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Abstract

The ability to identify the range of an interferometric signal is very useful in inter-
ferometry, allowing the suppression of parasitic signal components or permitting
several signal sources to be multiplexed. Two novel range-resolved optical interfer-
ometric signal processing techniques, employing very different working principles,
are theoretically described and experimentally demonstrated in this thesis. The first
technique is based on code-division multiplexing (CDM), which is combined with
single-sideband signal processing, resulting in a technique that, unlike prior work,
only uses a single, regular electro-optic phase modulator to perform both range-based
signal identification and interferometric phase evaluation. The second approach
uses sinusoidal optical frequency modulation (SFM), induced by injection current
modulation of a diode laser, to introduce range-dependent carriers to determine phase
signals in interferometers of non-zero optical path difference. Here, a key innovation
is the application of a smooth window function, which, when used together with
a time-variant demodulation approach, allows optical path lengths of constituent
interferometers to be continuously and independently variable, subject to a minimum
separation, greatly increasing the practicality of the approach.

Both techniques are applied to fibre segment interferometry, where fibre segments
that act as long-gauge length interferometric sensors are formed between pairs of
partial in-fibre reflectors. Using a regular single-mode laser diode, six fibre segments
of length 12.5 cm are multiplexed with a quadrature bandwidth of 43 kHz and a phase
noise floor of 0.19 mrad - Hz7%® using the SFM technique. In contrast, the 16.5m
spatial resolution achieved with the CDM technique points towards its applicability
in medium-to-long range sensing. The SFM technique also allows high linearity,
with cyclic errors as low as 1 mrad demonstrated, and with modelling indicating
further room for improvement. Additionally, in an industrial measurement, the SFM
technique is applied to single-beam, multi-surface vibrometry, allowing simultaneous
differential measurements between two vibrating surfaces.
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1. Introduction

1.1. Range-Resolved Optical Interferometric Signal
Processing

In many applications of optical interferometry, range-resolved signal processing is very
desirable [1] as it allows the influence of spurious reflections to be suppressed, if these
occur at different ranges to the desired signals, or permits multiple interferometers
at different ranges to be multiplexed. Range-resolved optical interferometric signal
processing techniques can identify and evaluate otherwise identical signal sources
solely based on their range, using only a single laser source and a single photo
detector. For range-resolved optical interferometric signal processing, two functions
have to be performed simultaneously: interferometric signal processing to determine
the interferometric phase signals and range-based demodulation to allow multiple
interferometric signals to be separated. For the former, a wide variety of techniques
have been developed over the long history of interferometry, with the most relevant
techniques reviewed in Chap. 3. The physical principle exploited for the second
function, range-based signal identification, is the time-of-flight of the interrogating
light, with relevant techniques reviewed in Chap. 4.

The conceptually simplest and most widely used range-based signal identification
technique is time-division multiplexing (TDM), where the different arrival times
following pulsed interrogation are evaluated to allow the range of the signal sources
to be identified. A further technique to separate signal sources based on their time-
of-flight involves code-division multiplexing (CDM), where continuous-wave laser
light is modulated by a code that helps to uniquely identify the delay of the signals.
In this thesis, a novel technique using a CDM approach is proposed in Chap. 5.
Here, in contrast to prior work, a single, regular electro-optic phase modulator is
employed to both perform interferometric signal processing as well as to introduce the
code for range-based signal separation. Another possibility for range-resolved signal
processing is the evaluation of the induced phase modulation waveform that results
from optical frequency modulation of the light illuminating an interferometer of non-
zero optical path difference (OPD). Here, the different phase modulation waveforms
in interferometers with differing OPDs can be used as range-dependent carriers to
both allow interferometric phase evaluation and range-based signal identification.
A novel technique based on this approach is presented in Chap. 6, which, using
only the sinusoidal optical frequency modulation (SFM) available from injection
current modulation of a regular diode laser, allows highly linear interferometric phase
measurements of multiple, comparatively closely spaced signal sources.
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1.2. Fibre Segment Interferometry

This PhD project initially set out to explore range-resolved signal processing tech-
niques for range-based signal separation in Doppler lidar anemometry [2-9]. However,
in the early stages of this project, in order to avoid the difficulty of the low return
signal powers typical for anemometry, the developed techniques were tested in an
optical fibre-based setup. Taking up an idea first proposed by Dakin et al. [10], the
PhD project then developed into an application of these techniques to fibre segment
interferometry (FSI), now forming the main theme of the thesis.

_ Segment S1 | Segment S2 Segment S3
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Figure 1.1.: Illustration of the basic principle of FSI.

/\ / continued

In FSI, as illustrated in Fig. 1.1, optical fibre segments are formed between in-fibre
partial reflectors and are interrogated in a low-finesse Fabry-Perot setup, where
two-path interference is assumed. Phase measurements from each segment are then
obtained by subtraction of the reflector signals, resulting in an array of long-gauge
length interferometric sensors that integrate any OPD-induced phase changes due
to strain, temperature, etc. over their gauge length. While, in prior work, this
approach was mainly aimed at high-fidelity optical hydrophone applications [10-12]
using low-noise solid state lasers, the FSI techniques proposed in this thesis are
targeted at strain sensing in areas such as structural health monitoring [13-15].
Therefore, noise performance expectations are reduced in order to enable a simpler,
more cost-effective and robust system implementation. In particular, all the work in
this thesis has been performed using the same £1k single-mode laser diode and one
objective of this work is to demonstrate the levels of performance achievable using
such a device. In general, compared to widely used fibre-based sensors in structural
health monitoring, such as fibre Bragg gratings (FBG), in FSI the measurand is
integrated over the whole segment length. It was recognised before [16] that the
inherent averaging of strain data in long-gauge length sensing can also be beneficial
to make measurement interpretation for large engineering structures more robust,
reducing the effect of local inhomogeneities. Also, compared to localised sensors such
as FBGs, the FSI approach allows spatially continuous sensing of the measurand
without sensing gaps and thus guarantees that no disturbance is missed. Therefore,
the FSI approach also offers complementary information that is not easily available
with other fibre sensing techniques.

1.3. Contents of the Thesis

This thesis starts with a detailed review of the concepts and prior work in the relevant
areas because a thorough understanding of this is considered a prerequisite for the
later work in the thesis. This is split into three chapters, Chaps. 2, 3 and 4, where
the first section in each chapter introduces the basic concepts that are relevant for
the subject area. These initial sections are written in a text-book style with fewer
references, whilst a detailed review of published prior work is then presented in
the subsequent sections of each chapter. This stylistic choice to first treat the key
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concepts in an abstract way was made to avoid duplication in the explanation of
these concepts, also with regard to the later experimental chapters, which show much
commonality in their fundamental aspects and often reference back to these initial
sections of the review chapters.

Following the three review chapters, there are the two main experimental chapters,
Chaps. 5 and 6, which each discuss one of the two signal processing techniques
proposed in this work, both theoretically and experimentally. It was aimed to keep
the theoretical description, the characterisation measurements and evaluation criteria
of the two techniques as uniform as possible in order to allow their direct comparison.
A thorough discussion of ideas to improve the current implementation and of future
research directions, along with a brief chapter summary, then concludes each main
experimental chapter. In addition to the two main experimental chapters that
ultimately demonstrate the application of the proposed techniques to FSI, Chap. 7
is an additional, brief experimental chapter that showcases the application of the
range-resolved signal processing technique proposed in Chap. 6 to multi-surface free-
space vibration measurements. Finally, a conclusion of the work in this thesis and a
general outlook involving both proposed techniques is given in Chap. 8. Additionally,
appendix sections are used to expand the theoretical derivations, introduce the
signal processing hardware, develop a noise and crosstalk model and detail the
characterisation measurements for the laser diode used.

In this thesis the individual chapters cover the following areas:

Chapter 2 reviews optical fibre sensing technology, with a particular view to providing
context for the FSI sensing approach that forms the main theme of this thesis.

Chapter 3 details the relevant interferometric theory, basic interferometric config-
urations and concepts before reviewing the wide field of interferometric signal
processing techniques that can be used to extract phase information in a single,
two-path interferometer using quasi-monochromatic light.

Chapter 4 discusses basic FSI configurations and design aspects before reviewing
prior work in range-resolved signal processing techniques that either have already
been applied to FSI or that are in principle capable of being applied to FSI.

Chapter 5 presents the CDM signal processing technique that is the first novel
approach proposed in this thesis. Here, the detailed theory is developed, the
signal processing implementation is described and a variety of characterisation
experiments as well as an application to FSI are shown and discussed.

Chapter 6 then presents the SFM technique that is the second novel approach pro-
posed. Again, a detailed theoretical description is developed, the signal processing
implementation is explained and a variety of characterisation experiments as well
as an application to FSI are shown and discussed.

Chapter 7 additionally highlights the potential of the SFM technique of Chap. 6
outside FSI. Here, the approach is applied to multi-surface vibrometry as part of
an industrial measurement on a commercial cryostat system.

Chapter 8 concludes this thesis by summarising the results and providing an outlook
into the most promising future applications for the proposed techniques.



2. Review of Fibre Sensing
Technology

This chapter gives a short introduction to the most widely-used optical fibre sensing
technologies, mainly in regard to longitudinal strain measurements, in order to relate
their capabilities to the fibre segment interferometry (FSI) approach investigated
in this thesis. Further detailed reviews of optical interferometric signal processing
in general, and range-resolved optical interferometric signal processing techniques
relevant to FSI in particular, are then presented in Chaps. 3 and 4, respectively.

2.1. Basic Aspects of Fibre Sensing

Measurands: Both temperature, 7', and longitudinal strain, e = Al/l,, i.e. length
change Al over the gauge length [,, are intrinsic measurands that directly affect an
optical fibre [17,18]. For sensors that are based on interference effects within the
core of single-mode fibres such as fibre Bragg gratings (FBGs) (further discussed in
Sec. 2.3) or interferometric sensors (further discussed in Sec. 2.4), the sensitivity to
any of these stimuli is proportional to the change in 7, the optical path difference
(OPD). n is given by n = 7¢g, where 7 is the time-of-flight delay and cq is the
vacuum speed of light. Over the sensing region, the time-of-flight 7 and therefore
the OPD n is proportional to both the sensor gauge length I, and the local group
refractive index n, of the fibre core. Thus changes in OPD can occur due to two
independent effects: the change in [, of the fibre itself and any change in n, due
to the measurand. Neglecting polarisation dependence, this is given by Jackson et
al. [19] for measurands X, such as T" or €, with the vacuum light wavelength Ay, as:

on 27r< Olg ong

— N + g@X) with X = T €, etc. (2.1)
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When several stimuli change simultaneously, changes in the OPD add independently
in the first order approximation, but may contain cross-sensitivities at higher orders
[20]. Because changes in the OPD originating from temperature or longitudinal strain
are cumulative, these cannot be easily distinguished when they occur together, which
is often the case. There have been manifold approaches, reviewed by Jones [21],
aimed at discriminating temperature and longitudinal strain measurements. This
discrimination is of prime importance [22] in many practical applications for strain
sensing because the temperature sensitivity is comparatively large relative to typical
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longitudinal strain sensitivity requirements. Common approaches, applicable to both
FBGs and interferometric sensors, include using two sensors with one sensor isolated
from strain [23] or the use of different types of fibres [24]. Also, two interrogation
wavelengths [25] on one sensor can be used, exploiting small wavelength-dependent
differences in the thermo-optic component of the index of refraction. Another intrinsic
direct fibre measurand is bend (curvature) sensing. Most bend sensing techniques
evaluate differential longitudinal strain between different fibres in a laterally offset
fibre arrangement or a multi-core fibre (MCF) using interferometric [26] or FBG
sensors [27], or between the core and the cladding of an optical fibre itself using
long-period gratings (LPG) [28,29] (see also Sec. 2.3).

