations might confuse and mislead differentiating the BH disorder. That happens due 

to the overlapping with other internal physiological disorders induced in potato tubers 

showing similar symptoms with BH, depended on the severity of the disorder indicated (i.e. 

BC, brown centre; internal necrosis; HH; hollow heart; etc.). It has been proposed that BC is 

the precursor for HH development and possibly the initial step for BH induction (Reeve, 

1968). Hooker (1981) proposed that BH may arise from internal heat necrosis or internal 

brown mahogany tissue discoloration. These statements are misleading as almost all internal 

physiological disorders induced in potato tubers share a common feature; that of brown tissue 

discoloration and cell necrosis in some cases (Dinkel, 1963; Van Denburgh et al., 1980, 1986; 

Bussan, 2007; Sowokinos, 2007; Wale et al., 2008). Craft et al. (1958) reported brown tissue 

discolorations in the central tuber tissues developed due to the low temperature injury in 

potatoes cvs. Russet Rural and Kennebec packed in ventilated polyethylene bags stored at 

0
o
C for ca. 4 months. Low temperature injury in potato tubers may be caused after storage at 

those cold temperatures slightly above the freezing point (0-2.5
o
C), but the disorder may also 

be induced at 3.8-4.4
o
C dependent on the cultivar. Brown tissue discoloration initially occurs 
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in vascular ring and the outer part of the tuber, but severe damage may result in grey and 

brown to black discoloration symptoms in the internal tuber tissue (UNECE 4
th

 session note, 

2011). However, its symptoms may overlap with other physiological disorders and pathogen 

diseases (Smith, 1978; Hooker, 1981; Wale et al., 2008). Also, tissue discolorations in the 

central tuber part observed from Craft et al. (1958) were similar to those of BH symptoms 

(dark internal discoloration in the central tuber part) and not symptoms of low temperature 

injury. It is obvious that cold initial storage temperature may influence the incidence of BH-

like symptoms or symptoms of similar internal physiological disorders. Nevertheless, it is 

still unclear whether brown tissue discolorations indicated herein were stimulated or induced 

at very low initial storage temperature and then exacerbated during shelf-life evaluation at 

either 15 or 20
o
C. The temperature and exposure period in which BH shows greater incidence 

could not readily be predicted. That said, because in both years tissue discolorations were 

indicated randomly between the sampling days over storage time and yet BH incidence was 

equally evident in both storage conditions (air or under various gas combinations). It may be 

assumed that BH or BH-like symptoms may slowly develop at low temperatures without O2 

exclusion in the external atmosphere. On the other hand, the fact that BH can develop in 

about 100% of the tubers at very high temperatures (> 35-44
o
C) may not be linked with shelf-

life conditions, unless this happens when tubers are transported as mentioned previously. 

        Furthermore, it has been suggested that physiological disorders and tissue discolorations 

may be initiated during pre-harvest conditions such as growth conditions, soil temperatures 

and soil types, water logging (flooding), calcium deficiency (Link et al., 1932; O’Brien and 

Rich, 1976; Bussan, 2007; Wale et al., 2008; Palta, 2010; Zommic et al., 2013). It was 

previously stated that cool growing conditions at 10-15
o
C soil temperatures BC may be 

expressed in growing potatoes cv. Russet Burbank (Van Denburgh et al., 1980, 1986). 

Zommic et al. (2013) reported that warm soil temperatures during potato bulking resulted in 
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severe BH incidence 270 days after harvest after storage at 9
o
C. Since growing conditions 

affect the potato tuber yield some pre-harvest practices to control and avoid/reduce BH have 

been proposed recommending the use of well-drained fields with good soil porosity through 

tillage and organic matter to avoid excessive irrigation (Robinson and Secor, NDSU; Wale et 

al., 2008). Light sandy soils should be avoided and under sunny and hot weather conditions at 

harvest period potato tubers have to be removed from hot soils when vines are dead (O’Brien 

and Rich, 1976; Smith et al., 1978). Moreover, during storage good ventilation must be 

provided and storage temperature should be controlled. 

 

8.1.1. Effect of tuber size and weight on the incidence of BH 

 

            The tuber size (namely length and maximum equatorial diameter) and tuber weight 

were also examined as additional factors influencing the incidence of BH. In year 1 (2011-

2012), potato tubers from all three stocks analysed were about same in size (ca. 102 mm in 

length, 70 mm in diameter) and weight (ca. 240 g). Stock 23 (susceptible to BH) showed ca. 

3-times greater BH incidence compared to stock 20 (susceptible to BH); generally, none of 

those dimensions measured nor did the weight have any effect on BH incidence. Also, in year 

2 (2012-2013) all tubers derived from all three potato stocks and used in both experiments 

were similar in weight (ca. 241-272 g) and size (ca. 91–103 mm in length and 73-76 mm in 

diameter). Thus, it cannot be concluded that tuber weight and size have an effect on the 

incidence of BH due to the low indication of tissue discoloration. Once those brown tissue 

discolorations are initiated in the central part of the tuber (pith), it could be hypothesized that 

the narrowness of the pith which is positively associated with the tuber length as Tai and 

Misener (1994) pointed out and combined with the osmoregulation might have a possible role 

in tissue discoloration. However, longer tubers have narrow pith and pith cells localized in 

various tuber parts (namely central, stem and bud end) may vary in size (Reeve et al., 1971; 
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Mogen and Nelson, 1986). From those findings it cannot truly be said that heavier and bigger 

sized tubers have greater incidence to brown tissue discoloration (Stewart and Mix, 1917). It 

has been reported that brown tissue discolorations may be developed in newly formed tubers 

as well (Van Denburgh et al., 1980, 1986; Bussan, 2007; Zotarelli et al., 2012) and therefore 

BH symptoms are more evident in medium sized tubers with ca. 60-70 mm in diameter 

(unpublished survey). 

 

8.2. Effect of storage temperature and shelf-life conditions on the 

respiration rate of potato stocks with different susceptibility to BH 

 

          From harvest to consumption potatoes may undergo several physiological and 

compositional changes. In between, post-harvest reflects those techniques used to maintain 

the commodities quality providing fresh and healthy products to the markets and 

subsequently to the consumers (Khanal and Uprety, 2014). Generally, storage temperature is 

the most important factor controlling the postharvest life of stored commodities and thus 

affecting the metabolic processes such as respiration rate. Fresh potatoes are commercially 

stored at very low temperatures (3-4
o
C) in order to extend their storage life by lowering their 

respiration rate providing year availability and marketability, thus creating desirable 

conditions for better shelf-life storage (Gast, 1991; Kleinkopf, 1995; Mathooko, 1996; 

Thompson, 1996; Nourian et al., 2003; Zommick et al., 2014). Respiration rate is considered 

key factor of stored potato tubers and may be used as a monitoring tool of their physiological 

activity during storage life as increases in respiration rate may reflect changes of the 

physiological status (Fennir et al., 2003). It is well known that higher temperatures 

effectively increase the rate of respiration as very cold storage temperatures (< 5
o
C) do as 

well (Dwelle ans Stallknecht, 1978; Workman et al., 1979; Duplessis et al., 1996; Zhou and 
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Solomos, 1998; Kumar, 2011). Under optimal storage temperatures when O2 is efficiently 

supplied BH disorder is not developed, but may be induced at extreme high or low 

temperatures where higher O2 levels are demanded. Also, BH development may also occur at 

around 5
o
C but longer time is required (Bartholomew, 1916; Davis, 1928; Link et al., 1932; 

O’Brien and Rich, 1976; Smith, 1978; Hooker, 1981; Wale et al., 2008; Kumar Chaurasia, 

2009; Voss, UC Davis; Robinson and Secor, NDSU). It is believed that very low storage 

temperature may cause sub-oxidation in potato tubers leading to tissue discoloration and yet 

BH development. On the other hand, increased CO2 levels during storage may result in 

greater membrane permeability, physiological disorder development and tissue discoloration 

(Hooker, 1981). 

        In this project, an attempt to mimic the shelf life conditions of potato cv. Maris Piper 

stocks with different susceptibility to BH was conducted by initially storing the potato tubers 

at very low storage temperature (1.5 and/or 3
o
C) and then transferring them at a higher 

storage temperature for shelf life evaluation. Respiration rate measurements were carried out 

at 15
o
C in year 1 and 20

o
C in year 2. In year 1 study, a similar pattern distinguishing 

significant differences in respiration rate between potato stock susceptibility to BH was not 

clearly shown over storage time except during baseline measurements. There were some 

significant differences in CO2 production between the stocks analysed but were random 

among the sampling days over storage time. Similarly in year 2, even though there were some 

significant differences in respiration rate between those stocks analysed in both experiments; 

however, a relation with BH incidence was not observed. That might happen due to low BH 

incidence indicated during this project or because respiration rate was recorded in a jar 

containing both affected and non-affected tubers in the case of the susceptible stocks and also 

one or three tubers were placed in the jar (see Chapter 3, session 3.4). Furthermore, according 

to the findings in both years it seems that differences in respiration rate were due to low 
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initial storage temperature. It could also be said that O2 was not really depleted during storage 

in year 1 (in 21% O2 or 18-19% O2 and 10% CO2) and during the 1
st
 experiment of year 2 (in 

21% O2), thus BH incidence was low; however, when potato tubers stored at various gas 

combinations (viz. A: 21% O2, B: 10% CO2, C: 10% O2 and D: 5% O2) it was shown that 

respiration rate was lower at 5% O2 as it was expected, but still BH did not show greater 

incidence (Lipton, 1967).  

        Furthermore, increased respiration rate after storage at 10% CO2 with 18-19% O2 was 

observed in both years it was due to CO2 absorption and the CO2 rate results were in line with 

those reported by Perez-Trejo et al., (1981). In fact, in year 2 analysis respiration rate results 

revealed that the non-susceptible to BH stock (stock 3) showed greater CO2 production when 

held under 10% CO2 storage compared to both susceptible stocks (7 and 12). It was worth 

noting that in year 1, a similar trend in respiration rate was followed by all stocks analysed 

which was higher respiration rate for those tubers initially stored at 1.5 compared to 3
o
C. 

That trend was obvious in both storage conditions but more evident under CA storage (10% 

CO2). It is well known that cold temperatures (1-4
o
C) will stimulate the respiration rate 

(Craft, 1963; Workman, et al., 1979; Zhou and Solomos, 1998), but it seems that when 

temperature is further decreased nearly to those chilling temperatures (0
o
C) respiration rate is 

higher and that is probably correlated with the sugar content of potatoes (Khanal and Uprety, 

2014). 

        Even though the incidence of BH was not great under those storage conditions studied in 

this project, it could still be hypothesized that under very low or extreme high temperatures 

respiration rate will be increased and potato tubers will possibly experience a sub-oxidation 

situation. If tubers start respiring faster, then O2 will not be able to reach the central part of 

the tuber and greater amount of CO2 will be formed and trapped within the tissue resulting in 

cellular impairment, necrosis and tissue discoloration (Bartholomew, 1916; Hooker, 1981; 
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Kumar Chaurasia, 2009). However, respiration rate as a gas exchange process is always 

associated with those external atmospheric conditions surrounding the potato tubers, the 

internal gas concentrations and the gas diffusivity within the tuber tissues.  

 

8.2.1. Gas diffusivity of potato tubers and the role of packaging 

 

         In potato tubers, O2 diffusion initially occurs through the lenticels of the skin that are 

the dominant barriers, then passes through the flesh to the intercellular spaces where 

eventually the respiration takes place in the cytoplasm-mitochondria, while CO2 is released 

following the opposite path (Wigginton, 1973; Banks and Kays, 1988; Weber, 1990; 

Geigenberger et al., 2000; Ho et al., 2010). Potato tubers are compact crops having low 

porosity with only 1-2% of intercellular space volume in the tissue (Banks and Kays, 1988; 

Scotsmans et al., 2003; Ho et al., 2006). As gas-filled intercellular spaces are believed to 

pose the main pathway for gas diffusion (Devaux, 1891; Woolley, 1962; Weber, 1990), x-ray 

micro-computed tomography was used in year 3 (2013-2014). Once BH is associated with O2 

depletion in the central tuber part (heart), aim of this study was to visualize the tissue 

structure in flesh and heart tuber tissue of potato cv. Maris Piper stocks with different 

susceptibility to BH [stock 10 (susceptible to BH) and stock 4 (non-susceptible to BH)]. Both 

micro-CT scans and 3D images showed that the gas-filled intercellular spaces of flesh and 

heart tissue were not well connected and varied in size and shape. This might suggest that due 

to differences in cell structure, different intercellular space connectivity may be formed 

influencing further large gradient of diffusion the gas diffusion within a tissue. Therefore, the 

gas-filled intercellular spaces might partially be filled up with water or sap posing an 

additional resistance to gas diffusion as the cell walls becoming hydrated. It is also believed 

that CO2 diffusion has greater solubility in water and transports faster in the liquid phase 
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while O2 mainly diffuses through the gas phase (Woolley, 1962; Himmelblau et al., 1965; 

Abdul-Baki and Solomos, 1994; Ho et al., 2006a, 2007, 2011; Licausi and Perata, 2009). 

        It has been reported that adequate O2 concentration is contained in the intercellular 

spaces of the tuber tissue due to low respiration rate of the tuber under regular storage 

conditions (Burton, 1950; Woolley, 1962; Wigginton, 1973; Abdul-Baki and Solomos, 

1994); however, partial hypoxic and anoxic atmospheres might occur at the centre of the 

tuber under adverse environments resulting in physiological changes and tissue cell 

impairment and yet cell death (Geigenberger et al., 2000; Ferreira de Souza et al, 2002; 

Verboven et al., 2008; Zabalza et al., 2009). When O2 concentrations decline within a tissue 

that is probably because the external supply of O2 is insufficient or needed in order the gas to 

be driven into the tissue (Ferreira de Souza et al., 2002; Geigenberger et. al., 2003). It is 

believed that plant tissues have O2 sensing systems and develop adaptive responses in order 

to reduce O2 consumption and to keep their metabolic energy. That said, as some tissues may 

have the ability to develop pre-adaptation mechanisms to O2 falling levels and might delay or 

tolerate anoxia later. However, those adaptive responses require decrease in respiration rate 

and yet lower adenine triphosphate (ATP) consumption. Thus, changes in metabolic 

processes occur and cellular energy may be provided by fermentation pathways which in turn 

may lead to cell impairment (Geigenberger et al., 2000). It is suggested that tuber tissues may 

be turned hypoxic or anoxic even at normal air conditioning (21% O2). Yet, when tissues are 

experiencing hypoxia or anoxia, re-entry of oxygen may cause an imbalance in the cellular 

redox resulting in reactive oxygen species (ROS) accumulation due to oxidative stress 

(Geigenberger et al., 2000). That may also happen under low storage temperature due to a 

cold-induced stress (Cheynier et al., 2009). ROS are produced during aerobic respiration, but 

plant tissues have the ability to keep the redox status in balance using scavenging systems 

including enzymatic and non-enzymatic antioxidants (i.e. phenolic compounds) that detoxify 
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ROS (Hodges, 2003; Sen, 2012). Furthermore, it has been reported that wound-induced 

enzymes like PAL which is the precursor for the phenylpropanoid and flavonoid pathway 

may be increased due to cold stress (Cheynier et al., 2009); however, at very low oxygen 

levels its activity is inhibited (Zhou and Solomos, 1998; Geigenberger et al., 2003). In this 

project, the gaseous differences in which BH is induced could not be predicted. Furthermore, 

it has been reported that when O2 falls below 5% then BH might be developed and that is 

more evident when tubers are packed (Lipton, 1967; Hooker, 1981; Adrian Briddon, personal 

report, 2011). This suggests that BH is initiated under hypoxic or anoxic environments and 

might be developed due to oxidative stress caused. Herein, it seems that the initial cold 

storage temperature (1.5
o
C) was the main factor affecting both respiration rate and incidence 

of BH-like symptoms even though a relation between them was not observed. It could also be 

assumed that at low storage temperatures BH or BH-like disorders may be developed slower 

when O2 is not really depleted externally. Also phenolic related compounds were mainly 

accumulated in the control heart part of the tubers derived from susceptible to BH stocks and 

it is believed that was a response to cold-induced stress. It was also observed that tuber 

tissues derived from non-susceptible to BH stocks did not show indications of oxidative 

stress damage. As for the discoloured samples, indications of cell membrane damage and 

lipid peroxidation were evident. That might happen due to ROS accumulation caused by 

oxidative stress. However, differences between susceptible and non-susceptible to BH stocks 

might be explained due to different adaptive responses under cold storage and yet different 

gene expression and regulation in this project. According to Geigenberger et al. (2003) there 

was a concern about the previous studies where researchers were mainly focusing on the low 

storage temperature effect on tissue metabolism underestimating probably that growing 

tubers may undergo hypoxia at ambient growth conditions.  



233 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

        Also, it is believed that packaging and different film types will further affect the BH 

development. The packaging material might be a crucial factor affecting the gas exchange 

rate which is controlled by the number and dimensions of the perforations of the material. It 

may be expected that O2 and CO2 exchange is dependent on the temperature and the 

atmospheric pressure (Fonseca et al., 2000; Lange, 2000). Potatoes are mainly packed 

washed in bags containing 1, 2.5, 5 or 10 kg of tubers. In the UK, low-density polythene 

(LPDE) film with small holes for some ventilation is preferred in the markets. Netted bags 

that provide greater ventilation may also be used. However, there are many factors selecting 

the suitable packaging material including the manufacturing of the film, the cost and yet the 

consumer issues (Lange, 2000). After packaging trials on 15 Maris Piper stocks, A. Briddon 

reported that BH incidence was 2-fold higher in punched polythene packed potatoes 

compared to those unpacked after storage at 20
o
C for 13 days. He also concluded that initial 

storage temperature at 1.5
o
C effectively increased BH incidence mainly in packed potatoes 

compared to 3.5
o
C, but BH symptoms were accompanied with grey diffusion (suggested as 

total % of BH symptoms) were more evident in unpacked tubers (Adrian Briddon, personal 

report, 2011). Later, similar packaging trials on the same Maris Piper stocks used in year 1 

[stock 20 (susceptible to BH), stock 23 (susceptible to BH and stock 12 (non-susceptible to 

BH) were conducted by A. Briddon using two film types (punched hole and laser perforated). 

It was reported that BH incidence was greater in those tubers packed with laser perforated 

film compared to those packed in punched polythene material. (Adrian Briddon, personal 

report, 2011). Furthermore, previous storage at 1.5°C, irrespective of film type, and 

packaging stock 23 in laser perforated film after storage at 3.5°C resulted in relatively high 

incidences of BH and total BH. Yet, stock 12 which was considered as non-susceptible to BH 

also showed BH incidence. In this project, a similar trend in BH-like symptoms or total BH 

symptoms was not observed in unpacked potato tubers, but BH incidence was also greater 
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when tubers had initially been stored at 1.5
o
C. Also, stock 12 (non-susceptible to BH) 

showed no evidence of BH-like symptoms under those storage conditions used in this project. 

From those findings, it is still unclear how potato stock susceptibility might be determined 

and there is a confusion of what are the real symptoms that govern the BH disorder.  

 

8.3. Biochemical changes in potato stocks with different susceptibility to 

BH as influenced by storage temperature and shelf-life conditions 

 

8.3.1. Effect of storage temperature and shelf-life conditions on the sugar content of potato 

stocks with different susceptibility to BH 

 

          Sugar content in potato tubers stored at very cold storage temperatures may be a good 

indicator of their compositional changes during the storage life (Kumar, 2011). In this 

project, the major sugars present in potato tubers namely fructose, glucose and sucrose were 

quantified in those tubers that were initially stored at 1.5
o
C where the incidence of BH was 

greater. Sucrose, the substrate for fructose and glucose biosynthesis, may either be catalysed 

by sucrose synthase or invertase enzymes. At cold storage temperatures, inactivation of 

invertase inhibitor leads to expression of invertase resulting in rapidly sucrose degradation to 

reducing sugar accumulation (Zhou and Solomos, 1998; Bologa et al., 2003; Kumar, 2011). 

This cold-induced phenomenon known as ‘low temperature sweetening’ (TLS) or ‘cold-

induced sweetening’ (CIS) has been extensively studied and to date is still of great interest 

(Muiller-Thurg, 1882; Pressey, 1969; Sowokinos, 2001; Malone et al., 2006; Kaul et al., 

2010; Janksy et al., 2014; Zhang et al., 2014). In year 1 (2011-2012) reducing sugars 

(fructose and glucose) were initiated and rapidly accumulated after baseline where tuber 

subsamples were stored at 1.5
o
C. In general, fructose and glucose were ca. 2 times higher in 
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heart than in flesh tissue of stock 20 (susceptible to BH) and stock 12 (non-susceptible to BH) 

with no really significant differences between those stocks. On the other hand, the cold 

temperature effect on sugar content was more evident in both control and discoloured flesh 

and heart tissue samples of stock 23 (susceptible to BH) from 8 to 20 weeks of storage. 

Generally in year 2, reducing sugar content was also ca. 2-fold higher in heart than flesh 

tissue samples of both stocks when measured at 20
o
C. Reducing sugar content of stock 7 

(susceptible to BH) was similar to that of stock 23 (susceptible to BH) measured in year 1. 

However, in year 2 fructose and glucose were not really increased during storage time. Also, 

changes in sucrose content of stock 3 (non-susceptible to BH) were not shown over storage 

time, but it was significantly lower compared to stock 7.  

        To date, no relation in reducing sugar accumulation and BH disorder has ever been 

reported. Increased sugar content in potato tubers is related with brown to black 

discoloration; however, that is caused upon frying via Maillard reactions (Shallenberger et 

al., 1958; McCay et al., 1990; Cottrell et al., 1993; Stark et al., 2003; McKenzie et al., 2005; 

Zommick et al., 2013). However, it has previously been pointed out that tuber tissues can be 

affected by other internal physiological disorders in potatoes such as brown centre, hollow 

heart and internal brown spot may accumulate reducing sugars (Davies, 1998; Bussan, 2007). 

In year1, the incidence of BH was greater compared to year 2. Brown tissue discolorations 

were mostly indicated in heart tissue samples of both susceptible to BH stocks (stock 20 and 

stock 23), but a few heart samples of stock 23 showed more intense brown to black tissue 

discoloration. It was observed that stock 23 which showed greater tissue discoloration (ca. 3-

fold compared to stock 20) had also higher reducing sugar content compared with stock 20 

and stock 12 (non-susceptible to BH). That high sugar accumulation in stock 23 was 

observed in both tissue samples suggesting that the whole tuber was affected after storage at 

low cold temperature. Sugar content may vary from cultivar to cultivar but it has been shown 
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that it might be more accumulated in the pith indicating that its mobilization is more active 

towards this tuber area (Baijal and Van Vliet, 1966; Weaver et al., 1978). A study on the 

reducing sugar content in different tuber parts of six potato cultivars by Weaver et al. (1978) 

showed that sugar content variation between those cultivars after storage at 7
o
C for 2-4 

months and/or after reconditioning at 20
o
C for 3 weeks; however, it was shown that cvs. 

Kennebec and White Rose had higher reducing sugar content in the core tuber part while 

Russet Burbank the lower. Dwelle and Stallknecht (1978) also reported slightly higher total 

and reducing sugar content in central pith tissue samples of Kennebec compared to Russet 

Burbank after storage at 1.7
o
C. Those three potato cultivars seem to have different 

susceptibility to physiological disorders. O’Brien and Rich (1976) suggested that Russet 

Burbank cultivar is resistant to BH while according to Robinson and Secor (NDSU, 2014) 

this cultivar is susceptible to internal heat necrosis (IHN) and brown centre (BC) as Van 

Denburgh et al. (1980, 1986) has previously pointed out. Kennebec cultivar was found being 

susceptible to low temperature injury and BH (Craft et al., 1958; Butchbaker et al., 1967) 

Also, Lipton (1967) reported BH incidence in White Rose potato tubers after storage in 0.5-

1% O2 at 15 – 20
o
C with ca. 2-fold lower glucose concentration in the outer and inner parts of 

the tubers compared to those held in air (21% O2). Furthermore, Zhou and Solomos (1998) 

showed increase in sugar content of Russet Burbank potatoes in air at 1
o
C, but strong 

inhibition after storage in 1.5% O2 at 1
o
C due to hypoxia. However, in this project sugars 

were much higher compared to those results previously published, but it seems that different 

storage conditions and storage temperature affect the sugar accumulation. 