The reaction of the fibre to the measurand can also be increased using an external
transducer. The transduction mechanism is ideally highly sensitive to the desired
measurand and converts an external stimulus into an intermediate quantity, usually
longitudinal strain, which can then be detected by the optical fibre with high sens-
itivity. A typical intrinsic transduction mechanism, where the light does not leave
the fibre, could simply be a compliant mandrel with fibre wrapped around a coil.
Pressure transducers of this kind are extensively used for fibre optic hydrophones and
are reviewed by Kirkendall et al. [30]. Further measurands where external transducers
can be used beneficially include magnetostrictive transducers [31] in magnetic field
measurements or piezoelectric transducers [31] for electric field measurements. Addi-
tionally, many different kinds of extrinsic sensing transducers, where the light exits
the fibre over a, usually short, distance are in use, often in Fabry-Perot interferometric
configurations, further reviewed in Sec. 2.4. In general, because any transduction
mechanism introduces its own characteristics, additional uncertainties that require
calibration and cross-sensitivities to other measurands may occur. In some cases,
fibre-coupled measurement configurations in areas such as anemometry [2,5,8,9] or
vibrometry [32-37] are also regarded as extrinsic fibre sensing techniques.

Optical Fibre Types: The bulk of optical fibre sensing technology, including this
thesis, makes use of the superior qualities offered by silica-based single-mode optical
fibres. The fact that, neglecting degeneracy due to birefringence, only a single mode
can propagate within the fibre is a prerequisite for many types of sensors that rely on
interference effects, including most grating (see Sec. 2.3) or interferometric sensors
(see Sec. 2.4). Further advantages of these fibres include low-loss guiding, with
typical losses in their optimal transmission wavelength as low as 0.2dB - km™* (38],
well-characterized material properties and the availability of cost-effective fibre and
components, particularly when sensing is performed in wavelength regions also used by
the telecoms industry. In some specific applications, however, silica-based multimode
optical fibres can also be used advantageously for sensing. These include some
distributed sensing techniques or certain kinds of interferometric sensors that make
use of the interference between the different modes within a multimode fibre [39].
Furthermore, silica-based, multi-core, single-mode fibres can be used for differential
measurements [26], such as for fibre optic bend sensing as discussed above.

Polymer optical fibres, also reviewed by Peters [38], have also recently become a
widely researched topic. While most polymer optical fibres are multimode, single-
mode fibres and even grating sensors such as FBGs [40,41] have all been demonstrated
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using polymer fibres. The main advantages of polymer optical fibre sensors are their
biocompatibility and their much increased values for the maximum breaking strain
when compared to silica fibres, allowing them to be embedded in applications such as
soil monitoring [42], where silica-based fibres risk breakage. Their main disadvantages
compared to silica-based fibres include lower operating temperatures, incompatibility
with established fibre handling technology and much increased optical losses, with
losses typically well above 30dB - km™" [38].

Spatial Distribution of Multiple Measurements: In optical fibre sensing with
multiple sensors, the spatial distribution of sensing regions can be distinguished
between multiplexed point sensors, quasi-distributed point sensors, quasi-distributed
long-gauge length sensors and fully distributed sensing as illustrated in Fig. 2.1.

(a) (b)
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Figure 2.1.: The spatial distribution of the active sensing regions for (a) point sensing, (b)
quasi-distributed point sensing, (c¢) quasi-distributed long-gauge length sensing and (d) distributed
sensing, with the measurand magnitude indicated by arrows and triangles marking reflective nodes.

In Fig. 2.1(a), for measurements using point sensors, the measurand field is
interrogated using discrete point sensors, such as grating-based FBG sensors or
interferometric Fabry-Perot sensors, further discussed in Sec. 2.3 and Sec. 2.4,
respectively. In this case, it is assumed that the measurand field is of interest only
at the point sensor locations. In contrast, in quasi-distributed point sensing, further
discussed in Sec. 2.3, the whole measurand field is of interest and this field is sampled
using an array of regularly placed point sensors, typically FBG sensors, which is
depicted in Fig. 2.1(b). Analogous to the Nyquist sampling theorem, in order to give
a complete representation of the measurand field, the spacing of the point sensors has
to be sufficiently close. Quasi-distributed long-gauge length sensing, illustrated in
Fig. 2.1 (c), also attempts to measure the complete measurand field. However, unlike
quasi-distributed point sensing, the integrated measurand field between the regularly
distributed nodes is measured using, for example, long-gauge length interferometric
sensors, further discussed in Sec. 2.4. The discrete nodes thus only serve to define the
sensing region and are not used for sensing the measurand themselves. In distributed
sensing, further discussed in Sec. 2.2 and depicted in Fig. 2.1(d), the interrogation
system allows this measurand field to be determined continuously at a given spatial
resolution over the whole length of an unmodified optical fibre.

2.2. Distributed Sensing

In distributed sensing the measurand field is mapped continuously over the whole
length of an unmodified optical fibre section. The interrogation unit thus has to
perform two functions simultaneously: the actual measurements of the quantity
of interest and the range-resolved recording of these measurements based on the
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Figure 2.2.: [llustration of typical peak powers and frequency shifts for Rayleigh, Brillouin and
Raman scattering peaks in silica fibre and their dependence on temperature 1" and longitudinal
strain e (adapted from Giiemes et al. [45]).

time-of-flight of the return signal. Most distributed systems obtain their range
information using pulsed optical time domain reflectometry (OTDR) [43], although
in some applications optical frequency domain reflectometry (OFDR) [44], with its
higher spatial resolution can be of advantage. The physical origins of the return
signal are typically scattering phenomena, such as Rayleigh, Raman or Brillouin
scattering. Fig. 2.2 illustrates typical peaks originating from the different scattering
phenomena, which will be discussed in more detail in the following.

Rayleigh Scattering: The origin of Rayleigh scattering are microscopic irregularities
in the refractive index of the fibre core and, as can be seen in Fig. 2.2, it has zero
offset frequency shift and a comparatively high scattering cross-section, making it the
easiest scattering process to detect. The first distributed fibre sensing technique that
utilised Rayleigh scattering has been polarisation-resolved OTDR [46], exploiting the
changes in fibre birefringence evident in the Rayleigh backscatter trace to determine
a multitude of measurands such as temperature, strain, pressure, etc. More recently,
using polarisation-resolved OFDR, spatial resolutions in the tens of ym can be
reached [47]. The changes in Rayleigh scattering cross-section caused by temperature
have also been used for distributed temperature change measurements, however,
with the effect being relatively small in regular glass fibres, liquid core [48] or rare-
earth doped [49] fibres needed to be used. Because polymer optical fibres show
a dependence of the Rayleigh scattering cross-section on longitudinal strain, the
distributed backscattering loss can also be exploited for strain sensing [42] there.

Recently, distributed acoustic sensing [50] has gained popularity [51] for the cost-
effective sensing of sound along the fibre for seismic, flow measurement or security
monitoring purposes. State-of-the-art systems allow vibration measurements over up
to 50 km of fibre at a sub-metre spatial resolution [51]. Also, fibre learning techniques,
where changes in the Rayleigh backscatter trace, obtained by high-spatial resolution
reflectometry in before/after measurements, are used for strain and temperature
measurements, have been demonstrated [52]. In summary, as evident from the works
previously cited, Rayleigh scattering measurements are mostly useful for determining
changes of measurands over spatial resolutions on the order of metres.

Raman Scattering: Spontaneous Raman scattering is the interaction of the illu-
minating light with molecular vibration modes in the silica core of the fibre. The
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interaction can cause the scattered photon to lose energy (Stokes process) or gain
energy (Anti-Stokes process), where especially the latter process is highly dependent
on the temperature. Extracting the ratio of these peaks allows absolute temperature
measurements to be computed, as illustrated in Fig. 2.2. Distributed temperature
sensing based on spontaneous Raman scattering was first proposed by Dakin et
al. [53] and has since enjoyed large popularity [54,55].

A key advantage of Raman based distributed sensing is its exclusive sensitivity to
temperature, avoiding all cross-sensitivity issues with other measurands. Because
the Raman signal is very weak, multi-mode fibres are often used due to their higher
backscatter cross-section, although single-mode fibres have advantages for long ranges
due to their lower attenuation. A typical Raman distributed temperature system
obtains its range resolution using pulsed OTDR and acquisition times of recent
devices are on the order of 10s for a sub-metre spatial and a 0.1 K temperature
resolution over a range of 1km [55]. Because of this performance Raman distributed
sensing is widely-used in the oil and gas industries for downhole applications, but
also in the electrical transmission industry for power line monitoring [55].

Brillouin Scattering: Distributed sensing using Brillouin scattering [56,57], recently
reviewed by Thévenaz [58] and Bao et al. [59], exploits acoustic interactions within
the fibre. Unlike Rayleigh and Raman techniques, Brillouin scattering methods
are not intensity-based but instead measure frequency shifts, giving immunity to
uncontrollable changes in the loss profile of the fibre. As illustrated in Fig. 2.2, the
Brillouin frequency shift is dependent on both temperature and longitudinal strain,
preventing straightforward independent measurement of either quantity.

The acoustic interaction can be actively induced through a pump pulse in stimulated
Brillouin scattering [56,57], requiring access to both sides of the fibre but yielding
stronger signal levels, or it can be passively read out by registering the backscatter
trace due to spontaneous Brillouin sensing [60] from a single pulse, requiring access
to only one fibre end but resulting in lower signal levels. Most Brillouin scattering
systems employ one or more fibre amplifiers for high pulse energies and require
high-performance signal processing hardware [58]. Sophisticated stimulated Brillouin
systems can obtain performance parameters [59] of 100 km sensing length with 2m
spatial resolution, temperature resolutions of 1.5°C and/or a longitudinal strain
resolutions of 30 pe [59,61] and typical acquisition times of seconds [62].

2.3. Fibre Grating Sensors

Fibre Bragg Grating (FBG) Sensors: The origin of fibre grating sensors develop-
ment lies in the discovery of the photosensitivity [63] of germanium-doped optical
fibre and the subsequent exploitation of this phenomenon to write FBGs [64] for
telecommunication and sensing applications, where FBGs have since gained large
popularity [65]. The working principle of FBGs is illustrated in Fig. 2.3(a), where
a resonance condition exists when wavefronts back-reflected from each consecutive
index modulation node within the fibre core overlap coherently. This occurs when
the spatial period of the back-reflecting nodes is half that of the optical wavelength
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Figure 2.3.: Illustration of the resonance conditions of fibre Bragg gratings (a) and long-period
gratings (b) as well as the typical shape of a corresponding reflection (a) or transmission (b)
spectrum with dependence on temperature T' and longitudinal strain e.

in the fibre core medium. The resulting peak in the reflection spectrum of an FBG
is then subject to changes in its spectral position in response to the OPD change
induced by measurands such as temperature or longitudinal strain (see also Sec. 2.1),
and where typical FBG sensor gauge lengths are on the order of 5 to 10 mm [66].

In most cases, FBGs are interrogated using wavelength-based interrogation, meas-
uring the spectral position of the FBG peak using a wavelength-tunable laser or a
broadband source in conjunction with a wavelength-tunable filter or spectrometer.
An advantage of using wavelength-based interrogation is the polarisation insensitivity,
and, because only the position of the peak is the registered quantity, immunity to
power variations [65]. Intrinsic wavelength sensitivities of FBGs are on the order of
1 pm/pue for longitudinal strain and 10 pm/K for temperature (at A\g = 1.3 um) [67].
Using typical wavelength-based interrogation systems, absolute static strain res-
olutions on the order of 1 ue or, equivalently, temperature resolutions 0.1°C can
be achieved with dynamic strain resolutions down to 5 ne - Hz=%% and update rates
in the kHz range [15,65]. Alternatively, interferometric interrogation of FBGs can
be employed to obtain higher dynamic resolutions [68], however, in this case only
relative signal changes can be measured and polarisation sensitivity exists.

A major advantage of FBG-based sensing is the ability to serially multiplex
FBG point sensors (see also Fig. 2.1(a)) along one fibre in a simple fashion using
wavelength-division multiplexing (WDM) [67], with each FBG written at a different
centre wavelength, allowing typically up to 30 FBGs to be multiplexed, depending
on the required dynamic range [69]. As previously discussed in Sec. 2.1, FBGs
are sensitive to both temperature and longitudinal strain and temperature-strain
discrimination techniques may need to be employed. Furthermore the use of FBGs to
measure other measurands, such as pressure sensing [70] using appropriate external
transduction mechanisms (see also Sec. 2.1), has also been explored.

Quasi-Distributed Point Sensing using Fibre Bragg Gratings: As described
above, the number of FBGs that can be multiplexed using WDM is limited. Thus,
in order to implement large quasi-distributed point sensing arrays, as illustrated
in Fig. 2.1(b), low-reflectivity, equidistantly-placed FBGs have to be evaluated at
the same nominal wavelength using range-resolved interrogation techniques. Such
systems have been implemented using OTDR [71] and OFDR [72], where the latter
approach offers higher spatial resolution and faster scanning speeds [73]. Up to 3000
FBGs placed 1 cm apart, over an acquisition time of 15s, have been multiplexed
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using an OFDR technique [74] and efficient mass-production of FBGs using draw
tower gratings [75] with the same illumination phase mask is possible.

An area where quasi-distributed point sensing using FBGs can be used beneficially
is fibre optic bend sensing (see also Sec. 2.1) in a multi-core fibre [76,77]. Here,
the interrogation of a large number of sensors, with sensor spacing in the cm range,
permitted by OFDR techniques [72,74], as mentioned above, allows the shape of
an optical fibre to be followed through space with high spatial resolution. However,
problems with the use of a large number of FBGs at the same nominal wavelength
include spectral shadowing and multi-path interference effects as investigated in
detail by Yiiksel et al. [73].

Long Period Gratings: Originally developed for telecommunication applications,
LPGs have also been widely used for sensing purposes [78,79]. LPGs have periodic
index perturbations at a spatial period much wider than the optical wavelength,
typically 0.1 to 1 mm at typical gauge lengths of [, ~ 30mm [79]. Unlike FBGs,
where back-reflected light is in resonance, the resonance condition in LPGs is between
forward-propagating modes in the fibre core and those coupled into the cladding by
the regular index perturbations of the LPG, as illustrated in Fig. 2.3(b). Due to the
lossy nature of cladding modes, a dip in the transmission spectrum will occur for each
of the several cladding modes that can be resonant, each with distinct sensitivities,
as shown in the spectrum in Fig. 2.3(b). Intrinsic wavelength sensitivities of LPGs
can reach up to 100 pm/K and 2 pm/ue, which is higher than those of FBGs [79].

A considerable advantage of LPGs is that their properties and sensitivities can be
very well tailored to specific requirements [80]. Also, compared to most other types
of fibre sensors, in LPGs the presence of multiple attenuation bands can be used for
single parameter sensing, i.e. exclusively sensing temperature or longitudinal strain,
with a single sensor [80]. Further applications of LPGs include bend sensing, where
LPGs can show very high curvature sensitivities and allow directional curvature
measurements when written in non-radially symmetric fibres [81,82]. Another wide
application field for LPGs is refractive index sensing, exploiting the sensitivity
of LPGs to the refractive index of the medium surrounding the cladding. With
appropriate coatings, this allows many kinds of chemical and environmental sensing
applications to be performed [83]. Disadvantages of LPGs are the need for them to
be desensitised in some applications to reduce the impact of the surrounding medium
on the measurement [79] and their limited multiplexing capability [84].

2.4. Interferometric Sensors

Short-Gauge Length Interferometric Sensors: Short-gauge length interferometric
sensors are also widely referred to as Fabry-Perot sensors. Here the interference
between the signals from two reflective surfaces is evaluated to measure the OPD
between the surfaces. The corresponding sensor gauge length is typically very
small, well below 1 mm in most cases cited here, making Fabry-Perot sensors a close
approximation to true point sensors. For low reflectivities of the constituent surfaces,
a two-path interference transfer function (further discussed in Sec. 3.1.1) can be

10
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Figure 2.4.: Illustration of (a) intrinsic Fabry-Perot sensor, (b) extrinsic transducer Fabry-Perot
sensor (both (a) and (b) adapted from Grattan et al. [54]) and (c) extrinsic Fabry-Perot diaphragm
pressure sensor by Cibula et al. [90].

assumed, otherwise multi-path interference effects occur [85] that alter the transfer
function. Fabry-Perot sensors can be interrogated at one wavelength using simple
fringe-counting for relative measurements without information about the sign of
the phase changes. Often, however, they are interrogated spectrally over a wide
wavelength range to obtain absolute measurements of the OPD in the sensor [54,86].
Also, time-domain low-coherence interrogation with a moveable reference arm can
be used [87] for absolute measurements. Using spectral interrogation and statistical
estimation techniques [88,89], resolutions below 1 ppm can be achieved, equalling a
displacement resolution of 100 pm over a typical dynamic range of 100 pum.

Fig. 2.4 shows typical examples of Fabry-Perot sensors [54], where in Fig. 2.4(a) a
generic intrinsic Fabry-Perot sensor [91] is drawn that consists of two semi-transparent
in-fibre reflectors. In an extrinsic Fabry-Perot sensor [92], such as the one shown
in Fig. 2.4(b), the air-to-glass end-face reflections of the interrogation fibre and a
further place-holder fibre on the right define the air-filled sensing cavity. Here, the
ferrule acts as a transducer determining the sensitivity to the desired measurand.
Fig. 2.4(c) shows a recent design for an extrinsic Fabry-Perot diaphragm pressure
sensor [90], with the reflective diaphragm produced from the optical fibre tip by an
etching process. A drawback of Fabry-Perot sensors is the difficulty in multiplexing
sensors [93]. In the approach by Wang et al. [94] several intrinsic Fabry-Perot sensors
have been multiplexed using low-reflectivity broadband FBGs acting as in-fibre
partial reflectors, which, however, results in different gauge lengths for each sensor.

Long-Gauge Length Interferometric Sensors: The principle difference between
long-gauge length interferometric sensors, with gauge lengths well above 1 mm,
sometimes up to hundreds of meters, and Fabry-Perot sensors discussed above
lies in the interferometric signal processing techniques that can be used. Here,
signal processing techniques appropriate for long-gauge length interferometric fibre
sensors are also discussed in detail in Chap. 3. Some of the earliest long-gauge
length interferometric fibre sensors were used as fibre-optic hydrophones [95] or for
longitudinal strain or temperature sensing [17, 18] (see also Sec. 2.1). These were
basically fibre-based implementations of well-known interferometric configurations.
An example of a fibre-based Mach-Zehnder hydrophone or longitudinal strain sensor
is shown in Fig. 2.5(a). Using high-performance interferometric signal processing
(see Chap. 3) very high phase sensitivities below 1 urad - Hz=%5 [96] can be achieved
with long-gauge length interferometric sensors, where 1 urad - Hz %5 equates to
a longitudinal strain resolution of 100fe-Hz %° for a gauge length of [, = 1m
and 10fe-Hz % for I, = 10m [30,97] (at \g = 1.55um). A major drawback of
long-gauge length interferometric sensing, absent in FBGs and short-gauge length
interferometric sensing, however, is their inherent polarisation sensitivity due to the
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(a) Sensing Arm (b) In_ S1 R1 (c) In_ Sensing Arm
| Out A M A3 Solid Sensor Tube
_n> —u> €, T <
B Out T2

Reference Arm M S2 Moy Reference Arm

Figure 2.5.: Illustration of a basic fibre optic longitudinal strain sensor or hydrophone in a Mach-
Zehnder configuration (adapted from Butter et al. [17]) in (a). A nested Michelson interferometer,
based on FBGs at different wavelengths, as proposed by Kersey et al. [105], is shown in (b), while
(c) sketches the working principle of the SOFO sensor by Inaudi et al. [106].

uncontrolled polarisation state evolution in a regular optical fibre. This can lead to a
phenomenom known as polarisation-induced signal fading [98,99] that can cause total
signal loss, but can be mitigated using polarisation-maintaining fibre, polarisation
controllers [100] or polarisation-diversity detection [101].