        Moreover, storage at cold temperatures may lead to cellular stress response by 

negatively affecting the membrane lipid composition and subsequently leading to changes in 

fatty acid degradation, ion leakage thus greater membrane permeability and cell impairment 

are caused (Sowokinos et al., 1985, 2001; Wills, 1989; Berkel et al., 1994; Davies, 1998; 
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Wismer et al., 1998; Blenkishop et al., 2004; Kumar, 2011). Shekhar et al. (1979) stated that 

membrane permeability is greater for tubers stored at cold temperatures. Thus, potato stocks 

with different susceptibility to BH and similar physiological disorders may also show 

susceptibility to lipid peroxidation (Davies, 1998) as it has been reported that some potato 

cultivars with higher unsaturated fatty acid content have lower sugar accumulation (Spychalla 

and Desborough, 1990). From those findings, it could be said that reducing sugar may be 

increased due to brown tissue discolorations and be related with BC and similar disorders. 

BH and BH-like disorders are initiated in the very central part of the tuber the pith area. It 

could also be hypothesized that pith (which is characterized as the watery and translucent 

area of the tuber) becomes even translucent at cold-storage temperatures, thus a greater sugar 

accumulation is observed. It has been suggested that small translucent, watery spots are prior 

signs of BH development in pineapple (Zhou et al., 2003). Although, it is likely that tuber 

tissues showing more less or more intense brown tissue discoloration may contain higher 

sugar content as it was observed for both tuber tissue samples of stock 23 (susceptible to BH) 

in year 1; however, the very low indication of dark brown to black symptoms and the fact that 

reducing sugar accumulation was similar between discoloured and control samples of stock 7 

(susceptible to BH) in year 2 that cannot really highlight a relation with BH in this project. 

 

8.3.2. Effect of storage temperature and shelf-life conditions on the phenolic content of potato 

stocks with different susceptibility to BH 

 

          Potato stocks with different susceptibility to BH could well be grouped according to 

their phenolic content and that was shown in both years (1 and 2). It should be noted that in 

year 1, phenolic content quantification was carried out in flesh and heart samples according 

to potato susceptibility to BH and both control and discoloured samples were merged and 

averaged in the case of both susceptible  to BH stocks (20 and 23) due to low BH incidence 



238 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

indicated. In contrast, in year 2 analysis phenolics were quantified in both control and 

discoloured tissue samples due to statistical balance needed. Phenylalanine and other 

aromatic acids as tyrosine and tryptophan are synthesized from the shikimate pathway 

(Herrmann, 1955; Dewick, 2002; Vogt, 2010; Payyavula et al., 2012). In year 1, 

phenylalanine was more expressed in those heart samples of stock 23 (susceptible to BH) and 

that was more evident after 16 and 20 weeks of storage where stock 23 showed greater BH 

incidence. Yet, according to the PCA biplots, tryptophan was mainly accumulated in those 

discoloured heart samples of stock 23 after 20 weeks of storage. A similar trend in tyrosine 

content was followed by those heart samples of stock 23 (susceptible to BH) after 16 and 20 

weeks where BH incidence was greater as well. On the other hand, in year 2 analysis 

phenylalanine varied in content between stock 7 (susceptible to BH) and stock 3 (non-

susceptible to BH) and similarly for tryptophan a distinct trend was not shown, but heart 

samples of stock 7 showing light brown discoloration (BCL) tended to accumulate more 

tryptophan. From those findings, a full conclusion on the amino acid accumulation cannot be 

made. Yao et al. (2005) reported that both phenylalanine and tyrosine amino acids may 

positively be activated by tryptophan.  

        Deamination of phenylalanine via the enzyme phenylalanine ammonia lyase (PAL) 

leads to phenylpropanoid pathway (Joos and Halbrock, 1992; Gerasimova et al., 2005) by 

generating a large amount of secondary metabolites including phenolic compounds such as 

hydroxycinnamic acids and flavonoids. In this project, phenolic content varied between year 

1 and year 2 analyses; however, it was shown that chlorogenic acid and its isomers namely 

neo- and crypto-chlorogenic acid were the most important variables differentiating potato 

stocks with different susceptibility to BH. It has been reported that chlorogenic acid is more 

accumulated in the outer tuber parts than the inner with the peel and cortex accumulating the 

highest content (Craft et al., 1958; Zucker and Levy, 1958; Dao and Friedman, 1992; 
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Friedman, 1997). However, in this project it was shown that chlorogenic acid tended to be 

more accumulated in the heart tissue samples of stocks susceptible to BH. Particularly, in 

year 1 chlorogenic acid tended to be more accumulated in heart tissue samples of stock 23 

which showed greater BH incidence during the 1
st
 year experiment and yet highly 

concentrated in control heart samples of stock 23 over storage time. A similar trend was 

shown in year 2, where chlorogenic acid content was more accumulated in the heart samples 

(both discoloured and control) of that stock 7 (susceptible to BH). On the other hand, its 

content was much higher in year 2 as samples of stock 7 (susceptible to BH) contained ca. 2-

9 times higher chlorogenic acid compared to stock 23 (susceptible to BH) in year 1. It should 

be noted that all stocks analysed in both years have been grown at different locations and 

growing conditions and seasons, so that might have an impact on PAL enzyme activity 

(Hamouz et al., 2010; Ieri et al., 2011; Adamo et al., 2012; Payyavula et al., 2012). 

Furthermore, a similar trend in chlorogenic acid isomers accumulation was observed in both 

years. Neo-and crypto-chlorogenic acids tended to be more accumulated in the flesh tissue 

samples of non-susceptible to BH stocks. Yet, crypto-chlorogenic acid showed greater 

accumulation in the heart samples of the susceptible to BH stocks. Similar concentrations of 

both isomers have previously been reported in white fleshed potato cultivars (Lachman and 

Hamouz, 2005; Navarre et al., 2011; Payyavula et al., 2013). The fact that chlorogenic acid 

showed not difference in concentration in those flesh samples might be explained due to no 

discoloration indicated. Im et al. (2008) reported that chlorogenic acid was lower in the pith 

tuber area than in the outer. Thus, it could be said that chlorogenic acid was more 

accumulated in those heart samples due to cold stress response.   

        Furthermore, it is well documented that due to low storage temperature a cold-induced 

PAL enzyme triggers the biosynthesis of phenolic compounds that accumulate in response to 

stress (Cheynier et al. 2009). Cheynier et al. 2009 has pointed out that low temperature effect 
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should trigger both PAL activity and those enzymes involved in the phenylpropanoid and 

flavonoid pathway in order for the phenolic compounds to be accumulated. In year 2, 

increased accumulation of flavonols such as rutin and quercetin-3,4-O-diglucoside in those 

samples of the non-susceptible stock 3 was observed. This might explain differences in 

phenylalanine gene expression between susceptible and non-susceptible to BH stocks under 

storage at cold temperatures. Low storage temperature also triggers the accumulation of 

reactive oxygen species (ROS) that negatively affect the cellular membrane integrity. Plants 

have the ability to react against those ROS developing membrane repair mechanisms, but this 

ability depends on many factors. It is well known that phenolic compounds have scavenging 

activities along with vitamin C against reactive oxygen species (ROS) (Brown et al., 2005; 

Takahama et al., 2002). Also, it has been reported that vitamin C in potatoes decreases at low 

storage temperature (Kawakami et al., 2000; Dale et al., 2003) and that scavenging system 

may be also lowered, thus leading to greater cell membrane degradation and lipid 

peroxidation. Further, cell membrane stability may negatively be affected by calcium 

deficiency (Palta, 2010). Although vitamin C and scavenging system properties were not 

examined in this present study, it may be hypothesized that non-affected tuber tissues may be 

adapted differently under low storage temperature (Purvis and Shewfelt, 1993) and also have 

greater scavenging activity. 

        In terms of tissue discoloration, generally less and more intense brown tissue 

discolorations were indicated in the heart tissue samples of those susceptible to BH stocks in 

both years and classified as (viz. BH, dark brown to black; BC, brown centre; BCL, brown 

centre light and pith). In year 1, stock 23 (susceptible to BH)  showed ca. 3-times higher BH 

incidence compared to stock 20 (susceptible) and stock 12 (non-susceptible) and that was 

more apparent after 16 and 20 weeks of storage. According to the results, after 16 and 20 

weeks most of the phenolic compounds and reducing sugars quantified were mostly 
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accumulated in those heart samples of stock 23. Furthermore, a similar trend was followed in 

year 2. That was higher accumulation of sugar, chlorogenic acid and crypto-chlorogenic acid 

in those heart samples of stock 7 (susceptible to BH). The biochemistry of the BH disorder is 

scarce. Initially, Bartholomew (1916) reported that tyrosinase is activated at high 

temperatures (< 38
o
C) thus tyrosine is being oxidized resulting in black tissue discoloration. 

However, according to Smith et al. (1942) no changes in tyrosine content were observed after 

storage at 40
o
C. Later, Reeve (1968) after histochemical studies on affected tuber tissues 

showing BH symptoms concluded that both chlorogenic acid and tyrosine were present. It is 

well known that both chlorogenic acid and tyrosine are the major phenolic compounds 

present in potato tubers with tyrosine being more accumulated in the inner part of the tuber 

(Craft et al., 1958; Reeve, 1968) and both compounds are adequate substrates for enzymatic 

oxidation; tyrosine by polyphenol oxidase (PPO or tyrosinase) and chlorogenic acid by PPO 

or peroxidase (POD) (Takahama et al., 2004; Adams, 2007). For instance, Zhou et al. (2003) 

reported that PPO is the responsible enzyme for tissue discoloration caused by BH in 

pineapple fruit and BH development is due to the de novo synthesis of PPO rather a pre-

existing one concluding that there are also many other factors triggering PPO activity. Also, 

black discoloration is mainly caused by tyrosine oxidation while chlorogenic acid oxidation 

results in brown pigments (Adams et al., 2007). However, there is confusion between 

substrates and enzyme activity related to tissue discoloration and the final colour of the 

oxidation products (Werij et al., 2007). Generally, approaches on enzymatic brown 

discolorations are carried out either focussing on the substrate or the enzyme where ideally 

both factors should be examined. However, it has been shown that PPO may be the main 

enzyme involved in enzymatic browning in potato tubers (Vaughn et al., 1988). Furthermore, 

it has been reported that silencing the PPO gene in transgenic potato lines a reduction in 

enzymatic discoloration was observed (Bachem et al., 1994; Shepherd, et al., 2014). Herein, 
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chlorogenic content was much higher than that of tyrosine, thus ideally it could be 

hypothesized that the former compound has greater possibility to be involved in tissue 

discoloration. However, it was more accumulated in those control heart samples of stock 23 

(susceptible to BH) in year 1 and both discoloured and control samples of stock 7 

(susceptible to BH in year 2. Friedman (1997) showed no correlation between chlorogenic 

acid and discoloration. According to Corsini et al. (1992) higher accumulation of tyrosine 

and free amino acids were related with higher tissue discoloration. In contrast, Mondy and 

Munshi (1993) reported that even though higher levels of free tyrosine were positively 

correlated with discoloration, tyrosine amount did not seem to be the factor for determining 

enzymatic discoloration. It is still unclear if tyrosine or chlorogenic acid or other phenolic 

compounds that were not quantified contributed to those brown tissue discolorations 

indicated in this project and it is more likely that caused due to initial storage temperature as 

response to cold-induced stress as BH incidence was observed in both storage conditions and 

yet was greater in those tubers stored in air than in various gas combinations. 

 

8.3.3. Untargeted metabolomics approach on selected samples of potato stocks with different 

susceptibility to BH 

 

          Untargeted metabolomics analysis is being used in order to detect and identify the total 

content of a sample providing information on which metabolites are the most highly 

concentrated (de Voss et al., 2007; Patti et al., 2012). In this project, selected discoloured and 

control samples derived from potato stocks with different susceptibility to BH were used to 

identify as many as possible metabolites that might have a possible link with the BH 

development. The purpose of this untargeted metabolomic approach was to find metabolic 

differences between discoloured and control samples derived from a susceptible stock and 
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moreover, to identify metabolic differences in potato stock susceptibility to BH comparing 

control samples derived from one susceptible and one non-susceptible to BH stock. 

        The incidence of BH was greater in year 1 (2011-2012) than in year 2 (2012-2013) and 

less and more intense tissue discoloration in the heart tissue were observed and classified as 

(viz. BH, dark brown to black; BC, brown centre; BCL, brown centre light and pith). That 

tissue discoloration classification was carried out in that way because it was assumed that less 

intense brown tissue discoloration may be the initial steps for the BH development. 

According to the 3D PCA scatter plots a good separation of samples having different tissue 

discolorations with intensity BH > BC > BCL > pith > control based on a coefficient of 

variation of 10% it was observed in both ion modes. However, a relationship between more 

intense (BH) and less intense tissue discolorations as initiators of BH could not be confirmed 

as the metabolite identification and regulation did not show a similar pattern in less intense 

brown discolorations (BC, BCL and pith) compared to control samples. That might have 

happened due to low sample replication. Generally, most of the known metabolites identified 

were fatty acids and also a plethora of unknown metabolites was observed. Few of the latter 

metabolites up regulations in discoloured tissue samples were showed. BH and BH-like 

symptoms in potato tubers may be easily distinguished due to the dark brown or black 

discoloration of the heart and flesh tuber tissue depended on the severity (Bartholomew, 

1916; O’Brien and Rich, 1976; Wale et al., 2008; Kumar Chaurasia, 2009). Thus a greater 

metabolite regulation was observed in those samples with BH-like symptoms as it was 

expected. Evidence of cell membrane lipid peroxidation and tissue damage was observed as 

unsaturated hydroxy fatty acids and lipid peroxidation products were identified. In addition, 

the fact that some of the unsaturated hydroxy fatty acids were present in control samples 

indicates that the cold storage temperature contributed to tissue cell membrane deterioration 

as all the samples analysed have been stored for more than 16 weeks at 1.5
o
C. This 
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metabolite regulation might be related with response to stress and defence against ROS attack 

as result to cold storage temperature (Sen, 2012).  

      Metabolomic differences between control samples of potato stocks with different 

susceptibility to BH were more evident. In both years analysis, 3D PCA scatter plots showed 

a clear separation according to potato stock susceptibility to BH and significant regulations of 

known secondary metabolites such as glycoalkaloids, flavonoids and other phenylpropanoid 

related metabolites were observed. Flavonoids and steroidal glycoalkaloids both represent 

important groups of the secondary metabolism in plants and have extensively been studied in 

potatoes before (Harbone, 1959; Bostock et al., 1982; Cantwell, 1996; Lewis et al., 1998; 

Friedman et al., 2006; Payyavula et al., 2012, 2013). 

        Glycoalkaloids are considered as the toxic group of the secondary metabolites and are 

stimulated by many factors such as light exposure, temperature, storage conditions and 

mechanical injury (Jadhav et al., 1980; Cantwell, 1996; Smith et al., 1996; Simonovska and 

Vork, 2000). A-chaconine and a-solanine are the principal glycoalkaloids in potatoes 

accounting ca. 95% of the total glycoalkaloids, distributed in all parts of the potato plant and 

their content varies in the potato tuber [(peel > cortex > flesh – pith (not detectable)]. A-

chaconine and a-solanine synergism results in toxic effects (Smith et al., 1996; Friedman, 

2006; Mandimika, 2008). In year 1, differences in glycoalkaloid content between control 

samples of stock 23 (susceptible to BH) and stock 12 (non-susceptible to BH) were shown. A 

down regulation of a-chaconine was observed in those samples of stock 23 regardless the 

tissue. On the other hand, solanine, solanidine and solasonine (another aglycone) were up 

regulated in flesh control samples of stock 12. Also, solanine and solanidine were up 

regulated in heart tissue samples of stock 12, but solasonine did not show any changes. In 

addition, no changes in glycoalkaloid content in heart control samples of stock 23 were 

observed. Jadhav et al. (1980) reported that total glycoalkaloid content was increased in 
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potatoes cvs. Russet Burbank, Norgold Russet and Pontiac with slight and severe BH and 

hollow heart (HH) incidence due to tissue damaged caused by BH and HH, but concluded 

that these were less potent factors stimulating the glycoalkaloid synthesis compared to other 

factors as light and mechanical injury. Increase in total glycoalkaloid content in potato 

cultivar Torrindon due to injury and tissue damage has previously been reported (Dale et al., 

1998). Glycoalkaloids are localized and accumulated in the vacuoles and the cytoplasm and 

may be transferred if the tissue is damaged (Väänänen, 2007). Herein, only control samples 

were analysed and yet no indications of glycoalkaloid accumulation in discoloured samples 

were observed. However, that glycoalkaloid accumulation might be an indicator of stress 

response (Lawley, 2013) as at maximum levels glycoalkaloid activity in potato cells might 

influence the membrane permeability causing disruption and leakage (Coria, et al. 2011). 

       Also, in year 2 analysis there were no significant regulations of glycoalkaloids between 

those control samples of Maris Piper stocks [stock 7 (susceptible to BH) and stock 3 (non-

susceptible to BH)]. All Maris Piper potato stocks in both years had initially been stored in 

air at 1.5
o
C and analysed after storage at 15 and 20

o
C in year1 and year 2, respectively. It has 

been reported that low storage temperature (0-5
o
C) increases the glycoalkaloid content in 

potatoes due to stress caused (Dale et al., 1998; Lawley, 2013). Also, it should be noted that 

all stocks of each year have grown in different locations and growing conditions. Thus, even 

though it has been proposed that Maris Piper cultivar is light-insensitive, different growing 

conditions and locations may affect the glycoalkaloid content in potatoes (Percival, 1999; 

Smith et al., 1998; Sengun et al., 2004, Khan et al., 2013).  

        Flavonoids identification was observed in both years. Flavonoid pathway biosynthesis is 

initiated enzymatically by chalcone synthase catalysis and the pathway further proceeds with 

several enzymatic steps to other subclasses of flavonoids (Schijlen, 2007). It has been 
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reported that most of the flavonoids are present as glycosides synthesised by glycosylation 

namely a sugar attached to the aglyone using glycoyltransferases (Kim et al., 2006, 2013; 

Aksamit-Stachurska et al., 2008; Simkhada et al., 2010). In year 1 analysis, two 

polyhydroxyflavones [(hibiscetin or 3,5,7,8-tetrahydroxy-2-(3,4,5-trihydroxy phenyl) 

chromen-4-one and 5,7,3',4',5'-pentahydroxy-3,6,8-trimethoxyflavone] showed an up 

regulation in those control samples of stock 23 (susceptible to BH) when compared with 

those control samples of stock 12 (non-susceptible to BH). In year 2, up regulation of 

quercetin-3-glucoside-7-rutinoside, quercetin-3-glucoside-7-rhamnoside (both diglycosides) 

and myricetin-3-rutinoside was observed in those flesh and heart samples of stock 3 (non-

susceptible to BH) compared to flesh and heart samples of stock 7 (susceptible to BH). 

Similarly, quercetin-3-glucoside-7-rutinoside, myricetin-3-rutinoside, quercetin-3-rutinoside 

(or rutin) and two other flavonoids 3,5,7,2',5'-pentahydroxyflavone and 3,5,7,2',5'-

pentahydroxyflavone + 5.129875 were all up regulated in stock 3 (non-susceptible to BH) 

regardless the tissue. Rutin (quercetin-3-rutinoside), myricetin-3-glucoside and similar 

flavonol glycosides and diglycosides identified in year 2 analysis have previously been 

reported in white and coloured potatoes (Lewis et al., 1998; Navarre et al., 2011; Payyavula 

et al., 2012, 2013). 

        Furthermore, 4-oxoproline which is involved in proline metabolism showed down 

regulation in stock 23 (susceptible to BH) in year 1. It has been suggested that proline may be 

accumulated in plants as a physiological response against to biotic and abiotic stress and 

might influence the adaptive responses to the stressors and its accumulation may provide 

protection of cell function, membrane and enzyme activity (Cheynier et al., 2009). 

        The identification of flavonoid compounds in both years and that of phenylalanine and 

quinic acid in year 1 analysis suggest differences in gene expression and regulation of the 

phenylpropanoid compounds and their biosynthetic pathway. A down regulation of the 
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known quinic acid which is a key metabolite for chlorogenic acid synthesis was observed in 

stock 23 (susceptible to BH). Phenylalanine which is the precursor for the phenylpropanoid 

and flavonoid pathway did not show any changes in flesh samples of stock 12 when 

compared with flesh samples of stock 23 and it was down regulated in heart samples of stock 

12 compared to heart samples of stock 23. Targeted analysis of phenolic compounds showed 

that phenylalanine tended to be more accumulated in those heart samples of susceptible to 

BH stocks. Furthermore, rutin and quercetin-3,4-O-diglucoside showed greater accumulation 

in some flesh samples of stock 12 (non-susceptible to BH) in year 1 and in both tissues of 

stock 3 (non-susceptible to BH) in year 2. It has been reported that storage at cold 

temperatures triggers the PAL activity and yet those enzymes involved in the 

phenylpropanoid and flavonoid pathway in order the phenolic compounds to be accumulated 

(Cheynier et al., 2009). This might explain differences in phenylalanine gene expression 

between susceptible and non-susceptible to BH stocks after storage at cold temperatures 

(1.5
o
C) indicating different response and adaptation to a cold-induced stress. On the other 

hand, it is unknown whether the synthesis of those phenylpropanoid compounds was due to a 

pre-existing PAL or a de novo synthesis of the enzyme.  

 

8.4. Conclusions 

        In conclusion, the cold initial temperature was the main factor influencing both 

respiration rate and compositional changes in potato tubers from stocks with different 

susceptibility to BH. However, a relation between respiration rate and BH could not be made. 

In general the incidence of BH was quite low proportionally to the tubers used in this project 

and yet greater in year 1 compared to year 2 studies. The fact that all Maris Piper potato 

stocks used in this project have grown at different locations and growing conditions explains 

differences in both physiological and biochemical changes observed and yet in BH incidence. 
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However, less and more intense brown discolorations were indicated in the heart part of those 

tubers derived from the susceptible to BH stocks in year 1 and year 2. It is obvious that cold 

initial storage temperature may influence the incidence of BH-like symptoms or symptoms of 

similar internal physiological disorders. Nevertheless, it is still unclear whether brown tissue 

discolorations indicated in this project were stimulated or induced at very low initial storage 

temperature and then exacerbated during shelf-life evaluation at either 15 or 20
o
C. The 

temperature and exposure period in which BH shows greater incidence could not readily be 

predicted. That said, because in both years (1 and 2) tissue discolorations were indicated 

randomly between the sampling days over storage time and yet BH incidence was equally 

evident in both storage conditions (air or under various gas combinations). It may be assumed 

that BH or BH-like symptoms may slowly be developed at low temperatures without O2 

exclusion in the external atmosphere. Similarities in biochemical changes between 

susceptible and non-susceptible to BH stocks were observed in both years (1and 2). A similar 

trend in sugar content was observed in both year analyses where sugars tended to be more 

accumulated in the susceptible to BH stocks and that might be an indicator of stock 

susceptibility.  

        Also the fact that chlorogenic acid was highly accumulated in both control and 

discoloured samples of susceptible to BH stocks makes unclear whether is a marker for tissue 

discoloration and potato stock susceptibility to BH. Furthermore, the identification of 

glycoalkaloid and flavonoid compounds in control samples suggesting differences in gene 

expression and regulation under those storage conditions studied. However, it is still unclear 

whether these compounds may differentiate the potato stock susceptibility to BH. Further 

biochemical research is needed in order to confirm whether those findings are related with 

BH disorder. Also, it is still questionable of which are the real factors that govern the BH 
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disorder development and the symptoms that differentiating the disorder from similar internal 

physiological disorders induced in potato tubers. 
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APPENDICES 

 

Appendix A) 

1. Example of blackheart (BH) incidence of potato tubers in year 1 (2011-2012). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Example of BH incidence of potato tubers of stock 20 (susceptible to BH) after 

storage in air (a, b) or CA (c, d) at 15
o
C. Tubers were initially stored at 1.5

o
C (a, c) or 3

o
C (b, 

d) for 8 weeks. 