The need for optical hydrophones drove research into long-gauge length interfero-
metric fibre sensor arrays in a multitude of interferometric configurations and, as
the ability to multiplex sensors is the key to economic use of fibre hydrophones,
it received particular attention. The most widely-used multiplexing techniques
are based on time-division multiplexing (TDM), wavelength-division multiplexing
(WDM), frequency-division multiplexing (FDM), code-division multiplexing (CDM)
and coherence-division multiplexing. Common practical issues distinguishing these
techniques involve design simplicity, number of lasers and photo detectors needed or
achievable power budgets. Multiplexing techniques for long-gauge length fibre sensors
are reviewed by Sakai et al. [102], Kersey et al. [103], Nash [104] and Dandridge
et al. [30]. Those multiplexing techniques that are relevant to FSI are reviewed in
detail in Chap. 4.

A separate area of long-gauge length interferometric sensing is nested interfero-
meters, where some parts of the sensitive regions are shared between several sensors.
Fig. 2.5(b) shows an example of a nested interferometer in a Michelson configuration
proposed by Kersey et al. [105] using FBGs at different wavelengths as reflectors.
Here interrogation at wavelength \; yields the signal of sensor coil S1, while Ay yields
the signal from sensor coil S2. Interrogation at A3 then results in the differential
signal between S1 and S2, using an additional stationary reference coil R1, inserted
to provide the required non-zero OPD for interferometric signal processing.

Further uses of long-gauge length interferometric sensing can be found in structural
health monitoring in civil engineering. Here SOFO (Surveillance d’Ouvrages par
Fibres Optiques) sensors [106] are used to measure longitudinal strain over gauge
lengths of up to several metres [16]. The principle is explained by Fig. 2.5(c), where
two arms of a fibre Michelson interferometer are placed in a metal tube with one of
them attached to the tube, experiencing both longitudinal strain and temperature,
while the other fibre is only loosely inserted and acts as a temperature reference.
Interrogation is performed using low-coherence interferometry, yielding absolute OPD
measurements. Key to the success of this sensor concept is its stability, with typical
long-term OPD uncertainties of 2 ym, and that it can be used off-line requiring only
an occasional site visit with the interrogation unit [13].
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Fibre Segment Interferometry: In FSI!, multiple, non-overlapping fibre segments
that individually act as long-gauge length interferometric sensors are formed by
pairs of identical in-fibre partial reflectors. Also, a single, continuous sensing fibre,
using the same fibre end for light input and return, is employed, allowing easy
deployment. The interferometric configuration can be classified as a low-reflectance
reflectometric Fabry-Perot or Fizeau array [107], based on the assumption that the
in-fibre reflections are sufficiently weak that the interferometric transfer function can
be approximated by two-path interference (further discussed in Sec. 3.1.1). Because
of the reflectometric arrangement of the sensors in FSI, there is the possibility of
crosstalk due to interference signals from unwanted reflector combinations or multiple
reflections [103]. In most potential applications of FSI, the sensors are equal-length
and concatenated, thus reflectors are shared between two neighbouring segments
except at the ends of the array. Concatenated FSI then constitutes a quasi-distributed
long-gauge length sensing system as shown in Fig. 2.1(c). In this case, a particular
advantage of FSI is that the measurand is sensed continuously along the fibre and
thus phase changes are integrated over the segment length, leaving no sensing gaps.

_ Segment S1 | Segment 52 = Segment S3

In_ A\ A\ A /\ / continued

Out ) > ) =
<—  Reflector R1  Reflector R2  Reflector R3  Reflector R4

Figure 2.6.: Illustration of the basic principle of concatenated FSI, where four in-fibre reflectors
form three segments, each constituting a long-gauge length interferometric sensor.

In most FSI techniques, range-based signal separation is performed using the
physical time-of-flight of the light to the reflectors using range-resolved optical
interferometric signal processing techniques. Historically, the first FSI technique was
proposed by Dakin et al. [10] in 1984 for optical hydrophone applications with many
subsequent implementations also in this area [11,12]. The different range-resolved
processing techniques that can be used to implement FSI are reviewed in detail in
Chap. 4, with the basic concatenated FSI configuration also illustrated in Fig. 2.6.

Apart from signal processing, practical aspects of FSI involve the choice of in-fibre
partial reflector, which will be further discussed in Sec. 4.1. A considerable practical
advantage of FSI compared to, for example, WDM-based FBG sensing, is that
reflectors can be identical, thus easing production. Challenges in FSI include the
previously discussed possibility of polarisation-induced signal fading common to all
long-gauge length interferometric sensors. For the measurement of static quantities,
a major drawback of using FSI compared to, for example, FBG-based sensing is that
absolute measurements of the OPD cannot be performed due to the interferometric
27 phase ambiguity, further discussed in Chap. 3. Thus only relative measurements
from a given starting point by fringe counting can be performed. There are, however,
several possibilities to implement an absolute sensing capability for long-gauge length
interferometric sensors such as a two-wavelength approach [108,109] or using optical
frequency modulation [110].

!The term fibre segment interferometry (FSI) is first used in this thesis as no appropriate term
was found in prior work to describe this group of techniques.
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Chapter 2

Review of Fibre Sensing Technology Section 2.5

2.5. Summary Table

A brief summary of the main distinguishing features of the most widely-used fibre
sensing technologies reviewed in Secs. 2.2, 2.3 and 2.4 is given in Table 2.1.

Table 2.1.: Comparison of widely-used optical fibre sensing techniques.
Abbreviations used: Advantage (+), Disadvantage (—)

Technique Notes
Distributed Range-resolved recording of Rayleigh scattering power
Rayleigh (4+) Widely used for measurement of dynamic acoustic changes
[42,46,48-52]  (—) Other measurands possible but not widely used
Distributed Range-resolved recording of Raman scattering peak ratio
Raman (4+) Widely used due to exclusive sensitivity to temperature
[53-55] (—) Weak signals require long acquisition (= 10s)
Distributed Range-resolved recording of Brillouin scattering frequency shift
Brillouin (4) Interrogation of very long fibre lengths possible
[56—62] (—) Complex interrogation units and long acquisition (/= 1s)
FBGs Measurement of spectral position of resonance peak from grating
[15,63-70] (+) Frequency shift instead of intensity is evaluated => stability

Quasi-Distr.
Point Sensing

[71-77]

LPGs
[78-84]

Interferometric
Fabry-Perots
[54,85-94]

Interferometric
Long-Gauge
[16-18,30]
[95-106]

Interferometric
FSI
[10-12]

(+) Simple WDM multiplexing for FBGs at different wavelengths
(=) Only a limited number of FBGs can be easily multiplexed

Range-resolved measurements using a large number of FBGs
(+) Identical draw-tower gratings can be used
(=) Only for quasi-static measurements (= 10s)

Measurement of spectral position of grating-cladding resonances
(4+) Multiple peaks can be used for multi-parameter sensing

(4) Sensitivity to surrounding medium allows chemical sensing
(—) Difficult to multiplex

Interference between two closely-spaced (< 1 mm) reflectors

(4+) Absolute data using spectral or low-coherence interrogation
(4) Short gauge length allows true point measurements

(—) Difficult to multiplex

Interference between two widely-spaced (>> 1 mm) reflectors
(+) Widely used for optical hydrophones

(4) Very large sensitivities over long gauge lengths

(—) Possibility of polarisation-induced signal fading

Interference over multiple segments formed by weak reflectors
(4+) Quasi-distributed monitoring without sensing gaps

(4) Identical reflectors can be used for every segment

(=) No straightforward absolute measurements

(—) Possibility of polarisation-induced signal fading
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3. Review of Signal Processing for
Single Optical Interferometers

This chapter reviews optical interferometric signal processing techniques that can be
used for interferometric phase measurements in a single, two-path interferometer.
Interferometric signal processing is a very wide area, hence this review is limited
to techniques where the interferometer is illuminated with quasi-monochromatic
light [111] and that do not use wavelength-based evaluation, as only these are relevant
to the fibre segment interferometry (FSI) approach investigated in this thesis.

3.1. Basic Aspects of Optical Interferometric Signal
Processing

3.1.1. Interferometric Transfer Function

Evaluation of the phase information carried by electromagnetic waves has many
useful applications such as information encoding for communication purposes or the
measurement of phase delays due to a change in a physical quantity. However, in the
optical frequency region of the electromagnetic spectrum, unlike for low-frequency
radio frequencies, the phase information contained in the waves cannot be directly
measured as the frequencies involved are too high for direct detection and processing.
Instead, a technique known as interferometry can be used to measure phase differences
between two electromagnetic waves. In an optical interferometer, such as the Mach-
Zehnder interferometer previously depicted in Fig. 2.5(a), light passes through two
separate paths or interferometer arms and is then recombined, where, in general,
there exists an optical path difference (OPD) n = co7 between the paths, where ¢ is
the vacuum speed of light and 7 is the time-of-flight delay between the two arms of
the interferometer. A non-zero OPD results in a phase difference for the radiation
corresponding to the separate paths and, after recombination, a measurable signal
containing information about this phase difference may be obtained when the light is
detected by a square-law detector such as a photo diode. For two-path interference
of quasi-monochromatic light with complete polarisation overlap, the signal Uyq(?)
at the output of a photo detector can be written as [111]:

Upa(t) = R<P1+P2+2|’7(T)|\/P1P2 cos[Acb(t)]) with AdP(t) = ®y(t) — Po(t) (3.1)
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Chapter 3 Review of Signal Processing for Single Optical Interferometers  Section 3.1.1

Here, P, and P, are the powers of the light returning from the two interferometric
arms and R is the responsivity of the photo detector, relating input power to the
signal output. Here, the absolute value of the complex degree of coherence |vy(7)| is
used to incorporate temporal coherence as a function of the time-of-flight delay 7,
and which is related to the measurable visibility V' by [111]:

_Pmax—i_Pmin'_Pl—i_PQ T

(3.2)

The measurable visibility V', with values between 0 and 1, is obtained from the
fringe contrast using the maximum and minimum observable power, P.;, and Py,
respectively. In this thesis, the use of |y(7)| allows the separation of reductions in
visibility that are expected due to unequal power ratios between P, and P, from
those reductions that are due to a lack of coherence, which are now incorporated
solely in |y(7)], with values between 0 and 1. In Eq. (3.1) ®,(¢) and ®,(t) are
the respective phases of the electromagnetic radiation for the two arms and it can
be seen that, in principle, interferometry only allows the phase difference A®(t),
not the individual phases ®;(t) and ®5(t), to be measured. In many cases the
sensing quantity affects only one of the arms of the interferometer and in this case
the arm that is not affected by the sensing quantity is called the reference arm or
local oscillator (LO). Furthermore, the term /P, P, in Eq. (3.1) can result in the
phenomenon of heterodyne gain, where, for a strong LO, very weak signals from the
sensing arm of the interferometer can be effectively amplified.

Eq. (3.1) can also be described as the transfer function of the interferometer,
relating the phase difference input signal to the output signal at the photo detector,
which in the case of a two-path interferometer is cosine-shaped and is further illus-
trated in Fig. 3.1. Because the cosine-shaped transfer function of the interferometer,
given by Eq. (3.1), is highly non-linear outside the quadrature points with bias phase
differences A® = 7 + mm, where m is any integer, no straightforward determination
of the interferometric phase difference A®(¢) is possible. Also, because the transfer
function is periodic with 27, there is a projection of the absolute phase difference
A®(t) for values outside the [0, 27| interval onto this interval, a phenomenon that

Detector Signal Upd(A®)

Quadrature
Points\,

-7 T 0 n T — — Phase
2 2 <> <> Difference
Interferometric <\ <\ AD
Transfer Function dAD dAD

Figure 3.1.: Illustration (adapted from Kirkendall et al. [30]) of the cosine shaped transfer function
of a two-path interferometer, given by Eq. (3.1), with full visibility V' = 1 and an equal power ratio
P; = P,. As illustrated, an approximately linear transfer of the phase difference information dA®
is possible where the bias phase difference A® of the interferometer is on the quadrature points.
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is referred to as interferometric 2r-ambiguity and which prevents determination of
the absolute value of A®(¢) without further knowledge. To obtain continuous phase
signals, phase unwrapping [112] is usually employed, allowing reconstruction of the
phase signals by inferring any 27-interval change from consecutive phase changes.

In order to obtain linear information about the interferometric phase difference
A®(t) from the physically measurable signal of Eq. (3.1) regardless of the bias phase
difference, optical interferometric signal processing techniques have to be employed.
Interferometric signal processing techniques allow the linear determination of A®(t)
with the help of a phase modulation function that has been separately introduced
into the interferometer. In this context it is advantageous to split the description of
the interferometric phase difference A®(t) into AD(t) = p(t) + 6(t). Here p(t) is
the signal that carries the desired information about the OPD of the interferometer
and 6(t) is the described phase modulation function. In line with common usage,
the correct designation “difference” is dropped in this thesis, hence ¢(t) is referred
to simply as interferometric phase signal and 0(¢) simply as the phase modulation
function. Therefore Eq. (3.1) can be restated as:

Upa(t) = R(Pog + Pegr cos[io(t) + 0(t)]) (3.3)

Here, Py = P, + P, is the stationary offset power and Pz = 2|v(7)[v/ P, P> is the
effective interferometric power that is relevant to interferometric signal processing,
with |y(7)| defined by Eq. (3.2). In order to perform signal processing, a stationary
or time-variable phase modulation function 6(¢) has to be introduced into the
interferometer. The different ways in which 6(¢) can be used to recover the desired
phase signal ¢(t) will be reviewed in detail in the following sections.

3.1.2. Modulation Techniques

Optical interferometric signal processing techniques can be classified as homodyne
or heterodyne according to the type of phase modulation function 6(t) of Eq. (3.3)
employed. In heterodyne schemes, a constant optical frequency shift or carrier of
magnitude f. is introduced into the interferometer, thus () is of the general shape
0(t) = 2m f.t. Therefore, in heterodyne schemes, all possible phase values of the
interferometer are swept through continuously, while in homodyne techniques there
is no sweep and the average phase modulation function 6(t) is always zero.

While some homodyne optical interferometric signal processing techniques use
stationary phase offsets 6, most homodyne and all heterodyne schemes use a time-
dependent phase modulation function 6(¢) and thus require some kind of active
modulation. The different types of modulation can be classified as direct phase
modulation (homodyne) and direct frequency modulation (heterodyne), both within
the interferometer, and optical frequency modulation of the illuminating light induced
from outside the interferometer (homodyne).

Direct Phase Modulation: Direct phase modulation within the interferometer in
free-space optics can be applied using tilted transparent plates, diffraction gratings,
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rotating half-wave plates or moving mirrors [113]. Electro-optic crystal phase modu-
lators, such as those based on lithium niobate (LiNbOs) [114], can be built in both
free-space and fibre-coupled versions. Using modulators such as Piezo-electric trans-
ducers (PZT) [115,116], where fibre wrapped around the cylinder can be stretched
by an applied voltage, is a simple way to achieve phase modulation in fibre optics
without the light having to leave the fibre.

Direct Frequency Modulation: For direct frequency modulation within the inter-
ferometer, the most widely used device is an acousto-optic modulator (AOM) [117],
also known as Bragg cell, that uses high frequency acoustic waves to induce a static
Doppler shift on the transmitted light. Because AOMs are essentially free-space
devices, they require coupling optics that can be lossy when used in fibre-coupled
configurations and coupling efficiency can also be susceptible to temperature drifts
and vibration. Further approaches for direct frequency modulation that are inher-
ently compatible with fibre optics are the use of stimulated Brillouin scattering inside
long pieces of birefringent fibres [118] or using a fibre ring resonator [119]. Another
possibility for maintaining a frequency difference in an interferometer is to use two
separate lasers that are coherently locked with an absolute frequency offset and that
illuminate the two arms of the interferometer separately [120].

Optical Frequency Modulation of the llluminating Light: A fundamental prop-
erty of optical interferometry is that when a non-zero OPD exists between the two
arms of an interferometer, an induced optical frequency shift of the illuminating
light results in an interferometric phase shift that is proportional to the OPD for
near-static conditions. For transient optical frequency shifts this correspondence can
become more complicated [121], however, a nearly proportional behaviour between
OPD and resultant interferometric phase shift from optical frequency modulation
can often be assumed in practice and for the cases treated in this thesis. Thus
changing the illuminating optical frequency of an interferometer by using, amongst
others, injection current modulation for laser diodes [122-124], diffractive feedback
tuning for external cavity lasers [125,126], thermo-optic tuning [127] or using rapid
direct phase modulation before the light enters the interferometer [128,129] allows
the introduction of a phase modulation waveform that can be used as a carrier for
interferometric demodulation. Because the optical frequency modulation is applied
externally, it is fundamentally different to direct frequency modulation using, for ex-
ample, a Bragg cell within the interferometer. Mathematically, the phase modulation
waveform induced using optical illuminating frequency modulation is equivalent to
the same waveform introduced by an appropriate direct phase modulator inside the
interferometer and several of the interferometric signal processing schemes reviewed
later can be equally realized by either using external optical frequency modulation of
the illuminating light or by using a direct phase modulator within the interferometer.

3.1.3. Interferometric Configurations

Common Interferometric Configurations: Four widely-used interferometric two-
path configurations are shown in their fibre-coupled versions [85] in Fig. 3.2. The
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Mach-Zehnder interferometer of Fig. 3.2(a) can be described as a transmission
interferometer since light in the sensitive region only travels in one direction, whereas
in the other interferometer types, Figs. 3.2(b) to (d), light in the active regions
travels in both directions. The Michelson interferometer of Fig. 3.2(b) and the
low-finesse Fabry-Perot interferometer of Fig. 3.2(c) rely on reflections from partial
or full reflectors. The Fabry-Perot configuration can only be considered a two-path
interferometer in the limit of low reflectivity (low-finesse) of its constituent reflectors,
otherwise multi-path interference effects [130] that alter the transfer function from
its two-path version given by Eq. (3.3) or transient effects [131] might come into
play. For these reasons low-finesse Fabry-Perot interferometers are sometimes also
referred to as Fizeau interferometers [85].

(a) Mach-Zehnder Interferometer (b) Michelson Interferometer
Arm 1 Optical Arm 1
Optical Photo Source =
Source Detector
Photo )
Arm 2 Detector Arm 2
(c) Low-Finesse Fabry-Perot Interferometer (d) Sagnac Interferometer
Circulator . - Optical
Optical @ A Source
Source \{/ k /LS
Semitransparent Photo
Photo Reflectors Detector
Detector

Figure 3.2.: Illustration of four widely used interferometric configurations in their fibre-coupled
versions. The arrows indicate the intended direction of light travel and the sensitive regions of each
interferometer is highlighted.

The interferometric configurations of Figs. 3.2(a) to (c) can be described as dual-
path configurations, where in the case of the low-finesse Fabry-Perot interferometer
one of the two paths has zero length. In contrast, the Sagnac interferometer [132] of
Fig. 3.2(d) is a common-path interferometer as the light of both arms travels exactly
the same path, however in opposing directions. Thus the Sagnac interferometer is
automatically OPD-balanced and only non-reciprocal or transient effects occurring
asymmetrically in the loop give rise to changes of the phase signal ¢(t).

Remote Interrogation: In many applications for interferometric measurements,
it is required or beneficial to physically separate (isolate) the sensing region of the
interferometer from the interrogation unit for reasons including reductions in physical
size, lowering costs when multiplexed, mitigating influences on the measurand due to
the modulator or vibrations, or to achieve electrical passiveness. This requires light
corresponding to both interferometric arms to travel together to and from the remote
interferometer along a common free-space path or fibre lead, where the interferometer
should ideally be totally insensitive to any kind of perturbation on the common
path/lead. The various ways to achieve this are illustrated in Fig. 3.3, in this case
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Figure 3.3.: Illustration, using a free-space setup, of three configurations for remote or down-lead
insensitive interrogation, where physical separation between the interrogation and sensing unit
though a common path or lead is given and with the sensitive regions in each interferometer
highlighted. In (a), polarisation-sensitive path guidance equipment, such as linear polarisers
(LPOL) and polarising beam splitters (PBS), are used and the polarisation states are indicated by
appropriate symbols. In contrast, (b) and (c) rely on a non-zero OPD 7 of the sensing unit and
non-polarising guiding equipment, such as a non-polarising beam splitter (BS), is used.

for a free-space Michelson-type interferometer, where, for illustrative purposes, the
free-space version is shown instead of the equivalent fibre-coupled setup.

In polarisation-based path separation [113], illustrated in Fig. 3.3(a), light travelling
to and from the modulated and unmodulated interferometric arms is guided and
separated according to the unique polarisation state of each arm. Thus a direct
phase/frequency modulator can be included in the interrogation unit instead of the
sensing unit, however, passive polarisation manipulation and splitting elements still
need to be used there. A particular advantage of polarisation-based path separation
is that it can be used to interrogate OPD-balanced interferometers.