 

 

 

 

 

a) b) 

c) d) 
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Figure 1.2 Example of BH incidence of potato tubers of stock 23 (susceptible to BH) after 

storage in air (a, b) or CA (c, d) at 15
o
C. Tubers were initially stored at 1.5

o
C (a, c) or 3

o
C (b, 

d) for 8 weeks. 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 1.3 Example of BH incidence of potato tubers of stock 20 (susceptible to BH) after 

storage in air (a, b) or CA (c, d) at 15
o
C. Tubers were initially stored at 1.5

o
C (a, c) or 3

o
C (b, 

d) for 12 weeks. 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 1.4 Example of BH incidence of potato tubers of stock 23 (susceptible to BH) after 

storage in air (a, b, c) or CA (d) at 15
o
C. Tubers were initially stored at 1.5

o
C (a, b, d) or 3

o
C 

(c) for 12 weeks. Tuber heart part zoomed (c). 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 1.5 Example of BH incidence of potato tubers of stock 20 (susceptible to BH) after 

storage in air (a, b) or CA (c, d) at 15
o
C. Tubers were initially stored at 1.5

o
C (a, c, d) and 

3
o
C (b) for 16 weeks. 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 1.6 Example of BH incidence of potato tubers of stock 23 (susceptible to BH) after 

storage in air (a, b) or CA (c, d) at 15
o
C. Tubers were initially stored at 1.5

o
C (a, c) and 3

o
C 

(b, d) for 16 weeks. 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 1.7 Example of BH incidence of potato tubers of stock 23 (susceptible to BH) after 

storage in air (a, b) or CA (c, d) at 15
o
C. Tubers were initially stored at 1.5

o
C (a, c) and 3

o
C 

(b, d) for 24 weeks. Tube heart part zoomed (d). 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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2.  Example of blackheart (BH) incidence of potato tubers in year 2 (2012-2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Example of BH incidence of potato tubers of stock 7 (susceptible to BH) (a) and 

stock 12 (susceptible to BH) (b) after baseline in air storage at 20
o
C on sampling day 7. 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 2.2 Example of BH incidence of potato tubers of stock 7 (susceptible to BH) (a, b) 

and stock 12 (susceptible to BH) (c, d) after storage in air at 20
o
C on sampling day 0 (a, c) 

and day 7 (b, d). Tubers were initially stored at 1.5
o
C for 4 weeks. Tuber heart part zoomed 

(c, d). 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 2.3 Example of BH incidence of potato tubers of stock 7 (susceptible to BH) (a, b) 

and stock 12 (susceptible to BH) (c, d) after storage in air at 20
o
C on sampling day 0 (a, c, d) 

and day 7 (b). Tubers were initially stored at 1.5
o
C for 12 weeks. Tuber heart part zoomed 

(d). 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 2.4 Example of BH incidence of potato tubers of stock 7 (susceptible to BH) (a, b) 

and stock 12 (susceptible to BH) (c, d) after storage in air at 20
o
C on sampling day 0 (a, c) 

and day 7 (b, d). Tubers were initially stored at 1.5
o
C for 16 weeks. Tuber heart part zoomed 

(a, b). 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Figure 2.5 Example of BH incidence of potato tubers of stock 7 (susceptible to BH) (a, b) 

and stock 12 (susceptible to BH) (c, d) after storage in air at 20
o
C on sampling day 0 (a, c) 

and day 7 (b, d). Tubers were initially stored at 1.5
o
C for 20 weeks. Tuber heart part zoomed 

(d). 

a) b) 

c) d) 
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Figure 2.6 Example of BH incidence of potato tubers of stock 7 (susceptible to BH) after storage in 10% CO2 (a), 10% O2 (b) and 5% O2 (c) and 

stock 12 (susceptible to BH) after storage in 10% CO2 (d) and 5% O2 (e) at 20
o
C on sampling day 3. Tubers were initially stored at 1.5

o
C for ca. 

8 months. 

 

a) b) c) 

d) e) 
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Figure 2.7 Example of BH incidence of potato tubers of stock 12 (susceptible to BH) after storage in 10% CO2 (a), 10% O2 (b) and 5% O2 (c) 

and stock 12 (susceptible to BH) after storage in 10% CO2 (d) and 5% O2 (e) at 20
o
C on sampling day 10. Tubers were initially stored at 1.5

o
C 

for ca. 8 months. Tuber heart part zoomed (b). 

 

a) b) c) 

d) e) 
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Appendix B) 

1. Analysis of Variance (ANOVA) for respiration rate of potato cv. Maris Piper stock 20 (susceptible to BH), stock 23 (susceptible to 

BH) and stock 12 (non-susceptible to BH) recorded after storage at 15
o
C on sampling days 0 (air only), 3 (air or CA) and 7 (air or CA). 

Tubers were initially stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks. Structure used: 

Stock*CONDCODE/(Condition*TEMPCODE/(temp*OT*days)) 

 

Variate: Year 1 - CO2       

Source of variation d.f. (m.v.)           s.s           m.s.         v.r.        Fp. 

       

Stock 2  236.439 118.219 52.35 < 0.001 

CONDCODE 1  2118.139 2118.139 938.01 < 0.001 

Stock.CONDCODE 2  61.098 30.549 13.53 < 0.001 

CONDCODE.Condition 1  3601.92 3601.92 1595.12 < 0.001 

CONDCODE.TEMPCODE                                                        2  44.288 22.144 9.81 < 0.001 

Stock.CONDCODE.Condition 2  94.712 47.536 20.97 < 0.001 

Stock.CONDCODE.TEMPCODE 4  36.969 9.242 4.09 0.003 

CONDCODE.Condition.TEMPCODE 1  0.496 0.496 0.22 0.640 

CONDCODE.TEMPCODE.Temp 2  653.223 326.611 144.64 < 0.001 

CONDCODE.TEMPCODE.OT 6  103.148 17.191 7.61 < 0.001 

CONDCODE.TEMPCODE.Days 2  3.720 1.860 0.82 0.440 
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Stock.CONDCODE.Condition.TEMPCODE 2  0.444 0.222 0.10 0.906 

Stock.CONDCODE.TEMPCODE.Temp 4  5.009 1.252 0.55 0.609 

CONDCODE.Condition.TEMPCODE.Temp 1  0.078 0.078 0.03 0.852 

Stock.CONDCODE.TEMPCODE.OT 12  34.772 2.898 1.28 0.228 

CONDCODE.Condition.TEMPCODE.OT 3  129.649 43.216 19.14 < 0.001 

CONDCODE.TEMPCODE.Temp.OT 6  14.062 2.344 1.04 0.401 

Stock.CONDCODE.TEMPCODE.Days 4  12.755 3.189 1.41 0.230 

CONDCODE.Condition.TEMPCODE.Days 2  6.133 8.067 3.57 0.020 

CONDCODE.TEMPCODE.Temp.Days 1  24.214 24.214 10.72 0.001 

CONDCODE.TEMPCODE.OT.Days 3  100.161 33.397 14.79 < 0.001 

Stock.CONDCODE.Condition.TEMPCODE.Temp 2  4.342 2.171 0.96 0.384 

Stock.CONDCODE.Condition.TEMPCODE.OT 6  29.760 4.960 2.20 0.044 

Stock.CONDCODE.TEMPCODE.Temp.OT 12  9.966 0.831 0.37 0.974 

CONDCODE.Condition.TEMPCODE.Temp.OT 3  3.177 1.059 0.47 0.704 

Stock.CONDCODE.Condition.TEMPCODE.Days 4  21.694 5.424 2.40 0.050 

Stock.CONDCODE.TEMPCODE.Temp.Days 2  4.860 2.430 1.08 0.342 

CONDCODE.Condition.TEMPCODE.Temp.Days 1  0.128 0.128 0.06 0.812 

Stock.CONDCODE.TEMPCODE.OT.Days 6  18.304 3.051 1.35 0.235 

CONDCODE.Condition.TEMPCODE.OT.Days 3  47.440 15.813 7.00 < 0.001 

CONDCODE.TEMPCODE.Temp.OT.Days 3  45.952 15.317 6.78 < 0.001 

Stock.CONDCODE.Condition.TEMPCODE.Temp.OT 6  2.219 0.370 0.16 0.986 
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Stock.CONDCODE.Condition.TEMPCODE.Temp.Days 2  14.617 7.339 3.25 0.040 

Stock.CONDCODE.Condition.TEMPCODE.OT.Days              6  32.715 5.452 2.41 0.027 

Stock.CONDCODE.TEMPCODE.Temp.OT.Days 6  16.833 2.805 1.24 0.285 

CONDCODE.Condition.TEMPCODE.Temp.OT.Days 3  12.457 4.152 1.84 0.140 

Stock.CONDCODE.Condition.TEMPCODE.Temp.OT.Days 6  7.532 1.255 0.56 0.765 

Residual                                                                                    326 (8) 591.625    

Total                                                                                         396 (8) 7650.236    
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2. Chi-square test results of BH incidence for potato tubers cv. Maris Piper stock 20 and 

stock 23 after storage in air or CA at 15
o
C. Tubers were initially stored at 1.5 or 3

o
C. (P 

< 0.05) 

 

Table 2.1 Chi-square test results of BH susceptibility between stock 20 and stock 23 (both 

susceptible to BH) after storage in air at 15
o
C. Tubers were initially stored at 1.5

o
C. 

  OBSERVED BH NO BH TOTAL 

  Stock 20 6 102 108 

  Stock 23 22 86 108 

  

 

28 188 216 

  

 

      

  EXPECTED BH NO BH TOTAL 

  Stock 20 14 94 108 

  Stock 23 14 94 108 

    28 188 216 

p= 0.001190804       

 

Table 2.2 Chi-square test results of BH susceptibility between stock 20 and stock 23 (both 

susceptible to BH) after storage in air at 15
o
C. Tubers were initially stored at 3

o
C. 

  OBSERVED BH NO BH TOTAL 

  Stock 20 8 100 108 

  Stock 23 22 86 108 

  

 

30 188 216 

  

 

      

  EXPECTED BH NO BH TOTAL 

  Stock 20 15 93 108 

  Stock 23 15 93 108 

    30 186 216 

p= 0.005878755       

 

Table 2.3 Chi-square test results of BH susceptibility between stock 20 and stock 23 (both 

susceptible to BH) after storage in CA at 15
o
C. Tubers were initially stored at 1.5

o
C. 

  OBSERVED BH NO BH TOTAL 

  Stock 20 4 68 72 

  Stock 23 7 65 72 

  

 

11 133 144 

  

 

      

  EXPECTED BH NO BH TOTAL 

  Stock 20 5.5 66.5 72 

  Stock 23 5.5 66.5 72 
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    11 133 144 

p= 0.013603695       

 

Table 2.4 Chi-square test results of BH susceptibility between stock 20 and stock 23 (both 

susceptible to BH) after storage in CA at 15
o
C. Tubers were initially stored at 3

o
C. 

  OBSERVED BH NO BH TOTAL 

  Stock 20 3 69 72 

  Stock 23 11 61 72 

  

 

14 130 144 

  

 

      

  EXPECTED BH NO BH TOTAL 

  Stock 20 7 65 72 

  Stock 23 7 65 72 

    14 130 144 

p= 0.024431512       

 

3. Two-sample t-test results of tuber length, diameter and weight for potato cv. Maris 

Piper stock 20 (susceptible to BH) after storage in air at 15
o
C. Tubers were initially 

stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks. 

 

Table 3.1 Two-sample t-test results of tuber length (mm) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 8 weeks. 

Summary 

         Standard                                                       Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  98.83  106.34  10.312  2.150 

Affected  4  93.99  85.67  9.256  4.628 

 

Probability = 0.805 

 

Table 3.2 Two-sample t-test results of tuber diameter (mm) for potato cv. Maris Piper stock 

20 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  72.96  27.57  5.251  1.095 

Affected  4  72.59  16.07  4.009  2.004 

  

Probability = 0.552 
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Table 3.3 Two-sample t-test results of tuber weight (g) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  248.6  2429  49.29  10.277 

Affected  4  231.9  213  14.59  7.294 

  

Probability = 0.743 

 

Table 3.4 Two-sample t-test results of tuber length (mm) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 12 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  92.74  133.06  11.535  2.307 

Affected  2  96.36  1.36  1.167  0.825 

   

Probability = 0.334 

 

Table 3.5 Two-sample t-test results of tuber diameter (mm) for potato cv. Maris Piper stock 

20 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  70.44  36.89  6.073  1.215 

Affected  2  70.39  54.71  7.396  5.230 

  

Probability = 0.505 

 

Table 3.6 Two-sample t-test results of tuber weight (g) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 12 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  218.5  3859  62.12  12.42 

Affected  2  234.2  384  19.59  13.85 

  

Probability = 0.365 

 

 



301 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Table 3.7 Two-sample t-test results of tuber length (mm) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  87.06  102.76  10.137  2.027 

Affected  2  104.90  17.88  4.228  2.990 

  

Probability = 0.011 

 

Table 3.8 Two-sample t-test results of tuber diameter (mm) for potato cv. Maris Piper stock 

20 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  69.60  30.31  5.506  1.101 

Affected  2  78.78  19.41  4.405  3.115 

  

Probability = 0.016 

 

Table 3.9 Two-sample t-test results of tuber weight (g) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  198.7  2020  44.94  8.99 

Affected  2  313.2  272  16.50  11.66 

  

Probability < 0.001 

 

Table 3.10 Two-sample t-test results of tuber length (mm) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3 

o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  96.49  111.8  10.58  2.115 

Affected  2  100.08  190.7  13.81  9.765 

 

Probability = 0.326 
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Table 3.11 Two-sample t-test results of tuber diameter (mm) for potato cv. Maris Piper stock 

20 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  72.57  31.24  5.590  1.118 

Affected  2  75.32  34.61  5.883  4.160 

  

Probability = 0.255 

 

Table 3.12 Two-sample t-test results of tuber weight (g) for potato cv. Maris Piper stock 20 

(susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 16 weeks. 

Summary 

        Standard              Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  231.5  2570  50.70  10.14 

Affected  2  253.2  3515  59.28  41.92 

  

Probability = 0.284 

 

Table 3.13 Correlation comparing the tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 20 after storage in air at 15
o
C. Tubers were initially 

stored at 1.5
o
C for 16 weeks.            

BH 1  -    

Diameter 2 0.4155  -   

Length 3 0.4378  0.4716  -  

Weight 4 0.5765  0.7298  0.8671  - 

   1 2 3 4 

 

Two-sided test of correlations different from zero           

BH 1  -    

Diameter 2 0.0312  -   

Length 3 0.0224  0.0130  -  

Weight 4 0.0016  <0.001  <0.001  - 

   1 2 3 4 
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4. Two-sample t-test results of tuber length, diameter and weight with BH incidence for 

potato cv. Maris Piper stock 20 (susceptible to BH) after storage in CA at 15
o
C. Tubers 

were initially stored at 1.5 or 3
o
C for 8, 12, 16 and 20 weeks. 

 

Table 4.1 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 20 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 8 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  87.82  103.5  10.17  2.544 

Affected  2  103.30  219.0  14.80  10.465 

  

Probability = 0.034 

 

Table 4.2 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato cv. 

Maris Piper stock 20 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 8 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  68.90  79.4  8.91  2.227 

Affected  2  73.91  156.5  12.51  8.845 

  

Probability = 0.238 

 

Table 4.3 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 20 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  214.5  2277  47.72  11.93 

Affected  2  262.4  21210  145.64  102.98 

  

Probability = 0.361 
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Table 4.4 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 20 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  92.18  72.92  8.539  2.135 

Affected  2  96.95  102.24  10.112  7.150 

  

Probability = 0.236 

 

Table 4.5 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato cv. 

Maris Piper stock 20 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 8 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  68.88  26.45  5.143  1.286 

Affected  2  70.75  78.75  8.874  6.275 

  

Probability = 0.327 

 

Table 4.6 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 20 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  225.8  1358.6  36.86  9.21 

Affected  2  236.8  617.1  24.84  17.56 

  

Probability = 0.346 

 

Table 4.7 Correlation matrix comparing the tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 20 (susceptible to BH) after storage in CA at 15
o
C. 

Tubers were initially stored at 1.5
o
C for 8 weeks. 

BH                  1  -    

Diameter 2 0.1792  -   

Length        3 0.4402  0.7400  -  

Weight           4 0.2620  0.8578  0.8173  - 

   1 2 3 4 
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Two-sided test of correlations different from zero            

BH 1  -    

Diameter 2 0.4769  -   

Length 3 0.0675  <0.001  -  

Weight 4 0.2935  <0.001  <0.001  - 

   1 2 3 4 

 

5. Two-sample t-test results of tuber length, diameter and weight for potato cv. Maris 

Piper stock 23 after storage in air at 15
o
C.Tubers were initially stored at 1.5 or 3

o
C for 

8, 12, 16 and 20 weeks. 

 

Table 5.1 Two-sample t-test of tuber length (mm) with BH incidence for potato cv. Maris 

Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 8 

weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  101.9  162.3  12.74  2.548 

Affected  2  109.1  234.1  15.30  10.820 

  

Probability = 0.227 

 

Table 5.2 Two-sample t-test of tuber diameter (mm) with BH incidence for potato cv. Maris 

Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C for 8 

weeks. 

Summary 

        Standard              Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  75.62  30.1  5.488  1.098 

Affected  2  75.68  189.7  13.774  9.740 

  

Probability = 0.498 
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Table 5.3 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  25  281.6  4441  66.64  13.33 

Affected  2  284.3  17421  131.99  93.33 

  

Probability = 0.480 

 

Table 5.4 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

8 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  99.82  56.12  7.492  1.562 

Affected  4  98.59  85.38  9.240  4.620 

  

Probability = 0.614 

 

Table 5.5 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  72.95  34.51  5.874  1.225 

Affected  4  74.29  10.40  3.226  1.613 

  

Probability = 0.331 

 

Table 5.6 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

8 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  254.9  2713  52.09  10.86 

Affected  4  274.1  1658  40.71  20.36 
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Probability = 0.247 

 

Table 5.7 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  24  96.25  101.5  10.07  2.056 

Affected  3  97.08  277.6  16.66  9.620 

  

Probability = 0.450 

 

Table 5.8 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 12 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  24  73.22  19.35  4.399  0.898 

Affected  3  69.19  46.86  6.845  3.952 

 

Probability = 0.916 

 

Table 5.9 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 12 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  24  245.2  2751  52.45  10.71 

Affected  3  221.2  7958  89.21  51.50 

  

Probability = 0.754 
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Table 5.10 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  91.31  121.05  11.002  2.294 

Affected  4  95.55  16.72  4.089  2.045 

  

Probability = 0.230 

 

Table 5.11 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato 

cv. Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C 

for 12 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  73.13  28.17  5.307  1.107 

Affected  4  70.17  42.79  6.542  3.271 

  

Probability = 0.836 

 

Table 5.12 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

12 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  23  231.5  2952  54.34  11.33 

Affected  4  235.5  3783  61.51  30.75 

  

Probability = 0.447 

 

Table 5.13 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 16 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  17  97.25  84.46  9.190  2.229 

Affected  10  94.40  90.29  9.502  3.005 
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Probability = 0.775 

 

Table 5.14 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato 

cv. Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  17  75.04  24.13  4.913  1.191 

Affected  10  74.15  25.12  5.012  1.585 

  

Probability = 0.672 

 

Table 5.15 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 16 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  17  251.7  1455  38.14  9.25 

Affected  10  244.2  3137  56.01  17.71 

  

Probability = 0.659 

 

Table 5.16 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

16 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  18  93.31  53.85  7.339  1.730 

Affected  9  94.01  75.82  8.708  2.903 

  

Probability = 0.414 

 

 

 

 

 



310 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Table 5.17 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato 

cv. Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C 

for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  18  72.51  42.12  6.490  1.530 

Affected  9  76.08  28.07  5.298  1.766 

  

Probability = 0.083 

 

Table 5.18 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

16 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  18  238.8  2014  44.87  10.58 

Affected  9  262.1  2625  51.23  17.08 

  

Probability = 0.118 

 

Table 5.19 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 20 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  20  96.58  181.5  13.47  3.012 

Affected  7  92.43  76.4  8.74  3.304 

  

Probability = 0.771 

 

Table 5.20 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato 

cv. Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 

1.5
o
C for 20 weeks. 

Summary 

        Standard              Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  20  70.16  41.79  6.465  1.446 

Affected  7  73.49  29.46  5.428  2.052 
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Probability = 0.117 

 

Table 5.21 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 20 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  20  233.1  2978  54.57  12.20 

Affected  7  235.3  2580  50.79  19.20 

  

Probability = 0.463 

 

Table 5.22 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

20 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  22  88.60  169.4  13.01  2.775 

Affected  5  88.11  54.9  7.41  3.314 

  

Probability = 0.531 

 

Table 5.23 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato 

cv. Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C 

for 20 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  22  70.62  23.52  4.850  1.034 

Affected  5  72.21  6.74  2.596  1.161 

  

Probability = 0.244 

  

 

 

 

 



312 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Table 5.24 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in air at 15
o
C. Tubers were initially stored at 3

o
C for 

20 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  22  211.8  3676  60.63  12.93 

Affected  5  224.5  1030  32.10  14.35 

  

Probability = 0.328 

 

6. Two-sample t-test results of tuber length, diameter and weight for potato cv. Maris 

Piper stock 23 after storage in CA at 15
o
C. Tubers were initially stored at 1.5 or 3

o
C for 

8, 12, 16 and 20 weeks.  

 

Table 6.1 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 8 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  13  98.31  148.0  12.16  3.374 

Affected  5  98.65  138.5  11.77  5.263 

  

Probability = 0.479 

 

Table 6.2 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 8 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  13  74.00  57.32  7.571  2.100 

Affected  5  77.92  14.74  3.840  1.717 

  

Probability = 0.146 
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Table 6.3 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 1.5

o
C 

for 8 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  13  265.4  4416  66.45  18.43 

Affected  5  272.7  1576  39.69  17.75 

  

Probability = 0.411 

 

Table 6.4 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 8 weeks.  

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  98.7  164.40  12.822  3.205 

Affected  2  104.0  13.16  3.627  2.565 

  

Probability = 0.288 

 

Table 6.5 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 8 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  73.98  26.27  5.125  1.281 

Affected  2  78.60  2.35  1.534  1.085 

  

Probability = 0.117 

 

Table 6.6 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 8 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  259.7  3869  62.21  15.55 

Affected  2  286.9  703  26.52  18.75 
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Probability = 0.279 

 

Table 6.7 Two-sample t-test results of tuber length (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 16 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  11  96.88  63.22  7.951  2.397 

Affected  7  92.97  73.19  8.555  3.233 

  

Probability = 0.831 

 

Table 6.8 Two-sample t-test results of tuber diameter (mm) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 16 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  11  72.28  29.50  5.431  1.638 

Affected  7  72.53  25.68  5.067  1.915 

  

Probability = 0.463 

 

Table 6.9 Two-sample t-test results of tuber weight (g) with BH incidence for potato cv. 

Maris Piper stock 23 (susceptible to BH) in CA at 15
o
C. Tubers were initially stored at 3

o
C 

for 16 weeks. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  11  242.4  1978  44.48  13.41 

Affected  7  245.9  3171  56.31  21.28 

  

Probability = 0.443 
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7. Analysis of variance (ANOVA) results of sugar content in potato tubers of year 1 

(2011-2012). Structure used: STOCK*TISSUE*OT*DAY 

 

Table 7.1 Variate: Year 1 - Fructose 

Source of variation                      d.f             s.s.              m.s.           v.r.          F pr. 

 

STOCK 2  22117.95  11058.97  150.94      <.001 

TISSUE 1  14695.45  14695.45  200.58      <.001 

OT 3  54189.96  18063.32  246.54      <.001 

DAY 2  2981.82  1490.91  20.35      <.001 

STOCK.TISSUE 2  230.76  115.38  1.57      0.211 

STOCK.OT 6  12649.41  2108.23  28.77      <.001 

TISSUE.OT 3  2340.38  780.13  10.65      <.001 

STOCK.DAY 4  144.63  36.16  0.49      0.741 

TISSUE.DAY 2  194.45  97.23  1.33      0.268 

OT.DAY 6  4634.17  772.36  10.54      <.001 

STOCK.TISSUE.OT 6  590.42  98.40  1.34      0.242 

STOCK.TISSUE.DAY 4  214.47  53.62  0.73      0.572 

STOCK.OT.DAY 12  2553.09  212.76  2.90      0.001 

TISSUE.OT.DAY 6  1004.86  167.48  2.29      0.039 

STOCK.TISSUE.OT.DAY 12  688.26  57.36  0.78      0.667 

Residual 144  10550.38  73.27 

     

Total 215  129780.45  

 

Table 7.2 Variate: Year 1 - Glucose 

Source of variation                       d.f.           s.s.               m.s.           v.r.          F pr. 