In coherence-based path separation [133,134], illustrated in Fig. 3.3(b), a non-zero
OPD in the sensing unit is compensated in the interrogation unit by a second inter-
ferometer of approximately inverse OPD and the low coherence of the illuminating
light ensures that only the intended path combination of near-zero effective OPD
after compensation gives rise to an interferometric signal. A direct phase/frequency
modulator may be included in the compensating interferometer to perform interfero-
metric signal processing. The low coherence can be a natural property of the source
or
which reduces phase noise because highly coherent optical sources can be used.
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In self-referencing remote interrogation, a non-zero OPD between the two interfero-
metric arms in the sensing unit allows the identification of the interferometric signals
based on its time-of-flight. This can be achieved through time-gating, but also by us-
ing optical frequency modulation of the light illuminating the sensing interferometer,
with both approaches further reviewed in Chap. 4. The principle of self-referencing
remote interrogation is illustrated in Fig. 3.3(c), highlighting the simple setup re-
quired to achieve down-lead insensitivity, however, self-referencing techniques require
a minimum OPD and do not work in OPD-balanced interferometers.

3.1.4. Quadrature Demodulation in Carrier-Based Processing

The final stages of most single carrier-based optical interferometric signal processing
techniques reviewed later in this chapter are very similar and require the demodulation
of the desired phase signal ¢(t) from a carrier signal, with the demodulation process
for dual carrier homodyne techniques also related. The demodulation techniques used
in these cases originate from communication techniques [136]. While traditionally
a variety of approaches, such as phase-locked loops [137], were used in optical
interferometric signal processing, in recent times, quadrature demodulation is favoured
in most cases due to its superior properties, such as simplicity, stability and accuracy,
when implemented digitally [138]. In general, carrier-based interferometric processing
techniques are subject to similar limitations of the quadrature signal bandwidth as
well as being prone to cyclic errors that limit accuracy. Therefore these common
attributes are discussed here before the schemes are reviewed individually later.

Demodulation Process: The principle of single carrier quadrature demodulation
[138] is illustrated in Fig. 3.4. Here, the incoming signal from the photo detector,
Upa(t), where the desired phase signal o(t) is phase modulated onto a carrier of
frequency f., is multiplied (mixed) with the sine and cosine versions of the carrier
signal at frequency f.. The sum and difference frequencies arising from these
multiplications thus shift the offset frequencies to 2f, and 0, respectively. Also, any
remaining DC offset in the photo detector signal Uyq(t) will now be shifted to a
frequency offset of f.. The signals from the sine and cosine channels are subsequently
low-pass filtered with quadrature cut-off frequency fq o < 0.5f; to exclude the sum
frequency components centred at 2f. and any former DC component at f., resulting

o LP Im{Uy(t)}
@ Jaeo sinfep(t)] tanl Wz(t)}l
Una(t) sin[2nf.t] Tm"y ¢(t)
........................................... COS[QTEfCt] Re.ﬂUQ(t) S S A—
®") Lp || cosle()]
Modulated fo.co Quadrature Coordinate Wrapped
Signal Demodulation Signal Uy(t) Transformation | Phase Signal

Figure 3.4.: Illustration of the single carrier quadrature demodulation process (adapted from
Bauer et al. [138]), showing the demodulation stage, including multiplication and low-pass (LP)
filtering with quadrature cut-off frequency fq co, resulting in the complex quadrature signal Uq(%).
Following this the coordinate transformation stage then yields the wrapped phase signal p(t).
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in the complex quadrature signal Uq(t). The real and imaginary parts of Uq(t) are
then subjected to an arctangent operation in the coordinate transformation stage
to obtain the phase signal ¢(t), which, due to the interferometric 2r-ambiguity, is
wrapped (projected) onto the interval [—m, 7]. As discussed previously, the phase
signal then needs to be unwrapped [112] to extend its value range beyond .

Quadrature Signal Bandwidth Requirements: In every interferometric signal
processing system according to Fig. 3.4, the bandwidth of the complex quadrature
signal Uq(t) is limited by the cut-off frequency fq o of the low-pass filter (LP) shown.
The bandwidth requirements of a given phase signal are conveniently expressed by
the quadrature bandwidth' Bq, where Bq < fq.co is necessary for proper operation
of the interferometric signal processing. Due to the cosine-shaped transfer function
of Eq. (3.3), it is a general property of interferometric systems that phase signals at
frequency fs, may have quadrature bandwidths of many multiples of f4, in order
for them to be resolved [30]. This is a well-known fact in frequency modulated
communications and radio engineering, and is normally approximated by Carson’s
rule [11,139,140], which defines the bandwidth at which 98% of the power of a
sinusoidal signal is transmitted and which is given by [140]:

B ~ (|fipel + | fusl) (3.4)

For the simplified case of a sinusoidal test signal, with phase signal amplitude Agg,
and frequency fsg, ©(t) is given by:

©(t) = Agig - SIn[27 feigt] (3.5)
The peak instantaneous frequency f; ik can then be stated as:

fi,pk = Asig : fsig (36)

Using Eq. (3.4), this results in the following approximate relation between the
absolute values of the maximum permissible amplitude |Ag,| and frequency | fgg| for
a sinusoidal phase signal at any given absolute value of |Bg:

B
| Asig| ~ Bal _, (3.7)
|fSig’

The lines defined by Eq. (3.7) are plotted in Fig. 3.5 for four cases of Bqg =
[17,37,153, 177] kHz, which, including an additional safety factor of 15% as discussed
later in Sec. 5.5.2, are the maximally resolvable bandwidths corresponding to the
quadrature cut-off frequencies fq ., = [20, 43, 180, 208] kHz that are relevant in the
later experiments in Chaps. 5, 6 and 7. Sinusoidal phase signals with parameters
located to the left and below these lines can be readily resolved, while those located
to the right and above these lines will give spurious readings. Phase signals in real

'In this work, in line with common usage, all bandwidth specifications for low-pass filters specify
the single-sided bandwidth starting from zero frequency onwards, implicitly implying that this
bandwidth is mirrored in the negative frequency sideband.
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Figure 3.5.: Quadrature signal bandwidth requirements of a sinusoidal phase signal of frequency
fsig and amplitude A, for example quadrature bandwidth values Bq that are relevant to later
chapters, where the lines drawn are the borders of the resolvable signal parameter regions.

applications that are more complicated than a simple sine function may need further
investigation [30] but the general behaviour evident in Fig. 3.5, regarding the inverse
relation between phase signal amplitude and frequency, remains valid.

Cyclic Errors: Cyclic errors, sometimes also described as periodic non-linearity
errors, are 2m-periodic inaccuracies in the demodulation process common to most
carrier-based interferometric signal processing techniques [141,142]. This is because
in order to perform correct demodulation in a carrier-based demodulation scheme,
the carrier is only permitted to occupy a single sideband in the complex frequency
spectrum. When this is not given and spectral components at the chosen carrier
frequency do not vanish in the undesired sideband of the complex frequency spectrum,
cyclic errors will ensue. The magnitude of the cyclic errors is dependent on the
carrier amplitudes ratio between the desired and undesired sidebands of the complex
frequency spectrum. Additionally, cyclic errors can also occur when the signal power
corresponding to a complex exponential term that is not dependent on the phase
signal ¢(t) infiltrates into the quadrature signal Ug(t) due to, for example, crosstalk
between signal sources or non-idealities in the demodulation process.

In order to model the dominant cyclic error types, the complex quadrature signal
Uq(t) can be expressed in terms of two ¢(t)-dependent complex exponential terms
of amplitudes a; and ay as well a stationary complex exponential term of amplitude
a3, with phases o, as and «s, respectively?, as:

Uq(t) = ai exp [j : (gp(t) + al)} + as exp {—j : (gp(t) + ag)} + asexp {j : 043} (3.8)

In the ideal case without cyclic errors, only the first exponential term in Eq. (3.8)

2Eq. (3.8), has been obtained by re-expressing the analysis of Wu et al. [141] using complex
exponential terms.
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(a) Ideal Demodulation (b) Non-ldeal Demodulation (c) Cyclic Errors
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Figure 3.6.: The quadrature signal Uqg(t) plotted in the complex plane will resemble a circle (a)
for an ideal demodulation and an offset ellipse (b) when neither as or a3 vanishes in Eq. (3.8). This
results in cyclic errors, illustrated in (c) for a section of a triangular phase signal.

will contribute to the quadrature signal and both amplitudes ay and a3 as well as ay
will reduce to zero. In this case the desired phase signal ¢(t) can be obtained without
cyclic errors using an arctangent operation, as previously shown in Fig. 3.4. When
plotted in the complex plane, the ideal quadrature signal for a; # 0 and as = a3 =0
will be perfectly circular and centred on the origin, as shown in Fig. 3.6(a). For as # 0
the plot of the quadrature signal will turn elliptic and az # 0 will offset the origin of
the plot. This is illustrated in Fig. 3.6(b), which also shows the effect that the angles
aq and as have in respect to the orientation of the semi-major axis of the ellipse and
ag in respect to the position of the ellipse origin. With as # 0 and/or ag # 0 cyclic
errors will result, which lead to phase-dependent periodic deviations of the measured
phase value from the true phase value ¢(t). For error amplitudes that are not too
large, offset errors due to az # 0, originating from crosstalk, will result in one-cycle
non-linearities with periodicity 27, while errors due to as # 0, originating from
imperfect sideband suppression, result in two-cycle non-linearities with periodicity
7 [141], where the combined effect of both types of errors is illustrated in Fig. 3.6(c).

3.2. Review of Non-Carrier-Based Processing

3.2.1. Passive Homodyne Processing

In passive homodyne processing n photo detectors are used and stationary phase
offsets, 6,,, are maintained between the interference signals incident on the individual
detectors. The interferometric phase signal ¢(t) can then be recovered by appropri-
ately combining the signals from the n detectors using basic trigonometric identities.
A common requirement of most passive homodyne processing techniques is the need
to calibrate the offset signal and gain factors from the detectors [143,144] to avoid
cyclic errors (see Sec. 3.1.1) or otherwise employ a “differentiate and cross-multiply”
(DCM) algorithm [145]. Here, the phase signal obtained by a DCM algorithm is
inherently free from cyclic errors, however, the phase signal is multiplied by an
unknown constant whose value is furthermore subject to power and visibility drifts.

A 3x3 fibre coupler [145] has been used to implement passive homodyne processing
in a fibre-based setup as shown in Fig. 3.7. Here, the n = 3 outputs of the coupler
correspond to stationary phase offsets 6, = [+120°,0,—120°] respectively for a
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Figure 3.7.: A typical fibre-coupled passive homodyne setup [145] with a 3x3 coupler in a Mach-
Zehnder configuration is shown.

symmetric coupler. The widespread use of passive homodyne processing in fibre
sensing technology appears to be hampered by the fact that 3x3 couplers are complex
to produce and imperfections in coupling constants need to be individually calibrated
and might also be subject to uncontrollable temperature or polarisation drifts. Also,
three photo detectors are needed for each interferometer. Nevertheless, advantages
include the absence of an active modulated element, its capability of working in an
OPD-balanced setup, thus mitigating laser phase noise, and its, in theory, unlimited
quadrature signal bandwidth. In other areas, such as precision free-space displacement
measuring interferometry, a passive homodyne technique known as polarisation-based
quadrature homodyne interferometry [141,146] is widely employed, making use of
the 90° phase offset inherent in circularly polarised light.