 

STOCK 2  30276.1  15138.0  142.85      <.001 

TISSUE 1  13756.8  13756.8  129.82      <.001 

OT 3  49989.8  16663.3  157.24      <.001 

DAY 2  7946.7  3973.4  37.49      <.001 

STOCK.TISSUE 2  365.7  182.9  1.73      0.182 

STOCK.OT 6  26667.3  4444.5  41.94      <.001 

TISSUE.OT 3  1390.6  463.5  4.37      0.006 

STOCK.DAY 4  931.7  232.9  2.20      0.072 

TISSUE.DAY 2  939.2  469.6  4.43      0.014 

OT.DAY 6  6734.2  1122.4  10.59      <.001 

STOCK.TISSUE.OT 6  775.6  129.3  1.22      0.299 

STOCK.TISSUE.DAY 4  509.8  127.5  1.20      0.312 

STOCK.OT.DAY 12  2957.6  246.5  2.33      0.009 
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TISSUE.OT.DAY 6  2473.3  412.2  3.89      0.001 

STOCK.TISSUE.OT.DAY 12  1520.8  126.7  1.20      0.291 

Residual 144  15259.8  106.0 

     

Total 215  162495.2  

       

Table 7.3 Variate: Year 1 – Sucrose 

Source of variation d.f.    (m.v.)          s.s.                m.s.           v.r.         F pr. 

 

STOCK 2    1090.607  545.303  61.75      <.001 

TISSUE 1    582.034  582.034  65.91      <.001 

OT 3    364.974  121.658  13.78      <.001 

DAY 2    919.555  459.778  52.06      <.001 

STOCK.TISSUE 2    87.697  43.849  4.97      0.008 

STOCK.OT 6    761.463  126.911  14.37      <.001 

TISSUE.OT 3    70.280  23.427  2.65      0.051 

STOCK.DAY 4    26.177  6.544  0.74      0.566 

TISSUE.DAY 2    27.080  13.540  1.53      0.219 

OT.DAY 6    342.644  57.107  6.47      <.001 

STOCK.TISSUE.OT 6    351.302  58.550  6.63      <.001 

STOCK.TISSUE.DAY 4    37.043  9.261  1.05      0.384 

STOCK.OT.DAY 12    101.908  8.492  0.96      0.488 

TISSUE.OT.DAY 6    54.729  9.122  1.03      0.407 

STOCK.TISSUE.OT.DAY 12    72.844  6.070  0.69      0.762 

Residual 142 (2)  1254.027  8.831  

    

Total 213 (2)  6110.877  

 

 

8. Analysis of variance (ANOVA) results of phenolic content in potato tubers of year 1 

(2011-2012). Structure used: STOCK*TISSUE*OT*DAY 

     

Table 8.1 Variate: Year 1 – Chlorogenic acid 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

STOCK 2    7355.9  3678.0  4.52  0.013 

TISSUE 1    106739.4  106739.4  131.23 <.001 

OT 3    1403.6  467.9  0.58  0.632 

DAY 2    3049.5  1524.7  1.87  0.157 

STOCK.TISSUE 2    63670.2  31835.1  39.14 <.001 

STOCK.OT 6    34723.8  5787.3  7.12 <.001 

TISSUE.OT 3    38043.4  12681.1  15.59 <.001 
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STOCK.DAY 4    5444.8  1361.2  1.67  0.160 

TISSUE.DAY 2    667.2  333.6  0.41  0.664 

OT.DAY 6    25779.0  4296.5  5.28 <.001 

STOCK.TISSUE.OT 6    24691.4  4115.2  5.06 <.001 

STOCK.TISSUE.DAY 4    9955.8  2488.9  3.06  0.019 

STOCK.OT.DAY 12    65249.8  5437.5  6.68 <.001 

TISSUE.OT.DAY 6    28327.1  4721.2  5.80 <.001 

STOCK.TISSUE.OT.DAY 12    28572.2  2381.0  2.93  0.001 

Residual 136 (8)  110620.7  813.4     

 

Total                                        207     (8)    504811.2.  

 

Table 8.2 Variate: Year 1 – Neo-chlorogenic acid 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

STOCK 2    125.4830  62.7415  62.85 <.001 

TISSUE 1    120.4462  120.4462  120.65 <.001 

OT 3    73.2283  24.4094  24.45 <.001 

DAY 2    4.2178  2.1089  2.11  0.125 

STOCK.TISSUE 2    99.7264  49.8632  49.95 <.001 

STOCK.OT 6    13.9814  2.3302  2.33  0.036 

TISSUE.OT 3    44.2980  14.7660  14.79 <.001 

STOCK.DAY 4    2.4387  0.6097  0.61  0.656 

TISSUE.DAY 2    3.9698  1.9849  1.99  0.141 

OT.DAY 6    20.5101  3.4184  3.42  0.004 

STOCK.TISSUE.OT 6    31.0533  5.1755  5.18 <.001 

STOCK.TISSUE.DAY 4    10.9092  2.7273  2.73  0.032 

STOCK.OT.DAY 12    51.9198  4.3267  4.33 <.001 

TISSUE.OT.DAY 6    17.3588  2.8931  2.90  0.011 

STOCK.TISSUE.OT.DAY 12    54.6952  4.5579  4.57 <.001 

Residual 126 (18)  125.7843  0.9983     

 

Total 197 (18)  662.3266       

    

Table 8.3 Variate: Year 1 – Crypto-chlorogenic acid 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

STOCK 2    3706.78  1853.39  75.42 <.001 

TISSUE 1    8879.73  8879.73  361.35 <.001 

OT 3    1318.10  439.37  17.88 <.001 

DAY 2    126.02  63.01  2.56  0.081 

STOCK.TISSUE 2    8587.23  4293.61  174.72 <.001 

STOCK.OT 6    2675.50  445.92  18.15 <.001 

TISSUE.OT 3    100.45  33.48  1.36  0.257 

STOCK.DAY 4    991.74  247.94  10.09 <.001 

TISSUE.DAY 2    466.99  233.49  9.50 <.001 

OT.DAY 6    1131.82  188.64  7.68 <.001 
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STOCK.TISSUE.OT 6    2370.67  395.11  16.08 <.001 

STOCK.TISSUE.DAY 4    519.80  129.95  5.29 <.001 

STOCK.OT.DAY 12    1264.27  105.36  4.29 <.001 

TISSUE.OT.DAY 6    421.01  70.17  2.86  0.012 

STOCK.TISSUE.OT.DAY 11 (1)  1665.29  151.39  6.16 <.001 

Residual 131 (13)  3219.16  24.57     

 

Total                                          201     (14)       31521.90       

  

Table 8.4 Variate: Year 1 - Caffeoyl-D-glucose  

Source of variation d.f.      (m.v.) s.s. m.s. v.r.            F pr. 

STOCK 2    1.81441  0.90720    46.87          <.001 

TISSUE 1    0.01850  0.01850   0.96          0.330 

OT 3    4.06720  1.35573   70.04          <.001 

DAY 2    0.01254  0.00627         0.32          0.724 

STOCK.TISSUE 2    1.45640  0.72820       37.62          <.001 

STOCK.OT 6    0.26280  0.04380    2.26          0.041 

TISSUE.OT 3    2.70931  0.90310    46.66          <.001 

STOCK.DAY 4    0.16523  0.04131     2.13          0.080 

TISSUE.DAY 2    0.01195  0.00598    0.31          0.735 

OT.DAY 6    0.67721  0.11287     5.83         <.001 

STOCK.TISSUE.OT 6    0.45361  0.07560    3.91         0.001 

STOCK.TISSUE.DAY 4    0.20047  0.05012   2.59         0.039 

STOCK.OT.DAY 12    1.14297  0.09525   4.92         <.001 

TISSUE.OT.DAY 6    0.26662  0.04444    2.30         0.038 

STOCK.TISSUE.OT.DAY 12    0.45111  0.03759    1.94         0.034 

Residual 137 (7)  2.65187  0.01936     

Total 208 (7)  15.41723       

  

Table 8.5 Variate: Year 1 – Feruloylquinic acid 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

STOCK 2    1254.577  627.289  105.19 <.001 

TISSUE 1    434.884  434.884  72.92 <.001 

OT 3    167.294  55.765  9.35 <.001 

DAY 2    253.973  126.987  21.29 <.001 

STOCK.TISSUE 2    333.432  166.716  27.96 <.001 

STOCK.OT 6    380.333  63.389  10.63 <.001 

TISSUE.OT 3    608.272  202.757  34.00 <.001 

STOCK.DAY 4    4.447  1.112  0.19  0.945 

TISSUE.DAY 2    177.069  88.534  14.85 <.001 

OT.DAY 6    137.651  22.942  3.85  0.001 

STOCK.TISSUE.OT 6    106.040  17.673  2.96  0.009 

STOCK.TISSUE.DAY 4    88.693  22.173  3.72  0.007 
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STOCK.OT.DAY 12    355.167  29.597  4.96 <.001 

TISSUE.OT.DAY 6    59.867  9.978  1.67  0.132 

STOCK.TISSUE.OT.DAY 12    208.444  17.370  2.91  0.001 

Residual 137 (7)  816.994  5.963     

 

Total                                    208    (7)   4846.957   
 

Table 8.6 Variate: Year 1 - Tyrosine 

Source of variation                      d.f.   (m.v.)          s.s.                m.s.           v.r.          F pr. 

 

STOCK 2    10.4364  5.2182  26.56       <.001 

TISSUE 1    4.1987  4.1987  21.37       <.001 

OT 3    9.4693  3.1564  16.06       <.001 

DAY 2    0.5710  0.2855  1.45       0.238 

STOCK.TISSUE 2    3.6693  1.8346  9.34       <.001 

STOCK.OT 6    9.0879  1.5147  7.71       <.001 

TISSUE.OT 3    5.1149  1.7050  8.68       <.001 

STOCK.DAY 4    1.8439  0.4610  2.35       0.058 

TISSUE.DAY 2    1.3259  0.6629  3.37       0.037 

OT.DAY 6    1.9709  0.3285  1.67       0.133 

STOCK.TISSUE.OT 6    5.4048  0.9008  4.58       <.001 

STOCK.TISSUE.DAY 4    0.7149  0.1787  0.91       0.460 

STOCK.OT.DAY 12    3.5997  0.3000  1.53       0.122 

TISSUE.OT.DAY 6    4.3045  0.7174  3.65       0.002 

STOCK.TISSUE.OT.DAY 11 (1)  3.3638  0.3058  1.56       0.119 

Residual 133 (11)  26.1341  0.1965 

     

Total                                       203   (12)      81.3128  

 

Table 8.7 Variate: Year 1 - Phenylalanine 

Source of variation                      d.f.  (m.v.)            s.s.                m.s.           v.r.         F pr. 

 

STOCK 2    1625.66  812.83  39.15       <.001 

TISSUE 1    1505.30  1505.30  72.50       <.001 

OT 3    2493.84  831.28  40.04       <.001 

DAY 2    556.82  278.41  13.41       <.001 

STOCK.TISSUE 2    174.64  87.32  4.21       0.017 

STOCK.OT 6    590.13  98.36  4.74       <.001 

TISSUE.OT 3    608.71  202.90  9.77       <.001 

STOCK.DAY 4    553.29  138.32  6.66       <.001 

TISSUE.DAY 2    63.96  31.98  1.54       0.218 

OT.DAY 6    609.48  101.58  4.89       <.001 
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STOCK.TISSUE.OT 6    257.60  42.93  2.07       0.061 

STOCK.TISSUE.DAY 4    78.93  19.73  0.95       0.437 

STOCK.OT.DAY 12    1088.81  90.73  4.37       <.001 

TISSUE.OT.DAY 6    92.54  15.42  0.74       0.616 

STOCK.TISSUE.OT.DAY 12    783.65  65.30  3.15       <.001 

Residual 140 (4)  2906.86  20.76 

     

Total 211 (4)  13635.21    

 

Table 8.8 Variate: Year 1 - Tryptophan 

Source of variation                      d.f.   (m.v.)          s.s.                 m.s.           v.r.        F pr. 

 

STOCK 2    107472.  53736.  51.29       <.001 

TISSUE 1    13674.  13674.  13.05       <.001 

OT 3    38444.  12815.  12.23       <.001 

DAY 2    12619.  6309.  6.02       0.003 

STOCK.TISSUE 2    4263.  2132.  2.03       0.135 

STOCK.OT 6    22224.  3704.  3.54       0.003 

TISSUE.OT 3    26285.  8762.  8.36       <.001 

STOCK.DAY 4    22225.  5556.  5.30       <.001 

TISSUE.DAY 2    5487.  2743.  2.62       0.076 

OT.DAY 6    16309.  2718.  2.59       0.020 

STOCK.TISSUE.OT 6    8248.  1375.  1.31       0.255 

STOCK.TISSUE.DAY 4    17171.  4293.  4.10       0.004 

STOCK.OT.DAY 12    33583.  2799.  2.67       0.003 

TISSUE.OT.DAY 6    6811.  1135.  1.08       0.375 

STOCK.TISSUE.OT.DAY 12    20274.  1689.  1.61       0.094 

Residual 143 (1)  149820.  1048. 

     

Total 214 (1)  496336.  
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Appendix C) 

1. Analysis of Variance for respiration rate of potato tubers cv. Maris Piper stock 7 

(susceptible to BH), stock 12 (susceptible to BH) and stock 3 (non-susceptible to BH) 

recorded after storage in air at 20
o
C on sampling days 0 and 7. Potato tubers were 

initially stored at 1.5
o
C for 4, 8, 12, 16 and 20 weeks. Structure used: STOCK*OT*DAY 

 

Variate: Year 2 – Experiment 1 - CO2  

Source of variation                      d.f.            s.s        .        m.s.          v.r.         F pr. 

 

STOCK 2  46.015  23.008  22.38       <.001 

OT 5  19.098  3.820  3.71       0.037 

DAY 1  49.057  49.057  47.71       <.001 

STOCK.OT 10  9.010  0.901  0.88       0.581 

STOCK.DAY 2  31.978  15.989  15.55       <.001 

OT.DAY 5  14.555  2.911  2.83       0.076 

Residual 10  10.282  1.028  

    

Total                                          35      179.996 

 

2. Chi-square test results of BH susceptibility between stock 7, stock 12 (susceptible to 

BH stocks) and stock 3 (non-susceptible to BH) after storage in air at 20
o
C (Baseline and 

all outturns included). Tubers were initially stored at 1.5
o
C for 4, 8, 12, 16 and 20 weeks. 

(P < 0.05). 

 

Table 2.1 Chi-square test results of BH susceptibility between stock 7 and stock 12 (both 

susceptible to BH). 

  OBSERVED BH NO BH TOTAL 

  Stock 7 16 92 108 

  Stock 12 12 96 108 

  TOTAL 28 188 216 

  

 

      

  EXPECTED BH NO BH TOTAL 

  Stock 7 14 94 108 

  Stock 12 14 94 108 

  TOTAL 28 188 216 

p= 0.417785907       
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Table 2.2 Chi-square test results of BH susceptibility between stock 7 (susceptible to BH) 

and stock 12 (non-susceptible to BH). 

  OBSERVED BH NO BH TOTAL 

  Stock 7 16 92 108 

  Stock 3 0 108 108 

  TOTAL 16 200 216 

  

 

      

  EXPECTED BH NO BH TOTAL 

  Stock 7 8 100 108 

  Stock 3 8 100 108 

  TOTAL 16 200 216 

p= < 0.001       

 

Table 2.3 Chi-square test results of BH susceptibility between stock 12 (susceptible to BH) 

and stock 12 (non-susceptible to BH). 

  OBSERVED BH NO BH TOTAL 

  Stock 7 12 96 108 

  Stock 3 0 108 108 

  TOTAL 12 204 216 

  

 

      

  EXPECTED BH NO BH TOTAL 

  Stock 7 6 102 108 

  Stock 3 6 102 108 

  TOTAL 12 204 216 

p= 0.0004       

 

3. Two-sample t-tests for BH incidence and tuber respiration rate, tuber size and tuber 

weight of potato cv. Maris Piper stock 7 and stock 12 (susceptible to BH stocks) after 

baseline and storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 12, 16 

and 20 weeks. Tubers were initially stored at 1.5
o
C (P < 0.05). 

 

Table 3.1 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 7 (susceptible to BH) at baseline. 

Summary 

         Standard                                                        Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  6.935  4.358  2.088  0.5219 

Affected  2  5.638  0.434  0.659  0.4658 
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Probability = 0.797 

 

Table 3.2 Two-sample t-test for tuber length (mm) and BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) at baseline. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  97.91  144.9  12.04  3.010 

Affected  2  86.13  172.4  13.13  9.285 

  

Probability = 0.893 

 

Table 3.3 Two-sample t-test for tuber diameter (mm) and BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) at baseline. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  72.64  71.98  8.484  2.121 

Affected  2  78.42  71.76  8.471  5.990 

  

Probability = 0.188 

 

Table 3.4 Two-sample t-test for tuber weight (g) and BH incidence of potato cv. Maris Piper 

stock 7 (susceptible to BH) at baseline. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  272.9  2686  51.83  12.96 

Affected  2  243.9  5898  76.80  54.31 

  

Probability = 0.759 

 

Table 3.5 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 4 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  15  5.910  2.388  1.5454  0.3990 

Affected  3  5.409  0.146  0.3820  0.2205 

  

Probability = 0.704 
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Table 3.6 Two-sample t-test for tuber length (mm) and BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 4 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  15  97.93  99.45  9.972  2.575 

Affected  3  98.03  70.01  8.367  4.831 

  

Probability = 0.494 

 

Table 3.7 Two-sample t-test for tuber diameter (mm) and BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 4 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  15  78.89  31.34  5.598  1.445 

Affected  3  72.04  14.42  3.797  2.192 

  

Probability = 0.969 

 

Table 3.8 Two-sample t-test for tuber weight (g) and BH incidence of potato cv. Maris Piper 

stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C 

for 4 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  15  262.0  1995  44.66  11.53 

Affected  3  232.0  2864  53.51  30.90 

  

Probability = 0.842 

 

Table 3.9 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  4.725  0.5739  0.7576  0.1894 

Affected  2  4.558  0.0016  0.0405  0.0286 



325 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

  

Probability = 0.617 

 

Table 3.10 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  97.38  95.34  9.764  2.441 

Affected  2  92.62  29.26  5.409  3.825 

  

Probability = 0.742 

 

Table 3.11 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  78.12  10.937  3.307  0.827 

Affected  2  75.11  6.125  2.475  1.750 

  

Probability = 0.882 

 

Table 3.12 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 12 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  263.1  1880.3  43.36  10.841 

Affected  2  248.5  40.5  6.36  4.500 

  

Probability = 0.675 
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Table 3.13 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  5.074  0.8854  0.9410  0.2515 

Affected  4  4.286  0.4497  0.6706  0.3353 

  

Probability = 0.930 

 

Table 3.14 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  96.40  171.6  13.10  3.501 

Affected  4  97.05  86.9  9.32  4.661 

 

 

Probability = 0.464 

 

Table 3.15 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  74.27  16.25  4.031  1.077 

Affected  4  77.21  14.93  3.863  1.932 

  

Probability = 0.106 
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Table 3.16 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary 

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  242.5  1517  38.95  10.41 

Affected  4  261.0  2122  46.06  23.03 

  

Probability = 0.216 

 

Table 3.17 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 20 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  4.560  0.5370  0.7328  0.1958 

Affected  4  3.919  0.1830  0.4277  0.2139 

  

Probability = 0.941 

 

Table 3.18 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 20 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  89.88  75.93  8.714  2.329 

Affected  4  90.30  19.46  4.411  2.206 

  

Probability = 0.464 

 

Table 3.19 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  74.75  19.24  4.386  1.172 

Affected  4  76.53  6.27  2.505  1.252 
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Probability = 0.228 

 

Table 3.20 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris 

Piper stock 7 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 20 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  229.9  1600  40.00  10.69 

Affected  4  239.2  1188  34.47  17.24 

  

Probability = 0.340 

 

4. Two-sample t-test results for  BH incidence and tuber length, diameter and weight of 

potato cv. Maris Piper stock 12 (susceptible to BH) after baseline and storage in air at 

20
o
C. Tubers were initially stored at 1.5

o
C for 4, 8, 12, 16 and 20 weeks (P < 0.05). 

 

Table 4.1 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 12 (susceptible to BH) at baseline. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  6.675  5.867  2.422  0.6055 

Affected  2  4.275  0.010  0.101  0.0713 

  

Probability = 0.904 

 

Table 4.2 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) at baseline. 

Summary  

        Standard               Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  104.9  73.57  8.577  2.144 

Affected  2  97.8  0.13  0.361  0.255 

  

Probability = 0.863 
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Table 4.3 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) at baseline. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  75.70  10.044  3.169  0.792 

Affected  2  72.49  4.836  2.199  1.555 

  

Probability = 0.906 

 

Table 4.4 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris Piper 

stock 12 (susceptible to BH) at baseline. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  272.4  1104.8  33.24  8.310 

Affected  2  272.0  102.4  10.12  7.155 

  

Probability = 0.507 

 

Table 4.5 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 4 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  6.297  3.623  1.903  0.4759 

Affected  2  4.272  0.369  0.607  0.4294 

  

Probability = 0.918 

 

Table 4.6 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 4 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  105.3  220.8  14.861  3.715 

Affected  2  104.9  0.6  0.785  0.555 

  

Probability = 0.516 
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Table 4.7 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 4 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  76.82  18.77  4.332  1.083 

Affected  2  80.31  6.52  2.553  1.805 

  

Probability = 0.144 

 

Table 4.8 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris Piper 

stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 1.5

o
C 

for 4 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  287.3  4048  63.63  15.91 

Affected  2  306.6  119  10.89  7.70 

 

Probability = 0.341 

 

Table 4.9 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 12 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  4.279  1.209  1.100  0.2939 

Affected  4  5.162  1.405  1.185  0.5926 

  

Probability = 0.091 
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Table 4.10 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  104.4  240.9  15.52  4.148 

Affected  4  98.7  37.4  6.12  3.059 

  

Probability = 0.758 

 

Table 4.11 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  74.72  6.19  2.489  0.665 

Affected  4  77.15  32.39  5.691  2.846 

  

Probability = 0.230 

 

Table 4.12 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 12 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  14  273.3  2326  48.23  12.89 

Affected  4  269.9  1276  35.73  17.86 

  

Probability = 0.551 

 

Table 4.13 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  4.222  0.7372  0.8586  0.2146 

Affected  2  4.176  0.0008  0.0286  0.0202 
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Probability = 0.529 

 

Table 4.14 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  104.8  107.09  10.348  2.587 

Affected  2  117.5  53.56  7.319  5.175 

  

Probability = 0.058 

 

Table 4.15 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  76.80  20.84  4.565  1.1412 

Affected  2  77.57  0.55  0.742  0.5250 

  

Probability = 0.409 

 

Table 4.16 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 16 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  281.6  1334.4  36.53  9.13 

Affected  2  356.2  283.2  16.83  11.90 

  

Probability = 0.007 
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Table 4.17 Two-sample t-test for tuber respiration rate (CO2) and BH incidence of potato cv. 

Maris Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 20 weeks. 

Summary  

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  4.758  1.2178  1.1035  0.2759 

Affected  2  4.826  0.7257  0.8519  0.6024 

  

Probability = 0.468 

 

Table 4.18 Two-sample t-test for tuber length (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 20 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  97.26  75.17  8.670  2.168 

Affected  2  100.42  7.03  2.652  1.875 

  

Probability = 0.312 

 

Table 4.19 Two-sample t-test for tuber diameter (mm) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 20 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  75.56  18.037  4.247  1.0617 

Affected  2  73.53  0.000  0.014  0.0100 

 

Probability = 0.962 

 

Table 4.20 Two-sample t-test for tuber weight (g) with BH incidence of potato cv. Maris 

Piper stock 12 (susceptible to BH) after storage in air at 20
o
C. Tubers were initially stored at 

1.5
o
C for 20 weeks. 

Summary 

        Standard                Standard error 

Sample  Size  Mean  Variance  deviation  of mean 

Non-affected  16  261.9  1753.3  41.87  10.47 

Affected  2  251.9  214.2  14.64  10.35 
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Probability = 0.626 

 

Table 4.21 Correlation matrix comparing the tuber length, diameter and weight with the BH 

incidence for potato cv. Maris Piper stock 12 after storage in air at 20
o
C. Tubers were initially 

stored at 1.5
o
C for 16 weeks.              

BH 1  -     

Weight 2 0.5723  -    

Diameter 3 0.0581  0.2314  -   

Length 4 0.3838  0.7699  -0.1786  -  

CO2 5 -0.0187  0.4362  -0.2574  0.5320  - 

   1 2 3 4 5 
        

Two-sided test of correlations different from zero           

BH                  1  -     

Weight 2 0.0131  -    

Diameter 3 0.8190  0.3555  -   

Length 4 0.1158  <0.001  0.4782  -  

CO2 5 0.9414  0.0704  0.3024  0.0231  - 

   1 2 3 4 5 

 

5. Analysis of variance (ANOVA) results of sugar content in potato tubers of experiment  

1 in year 2 (2012-2013). Structure used: STOCK*TISSUE*OT 

 

Table 5.1 Variate: Year 2 – experiment 1 – Fructose 

Source of variation d.f. s.s. m.s. v.r. F pr. 

 

TISSUE 1  16209.5  16209.5  84.58 <.001 

OT 5  5974.6  1194.9  6.23 <.001 

TISSUE.OT 5  1125.6  225.1  1.17  0.335 

OT.BH_L 17  3929.5  231.1  1.21  0.294 

TISSUE.OT.BH_L 17  1717.2  101.0  0.53  0.926 

Residual 50  9582.8  191.7     

 

Total 95           38539.2       

 

Table 5.2  Variate: Year 2 – experiment 1 – Fructose log_10 

Source of variation d.f. s.s. m.s. v.r. F pr. 

 

TISSUE 1  1.30913  1.30913  92.42 <.001 

OT 5  0.85390  0.17078  12.06 <.001 

TISSUE.OT 5  0.05021  0.01004  0.71  0.620 

OT.BH_L 17  0.71009  0.04177  2.95  0.002 
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TISSUE.OT.BH_L 17  0.16965  0.00998  0.70  0.783 

Residual 50  0.70823  0.01416     

 

Total 95 3.80120  

 

Table 5.3 Variate: Year 2 – experiment 1 – Glucose 

Source of variation d.f. s.s. m.s. v.r. F pr. 

 

TISSUE 1  17116.5  17116.5  67.60 <.001 

OT 5  3748.2  749.6  2.96  0.020 

TISSUE.OT 5  918.2  183.6  0.73  0.608 

OT.BH_L 17  8636.3  508.0  2.01  0.029 

TISSUE.OT.BH_L 17  2927.8  172.2  0.68  0.807 

Residual 50  12660.0  253.2     

 

Total 95  46007.1       

 

Table 5.4 Variate: Year 2 – experiment 1 – Glucose log_10 

Source of variation d.f. s.s. m.s. v.r. F pr. 

 

TISSUE 1  1.46223  1.46223  64.77 <.001 

OT 5  0.46090  0.09218  4.08  0.003 

TISSUE.OT 5  0.06729  0.01346  0.60  0.703 

OT.BH_L 17  1.18471  0.06969  3.09 <.001 

TISSUE.OT.BH_L 17  0.25447  0.01497  0.66  0.822 

Residual 50  1.12879  0.02258     

 

Total                                          95      4.55839  
 

Table 5.5 Variate: Year 2 – experiment 1 – Sucrose 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    19.90  19.90  0.31  0.578 

OT 5    3359.90  671.98  10.60 <.001 

TISSUE.OT 5    35.60  7.12  0.11  0.989 

OT.BH_L 17    6062.24  356.60  5.62 <.001 

TISSUE.OT.BH_L 17    757.39  44.55  0.70  0.784 

Residual 45 (5)  2854.07  63.42     

 

Total 90 (5)  11635.29       
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Table 5.6 Variate Year 2 – experiment 1 – Sucrose log_10 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    0.01314  0.01314  1.11  0.297 

OT 5    0.62310  0.12462  10.56 <.001 

TISSUE.OT 5    0.00520  0.00104  0.09  0.994 

OT.BH_L 17    1.58989  0.09352  7.92 <.001 

TISSUE.OT.BH_L 17    0.14445  0.00850  0.72  0.767 

Residual 45 (5)  0.53118  0.01180     

 

Total 90 (5)  2.68189        

        

6. Analysis of variance (ANOVA) results of phenolic content in potato tubers of 

experiment 1 in year 2 (2012-2013). Structure used: STOCK*TISSUE*OT. 

 

Table 6.1 Variate: Year 2 – experiment 1 - Chlorogenic acid 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    101823.  101823.  1.05  0.311 

OT 5    1499292.  299858.  3.09  0.017 

TISSUE.OT 5    171135.  34227.  0.35  0.878 

OT.BH_L 16 (1)  2218123.  138633.  1.43  0.168 

TISSUE.OT.BH_L 16 (1)  1367669.  85479.  0.88  0.593 

Residual 49 (1)  4755641.  97054.     

 

Total                                          92     (3)  10080403.  
 

Table 6.2 Variate: Year 2 – experiment 1 - Chlorogenic acid log_10 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    0.02512  0.02512  0.33  0.569 

OT 5    1.51002  0.30200  3.95  0.004 

TISSUE.OT 5    0.07537  0.01507  0.20  0.962 

OT.BH_L 16 (1)  2.87750  0.17984  2.35  0.011 

TISSUE.OT.BH_L 16 (1)  1.44983  0.09061  1.19  0.312 

Residual 49 (1)  3.74429  0.07641     

 

Total 92 (3)  9.66647       
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Table 6.3 Variate: Year 2 – experiment 1 – Neo-chlorogenic acid 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    236.959  236.959  43.45 <.001 

OT 5    62.502  12.500  2.29  0.064 

TISSUE.OT 5    28.296  5.659  1.04  0.409 

OT.BH_L 15 (2)  187.779  12.519  2.30  0.019 

TISSUE.OT.BH_L 13 (4)  160.828  12.371  2.27  0.024 

Residual 39 (11)  212.697  5.454     

 

Total 78 (17)  776.040      

 

Table 6.4 Variate: Year 2 – experiment 1 – Neo-chlorogenic acid log_10 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    6.39365  6.39365  168.32 <.001 

OT 5    2.04996  0.40999  10.79 <.001 

TISSUE.OT 5    0.52741  0.10548  2.78  0.031 

OT.BH_L 15 (2)  4.32747  0.28850  7.59 <.001 

TISSUE.OT.BH_L 13 (4)  3.35069  0.25775  6.79 <.001 

Residual 38 (12)  1.44346  0.03799     

 

Total 77 (18)  13.02268       

  

Table 6.5 Variate: Year 2 – experiment 1 – Crypto-Chlorogenic acid 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    2273.5  2273.5  14.09 <.001 

OT 5    3356.8  671.4  4.16  0.003 

TISSUE.OT 5    902.7  180.5  1.12  0.364 

OT.BH_L 17    6016.4  353.9  2.19  0.018 

TISSUE.OT.BH_L 17    8334.2  490.2  3.04  0.001 

Residual 45 (5)  7259.9  161.3     

 

Total 90 (5)  26732.3       

 

Table 6.6 Variate: Year 2 – experiment 1 – Crypto-Chlorogenic acid log_10 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    0.47095  0.47095  15.98 <.001 

OT 5    0.93182  0.18636  6.32 <.001 

TISSUE.OT 5    0.18823  0.03765  1.28  0.290 

OT.BH_L 17    2.71715  0.15983  5.42 <.001 

TISSUE.OT.BH_L 17    2.50154  0.14715  4.99 <.001 
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Residual 45 (5)  1.32653  0.02948     

 

Total 90 (5)  7.31328       

 

Table 6.7 Variate: Year 2 – experiment 1 – Quercetin-3,4-O-diglucoside 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    0.102  0.102  0.01  0.913 

OT 5    140.958  28.192  3.35  0.012 

TISSUE.OT 5    6.922  1.384  0.16  0.974 

OT.BH_L 15 (2)  806.408  53.761  6.38 <.001 

TISSUE.OT.BH_L 13 (4)  13.198  1.015  0.12  1.000 

Residual 46 (4)  387.428  8.422     

 

Total                                          85    (10)    1326.261  
 

Table 6.8 Variate: Year 2 – experiment 1 – Quercetin-3,4-O-diglucoside log_10 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    0.12489  0.12489  1.35  0.251 

OT 5    1.42529  0.28506  3.08  0.018 

TISSUE.OT 5    0.25785  0.05157  0.56  0.732 

OT.BH_L 15 (2)  10.02020  0.66801  7.23 <.001 

TISSUE.OT.BH_L 13 (4)  0.44696  0.03438  0.37  0.972 

Residual 46 (4)  4.25166  0.09243     

 

Total 85 (10)  15.02563       

 

Table 6.9 Variate: Year 2 – experiment 1 - Rutin 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    1236.0  1236.0  2.00  0.164 

OT 5    9395.5  1879.1  3.05  0.018 

TISSUE.OT 5    679.2  135.8  0.22  0.952 

OT.BH_L 16 (1)  57423.6  3589.0  5.82 <.001 

TISSUE.OT.BH_L 14 (3)  3620.8  258.6  0.42  0.961 

Residual 47 (3)  28991.7  616.8     

 

Total 88 (7)  98900.3       
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Table 6.10 Variate: Year 2 – experiment 1 – Rutin log_10 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    0.3299  0.3299  3.23  0.079 

OT 5    4.3224  0.8645  8.47 <.001 

TISSUE.OT 5    0.0879  0.0176  0.17  0.972 

OT.BH_L 16 (1)  11.6067  0.7254  7.11 <.001 

TISSUE.OT.BH_L 14 (3)  0.8212  0.0587  0.57  0.871 

Residual 47 (3)  4.7966  0.1021     

 

Total 88 (7)  19.1142        

 

Table 6.11 Variate: Year 2 – experiment 1 – Phenylalanine 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    127.40  127.40  3.72  0.060 

OT 5    567.96  113.59  3.31  0.012 

TISSUE.OT 5    355.20  71.04  2.07  0.085 

OT.BH_L 17    1245.54  73.27  2.14  0.020 

TISSUE.OT.BH_L 17    527.51  31.03  0.91  0.572 

Residual 49 (1)  1679.24  34.27     

Total 94 (1)  4493.61       

  

Table 6.12 Variate: Year 2 – experiment 1 – Phenylalanine log_10 

Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 

 

TISSUE 1    0.13269  0.13269  6.19  0.016 

OT 5    0.34872  0.06974  3.25  0.013 

TISSUE.OT 5    0.20880  0.04176  1.95  0.103 

OT.BH_L 17    1.00885  0.05934  2.77  0.003 

TISSUE.OT.BH_L 17    0.49950  0.02938  1.37  0.192 

Residual 49 (1)  1.05049  0.02144     

 

Total 94 (1)  3.24511       

 

Table 6.13 Variate: Year 2 – experiment 1 – Tryptophan 

Source of variation d.f. s.s. m.s. v.r. F pr. 

 

TISSUE 1  2713.  2713.  0.89  0.351 

OT 5  34996.  6999.  2.29  0.060 

TISSUE.OT 5  6790.  1358.  0.44  0.815 

OT.BH_L 17  58960.  3468.  1.14  0.350 

TISSUE.OT.BH_L 17  34943.  2055.  0.67  0.813 

Residual 50  152744.  3055.     
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Total 95  291145.        

 

Table 6.14 Variate: Year 2 – experiment 1 – Tryptophan_log10 

Source of variation d.f. s.s. m.s. v.r. F pr. 

 

TISSUE 1  0.06907  0.06907  1.37  0.247 

OT 5  0.69019  0.13804  2.74  0.029 

TISSUE.OT 5  0.09400  0.01880  0.37  0.864 

OT.BH_L 17  0.81297  0.04782  0.95  0.524 

TISSUE.OT.BH_L 17  0.57095  0.03359  0.67  0.818 

Residual 50  2.51542  0.05031     

 

Total                                      95      4.75261 
 

7. Analysis of variance for respiration rate of potato tubers cv. Maris Piper stock 7 

(susceptible to BH), stock 12 (susceptible to BH) and stock 3 (non-susceptible to BH) 

recorded after storage at 20
o
C in 4 gas combinations (viz. A = 21% O2, B = 10% CO2, C 

= 10% O2 and D = 5% O2) on sampling days 3, 7, 10 and 14. Baseline storage in air only 

(day 0). Structure used: Stock*CACODE/(CA*DAY) 

 

Variate: Year 2 – Experiment 2 - CO2  

Source of variation d.f.                         s.s.                m.s.           v.r.        F pr. 

  

REPS stratum 8    162.928  20.366  2.53   

  

REPS.*Units* stratum 

STOCK 2    114.629  57.314  7.13       <.001 

CACODE 1    0.301  0.301  0.04       0.847 

STOCK.CACODE 2    111.508  55.754  6.93       0.001 

CACODE.CA 3    3497.304  1165.768  144.99       <.001 

CACODE.DAY 3    757.294  252.431  31.40       <.001 

STOCK.CACODE.CA 6    440.856  73.476  9.14       <.001 

STOCK.CACODE.DAY 6    50.192  8.365  1.04       0.398 

CACODE.CA.DAY 9    685.643  76.183  9.48       <.001 

STOCK.CACODE.CA.DAY 18    122.150  6.786  0.84       0.648 

Residual 399   3208.054  8.040     

  

Total 457               9108.646       
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8. Generalized Linear Model results for BH incidence of potato tubers cv. Maris Piper 

stock 7 (susceptible to BH) after storage at 20
o
C in 4 gas combinations (viz. A = 21% O2, 

B = 10% CO2, C = 10% O2 and D = 5% O2) on sampling days 3, 7, 10 and 14.  

 

Summary of analysis 

   mean deviance     approx 

Source d.f. deviance deviance ratio      chi pr 

Regression  6  10.939  1.823  1.82       0.090 

Residual  9  9.748  1.083     

Total  15  20.687  1.379     

Dispersion parameter is fixed at 1.00. 

  

Estimates of parameters 

          antilog of 

Parameter estimate s.e. t(*) t pr. estimate 

Constant  -3.24  1.11  -2.92  0.003  0.03932 

Day 7  -0.343  0.833  -0.41  0.681  0.7097 

Day 10  0.000  0.782  0.00  1.000  1.0000 

Day 14  -1.55  1.17  -1.33  0.184  0.2126 

CA B  1.17  1.18  0.99  0.323  3.219 

CA C  0.00  1.44  0.00  1.000  1.0000 

CA D  2.17  1.10  1.97  0.049  8.770 

  

9. Generalized Linear Model results for BH incidence of potato tubers cv. Maris Piper 

stock 7 (susceptible to BH) after storage at 20
o
C in 4 gas combinations (viz. A = 21% O2, 

B = 10% CO2, C = 10% O2 and D = 5% O2) on sampling days 3, 7, 10 and 14. 

 

Summary of analysis 

   mean deviance  approx 

Source d.f. deviance deviance ratio chi pr 

Regression  6  12.893  2.1489  2.15  0.045 

Residual  9  7.353  0.8170     

Total  15  20.247  1.3498     

  

Dispersion parameter is fixed at 1.00. 

  

Estimates of parameters 

          antilog of 

Parameter estimate s.e. t(*) t pr. estimate 

Constant  -13.2  61.7  -0.21  0.831  1.935E-06 

Day 7  -0.73  1.26  -0.58  0.560  0.4803 

Day 10  1.277  0.870  1.47  0.142  3.586 

Day 14  -0.73  1.26  -0.58  0.560  0.4803 
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CA B  10.5  61.7  0.17  0.865  36451. 

CA C  10.5  61.7  0.17  0.865  36451. 

CA D  10.8  61.7  0.18  0.860  51379. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



343 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Appendix D) 

1. Total ion chromatograms of flesh and heart samples of stock 23 (susceptible to BH) 

with tissue discoloration and control (e) in negative and positive mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Total ion chromatograms of flesh samples of stock 23 (susceptible to BH) with 

pith (a), BCL (b), BC (c) and BH (d) discoloration and control (e) in negative mode. 
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Figure 1.2 Total ion chromatograms of heart samples of stock 23 (susceptible to BH) with 

pith (a), BCL (b), BC (c) and BH (d) discoloration and control (e) in negative mode. 
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e) 

d) 
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a) 

b) 

c) 

d) 

e) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Total ion chromatograms of flesh samples of stock 23 (susceptible to BH) with 

pith (a), BCL (b), BC (c) and BH (d) discoloration and control (e) in positive mode. 
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e) 

c) 

d) 

b) 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Total ion chromatograms of heart samples of stock 23 (susceptible to BH) with 

pith (a), BCL (b), BC (c) and BH (d) discoloration and control (e) in positive mode. 
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a) 

b) 

c) 

d) 

2. Total ion chromatograms of flesh and heart control samples of stock 23 (susceptible to 

BH) and stock 12 (non-susceptible to BH) in negative and positive mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Total ion chromatograms of flesh and heart control samples of stock 23 

(susceptible to BH) (a, b) and stock 12 (non-susceptible to BH) (c, d) in negative mode. 
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Figure 2.2 Total ion chromatograms of flesh and heart control samples of stock 23 

(susceptible to BH) (a, b) and stock 12 (non-susceptible to BH) (c, d) in positive mode. 
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2. Metabolomic differences between affected and non-affected potato tuber tissues (negative mode). 

 

Table 2.1 Analysis of Variance (ANOVA) results of ‘discoloration only’ interpretation of in negative mode (‘Experiment A’) (P < 0.05). 

Compound p p (Corr) Formula Composite Spectrum 

273.9659@0.636 0.0214 0.0337  (272.95825, 63577.73)(273.9596, 16927.633)(274.9567, 

16492.197)(275.9582, 2381.3865)(276.95575, 712.45996) 

7,9-Dimethyluric acid 0.0052 0.0103 C7 H8 N4 O3 (195.05287, 82119.03)(196.0563, 4263.237)(197.05734, 440.69666) 

2-Methylcitric acid 1.10E-05 1.10E-04 C7 H10 O7 (411.07706, 1144.1749)(205.03525, 14488.662)(206.0386, 1155.4001) 

C21 H28 N8 O17 0.004 0.009 C21 H28 N8 O17 (663.15076, 24864.809)(664.15326, 5378.492)(665.1545, 1303.7916) 

2-Amino-5-formylamino-6-(5-phospho-

D-ribosylamino)pyrimidin-4(3H)-one 

0.004 0.009 C10 H16 N5 O9 P (761.12756, 5095.12)(762.1299, 1151.38)(380.06042, 

15469.983)(381.06302, 1905.9751) 

Guanosine 3'-phosphate 9.71E-04 0.003 C10 H14 N5 O8 P (725.1063, 1270.1124)(726.1094, 559.1)(362.0502, 

22461.398)(363.05295, 2656.1365)(364.05484, 663.07996) 

Methylisocitric acid 4.21E-04 0.002 C7 H10 O7 (205.03491, 48789.254)(206.03839, 3224.3274)(207.04034, 498.02795) 

Pseudouridine 5'-phosphate 2.00E-04 0.001 C9 H13 N2 O9 P (647.06256, 1771.7222)(648.0651, 926.0)(323.028, 

40346.03)(324.03125, 3941.0098)(325.03256, 842.5667) 

2',3'-Cyclic UMP 0.004 0.009 C9 H11 N2 O8 P (611.0418, 2377.9998)(612.04486, 832.10004)(305.0175, 

37847.59)(306.02066, 3428.1833)(307.02246, 691.5751) 

Molybdopterin precursor Z 0.004 0.009 C10 H12 N5 O7 P (689.08514, 2331.6816)(690.0879, 829.45996)(344.03958, 

37518.56)(345.04245, 4088.4414)(346.04456, 716.07) 

5-Acetamidovalerate 9.54E-04 0.003 C7 H13 N O3 (158.08218, 14966.922)(159.08543, 1269.7356) 

C16 H20 O13 S 1.17E-09 3.51E-08 C16 H20 O13 S (451.05457, 119400.555)(452.05783, 22067.7)(453.05862, 

5822.2764)(454.05997, 86.62593) 

Glu Ala Trp 9.16E-09 1.37E-07 C19 H24 N4 O6 (807.32623, 578.0)(403.1607, 14756.6875)(404.16388, 

2822.1719)(405.16583, 713.1375) 

1510.2971@6.457234 0.010 0.016  (1509.2883, 23517.22)(1510.2896, 12031.989)(1511.2897, 1777.9436) 

1435.2827@6.733067 0.006 0.010  (1434.2748, 25363.764)(1435.2755, 6807.0137)(1436.2745, 878.6518) 

1434.9487@6.733134 0.006 0.011  (1433.9407, 26085.094)(1434.942, 12161.876)(1435.9419, 1721.7366) 

9S,10S,11R-trihydroxy-12Z-

octadecenoic acid 

8.82E-04 0.003 C18 H34 O5 (659.4713, 1245.95)(329.23288, 43508.137)(330.23633, 

4656.7456)(331.2387, 863.55005) 
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12,13-dihydroxy-11-methoxy-9-

octadecenoic acid 

0.004 0.009 C19 H36 O5 (343.24857, 29326.818)(344.25186, 5444.0503)(345.2543, 1107.0857) 

C7 H4 N4 O2 7.51E-05 5.63E-04 C7 H4 N4 O2 (175.0264, 18534.426)(176.0298, 1262.8212)(177.04199, 986.2334) 
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Table 2.2 Fold change analysis results of ‘discoloration only’ interpretation in negative mode (‘Experiment A’). 

Compound 
Replication Relative abundance normalized 

BC 

(6) 

BCL 

(6) 

BH 

(6) 

control 

(6) 

PITH 

(6) 

BC 

(6) 

BCL 

(6) 

BH 

(6) 
control (6) 

PITH 

(6) 

2-Methylcitric acid 4 6 0 6 5 10.118 15.521 0 15.773 13.005 

C21 H28 N8 O17 2 0 3 6 2 5.323 0 7.354 15.772 5.219 

2-Amino-5-formylamino-6-(5-phospho-D-

ribosylamino)pyrimidin-4(3H)-one 
2 0 2 6 2 5.254 0 5.118 15.856 5.281 

Guanosine 3'-phosphate 2 0 1 6 2 5.694 0 2.704 17.019 5.473 

Pseudouridine 5'-phosphate 1 0 1 6 2 2.972 0 2.818 18.091 5.771 

2',3'-Cyclic UMP 2 0 2 6 2 6.052 0 5.641 17.808 5.853 

Molybdopterin precursor Z 2 0 2 6 2 5.861 0 5.459 17.276 5.678 

5-Acetamidovalerate 3 6 0 4 1 7.662 15.409 0 10.470 2.513 

C16 H20 O13 S 6 6 6 6 6 18.686 18.987 17.229 18.827 19.100 

Glu Ala Trp 6 6 1 6 6 15.283 15.262 2.472 15.523 15.328 

9S,10S,11R-trihydroxy-12Z-octadecenoic acid 2 0 1 6 3 5.282 0 2.956 17.599 8.384 

12,13-dihydroxy-11-methoxy-9-octadecenoic 

acid 
2 0 3 6 3 5.247 0 8.123 17.087 8.304 

C7 H4 N4 O2 6 4 0 3 6 15.897 10.176 0 7.624 15.401 
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Table 2.3 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting BH against control in negative mode (‘Experiment A’) (P < 0.05). 