3.2.2. Phase Stepping Homodyne Processing

Phase stepping, also known as phase shifting interferometry, is a group of homodyne
techniques where discrete phase steps are applied in a fixed temporal sequence to
an interferometer. Unlike carrier-based techniques reviewed later in this chapter,
the signal processing is not continuous. Thus, whereas in carrier-based techniques
phase signals ¢(t) can be resolved up to a given signal bandwidth, phase stepping
processing assumes fully static phase signals. Therefore, phase stepping techniques
are primarily designed to obtain measurements of static phase values, ¢, employing
a minimum amount of steps and are mostly used in imaging interferometry [147]. It
has, however, also been employed in fibre interferometers by Kersey et al. [148] using
optical illuminating frequency modulation and by Milnes et al. [149] using direct
phase modulation, with the former using a minimalist two phase step approach.

The principle used in phase stepping processing is that the modulation phase 0(t) of
Eq. (3.3) is altered using a direct phase modulator or by optical frequency modulation
of the illuminating light (see Sec. 3.1.2) in a number of discrete phase steps, often
four steps of magnitude 0.57. This is illustrated in Fig. 3.8, where Fig. 3.8(a) shows
a four phase steps sequence with steps 6; to 4, while Fig. 3.8(b) shows a typical
resultant signal for a single pixel or photo detector. The desired interferometric
phase value ¢ can then be found using a multitude of possible algorithms [150, 151].

The disadvantages of phase stepping techniques are that any error in phase step
amplitude or transient changes through vibration or in illumination power can affect
the measurement accuracy, however, some algorithms are specifically designed to
mitigate such problems [150,151]. While many phase stepping techniques rely on
discrete phase steps, there are some related techniques, also mainly used in imaging
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Figure 3.8.: Illustration in (a) of the phase steps applied and in (b) of resultant signals at a single
photo detector or camera pixel for an example phase value of ¢ = 7/12 (adapted from Creath [113]).

interferometry, that use continuous sinusoidal [152,153] or triangular modulation
waveforms [154], which both have advantages in easing the requirements on the phase
modulator. Since the modulation waveform is continuous in these cases, if a camera
detector is used, the integration over the exposure time has to be taken into account
in the algorithm. However, even though the modulation waveform is continuous, the
phase extraction algorithms still assume static phase values ¢, similar to the regular
phase stepping techniques described above. A further variant of phase stepping
signal processing is often used for interferometric fibre-optic gyroscopes [155, 156]
based on the Sagnac interferometer (see Fig. 3.2). Here, a phase modulator rapidly
varies the phase periodically between the positive and negative quadrature points at
phase offsets of 7. If the interferometric phase () is exactly 0 this will result in
a DC-only signal. Any departure from ¢(¢) = 0 will result in an AC signal at the
changeover frequency with an amplitude that is initially proportional to () and
which can be used as a measurement signal.

3.2.3. Active Homodyne Processing

In active homodyne detection [116], a control loop is employed to maintain the
interferometer biased at the quadrature point, where, as described in Sec. 3.1.1,
the interferometer has a nearly linear response with respect to small changes in the
desired phase signal ¢(t) of Eq. (3.3). When the interferometer is maintained on the
quadrature point, large-scale phase changes will be manifested in the output of the
control loop, providing an additional phase measurement with high dynamic range,
albeit, only at a bandwidth well below the control loop bandwidth. A typical setup
for actively controlled homodyne processing is shown in Fig. 3.9.

To keep the interferometer on the chosen quadrature point, the phase within the
interferometer has to be changed in response to the control loop (see also Sec. 3.1.2),
either by direct phase modulation [116] or by optical frequency modulation of the
illuminating light in a setup with non-zero OPD [157]. In general, when direct phase
modulation is used, the phase modulator can be placed inside the interferometer as
shown in Fig. 3.9 or in a remote interrogation configuration [158] (see also Sec. 3.1.3)
where the phase modulator is separated from the sensing interferometer. Drawbacks
of active homodyne processing are that resets of the control loop might be necessary
if the phase modulator driving signal reaches its limit. Also, multiplexing of sensors
requires an individual phase modulator for each interferometer. However, because
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Figure 3.9.: Illustration (adapted from Kirkendall et al. [30]) of a typical active homodyne setup.
A low-pass filtered phase signal with large dynamic range can be obtained from the driving signal
of the PZT phase modulator. Conversely, a high-pass filtered version of the phase signal is available
at the output of the differential amplifier.

it is a convenient way to balance an interferometer to eliminate laser phase noise,
active homodyne processing appears to be the technology of choice when very
high interferometric sensitivities are required [30], with phase noise levels lower than
1 urad-Hz ® reported [96] using this technique. Further variants of active homodyne
processing, known as Ji(max), Ji(null), J;/Jy or Jy/Js-methods [159, 160] that
employ small scale sinusoidal phase modulation around the quadrature points have
also been developed in the area of precision displacement measuring interferometry.

3.3. Review of Single Carrier-Based Processing

3.3.1. Heterodyne Processing

In heterodyne optical interferometric signal processing [161], a single carrier at
frequency f. is maintained between the two arms of the interferometer by a suitable
direct frequency modulation technique (see also Sec. 3.1.2). Mathematically this
corresponds to a continuous phase modulation function 6(t) = 27 f.t in Eq. (3.3)
where the modulation frequency of the AOM equals the carrier frequency f. used for
demodulation and the desired phase signal () can be demodulated as illustrated in
Fig. 3.4. A typical free-space heterodyne Mach-Zehnder interferometric configuration
that is widely used in laser vibrometry [138] is shown in Fig. 3.10, also employing
polarisation-sensitive equipment to reduce power losses due to light guiding. In
order to implement heterodyne signal processing, an AOM induces a direct frequency
modulation at f. and the movement of the target can be retrieved from the phase
signal ¢(t) after demodulation.

A key advantage of heterodyne interferometry is that it is practically free from
cyclic errors (see Sec. 3.1.1) because direct frequency modulation ideally only con-
tains frequency components in a single sideband. This appears to hold well in
practice as publications investigating cyclic errors in precision displacement measur-
ing heterodyne interferometry, such as McRae et al. [142], do not discuss problems
due to the frequency modulator but rather find cyclic errors originating from the
polarisation-based path separation required for the remote interrogation configura-
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Figure 3.10.: Typical free-space Mach-Zehnder interferometer with heterodyne signal processing
used for vibrometry applications [138]. Here polarising beam splitters (PBS), non-polarising beam
splitters (BS), quarter-wavelength plates (A/4), lenses and mirrors are used to guide the light to
and from the target and through the acousto-optic modulator (AOM).

tion (see Sec. 3.1.3) used. Also Bragg cells typically offer high frequency shifts of
many tens of MHz [138], allowing very high quadrature bandwidths. The practical
difficulties of using direct frequency modulators, described in Sec. 3.1.2, can be con-
sidered a drawback of heterodyne interferometry, especially for fibre-coupled sensing.
However, heterodyne processing is very widely used in a diverse range of areas such
as precision displacement measurements [142,162], vibrometry [138,161,163] and
Doppler lidar anemometry [3-9].

3.3.2. Single Carrier Homodyne Processing

Single carrier homodyne processing encompasses all homodyne techniques where the
interferometric phase signal ¢(t) can be recovered from a single carrier frequency and
demodulated as illustrated in Fig. 3.4. In homodyne single-carrier techniques, the
carrier is introduced by periodic phase modulation, which results in multiple harmonic
frequency components, and not by direct frequency modulation as in heterodyne
processing. Thus, apart from the chosen carrier frequency, other harmonic frequency
components of the phase modulation waveform that also act as carriers, may be
present in the resultant photo detector signal Upyq(t) of Eq. (3.3). Hence suitable
filtering is required to limit the demodulation to the chosen carrier.

Common phase modulation waveforms used in single carrier homodyne processing
are of serrodyne (sawtooth) or sinusoidal shape and these waveforms can be introduced
by both direct phase modulation or optical illuminating frequency modulation in
interferometers with a non-zero OPD (see also Sec. 3.1.2). Historically, techniques
based on direct phase modulation with a serrodyne waveform are referred to as
single-sideband (SSB) homodyne, whilst those techniques based on serrodyne optical
illuminating frequency modulation are termed pseudo-heterodyne, even though
mathematically there is no difference. When a sinusoidal waveform is used, single
carrier demodulation is only possible using an additional window function, otherwise
dual carrier demodulation techniques, discussed in Sec. 3.4, need to be used.

In the context of the SSB technique, a set of equations that is based on the series
expansion of the cosine shaped interferometric transfer function of Eq. (3.3) for a
given periodic phase and optional intensity modulation function has been developed
by Ostwald et al. [164] and Voges et al. [165]. This theory would be sufficiently generic
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to allow the unified description of all single carrier homodyne processing techniques,
including those that use windowing, in a simple way. However, this possibility is
not widely realized and most schemes use independent theoretical approaches. The
details of the different approaches for single-sideband homodyne, pseudo-heterodyne
and windowed sinusoidal homodyne processing are reviewed in the following sections:

Single-Sideband Homodyne Processing: SSB signal processing is a technique that
originally evolved from radio engineering [164,166]. In the optical domain, several
approaches using stepped direct phase modulation [167,168] or continuous direct
phase modulation [165] have subsequently been developed for both communication
and sensing applications. In SSB, the periodic phase modulation waveform 6(t) is
usually introduced by direct phase modulation (see Sec. 3.1.2). The SSB approach
using direct phase modulation has found some applications, mainly for fibre optic
gyroscopes [169, 170], but it does not appear to be widely used in recent work.

The corresponding SSB theory developed by Ostwald et al. [164] for radio engin-
eering applications and first applied to the optical domain by Voges et al. [165] is a
generic approach specifying the shape and scale that a periodic phase-modulated
and possibly intensity-modulated waveform must possess for it to contain only pos-
itive or negative frequency components (termed sidebands) at the chosen carrier
frequency. This permits the desired phase signal ¢(t) to be demodulated as described
in Sec. 3.1.4 without cyclic errors. The periodic phase modulation 6(t) needs to fulfil
certain symmetry conditions [164], but is not limited to serrodyne waveforms. It
appears that this thesis is the first work that explores phase modulation waveforms
that differ in shape from serrodyne waveforms and this will be further discussed in
Chap. 5, along with a statement of the relevant SSB equations. In SSB processing
the chosen carrier frequency has to be a harmonic multiple of integer harmonic
index n of the modulation frequency f,,. Due to the possible presence of other
harmonic frequency components, the output signal from the photo detector has to
be band-limited to 0.5 f,, around the chosen carrier frequency f.=n- fu.