Compound p p (Corr) Formula Composite spectrum 

C8 H7 N3 O S 8.31E-15 2.74E-13 C8 H7 N3 O S 
(192.02261, 87489.34)(193.02377, 

17575.148)(194.02686, 282.59164) 

135.9019@1.8312 7.72E-04 0.006370279  

(134.89459, 13836.8125)(135.8948, 

1913.7534)(136.89172, 5401.8667)(137.89177, 

952.74445) 

12,13-dihydroxy-11-methoxy-9-octadecenoic acid 7.05E-07 6.64E-06 C19 H36 O5 
(343.24857, 29326.818)(344.25186, 

5444.0503)(345.2543, 1107.0857) 

C21 H43 N5 O14 S 4.97E-08 5.46E-07 C21 H43 N5 O14 S, 
(620.2465, 30177.125)(621.2497, 6705.9004)(622.2501, 

1974.6733)(623.2506, 857.6) 

C7 H4 N4 O2 3.08E-15 2.03E-13 C7 H4 N4 O2 
(175.0264, 18534.426)(176.0298, 

1262.8212)(177.04199, 986.2334) 

4-Hydroxyphenylacetylglutamine 3.35E-11 5.53E-10 C13 H15 N O6 
(561.1707, 1312.5)(562.1741, 728.3)(280.08252, 

16510.367)(281.08566, 2181.4)(282.087, 647.2) 

Flucarbazone 2.21E-12 4.86E-11 C12 H11 F3 N4 O6 S 
(395.0288, 21055.309)(396.03192, 2984.071)(397.03, 

1240.1857) 

C13 H16 O9 4.94E-11 6.53E-10 C13 H16 O9 
(631.1498, 1001.6)(315.07178, 13295.311)(316.0753, 

1900.3667)(317.0764, 697.2) 
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Table 2.4 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting BH against control in negative mode (F = flesh, H = heart, BH = 

discoloured samples, control = C no discoloured samples) (‘Experiment A’). 

Compound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

BH 

(3) 

control  

(3) 

BH 

(3) 

control  

(3) 

BH 

(3) 

control 

(3) 

BH 

(3) 

control 

(3) 

2-Methylcitric acid 0 3 0 3 0 15.991 0 15.555 

Glutathione, oxidized 1 3 0 3 5.195 16.763 0 16.301 

C8 H7 N3 O S 3 3 3 0 19.826 20.153 19.852 0 

alpha-D-Galactosyl-(1,1')-sn-glycerol 3-phosphate 0 2 0 3 0 11.669 0 16.690 

Guanosine 3'-phosphate 1 3 0 3 5.408 16.939 0 17.099 

Methylisocitric acid 3 3 3 3 17.158 17.760 16.657 17.990 

Pseudouridine 5'-phosphate 1 3 0 3 5.636 17.721 0 18.462 

Chlorogenic Acid 0 1 0 3 0 4.860 0 15.514 

5-Acetamidovalerate 0 1 0 3 0 5.067 0 15.873 

C18 H24 O13 0 1 0 3 0 4.973 0 16.651 

260.8468@3.7007272 0 3 0 1 0 16.278 0 5.602 

Trp Asp Ile 2 3 0 3 10.227 15.892 0 15.634 

5-O-Feruloylquinic acid 1 2 0 3 4.995 10.122 0 15.806 

Glu Ala Trp 1 3 0 3 4.944 15.461 0 15.584 

C29 H42 N10 O9 0 2 1 3 0 10.388 5.098 16.203 

9S,10S,11R-trihydroxy-12Z-octadecenoic acid 0 3 1 3 0 17.376 5.913 17.822 

12,13-dihydroxy-11-methoxy-9-octadecenoic acid 0 3 3 3 0 16.674 16.246 17.501 

17-hydroxy-linolenic acid 0 2 1 3 0 11.226 5.342 17.103 

9-HOTE 0 2 1 3 0 11.432 5.289 16.970 

C21 H43 N5 O14 S 3 0 3 3 15.218 0 17.197 16.036 

C7 H4 N4 O2 0 0 0 3 0 0 0 15.248 

4-Hydroxyphenylacetylglutamine 0 0 0 3 0 0 0 15.928 

Flucarbazone 0 0 0 3 0 0 0 16.554 
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C13 H16 O9 0 0 0 3 0 0 0 15.544 

 

Table 2.5 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting BC against control in negative mode (‘Experiment A’) (P < 

0.05). 

Compound p p (Corr)  CompositeSpectrum 

C8 H10 O7 6.74E-13 3.77E-11 (217.03487, 12812.736)(218.03827, 1271.975) 

2,5-Dioxopentanoate 0.00101 0.01414 (129.0191, 17871.6)(130.02242, 1193.9625) 

Methylisocitric acid 0.003572 0.040011 (205.03491, 48789.254)(206.03839, 3224.3274)(207.04034, 498.02795) 

Pseudouridine 5'-phosphate 9.49E-04 0.01414 (647.06256, 1771.7222)(648.0651, 926.0)(323.028, 40346.03)(324.03125, 

3941.0098)(325.03256, 842.5667) 

C7 H4 N4 O2 3.76E-12 1.05E-10 (175.0264, 18534.426)(176.0298, 1262.8212)(177.04199, 986.2334) 

 

Table 2.6 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting BC against control in negative mode (F = flesh, H = heart, BC 

= discoloured samples, control = C no discoloured samples) (‘Experiment A’). 

Compound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

BC 

(3) 

control  

(3) 

BC 

(3) 

control  

(3) 

BC 

(3) 

control 

(3) 

BC 

(3) 

control 

(3) 

C8 H10 O7 0 3 0 0 0 16.204 0 0 

2,5-Dioxopentanoate 0 2 0 3 0 10.518 0 16.002 

Pseudouridine 5'-phosphate 1 3 0 3 5.943 17.721 0 18.462 

C7 H4 N4 O2 3 0 3 3 15.752 0 16.043 15.248 
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Table 2.7 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting BCL against control in negative mode (‘Experiment A’) (P < 0.05). 

Compound p p (Corr) Formula Composite Spectrum 

C21 H28 N8 O17 7.43E-15 2.04E-13  (663.15076, 24864.809)(664.15326, 5378.492)(665.1545, 

1303.7916) 

2-Amino-5-formylamino-6-(5-phospho-D-

ribosylamino)pyrimidin-4(3H)-one 

2.11E-13 2.69E-12 C10 H16 N5 O9 P (761.12756, 5095.12)(762.1299, 1151.38)(380.06042, 

15469.983)(381.06302, 1905.9751) 

alpha-D-Galactosyl-(1,1')-sn-glycerol 3-

phosphate 

0.001 0.005 C9 H19 O11 P (667.12366, 1148.2999)(333.0588, 20197.676)(334.06216, 

2089.65)(335.063, 663.4) 

2,5-Dioxopentanoate 0.001 0.005 C5 H6 O4 (129.0191, 17871.6)(130.02242, 1193.9625) 

Guanosine 3'-phosphate 1.93E-14 3.54E-13 C10 H14 N5 O8 P (725.1063, 1270.1124)(726.1094, 559.1)(362.0502, 

22461.398)(363.05295, 2656.1365)(364.05484, 663.07996) 

Pseudouridine 5'-phosphate 7.20E-15 2.04E-13 C9 H13 N2 O9 P (647.06256, 1771.7222)(648.0651, 926.0)(323.028, 

40346.03)(324.03125, 3941.0098)(325.03256, 842.5667) 

2',3'-Cyclic UMP 2.53E-13 2.69E-12 C9 H11 N2 O8 P (611.0418, 2377.9998)(612.04486, 832.10004)(305.0175, 

37847.59)(306.02066, 3428.1833)(307.02246, 691.5751) 

Molybdopterin precursor Z 2.93E-13 2.69E-12 C10 H12 N5 O7 P (689.08514, 2331.6816)(690.0879, 829.45996)(344.03958, 

37518.56)(345.04245, 4088.4414)(346.04456, 716.07) 

404.168@4.9276795 0.003 0.012   (807.32623, 578.0)(403.1607, 14756.6875)(404.16388, 

2822.1719)(405.16583, 713.1375) 

9S,10S,11R-trihydroxy-12Z-octadecenoic acid 2.14E-09 1.47E-08 C18 H34 O5 (659.4713, 1245.95)(329.23288, 43508.137)(330.23633, 

4656.7456)(331.2387, 863.55005) 

12,13-dihydroxy-11-methoxy-9-octadecenoic 

acid 

6.72E-10 5.28E-09 C19 H36 O5 (343.24857, 29326.818)(344.25186, 5444.0503)(345.2543, 

1107.0857) 

9-HOTE 0.001 0.005 C18 H30 O3 (293.21185, 29187.7)(294.2152, 4855.69)(295.2183, 791.8) 

9-HOTE - 12.073699 0.001 0.005 C18 H30 O3 (293.21185, 25665.92)(294.21527, 4672.58) 
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Table 2.8 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting BCL against control in negative mode (F = flesh, H = heart, pith = 

discoloured samples, control = C no discoloured samples) (‘Experiment A’). 

Compound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

BCL 

(3) 

control  

(3) 

BCL 

(3) 

control  

(3) 

BCL 

(3) 

control  

(3) 

BCL 

(3) 

control  

(3) 

C21 H28 N8 O17 0 3 0 3 0 15.863 0 15.681 

2-Amino-5-formylamino-6-(5-phospho-D-

ribosylamino)pyrimidin-4(3H)-one 
0 3 0 3 0 15.850 0 15.862 

alpha-D-Galactosyl-(1,1')-sn-glycerol 3-phosphate 0 2 0 3 0 11.669 0 16.690 

2,5-Dioxopentanoate 0 2 0 3 0 10.518 0 16.002 

Guanosine 3'-phosphate 0 3 0 3 0 16.939 0 17.099 

Pseudouridine 5'-phosphate 0 3 0 3 0 17.721 0 18.462 

2',3'-Cyclic UMP 0 3 0 3 0 17.800 0 17.817 

Molybdopterin precursor Z 0 3 0 3 0 17.309 0 17.243 

9S,10S,11R-trihydroxy-12Z-octadecenoic acid 0 3 0 3 0 17.376 0 17.822 

12,13-dihydroxy-11-methoxy-9-octadecenoic acid 0 3 0 3 0 16.674 0 17.501 

9-HOTE 0 2 0 3 0 11.226 0 17.103 

9-HOTE - 12.073699 0 2 0 3 0 11.432 0 16.970 
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Table 2.9 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting pith against control in negative mode (‘Experiment A’) (P < 0.05). 

Compound p p (Corr) Formula Composite Spectrum 

387.9458@0.6116207 0.005 0.041   (386.93845, 14434.013)(387.9397, 6372.4614) (388.93723, 6966.303)  

(389.93802, 2086.1667) (390.93564, 1153.0834) 

488.1899@0.94757694 3.04E-04 0.006   (487.18265, 72510.4)(488.17792, 30378.389)(489.18094, 4938.0034) 

(490.1774, 626.7471) 

196.0601@0.9854668 0.005 0.041   (195.05287, 82119.03) (196.0563, 4263.237) (197.05734, 440.69666) 

C8 H7 N5 O2 S 0.003 0.031 C8 H7 N5 O2 S (236.0257, 16011.329) (237.02875, 1384.5077) (238.023, 798.1167) 

5-(3-Pyridyl)-2-

hydroxytetrahydrofuran 

0.003 0.031 C9 H11 N O2 (164.07138, 30651.727) (165.07472, 2771.31) 

2,5-Dioxopentanoate 0.001 0.016 C5 H6 O4 (129.0191, 17871.6) (130.02242, 1193.9625) 

206.0425@2.4050667 0.007 0.049   (205.03491, 48789.254) (206.03839, 3224.3274) (207.04034, 498.02795) 

Chlorogenic Acid 0.003 0.031   (386.93845, 14434.013) (387.9397, 6372.4614) (388.93723, 

6966.303)(389.93802, 2086.1667) (390.93564, 1153.0834) 

176.0336@1.026842 1.38E-11 9.00E-10   (487.18265, 72510.4) (488.17792, 30378.389)(489.18094, 4938.0034) 

(490.1774, 626.7471) 

4-Hydroxyphenylacetylglutamine 3.35E-11 1.09E-09   (195.05287, 82119.03) (196.0563, 4263.237) (197.05734, 440.69666) 
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Table 2.10 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting pith against control in negative 

mode (F = flesh, H = heart, pith = discoloured samples, control = C no discoloured samples) (‘Experiment A’). 

Compound 

Replication Relative abundance 

FLESH HEART FLESH HEART 

PITH  

(3) 

Control  

(3) 

PITH  

(3) 

Control  

(3) 

PITH  

(3) 

Control  

(3) 

PITH  

(3) 

Control  

(3) 

196.0601@0.9854668 3 3 3 3 18.772 18.437 18.757 17.732 

C8 H7 N5 O2 S 0 1 0 3 0 5.051 0 15.744 

5-(3-Pyridyl)-2-

hydroxytetrahydrofuran 
3 3 3 3 15.820 16.465 16.037 17.279 

2,5-Dioxopentanoate 0 2 0 3 0 10.518 0 16.002 

Chlorogenic Acid 0 1 0 3 0 4.859 0 15.514 

176.0336@1.026842 3 0 3 3 15.291 0 15.510 15.248 

4-Hydroxyphenylacetylglutamine 0 0 0 3 0 0 0 15.928 
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3. Metabolomic differences between affected and non-affected potato tuber tissues (positive mode). 

 

Table 3.1 Analysis of Variance (ANOVA) results of ‘discoloration only’ interpretation in positive mode (‘Experiment A’) (P < 0.001). 

Compound p p (Corr) Formula Composite Spectrum 

C7 H13 N 5E-05 2.52E-04 C7 H13 N (112.11221, 16524.17)(113.11553, 1710.6615) 

Monoethylglycylxylidide (MEGX) 7E-08 1.03E-06 C12 H18 N2 O (207.14925, 49947.812)(208.15257, 6164.3467)(209.15547, 286.1375) 

1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine N-oxide 
1E-08 3.16E-07 C12 H15 N O (190.12265, 15006.92)(191.12604, 2116.93) 

C8 H9 N 4E-06 3.78E-05  (120.08117, 53939.76)(121.08425, 5255.4) 

Val Ile 2E-05 1.17E-04 C11 H22 N2 O3 (231.1705, 36542.703)(232.17377, 4246.4185)(233.17535, 321.44998) 

8-Hydroxyadenine 8E-05 3.58E-04 C5 H5 N5 O (152.05661, 23138.9)(153.05951, 1572.62) 

4-Nitrotoluene 1E-06 1.39E-05 C7 H7 N O2 (138.05505, 22050.74)(139.05832, 1842.0137)(140.07065, 1480.355) 

N-(6-aminohexanoyl)-6-aminohexanoic 

acid 
2E-05 1.54E-04 C12 H24 N2 O3 

(489.3659, 568.0)(245.18631, 50651.594)(246.18947, 

6554.863)(247.19153, 577.7714) 

N-(6-aminohexanoyl)-6-aminohexanoic 

acid + 3.180625 
3E-05 1.59E-04 C12 H24 N2 O3 (245.18628, 46456.223)(246.1895, 5928.938)(247.1918, 333.35715) 

C9 H6 O3 2E-07 2.62E-06  (163.04074, 207204.16)(164.04231, 22030.295)(165.04445, 231.05) 

Chlorogenic Acid 2E-07 2.98E-06 C16 H18 O9 
(355.10284, 162831.03)(356.10632, 26187.186)(357.1086, 

3695.96)(358.1106, 0.0) 

6Z-Octene-2,4-diynoic acid 2E-05 1.32E-04 C8 H6 O2 (135.04405, 18477.742)(136.04747, 1723.6385) 

Trp Asp Gly 1E-04 4.46E-04 C17 H20 N4 O6  (377.1459, 35824.555)(378.14902, 6506.681)(379.15155, 1193.5636) 

4'-Prenyloxyresveratrol 5E-10 1.99E-08 C19 H20 O4 (335.1244, 26671.963)(336.12753, 4794.383)(337.13058, 930.64703) 

Gln Phe Gln 9E-05 3.89E-04 C19 H27 N5 O6 (422.20282, 15792.631)(423.2058, 3327.8804)(424.208, 793.5133) 

817.042@5.688111 7E-06 6.33E-05   (818.0494, 24823.934)(819.05054, 1309.6777) 

1434.9309@6.42445 2E-05 1.17E-04   (1435.9357, 18127.955)(1436.936, 5114.44)(1437.9336, 748.3769) 

2151.3877@6.424066 9E-05 3.92E-04   
(1076.702, 23193.475)(1077.2034, 29283.441)(1077.7037, 

14523.835)(1078.2039, 4369.65)(1078.7034, 1132.5311) 

9S,10S,11R-trihydroxy-12Z-octadecenoic 

acid 
2E-04 7.93E-04 C18 H34 O5 

(705.4522, 2004.3251)(706.4565, 957.1667)(353.23062, 

66095.28)(354.234, 12574.334)(355.2363, 1722.6445)(356.2396, 
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274.26666) 

(2-Chlorophenyl)diphenylmethane 7E-05 3.06E-04 C19 H15 Cl 
(557.1802, 957.9704)(279.09384, 48525.977)(280.09717, 

8713.833)(281.10025, 839.91003) 

Spisulosine 3E-05 1.59E-04 C18 H39 N O 
(571.61475, 1817.9598)(572.6175, 820.93036)(286.31107, 

78243.87)(287.3145, 14986.226)(288.3175, 806.38684) 

16,16-dimethyl-PGD2 1E-09 3.43E-08 C22 H36 O5 (381.2627, 20472.072)(382.2661, 4348.2285)(383.26865, 845.9715) 

2-amino-14,16-dimethyloctadecan-3-ol 1E-06 1.39E-05 C20 H43 N O 
(627.6791, 576.2)(314.34247, 56993.42)(315.3459, 11512.849)(316.3487, 

840.04333) 

Lagochilin 2E-04 7.29E-04 C20 H36 O5 (379.2466, 24277.55)(380.24994, 4979.38) 

8-methoxy-13-hydroxy-9,11-

octadecadienoic acid 
9E-06 7.19E-05 C19 H34 O4 (349.23602, 24144.957)(350.2393, 4728.2773)(351.2422, 944.98) 

12-amino-octadecanoic acid 3E-05 1.59E-04 C18 H37 N O2 (300.2904, 24718.33)(301.29358, 4857.763)(302.2989, 777.73083) 

C25 H49 N5 O2 3E-04 9.94E-04 C25 H49 N5 O2 
(452.3956, 57907.793)(453.39902, 13081.449)(454.40134, 

2290.8867)(455.40295, 0.0) 

Dodemorph 6E-05 2.93E-04 C18 H35 N O 
(563.55206, 1530.7234)(564.55505, 715.265)(282.2797, 

140367.92)(283.28308, 24132.012)(284.28714, 2525.237) 

C30 H59 N5 O4 1E-04 5.40E-04 C30 H59 N5 O4 
(554.4642, 68221.51)(555.46735, 19890.814)(556.469, 

4844.114)(557.4708, 27.959997) 

6Z-Octene-2,4-diynoic acid + 1.3391001 1E-04 5.12E-04 C8 H6 O2 (135.04404, 22536.86)(136.04709, 2306.5803)(137.05966, 2287.55) 

PRIMA-1 1E-06 1.39E-05 C9 H15 N O3  (186.11247, 14745.975)(187.11568, 1640.4875) 

Trp Ser Gln 2E-05 1.17E-04 C19 H25 N5 O6 (420.1867, 20032.28)(421.18988, 3922.0715)(422.19165, 982.5999) 

Mometasone Furoate 3E-05 1.59E-04 C27 H30 Cl2 O6 
(543.1333, 24000.436)(544.13635, 4786.8335)(545.1345, 

2484.1445)(546.1367, 771.0) 

N-Hydroxypentobarbital 2E-05 1.36E-04 C11 H18 N2 O4 (243.1341, 32700.79)(244.1372, 4582.067)(245.13857, 849.5) 

Val Ile + 1.5134287 2E-10 7.90E-09 C11 H22 N2 O3 (231.17049, 43499.727)(232.17354, 4824.7144)(233.17577, 468.43332) 

Val Ile + 1.953625 3E-08 4.87E-07 C11 H22 N2 O3 (231.1705, 38453.688)(232.17377, 4701.0625)(233.17572, 411.6333) 

Adenine 3E-34 4.53E-32 C5 H5 N5 (136.06184, 189277.8)(137.06474, 12738.7) 

N-(6-aminohexanoyl)-6-aminohexanoic 

acid + 2.6753333 
7E-29 4.98E-27 C12 H24 N2 O3,  (245.18616, 48491.12)(246.18939, 6382.033)(247.19185, 237.95) 

Succinoadenosine 1E-08 3.04E-07 C14 H17 N5 O8 (384.11508, 47009.523)(385.11804, 7227.0747)(386.11987, 1015.0667) 

1508.1241@4.6621003 5E-05 2.52E-04   (755.0697, 19357.41)(755.5708, 14757.07)(756.07166, 
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2031.3102)(1509.132, 795.4) 

816.8409@5.68775 6E-08 9.68E-07   (817.84875, 22885.361)(818.8509, 3258.9375) 

9-HOTE 6E-05 2.93E-04 C18 H30 O3 (295.2272, 42787.54)(296.23044, 8152.69)(297.2333, 1323.525) 

 

 

 

 

 

 

 

 

 

 

 

 

 



362 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Table 3.2 Fold Change analysis results of ‘discoloration only’ interpretation in positive mode (‘Experiment B’) 

Compound 

Replication Relative abundance normalized 

BC  

(6) 

BCL  

(6) 

BH  

(6) 

control  

(6) 

PITH  

(6) 

BC  

(6) 

BCL 

(6) 

BH 

 (6) 

control 

(6) 

PITH 

(6) 

C7 H13 N 6 6 2 6 6 16.562 16.748 5.533 16.704 16.766 

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine N-

oxide 
0 4 0 6 0 0 10.315 0 15.822 0 

C8 H9 N 6 0 5 2 6 17.712 0 14.326 5.856 17.523 

Val Ile 2 0 6 6 2 5.491 0 16.978 16.618 5.398 

8-Hydroxyadenine 2 0 0 6 2 5.563 0 0.000 16.542 5.376 

4-Nitrotoluene 5 5 0 6 6 13.297 13.502 0.000 16.385 16.072 

N-(6-aminohexanoyl)-6-aminohexanoic acid 2 0 6 6 2 5.710 0.000 17.087 17.135 5.674 

N-(6-aminohexanoyl)-6-aminohexanoic acid + 

3.180625 
2 0 6 6 2 5.637 0 16.406 17.149 5.663 

C9 H6 O3 6 6 6 6 6 19.536 19.803 18.384 19.621 19.856 

Chlorogenic Acid 6 6 6 6 6 19.108 19.401 17.925 19.273 19.526 

6Z-Octene-2,4-diynoic acid 6 6 2 6 6 15.907 16.147 5.095 15.971 16.236 

Trp Asp Gly 1 1 6 3 0 2.601 2.634 17.239 7.760 0.000 

4'-Prenyloxyresveratrol 5 6 0 6 6 13.123 16.101 0.000 16.449 16.284 

Gln Phe Gln 4 6 0 6 4 10.183 15.346 0.000 15.563 10.419 

817.042@5.688111 2 0 6 1 0 5.318 0.000 16.430 2.556 0.000 

1434.9309@6.42445 5 6 0 3 6 13.132 15.916 0.000 7.890 15.986 

9S,10S,11R-trihydroxy-12Z-octadecenoic acid 6 6 6 6 6 16.851 16.742 18.947 17.107 17.025 

16,16-dimethyl-PGD2 0 0 1 6 0 0 0 2.687 15.999 0.000 

Lagochilin 1 0 1 6 2 2.647 0 2.628 16.701 5.378 

8-methoxy-13-hydroxy-9,11-octadecadienoic acid 1 0 0 6 2 2.699 0 0 16.955 5.480 

6Z-Octene-2,4-diynoic acid + 1.3391001 2 6 0 0 2 5.459 15.991 0 0 5.455 

PRIMA-1 0 6 0 1 1 0 15.649 0 2.579 2.602 

Trp Ser Gln 4 6 0 0 4 10.321 16.136 0 0 10.443 

Mometasone Furoate 1 1 6 0 1 2.715 2.796 17.767 0 2.781 
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N-Hydroxypentobarbital 1 0 6 1 1 2.586 0 16.776 2.559 2.546 

Val Ile + 1.5134287 0 0 6 1 0 0 0 17.289 2.628 0 

Val Ile + 1.953625 0 0 6 2 0 0 0 17.126 5.284 0 

Adenine 0 0 6 0 0 0 0 19.281 0 0 

N-(6-aminohexanoyl)-6-aminohexanoic acid + 

2.6753333 
0 0 6 0 0 0 0 16.720 0 0 

Succinoadenosine 0 2 6 0 0 0 5.065 17.103 0 0 

1508.1241@4.6621003 2 0 6 2 0 5.388 0 16.871 5.404 0 

816.8409@5.68775 2 0 6 0 0 5.280 0 16.305 0 0 

9-HOTE 1 2 6 0 1 2.540 5.124 17.310 0 2.547 
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Table 3.3 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting BH against control in positive mode (‘Experiment B’) (P < 0.001). 

Compound p p (Corr) Formula Composite Spectrum 

2073.8328@4.793522 8E-11 1.74E-09   
(1037.9235, 20394.744)(1038.4241, 13987.85)(1038.9247, 

4981.226)(1039.424, 1376.9783) 

C18 Sulfatide 6E-11 1.36E-09 
C42 H81 N O11 

S, 
(830.54034, 20169.791)(831.54114, 2783.137) 

12,13-dihydroxy-11-methoxy-9-octadecenoic acid 9E-08 1.58E-06 C19 H36 O5 
(733.48474, 750.45)(367.24646, 37451.957)(368.2496, 

6978.0605)(369.24722, 1903.4624) 

12,13-dihydroxy-11-methoxy-9-octadecenoic acid + 

9.8632 
7E-09 1.40E-07 C19 H36 O5 

(367.24643, 34464.94)(368.24988, 6678.98)(369.25198, 

1188.2571) 

(S)-lamenallenic acid 5E-06 8.89E-05 C18 H30 O2 
(279.23303, 76858.305)(280.2359, 13619.056)(281.23938, 

1555.1112) 

C29 H23 N21 O3 1E-14 8.82E-13 
 

(714.23596, 14728.709)(715.2389, 5891.07)(716.2413, 

1560.1799) 

Glu Met 8E-17 1.78E-14 
C10 H18 N2 O5 

S 

(279.1012, 15337.546)(280.10422, 1992.4543)(281.0991, 

848.1272) 

5-Methoxydimethyltryptamine 8E-12 2.10E-10 C13 H18 N2 O (219.14948, 20214.021)(220.1526, 2757.1667) 

C11 H17 N O8 S 2E-19 1.07E-16 
 

(324.07523, 14398.645)(325.07837, 1920.9364)(326.07388, 

892.5181) 

Valinopine 1E-13 5.91E-12 C10 H17 N O6,  (248.1132, 15463.818)(249.11649, 1942.8) 

4-Hydroxyphenylacetylglutamine 3E-11 6.82E-10 C13 H15 N O6 (282.0974, 17683.637)(283.10062, 2464.25)(284.1034, 740.4) 

Alpha-CEHC 2E-08 3.88E-07 C16 H22 O4 
(279.15973, 96221.29)(280.1651, 18032.219)(281.16803, 

2110.4268) 

Ile Ala 1E-13 5.91E-12 C9 H18 N2 O3 (203.13914, 18824.967)(204.14233, 1881.1334) 

6-Acetamido-3-aminohexanoate 4E-16 5.82E-14 C8 H16 N2 O3 (189.12352, 15179.101)(190.12682, 1473.0) 

Val Ile + 1.8330001 3E-12 7.89E-11 C11 H22 N2 O3 (231.17029, 31731.766)(232.1736, 3670.2666)(233.1759, 675.0) 

Leu Arg Pro 1E-12 4.36E-11 C17 H32 N6 O4 
(407.23904, 17722.533)(408.24228, 3631.7332)(409.2435, 

996.53326) 

N-Hydroxypentobarbital + 4.3743334 4E-10 8.94E-09 C11 H18 N2 O4 
(485.26065, 2703.1667)(486.26364, 1046.1)(243.13383, 

28760.0)(244.1368, 3315.3333)(245.1491, 1537.2) 

4-oxo-nonenal 4E-11 9.83E-10 C9 H14 O2 (155.10664, 18979.666)(156.10986, 2294.0) 
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528.5197@2.4804444 3E-13 1.05E-11   
(265.26718, 19381.367)(265.76636, 683.1889)(266.269, 

788.55707) 

C8 H4 O 3E-15 2.48E-13 
 

(117.03357, 14132.089)(118.0376, 1367.4443) 

C10 H11 N5 O2 8E-12 2.13E-10 
 

(234.09811, 16687.02)(235.10132, 1828.1199) 

IU1 1E-13 5.91E-12 C18 H21 F N2 O (301.1713, 34285.8)(302.1746, 5803.467)(303.17673, 885.5667) 

C21 H33 N O13 3E-13 1.03E-11 
 

(508.2028, 18153.941)(509.206, 4278.3203)(510.2082, 1189.96) 

C14 H23 N 1E-13 5.91E-12 
 

(206.19048, 15508.532)(207.19392, 2677.3665) 

n-Pentadecylamine 2E-14 1.46E-12 C15 H33 N (228.26886, 18312.525)(229.27234, 2900.6) 

1-Octadecanamine 8E-16 8.44E-14 C18 H39 N, (270.3159, 14056.574)(271.31915, 2925.0) 

 

 

 

 

 

 

 

 

 



366 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Table 3.4 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting BH against control in positive mode (F = flesh, H = heart, BH = 

discoloured samples, control = no discoloured samples) (‘Experiment B’). 

Comound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

BH 

(3) 

Control 

(3) 

BH 

(3) 

Control 

(3) 

BH 

(3) 

Control 

(3) 

BH 

(3) 

Control 

(3) 

2073.8328@4.793522 0 3 3 3 0 16.470 16.146 17.196 

C18 Sulfatide 0 3 3 3 0 15.796 15.497 16.470 

12,13-dihydroxy-11-methoxy-9-octadecenoic acid 0 3 3 3 0 17.510 16.538 18.175 

12,13-dihydroxy-11-methoxy-9-octadecenoic acid + 9.8632 0 3 3 3 0 17.621 16.563 17.459 

(S)-lamenallenic acid 0 3 3 3 0 18.100 17.866 19.134 

C29 H23 N21 O3 0 0 0 3 0 0 0 16.022 

Glu Met 0 0 0 3 0 0 0 15.659 

5-Methoxydimethyltryptamine 0 0 0 3 0 0 0 15.650 

C11 H17 N O8 S 0 0 0 3 0 0 0 15.537 

Valinopine 0 0 0 3 0 0 0 15.366 

4-Hydroxyphenylacetylglutamine 0 0 0 3 0 0 0 15.937 

Alpha-CEHC 3 0 3 3 18.692 0 18.895 15.721 

Ile Ala 0 0 3 0 0 0 15.625 0 

6-Acetamido-3-aminohexanoate 0 0 3 0 0 0 15.443 0 

Val Ile + 1.8330001 0 0 3 0 0 0 16.755 0 

Leu Arg Pro 0 0 3 0 0 0 16.544 0 

N-Hydroxypentobarbital + 4.3743334 0 0 3 0 0 0 16.379 0 

4-oxo-nonenal 0 0 3 0 0 0 16.221 0.000 

528.5197@2.4804444 0 0 0 3 0 0 0 15.834 

C8 H4 O 0 0 0 3 0 0 0 15.672 

C10 H11 N5 O2 0 0 0 3 0 0 0 15.621 

IU1 0 0 0 3 0 0 0 16.407 

C21 H33 N O13 3 0 0 0 16.793 0 0 0 
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C14 H23 N 3 0 0 0 15.935 0 0 0 

n-Pentadecylamine 3 0 0 0 15.977 0 0 0 

1-Octadecanamine 3 0 0 0 15.842 0 0 0 
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Table 3.5 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting BC against control in positive mode (‘Experiment B’) (P < 0.001). 

Compound p p (Corr) Formula Composite Spectrum 

Lomustine 2E-12 2.26E-10 C9 H16 Cl N3 O2 (256.08197, 19921.65)(257.0854, 2570.0999)(258.0873, 944.7) 

Valinopine 1E-13 2.37E-11 C10 H17 N O6 (248.1132, 15463.818)(249.11649, 1942.8) 

C14 H5 N O17 5E-12 4.62E-10 
 

(459.96353, 15804.37)(460.96613, 847.91425) 

Alpha-CEHC 3E-08 1.51E-06 C16 H22 O4 (279.15973, 96221.29)(280.1651, 18032.219)(281.16803, 2110.4268) 

C10 H11 N5 O2 8E-12 5.79E-10 
 

(234.09811, 16687.02)(235.10132, 1828.1199) 

IU1 1E-13 2.37E-11 C18 H21 F N2 O, (301.1713, 34285.8)(302.1746, 5803.467)(303.17673, 885.5667) 

C22 H46 N16 O10 1E-07 6.26E-06 
 

(348.18674, 11900.898)(348.68808, 4870.863)(349.18958, 2343.25)(695.36554, 

89979.6)(696.3688, 23032.602)(697.3715, 4799.22)(698.3741, 529.0) 

 

Table 3.6 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting BC against control in positive mode (F = 

flesh, H = heart, BC = discoloured samples, control = no discoloured samples) (‘Experiment B’). 

Compound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

BC 

(3) 

Control 

(3) 

BC 

(3) 

Control 

(3) 

BC 

(3) 

Control 

(3) 

BC 

(3) 

Control 

(3) 

Lomustine 0 3 0 0 0 17.049 0 0 

Valinopine 0 0 0 3 0 0 0 15.366 

C14 H5 N O17 0 0 0 3 0 0 0 14.878 

Alpha-CEHC 3 0 3 3 18.296 0 18.584 15.721 

C10 H11 N5 O2 0 0 0 3 0 0 0 15.621 

IU1 0 0 0 3 0 0 0 16.407 

C22 H46 N16 O10 0 0 3 0 0 0 18.284 0 
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Table 3.7 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting BCL against control in positive mode (‘Experiment B’) (P < 0.01).  

Compound p p (Corr) Formula Composite Spectrum 

C12 H26 N2 O14 S 5.18E-09 1.82E-07 C12 H26 N2 O14 S (455.11707, 21752.926)(456.1205, 3396.4873)(457.1174, 1931.1) 

Lomustine 1.93E-12 1.24E-10 C9 H16 Cl N3 O2 (256.08197, 19921.65)(257.0854, 2570.0999)(258.0873, 944.7) 

958.6047@4.348375 
6.8E-10 3.29E-08  

(480.3097, 16261.899)(480.81125, 7980.7505)(481.31244, 

2630.8499)(481.8134, 880.02) 

Nitrothal-isopropyl 
9.32E-10 4.01E-08 C14 H17 N O6 

(318.09576, 34267.65)(319.09897, 4055.0786)(320.09503, 

2954.4714)(321.09747, 209.9) 

C11 H21 N O6 
1.71E-12 1.24E-10 C11 H21 N O6 

(264.14438, 34130.7)(265.14783, 4123.725)(266.15063, 

1072.9333) 

C12 H15 N5 O 1.3E-12 1.24E-10 C12 H15 N5 O (246.13443, 30592.441)(247.13713, 4019.77) 

C10 H13 N O6 2.02E-11 1.12E-09 C10 H13 N O6 (244.08171, 17919.473)(245.08467, 2371.543) 

IU1 1.34E-13 2.15E-11 C18 H21 F N2 O (301.1713, 34285.8)(302.1746, 5803.467)(303.17673, 885.5667) 

C13 H20 N2 O3 
1.15E-09 4.45E-08 C13 H20 N2 O3 

(253.15501, 34583.86)(254.15826, 4913.45)(255.16084, 

554.56665) 

1001.7602@6.873572 
1.12E-16 4.34E-14  

(1002.767, 17980.014)(1003.7674, 1756.6858)(1004.76776, 

1774.8) 

Ganglioside GQ1c (d18:1/24:0) 
1.66E-13 2.15E-11 C113 H195 N5 O55 

(1252.14, 1599.557)(1252.6398, 978.82855)(1253.143, 

23835.514)(1253.644, 10852.4) 
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Table 3.8 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting BCL against control in positive mode (F = flesh, H 

= heart, BCL = discoloured samples, control = no discoloured samples) (‘Experiment B’). 

Compound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

BCL 

(3) 

Control 

(3) 

BCL 

(3) 

Control 

(3) 

BCL 

(3) 

Control 

(3) 

BCL 

(3) 

Control 

(3) 

C12 H26 N2 O14 S 3 0 0 0 0 16.82 0 0 

Lomustine 3 0 0 0 0 17.05 0 0 

958.6047@4.348375 0 3 0 0 16.34 0 0 0 

Nitrothal-isopropyl 0 0 3 0 0 0 0 16.72 

C11 H21 N O6 0 0 3 0 0 0 0 17.62 

C12 H15 N5 O 0 0 3 0 0 0 0 17.126 

C10 H13 N O6 0 0 3 0 0 0 0 16.86 

IU1 0 0 3 0 0 0 0 16.46 

C13 H20 N2 O3 0 0 0 3 0 0 15.96 0 

1001.7602@6.873572 0 0 0 3 0 0 16.87 0 

Ganglioside GQ1c (d18:1/24:0) 0 0 0 3 0 0 17.297 0 
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Table 3.9 Analysis of Variance (ANOVA) results of ‘tissue vs. discoloration’ interpreting pith against control in positive mode (‘Experiment B’) (P < 0.01). 

Compound p p (Corr) Formula Composite Spectrum 

851.3623@5.9376326 4E-13 1.72E-11   (852.36926, 19522.111)(853.3704, 7034.422) 

851.7631@5.937048 4E-13 1.72E-11   (852.77, 23227.572)(853.77057, 1944.3) 

851.9631@5.9375796 4E-13 1.73E-11   (852.9701, 18184.31)(853.9697, 974.38947) 

2153.424@6.879866 
7E-15 1.15E-12   (1077.7179, 14149.221)(1078.2183, 16672.307)(1078.7185, 

8686.773)(1079.219, 2725.68)(1079.718, 900.1923) 

C29 H23 N21 O3 1E-14 1.40E-12  (714.23596, 14728.709)(715.2389, 5891.07)(716.2413, 1560.1799) 

Glu Met 
8E-17 2.82E-14 C10 H18 N2 O5 S (279.1012, 15337.546)(280.10422, 1992.4543)(281.0991, 

848.1272) 

Valinopine 1E-13 7.84E-12 C10 H17 N O6  (248.1132, 15463.818)(249.11649, 1942.8) 

4-Hydroxyphenylacetylglutamine 3E-11 8.13E-10 C13 H15 N O6 (282.0974, 17683.637)(283.10062, 2464.25)(284.1034, 740.4) 

C14 H5 N O17 5E-12 1.84E-10  (459.96353, 15804.37)(460.96613, 847.91425) 

2003.518@6.871636 
8E-14 6.87E-12   (1002.767, 17770.717)(1003.2674, 3370.2092)(1003.7688, 

1985.5819)(1004.2592, 1084.5667) 

IU1 1E-13 7.84E-12 C18 H21 F N2 O  (301.1713, 34285.8)(302.1746, 5803.467)(303.17673, 885.5667) 

Gly His Val 2E-11 5.86E-10 C13 H21 N5 O4 (312.16754, 15306.708)(313.17056, 2331.93) 
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Table 3.10 Fold Change analysis results of ‘tissue vs. discoloration’ interpreting pith against control in positive mode (F 

= flesh, H = heart, pith = discoloured samples, control = no discoloured samples) (‘Experiment B’). 

Compound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

PITH 

(3) 

Control 

(3) 

PITH 

(3) 

Control 

(3) 

PITH 

(3) 

Control 

(3) 

PITH 

(3) 

Control 

(3) 

851.3623@5.9376326 3 3 3 0 16.707 16.222 15.913 0 

851.7631@5.937048 3 3 3 0 16.607 16.160 15.854 0 

851.9631@5.9375796 3 3 3 0 16.168 15.692 15.378 0 

2153.424@6.879866 3 3 3 0 17.147 17.444 17.054 0 

C29 H23 N21 O3 0 0 0 3 0 0 0 16.022 

Glu Met 0 0 0 3 0 0 0 15.659 

Valinopine 0 0 0 3 0 0 0 15.366 

4-Hydroxyphenylacetylglutamine 0 0 0 3 0 0 0 15.937 

C14 H5 N O17 0 0 0 3 0 0 0 14.878 

2003.518@6.871636 3 0 0 0 16.743 0 0 0 

IU1 0 0 0 3 0 0 0 16.407 

Gly His Val 0 0 3 0 0 0 15.475 0 
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4. Metabolomic differences between control samples of potato stocks with different susceptibility to blackheart disorder (negative 

mode). 

      Table 4.1 Analysis of Variance (ANOVA) results of ‘susceptibility only’ interpretation in negative mode (‘Experiment C’) (P < 0.05). 

Compound p p (Corr) Formula Composite Spectrum 

C16 H8 N2 O S5 5E-04 0.008  (402.91592, 4538.849)(403.91714, 1594.766)(404.9145, 

1628.9803)(405.91605, 584.85) 

C11 H16 N6 O5 3E-03 0.033  (311.1112, 22844.135)(312.11325, 2631.6682)(313.1154, 744.75) 

C4 H7 N O4 6E-03 0.045  (132.03162, 49180.18)(133.03499, 2025.3241)(134.036, 0.0) 

C18 H21 N9 O7 4E-03 0.037  (474.14957, 222255.48)(475.15176, 35023.727)(476.15283, 

7228.4507)(477.15527, 0.0) 

C13 H20 O8 S 5E-03 0.042  (335.08066, 8133.3022)(336.08478, 1094.5541)(337.09085, 

765.5231) 

C7 H6 N4 O4 2E-03 0.026  (209.03165, 13910.506)(210.03493, 1056.8354)(211.0359, 655.1) 

Hibiscetin 4E-03 0.037 C15 H10 O9 (333.02628, 9041.861)(334.0299, 1115.4205)(335.03427, 

666.0667) 

L-Glutamyl 5-phosphate 2E-04 0.005 C5 H10 N O7 P (226.01141, 35382.715)(227.01447, 1955.8903)(228.0157, 

602.94446) 

Pantothenic Acid 1E-03 0.020 C9 H17 N O5 (437.21164, 1081.4546)(218.1025, 19389.06)(219.1056, 

1966.6147) 

5,7,3',4',5'-Pentahydroxy-3,6,8-trimethoxyflavone 3E-04 0.005 C18 H16 O10 (391.0683, 30746.295)(392.07144, 4133.4443)(393.07272, 

1130.6053) 

Quinic acid 8E-07 0.000 C7 H12 O6 (191.05536, 67761.15)(192.05875, 4338.9565)(193.05977, 

334.8414) 

C16 H24 N6 O5 S2 2E-03 0.026  (443.1178, 6778.3438)(444.12094, 1418.4585)(445.12354, 

818.94995) 

913.5031@5.753782 1E-06 0.000  (912.49445, 36849.215)(913.49725, 25095.98)(914.4994, 

9113.316)(915.5012, 2277.2883)(916.5046, 0.0) 

897.5062@5.808823 2E-05 0.001  (896.49884, 42223.406)(897.50214, 19562.84)(898.5044, 

6187.704)(899.5067, 1663.0891)(900.5081, 0.0) 
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Table 4.2 Fold Change analysis results of ‘susceptibility only’ interpretation in negative mode (Y = 

susceptible stock 23, N = non-susceptible stock 12) (‘Experiment C’). 

Compound 
Replication Relative abundance normalized 

Y (18) N (23) Y (18) N (23) 

C13 H20 O8 S 14 23 10.856 14.482 

C7 H6 N4 O4 18 16 15.950 10.524 

Hibiscetin 18 16 15.206 10.302 

5,7,3',4',5'-Pentahydroxy-3,6,8-trimethoxyflavone 18 23 18.177 17.137 

Quinic acid 18 23 16.809 18.477 

C16 H24 N6 O5 S2 18 16 14.335 9.445 

913.5031@5.753782 9 23 7.204 16.376 

897.5062@5.808823 11 23 8.786 16.566 
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Table 4.3 Analysis of Variance (ANOVA) results of ‘tissue vs. susceptibility’ interpretation in negative mode (‘Experiment C’) (P < 0.01). 

Compound p p (Corr) Formula Composite Spectrum 

387.9461@0.6401463 0.001 0.002  (386.93845, 11311.679)(387.93958, 5095.349)(388.937, 5651.838)(389.9377, 

1845.4519)(390.93524, 1095.9216) 

Ribose-1-arsenate 0.003 0.009 C5 H11 As O8 (272.95837, 50745.832)(273.95947, 14040.337)(274.95667, 

14253.221)(275.95813, 2367.4463)(276.9552, 926.54755) 

Benzal chloride 4.00E-07 4.14E-06 C7 H6 Cl2 (158.9781, 30128.83)(159.9794, 4503.735)(160.97606, 4210.422) 

C17 H3 Cl N4 O S4 7.07E-05 2.72E-04 C17 H3 Cl N4 O 

S4,  

(440.88077, 4518.3535)(441.882, 1532.4929)(442.87967, 

2227.9023)(443.88184, 601.0643) 

C4 H8 N2 O2 S4 3.53E-05 1.56E-04 C4 H8 N2 O2 S4 (242.93924, 6560.7393)(243.94067, 1230.7755)(244.9375, 1578.7319) 

C4 H7 N O4 2.45E-05 1.27E-04 C4 H7 N O4 (132.03162, 49180.18)(133.03499, 2025.3241)(134.036, 0.0) 

C18 H21 N9 O7 7.89E-05 2.72E-04 C18 H21 N9 O7 (474.14957, 222255.48)(475.15176, 35023.727)(476.15283, 

7228.4507)(477.15527, 0.0) 

Pantothenic Acid 7.71E-11 2.39E-09 C9 H17 N O5,  (437.21164, 1081.4546)(218.1025, 19389.06)(219.1056, 1966.6147) 

C24 H6 N4 O9 4.76E-04 0.001477 C24 H6 N4 O9,  (493.00778, 3641.7913)(494.01028, 851.10913) 

C17 H7 N7 O8 4.12E-06 3.20E-05 C17 H7 N7 O8, (436.02872, 4793.353)(437.03183, 986.8) 

969.4385@5.8075547 1.95E-05 1.21E-04  (968.42896, 5494.5835)(969.43097, 3245.0442)(970.43274, 

1322.0187)(971.4337, 710.275) 

887.4782@5.8079376 3.16E-08 4.90E-07  (886.46954, 3878.119)(887.4721, 1888.5938)(888.4685, 1700.3499)(889.4703, 

876.3857) 



376 
 

Elisavet Kiaitsi Cranfield University PhD Thesis, 2015 

Table 4.4 Fold Change analysis results of ‘tissue vs. susceptibility’ interpretation in negative mode (F = 

flesh, H = heart, Y = susceptible stock 23, N = non-susceptible stock 12) (‘Experiment C’). 

Compound 
Replication Relative abundance normalized 

FLESH HEART FLESH HEART 

 
N (12) Y (8) N (11) Y (10) N (12) Y (8) N (11) Y (10) 

887.4782@5.8079376 12 1 3 0 14.254 1.609 3.412 0 
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5.  Metabolomic differences between control samples of potato stocks with different susceptibility to blackheart disorder (positive mode). 

Table 5.1 Analysis of Variance (ANOVA) results of ‘susceptibility only’ interpretation in positive mode (‘Experiment D’) (P < 0.05). 

Compound p p (Corr) Formula Composite Spectrum 

4-Oxoproline 8E-04 0.023 C5 H7 N O3 (259.0921, 998.25)(130.04996, 50899.223)(131.0533, 

3009.288)(132.05447, 0.0) 

4-Nitrotoluene 1E-03 0.025 C7 H7 N O2 (138.05504, 99331.125)(139.05835, 6504.6655)(140.06024, 

24.35) 

Phenylpropiolic acid 3E-03 0.042 C9 H6 O2 (147.0439, 20949.69)(148.0471, 2231.3823) 

C15 H21 N O7 2E-03 0.028  (328.1396, 55570.63)(329.14258, 9049.943)(330.1446, 

1434.8273)(331.146, 0.0) 

Tranylcypromine glucuronide 3E-03 0.045 C15 H19 N O6 (310.1289, 69001.52)(311.13202, 9635.0)(312.13416, 

1680.972)(313.13696, 0.0) 

Tryptophan 4E-04 0.014 C11 H12 N2 O2 (409.18713, 2513.0066)(410.1901, 963.9125)(205.09792, 

142049.55)(206.10046, 14798.695)(207.1027, 365.41083) 

C9 H7 N O 1E-04 0.010  (291.1072, 831.5)(146.06087, 127072.57)(147.0633, 

10985.766)(148.06587, 16.289999) 

Quinacetol 1E-03 0.023 C11 H9 N O2 (188.07137, 437216.25)(189.07404, 47215.27)(190.07632, 

397.5903)(191.07889, 0.0) 

Solanine + 5.759609 1E-04 0.010 C45 H73 N O15  (868.50684, 246811.27)(869.5104, 125611.68)(870.5127, 

43195.08)(871.51514, 7611.9775)(872.518, 0.0)(873.51965, 

0.0) 

alpha-Chaconine 3E-04 0.014 C45 H73 N O14 (852.512, 303554.8)(853.50354, 142457.17)(854.5184, 

42720.133)(855.5208, 6970.411)(856.52423, 0.0)(857.5257, 

0.0) 
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Table 5.2 Fold Change analysis results of ‘susceptibility only’ interpretation in positive mode 

(Y = susceptible stock 23, N = non-susceptible stock 12) (‘Experiment D’). 

Compound 
Replication Relative abundance normalized 

Y (18) N (23) Y (18) N (23) 

4-Oxoproline 12 23 11.39653 17.59077 

Phenylpropiolic acid 18 15 16.19037 10.37926 

C15 H21 N O7 18 15 19.0777 11.93655 

Tranylcypromine glucuronide 18 16 19.32866 12.8638 

C9 H7 N O 18 23 19.27535 18.26517 

Solanine + 5.759609 18 23 18.46194 20.48875 

alpha-Chaconine 18 23 19.28908 20.99858 
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Table 5.3 Analysis of Variance (ANOVA) results of ‘tissue vs. susceptibility’ interpretation in positive mode (‘Experiment D’) (P < 0.001). 

Compound p p (Corr) Formula Composite Spectrum 

C16 H29 N O15 1E-04 2.97E-04  (476.1617, 18598.184)(477.1649, 3519.3352)(478.1662, 1069.6058) 

CAY10492 5E-05 1.44E-04 C17 H22 N3 O2 (323.16068, 45571.785)(324.16373, 7654.3394)(325.16592, 1171.7334) 

865.4838@4.639625 7E-06 4.64E-05   (866.4911, 45531.062)(867.49414, 22014.52)(868.49664, 5493.547)(869.50214, 

1706.3833) 

Solasonine 7E-10 6.98E-09 C45 H73 N O16] (884.50183, 49257.707)(885.50494, 23117.084)(886.50714, 6394.738)(887.50977, 

1381.625) 

Solanine 8E-05 1.75E-04 C45 H73 N O15 (868.5071, 86457.5)(869.5101, 44123.547)(870.5127, 11530.425)(871.5147, 

1769.5529)(872.5167, 0.0) 

Nystatin A1 3E-05 1.44E-04 C47 H75 N O17 (926.5124, 71364.93)(927.51556, 34956.016)(928.51764, 12185.114)(929.51984, 

3198.0)(930.5226, 0.0) 

909.51@5.613134 5E-05 1.44E-04   (910.51746, 63347.195)(911.52075, 70139.68)(912.5229, 23405.545)(913.5251, 

6124.279)(914.52655, 53.04) 

C33 H53 N O6 7E-05 1.75E-04 C33 H53 N O6 (560.39557, 60087.08)(561.3987, 19864.34)(562.40137, 4487.647)(563.404, 

1197.2571) 

Solanidine 2E-04 3.00E-04 C27 H43 N O (398.34222, 81160.39)(399.34564, 22225.172)(400.34857, 3082.23)(401.35156, 

0.0) 

Val Val 3E-16 6.93E-15 C10 H20 N2 O3 (217.15471, 21801.656)(218.15787, 2507.4128) 

Phenylalanine 3E-05 1.44E-04 C9 H11 N O2 (166.08614, 19730.37)(167.08945, 2060.479) 
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Table 5.4 Fold Change analysis results of ‘tissue vs. susceptibility’ interpretation in positive mode (F = flesh, H = 

heart, Y = susceptible stock 23, N = non-susceptible stock 12) (‘Experiment D’). 

Compound 

Replication Relative abundance normalized 

FLESH HEART FLESH HEART FLESH HEART FLESH HEART 

N (12) Y (8) N (12) Y (8) N (12) Y (8) N (12) Y (8) 

C16 H29 N O15 12 3 2 0 16.518 6.127 2.843 0 

CAY10492 12 3 0 0 16.921 6.135 0 0 

865.4838@4.639625 12 2 2 0 17.420 4.299 2.888 0 

Solasonine 12 1 0 0 17.228 2.294 0 0 

Solanine 12 3 2 0 18.286 6.576 2.855 0 

Nystatin A1 12 3 0 0 17.959 6.377 0 0 

909.51@5.613134 12 3 0 0 18.059 6.510 0 0 

C33 H53 N O6 12 3 3 0 17.500 6.316 4.420 0 

Solanidine 12 4 4 0 18.527 8.667 6.04 0 

Val Val 0 6 0 10 0 11.823 0 16.032 

Phenylalanine 0 4 5 10 0 7.652 7.11 15.981 
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Appendix E) 

1. Total ion chromatograms (TIC) of affected and control flesh and heart samples of 

stock 7 (susceptible to BH) and control samples of stock 3 (non-susceptible to BH) in 

negative and positive mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Total ion chromatograms of flesh and heart affected (a, b) and control (c, d) 

samples of stock 7 (susceptible to BH) and  flesh and heart control samples (e, f) of stock 3 

(non-susceptible to BH) in negative mode. 

a) 

b) 

c) 

d) 

e) 

f) 
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a) 

b) 

c) 

d) 

e) 

f) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Total ion chromatograms of affected (a, b) and control (c, d) samples of stock 7 

(susceptible to BH) and flesh and heart control samples (e, f) of stock 3 (non-susceptible to 

BH) in positive mode. 
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2. Metabolomic differences between affected and non-affected potato tuber tissues of one susceptible to BH stock (negative mode). 

Table 2.1 Compounds identified in ‘discoloration only’ interpretation in negative mode (‘Experiment E’). 

Compound Formula CompositeSpectrum 

387.9471@0.6382856  (386.93982, 15564.555)(387.9412, 6973.12)(388.9387, 7569.059)(389.93945, 

2339.2861)(390.9369, 1303.5454) 

Ribose-1-arsenate C5 H11 As O8 (272.95953, 57229.61)(273.96082, 15571.13)(274.95804, 15499.904)(275.95953, 

2343.95)(276.95694, 875.32574) 

C3 H4 N4 S2 C3 H4 N4 S2 (158.97913, 33913.594)(159.9805, 4997.8755)(160.97711, 4618.2827) 

C13 H3 Cl N4 O6 S3 C13 H3 Cl N4 O6 S3 (440.8819, 5647.1465)(441.88324, 1932.605)(442.8806, 2663.449)(443.8819, 

735.5868)(444.88092, 662.05005) 

C11 H16 N6 O5 C11 H16 N6 O5 (311.11154, 41217.48)(312.11456, 4719.1855)(313.11652, 884.4451) 

Asn His Gly C12 H18 N6 O5 (325.12723, 51273.766)(326.1296, 7229.6704)(327.13205, 930.4863) 

C18 H21 N9 O7 C18 H21 N9 O7 (474.1494, 146069.66)(475.1522, 25173.406)(476.1535, 5064.0864)(477.15512, 0.0) 

Kojibiose C12 H22 O11 (683.2271, 34174.773)(684.2305, 8459.652)(685.2325, 2331.052)(686.233, 

511.54996)(341.11057, 25923.41)(342.114, 3374.0164)(343.11536, 911.3711) 

Fructoselysine 6-phosphate C12 H25 N2 O10 P (387.11597, 56902.97)(388.1197, 7987.1304)(389.12122, 1642.9484) 

C19 H30 N4 O14 C19 H30 N4 O14 (537.16864, 20164.615)(538.172, 3831.8284)(539.17346, 1125.0493) 

L-Gulonate C6 H12 O7 (195.0519, 52621.715)(196.0555, 3242.2856)(197.05663, 510.58163) 

C18 H28 N4 O13 C18 H28 N4 O13 (507.15805, 29001.758)(508.1613, 4989.635)(509.16275, 1399.9191) 

C16 H30 O16 C16 H30 O16 (477.14737, 26422.521)(478.15076, 4262.5605)(479.15225, 1468.2947)(480.1553, 0.0) 

7-Methylxanthine C6 H6 N4 O2  (165.0413, 67677.33)(166.04416, 3219.125)(167.04512, 287.787) 

2-deoxy-ribonic acid C5 H10 O5 (149.04578, 16621.572)(150.0467, 1296.0822) 

His Ala Cys C12 H19 N5 O4 S  (328.1074, 28922.467)(329.11023, 4106.7217)(330.10696, 1489.2107) 

C21 H35 N O19 C21 H35 N O19 (604.17365, 19928.021)(605.177, 4379.546)(606.1792, 1260.6406)(607.1756, 743.3) 

C9 H13 N O8 C9 H13 N O8 (525.1211, 1961.2521)(526.1248, 744.3)(262.05756, 18199.305)(263.06073, 

1914.2507)(264.0624, 756.14) 

2-Methylcitric acid C7 H10 O7 (411.0881, 1399.6)(205.03612, 31050.607)(206.03947, 2325.6255)(207.04965, 813.6) 

GW 9662 C13 H9 Cl N2 O3 (275.02234, 109689.6)(276.02585, 23064.967)(277.0292, 2800.3765) 

4-Oxoproline C5 H7 N O3,  (257.0782, 6499.3584)(258.0814, 1212.1559)(259.079, 517.7)(128.03593, 
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23931.756)(129.03876, 1759.75) 

5-(3-Pyridyl)-2-hydroxytetrahydrofuran C9 H11 N O2 (164.07214, 21492.908)(165.07545, 2144.6357) 

C18 H27 N5 O10 S2 C18 H27 N5 O10 S2 (536.11237, 10088.488)(537.115, 2280.526)(538.11127, 1319.5094)(539.1113, 583.9) 

2-Methylcitric acid - 2.4877706 C7 H10 O7 (205.03586, 11770.304)(206.03925, 1047.4032) 

Pantothenic Acid C9 H17 N O5 (437.21368, 1420.2058)(438.21725, 954.2)(218.10388, 24805.248)(219.10721,2413.802) 

(220.10884, 548.26666) 

C23 H17 N7 O8 S C23 H17 N7 O8 S (550.07904, 17958.91)(551.0818, 4855.4565)(552.0841, 1205.576) 

Valiolone C7 H12 O6 (191.05661, 62368.066)(192.06001, 4079.4736)(193.06123, 344.7316) 

C18 H26 O17 S C18 H26 O17 S (545.082, 21191.064)(546.0849, 3927.1543)(547.082, 1934.8849)(548.08374, 486.92) 

C18 H24 O13 C18 H24 O13 (895.23376, 3033.5833)(896.2375, 1439.3643)(897.2392, 1105.8501)(447.11472, 

22519.006)(448.11786, 4020.566)(449.11942, 1305.943) 

Kaempferol 3-[2''',3''',4'''-triacetyl-alpha-

L-arabinopyranosyl-(1-6)-glucoside] 

C32 H34 O18  (705.1663, 11562.3545)(706.1693, 3816.27) 

C17 H16 N4 O9 S C17 H16 N4 O9 S (451.0553, 293680.0)(452.0588, 65944.79)(453.0572, 23305.863)(454.05902, 

226.35716)(455.0583, 0.0) 

Scopolin C16 H18 O9  (707.182, 33615.965)(708.18536, 12135.868)(709.1876, 3126.65)(710.1895, 

559.9176)(353.0882, 75665.234)(354.09167, 13297.273)(355.0954, 

1742.0162)(356.10675, 365.3) 

4-Methylumbelliferyl β-D-glucuronide C16 H16 O9 (703.1495, 912.43756)(704.1533, 609.6)(351.07248, 10009.654)(352.07584, 1866.9458) 

C16 H18 O13 S C16 H18 O13 S (449.03964, 32958.19)(450.04297, 5483.101) 

Trp Asp Ile C21 H28 N4 O6,  (431.1924, 12972.415)(432.19556, 2786.6)(433.1981, 755.14996) 

Nap-HoPhe-OH C28 H24 N2 O6 (483.15414, 40844.016)(484.1575, 7636.343)(485.15552, 2660.3125)(486.15698, 

325.11765) 

C18 H32 O13 S C18 H32 O13 S (487.14896, 5465.1133)(488.15204, 1195.7742)(489.14984, 737.91425) 

C14 H18 O12 S C14 H18 O12 S (409.045, 25443.453)(410.0481, 3779.1978)(411.04532, 1510.5886) 

C16 H23 N O13 S C16 H23 N O13 S (468.08188, 46885.35)(469.08514, 7594.176)(470.0824, 2849.7292)(471.0841, 134.25455) 

Cefuroxime C16 H16 N4 O8 S (423.06064, 12249.204)(424.06384, 2107.1843)(425.0613, 891.4633) 

C19 H24 O12 C19 H24 O12 (443.11945, 7974.0454)(444.1231, 1678.8823)(445.1247, 796.7143) 

Glu Ala Trp C19 H24 N4 O6  (807.32697, 795.4149)(403.16132, 17111.367)(404.16446, 3190.5562)(405.16666, 

791.1023) 

C20 H34 O11 C20 H34 O11 (449.20316, 6849.731)(450.20627, 1520.746)(451.20822, 612.19995) 
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Glu Trp Pro C21 H26 N4 O6 (429.17673, 7755.5176)(430.18005, 1740.4954)(431.1822, 642.2) 

6-Hydroxymellein C10 H10 O4 (193.05109, 26987.35)(194.05443, 2680.7302)(195.05641, 411.58334) 

C14 H14 O8 C14 H14 O8 (619.1292, 3760.079)(620.1323, 3809.5203)(621.1367, 3330.2)(622.1393, 0.0)(309.06207, 

25988.674)(310.06537, 3613.224)(311.067, 958.2214) 

Glu Trp Pro - 5.998713 C21 H26 N4 O6 (859.35803, 1096.9827)(860.3605, 768.5571)(429.17688, 24869.89)(430.18002, 

4966.2695)(431.18234, 1085.4528) 

Flucarbazone C12 H11 F3 N4 O6 S (395.02948, 18003.908)(396.03247, 2606.2146)(397.02972, 1368.5192) 

Methyl N-(a-methylbutyryl)glycine C9 H16 O4 (187.09793, 20720.986)(188.10135, 2025.2252)(189.1035, 117.0) 

1510.2983@6.4970164  (1509.2908, 21383.928)(1510.2921, 11014.467)(1511.2919, 1708.724) 

1509.9633@6.4970317  (1508.9568, 15211.71)(1509.9589, 16774.785)(1510.9597, 3304.8062)(1511.9575, 583.7) 

1510.6324@6.497031  (1509.625, 21317.07)(1510.6257, 6339.8237)(1511.6257, 899.0263) 

1453.9562@6.6183043  (1452.9502, 7458.0894)(1453.9504, 3681.2874)(1454.9493, 801.05707) 

1424.6143@6.708936  (1423.6067, 22530.215)(1424.6085, 10213.934)(1425.6077, 1504.9357) 

1424.2784@6.7088885  (1423.2731, 16650.44)(1424.274, 16044.914)(1425.2745, 2927.737) 

1424.9481@6.7086506  (1423.9406, 21361.97)(1424.9408, 5703.121)(1425.9403, 793.65564) 

1434.617@6.776508  (1433.6095, 18200.584)(1434.6107, 18424.023)(1435.611, 3442.8665)(1436.6064, 686.2) 

1434.951@6.7764907  (1433.9438, 24913.584)(1434.9453, 11783.872)(1435.9447, 1729.88) 

1435.2842@6.7764115  (1434.2778, 24073.521)(1435.2782, 6647.4194)(1436.2759, 890.5099) 

9S,10S,11R-trihydroxy-12Z-

octadecenoic acid 

C18 H34 O5,  (659.4718, 1247.1234)(660.4752, 718.975)(329.23297, 53012.42)(330.23636, 

11266.499)(331.23877, 1218.0367) 

9-hydroperoxy-12,13-epoxy-10-

octadecenoic acid 

C18 H32 O5 (327.21722, 28997.713)(328.22064, 5238.8296) 

9S,10S,11R-trihydroxy-12Z-

octadecenoic acid - 9.125128 

C18 H34 O5  (659.4715, 876.26666)(329.23276, 66572.4)(330.2362, 11848.26)(331.23865, 1150.9945) 

LysoPE(18:3(9Z,12Z,15Z)/0:0) C23 H42 N O7 P (949.5287, 926.19995)(950.5329, 540.4)(474.26202, 11678.398)(475.26532, 

2781.3525)(476.26758, 897.77386) 

C22 H45 N9 O6 S C22 H45 N9 O6 S (562.3143, 26579.93)(563.31744, 7044.612)(564.3195, 1433.0638)(565.32166, 0.0) 

PE(18:2(9Z,12Z)/0:0) C23 H44 N O7 P (953.55994, 710.25)(476.27798, 11374.428)(477.28113, 2767.8508)(478.28354, 786.5731) 

C22 H47 N9 O6 S C22 H47 N9 O6 S (564.3299, 22074.174)(565.3331, 5918.2017)(566.33545, 1333.1189)(567.33765, 0.0) 

C9 H Cl N2 O11 S2 C9 H Cl N2 O11 S2 (410.8628, 6275.678)(411.86438, 1331.613)(412.8612, 2445.9597)(413.8609, 590.0) 
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3. Metabolomic differences between control samples of potato stocks with different susceptibility to blackheart disorder (negative mode). 

Table 3.1 Analysis of Variance (ANOVA) results of ‘susceptibility only’ interpretation in negative mode (‘Experiment G’) (P < 0.001). 

Compound p p (Corr) Formula Composite Spectrum 

870.1731@4.3968663 1E-05 2.06E-04   (869.1653, 36800.574)(870.1683, 11924.942)(871.1682, 

4527.8574)(872.16943, 1385.0076)(873.17096, 0.0) 

Quercetin 3-glucoside-7-rutinoside 3E-10 3.07E-08 C33 H40 O21 (771.1979, 11885.306)(772.20123, 3980.8022)(773.20306, 

1356.3169)(774.20416, 662.85) 

C27 H32 O21 S 5E-05 4.50E-04  (723.10767, 24387.309)(724.1108, 6624.4297)(725.1099, 

2635.1301)(726.1116, 923.9094) 

Myricetin 3-rutinoside 2E-05 2.65E-04 C27 H30 O17 (1251.2856, 1282.9667)(1252.2913, 862.65)(625.1404, 

14345.914)(626.1435, 3881.6343)(627.14557, 

1349.1915)(628.14795, 421.7) 

C19 H24 O12 9E-06 1.70E-04  (887.24414, 1611.75)(888.2488, 1062.6)(443.1196, 

10359.922)(444.12308, 2092.2031)(445.12503, 897.1429) 

C20 H32 N6 O18 S2 3E-05 2.65E-04  (707.1133, 11973.106)(708.11615, 3458.268)(709.11334, 

1693.5717)(710.1128, 765.6125) 

Quercetin 3-glucoside-7-rhamnoside 2E-05 2.65E-04 C27 H30 O16 (1219.2963, 8643.199)(1220.2997, 5237.828)(1221.3021, 

2668.2498)(1222.304, 1088.63)(609.1459, 63524.348)(610.149, 

16304.978)(611.1512, 3856.0947)(612.15356, 267.98148) 

Imibenconazole 2E-08 5.07E-07 C17 H13 Cl3 N4 S (408.98718, 10784.114)(409.98914, 2709.7292)(410.98898, 

1160.3057) 

C14 H14 O8 2E-08 5.07E-07  (619.12946, 4808.7275)(620.1329, 1981.3378)(621.13513, 

1213.9501)(309.0621, 40430.21)(310.0654, 5454.6997)(311.06717, 

1056.0311) 

Isoferulic acid 4E-08 8.40E-07 C10 H10 O4 (193.05104, 40955.973)(194.05446, 3922.8147)(195.05637, 

308.84613) 

9S,10S,11R-trihydroxy-12Z-octadecenoic 

acid 

4E-05 3.26E-04 C18 H34 O5 (659.47174, 1063.6454)(660.475, 622.25)(329.23306, 

40934.703)(330.23648, 8680.717)(331.23883, 1073.7) 
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Table 3.2 Fold Change analysis results of ‘susceptibility only’ interpretation in negative mode (Y = susceptible stock, 

N = non-susceptible stock 3) (‘Experiment G’). 

Compound 
Replication Relative abundance normalized 

Y (31) N (32) Y (31) N (32) 

870.1731@4.3968663 28 32 13.459 17.364 

Quercetin 3-glucoside-7-rutinoside 14 32 6.182 15.278 

C27 H32 O21 S 29 32 13.744 16.694 

Myricetin 3-rutinoside 26 32 11.583 15.807 

C19 H24 O12 31 32 14.036 15.074 

C20 H32 N6 O18 S2 24 32 10.823 15.642 

Quercetin 3-glucoside-7-rhamnoside 29 32 14.755 18.218 

Imibenconazole 16 32 7.068 15.004 

C14 H14 O8 31 32 15.824 17.501 

Isoferulic acid 31 32 15.870 17.422 

9S,10S,11R-trihydroxy-12Z-octadecenoic acid 31 32 17.509 16.450 
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4. Metabolomic differences between control samples of potato stocks with different susceptibility to blackheart disorder (positive mode). 

Table 4.1 Analysis of Variance (ANOVA) results of ‘susceptibility only’ interpretation in positive mode (‘Experiment H’) (P < 0.05). 

Compound p p (Corr) Formula Composite Spectrum 

Monoethylglycylxylidide (MEGX) 8E-04 0.024 C12 H18 N2 O (207.14952, 47441.316)(208.15288, 5961.3975)(209.1556, 

137.42632) 

Quercetin 3-glucoside-7-rutinoside 3E-10 0.000 C33 H40 O21 (773.2143, 68843.01)(774.2175, 22772.312)(775.21954, 

6067.345)(776.2216, 989.07043)(777.2256, 0.0) 

Leu Ile Ile 9E-04 0.027 C18 H35 N3 O4 (358.27072, 42817.34)(359.2737, 8199.884)(360.27615, 1103.5652) 

Myricetin 3-rutinoside 5E-10 0.000 C27 H30 O17 (627.1565, 36697.97)(628.15955, 10055.703)(629.16174, 

2602.893)(630.1646, 447.11255) 

3,5,7,2',5'-Pentahydroxyflavone 1E-06 0.000 C15 H10 O7 (303.0505, 55786.098)(304.0538, 8152.9497)(305.0566, 1236.2909) 

Phe Phe Val 7E-04 0.024 C23 H29 N3 O4 (823.4401, 770.6)(412.22394, 40646.67)(413.22684, 

9985.532)(414.2296, 1593.0985)(415.2404, 1138.4) 

3,5,7,2',5'-Pentahydroxyflavone + 5.129875 4E-08 0.000 C15 H10 O7 (303.05057, 52475.53)(304.05383, 8039.1216)(305.05576, 

1222.9784) 

Rutin 1E-05 0.001 C27 H30 O16 (611.16174, 86573.84)(612.1651, 23583.197)(613.1671, 

5307.6416)(614.16986, 532.8061) 

1064.669@6.306651 1E-03 0.039   (533.3415, 20631.629)(533.84326, 10855.016)(534.3445, 

3949.0896)(534.84534, 1159.2445) 

2229.934@6.4383016 2E-05 0.001   (1115.9751, 88824.91)(1116.4761, 65831.03)(1116.9766, 

27919.0)(1117.4763, 10634.813)(1117.9728, 3252.9563)(1118.464, 

493.49994) 

2229.4333@6.438286 2E-05 0.001   (1115.7245, 72292.875)(1116.2256, 88015.23)(1116.7262, 

48867.227)(1117.2264, 17540.594)(1117.7258, 

7123.9775)(1118.2202, 1269.1063)(1118.7139, 1156.85) 
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Table 4.2 Fold Change analysis results of ‘susceptibility only’ interpretation in positive mode (Y = susceptible stock 7, 

N = non-susceptible stock 3 (‘Experiment H’). 

Compound 
Replication Relative abundance normalized 

Y (31) N (32) Y (31) N (32) 

Quercetin 3-glucoside-7-rutinoside 13 32 6.842 17.722 

Myricetin 3-rutinoside 13 32 6.609 16.873 

3,5,7,2',5'-Pentahydroxyflavone 19 32 9.855 17.482 

3,5,7,2',5'-Pentahydroxyflavone + 5.129875 16 32 8.279 17.320 

Rutin (or quercetin-3-O-rutinoside) 22 32 11.787 18.290 

 

 

 

 