The working principle of single-sideband homodyne signal processing is also illus-
trated in Fig. 3.11, where (a) shows a free-space Mach-Zehnder setup that is used in
Voges et al. [165], employing a direct phase modulator, while Fig. 3.11(b) plots the
serrodyne phase modulation waveform 0(t) used there. The normalised waveform
g(t) is scaled with a scale factor, s, which is tuned until the correct phase excursion

(a) Typical Interferometric Configuration  (b) Phase Modulation (c) Carrier Coefficient
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Figure 3.11.: Hlustration (adapted from Voges et al. [165]) of single-sideband signal processing,
where (a) shows an example setup using direct phase modulation, (b) plots an example serrodyne
periodic phase modulation waveform, while (¢) compares the complex carrier coefficient amplitude
spectra for correct and incorrect phase scaling factors.
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is reached and single-sideband operation is achieved. Fig. 3.11(c) shows the effect of
this tuning by plotting the amplitude spectra of the complex carrier coefficients c,.
It can be seen that for the correct phase scale, i.e. s = 1.17, the carrier coefficient of
the unwanted sideband, here at n = —1, vanishes and single-sideband operation is
thus achieved for the carrier at n = 41, in contrast to the plot for s = 0.57, where
the amplitudes of both carriers at n = 41 remain non-zero.

Pseudo-Heterodyne Processing: Pseudo-heterodyne signal processing is most
often used with serrodyne optical frequency modulation of the light illuminating an
interferometer with non-zero OPD. This is sometimes also referred to as a frequency
modulated continuous-wave (FMCW) technique [171]. Its main attraction lies in the
fact that due to the use of optical illuminating frequency modulation, self-referencing
interferometric configurations can be used that prove highly stable, especially for
remote interrogation configurations (see Sec. 3.1.3).

(a) Typical Interferometric Configuration (b) Phase Modulation (c) Photo Detector
Waveform Signal
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Figure 3.12.: Illustration (adapted from Jackson et al. [172]) of pseudo-heterodyne interferometric
signal processing, where (a) shows an example setup using optical illuminating frequency modulation
by the optical source, (b) shows a typical periodic phase modulation waveform, while (c) plots the
shape of the signal at the output of a photo detector that can then be low-pass filtered to obtain a
single-frequency sinusoidal carrier signal.

The working principle of pseudo-heterodyne signal processing is illustrated in
Fig. 3.12, where Fig. 3.12(a) shows a free-space Mach-Zehnder setup that is used in
Jackson et al. [172], employing optical frequency modulation of the optical source,
while Fig. 3.12(b) shows the serrodyne phase modulation waveform of modulation
frequency fn, and phase scale 27 that is used there. Fig. 3.12(c) shows the resultant
signal Upq(t) from the photo detector in this case, where the effect of the fly-back
of the serrodyne waveform can also be observed. Most implementations of pseudo-
heterodyne processing make use of the assumption that the fly-back of the serrodyne
waveform can be neglected if the fly-back is sufficiently short and the filtering is
sufficiently good. In this case no cyclic errors are observed if, additionally, the tuning
of the scale of the serrodyne waveform is maintained at 2w, as verified by Onodera
et al. [173]. However, using the theoretical approach developed for SSB processing
discussed previously, the effect of the fly-back could be precisely quantified to adjust
the tuning of the serrodyne phase excursion. Alternative implementations of pseudo-
heterodyne signal processing use triangular phase modulation waveforms and employ
rectangular windowing (gating) to help mitigate fly-back disturbances [174].

Windowed Sinusoidal Homodyne Processing: In windowed sinusoidal modula-
tion techniques, the application of a window function through multiplication in the
time-domain results in a mixing of frequency components in the frequency domain.
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In the frequency domain this process can also be viewed as a convolution of the
spectra of the incoming signal and the window function. If the correct values for
the phase excursion of the sinusoidal phase modulation, the window width and its
symmetry centre are set, then one of the frequency sidebands will disappear in a
similar fashion to SSB processing discussed earlier. The interferometric phase signal
©(t) can then be demodulated without cyclic errors. Again, these effects could
be described by the single-sideband theory using the optional periodic intensity
modulation, however, this description appears to have not yet been attempted in the
literature. In general, the main advantage of using a sinusoidal modulation waveform,
compared to the serrodyne waveforms discussed previously, is the ease of modulation,
since the modulation drive signal only contains one frequency component [174]. In
contrast to the sinusoidal optical frequency modulation technique presented in this
thesis in Chap. 6 using a smooth window function, published work so far has only
used rectangular window functions (also termed gating).

Two approaches by Kersey et al. [175] and by Sakai et al. [128] can be found
in the literature. The interferometric configuration used by Kersey et al. [175] is
similar to the one shown in Fig. 3.11(a) using direct phase modulation, while the
configuration by Sakai et al. [128] using optical illuminating frequency modulation is
comparable to the one shown in Fig. 3.12(a), although either scheme could be made
to work with both types of modulation. Typical intermediate signal waveforms are
shown in Fig. 3.13 in arbitrary units with scales that are, however, at each stage
(i) to (iv), comparable for both approaches in Figs. 3.13(a) and (b). Here, stage (i)
shows the phase modulation waveform that is applied to the interferometer. While
for Kersey et al. [175] in Fig. 3.13(a), the phase modulation amplitude is exactly
2.82rad, Sakai et al. [128] allows several possible phase modulation amplitude values
with appropriate adjustment of the rectangular window width and, in general, uses
much higher phase modulation amplitudes than Kersey et al. [175]. Stage (ii) shows a

(a) Kersey et al. (b) Sakai et al.
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Figure 3.13.: Typical waveforms for the windowed sinusoidal processing schemes by Kersey et
al. [175] in (a) and Sakai et al. [128] in (b). In both (a) and (b), at each stage (i) to (iv), arbitrary
units with approximately comparable scaling between (a) and (b) are used. Stage (i) shows a
representation of the applied phase modulation. Stage (ii) shows the resultant photo detector signal
together with the applied rectangular window drawn in green and its symmetry in respect to the
phase modulation waveform indicated. Stage (iii) plots the resultant signal after windowing and
stage (iv) is the bandpass filtered version of stage (iii) used for demodulation of the phase signal.
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typical representation of the photo detector signal U,q(t) as well as the gating window
used, drawn using green boxes, where it can also be seen that the symmetry centres
of the window functions are offset by 90° for the two approaches. Stage (iii) shows
the resultant windowed signal, while in stage (iv) this signal is bandpass filtered and
allows subsequent demodulation of the phase signal ¢(¢) similar to Fig. 3.4. Due to
energy conservation and the shorter window length in Sakai et al. [128], the signal
amplitude is much reduced in Fig. 3.13(a)(iv) compared to Fig. 3.13(b)(iv).

There has been some use of windowed sinusoidal modulation processing in applic-
ations outside fibre gyroscopes and hydrophones for which the schemes by Kersey et
al. [175] and Sakai et al. [128] were originally developed, including vibrometry [176]
and magnetometry [177]. Also, a technique related to Sakai et al. [128] was inde-
pendently developed several years later by Chien et al. [178] for fibre gyroscopes,
however, there is little recent use reported. In general, it can be said that the ap-
proach by Kersey et al. [175] permits signal processing at a very low sinusoidal phase
modulation amplitude, easing modulation requirements, however, the approach by
Sakai et al. [128] is capable of addressing multiple sensors and its use in multiplexing
will be further reviewed in Chap. 4.

3.4. Review of Dual Carrier-Based Processing

Dual or extended dual carrier modulated homodyne processing encompasses all
techniques where the interferometric phase signal ¢(t) is recovered by evaluating
two or more carrier frequencies. In all schemes reviewed here, the multiple carrier
frequencies are the result of sinusoidal phase modulation. The sinusoidal phase
modulation waveform can be introduced by both direct phase modulation or optical
illuminating frequency modulation for an interferometer with a non-zero OPD and
both techniques are mathematically equivalent. In general, when a periodic sinusoidal
phase modulation waveform 0(t) = A cos(27 fi,t) of sinusoidal phase modulation
amplitude, A, and modulation frequency, f,, is applied to the interferometer,
Eq. (3.3) can be rewritten, using a Bessel series expansion [179,180], as

Upd<t> = Rpoff + Rpeﬁ : (

cos[ip(t)] ( A>+2z D)™ Jom(A) cosl(2m)2rfut]) (3.9
— sin[p (2i (—=1)" Jams1 A)COS[(Qm‘f'l)Qmet]))

Here J,,(A) are the Bessel functions of the first kind for integer harmonic index
n. It can be seen in Eq. (3.9) that in the Bessel function expansion, carriers at

even harmonics are amplitude modulated with the cosine of (), while carriers at
odd harmonics are amplitude modulated with the sine of ¢(t). The signals encoded
onto odd and even harmonic carriers can then be individually demodulated and
appropriately combined to obtain the desired interferometric phase signal ¢(t). This
can be achieved in a variety of ways, with widely used techniques reviewed here.
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3.4.1. Dual Carrier Homodyne Processing

The phasegenerated carrier method (PGC), introduced by Dandridge et al. [180], has
become a very popular dual carrier method, especially in the area of fibre optic sensing.
Though implementation of PGC is also possible using direct phase modulation, the
term PGC is often used synonymously for dual carrier interferometric signal processing
techniques based on sinusoidal optical illuminating frequency modulation. Initially,
prior to the availability of cost-effective digital electronic signal processing hardware,
the original PGC method [180] was based on the “Differentiate and Cross-Multiply”-
algorithm (DCM), also discussed in Sec. 3.2.1, however more recent implementations
favour phase recovery using the arctangent method [30] discussed below. Example
interferometric configurations that are compatible with PGC have previously been
shown in Fig. 3.11(a) for direct phase modulation and in Fig. 3.12(a) for sinusoidal
optical illuminating frequency modulation.

The arctangent method is the simplest possible dual carrier demodulation method.
Here the phase modulation amplitude A in Eq. (3.9) is tuned until the Bessel
coefficients for one even and one odd harmonic have the same value. The Bessel
functions for the first four harmonics J; to Jy are also plotted in Fig. 3.14(a), where
for example, the first and second Bessel harmonic J; and J; are found to be of equal
value at A = 2.63rad. The demodulation process for this choice of J; and .J; is
illustrated in Fig. 3.14(b), where it can be seen that the demodulation process is
very similar to the single carrier demodulation process shown in Fig. 3.4, with the
exception of the use of two cosine-shaped carriers at frequencies f.; and f.o, which
in this example equal f,, and 2f,,, respectively.

PGC techniques have become very popular due to their conceptual simplicity,
their ease of modulation using sinusoidal waveforms and the possibility of using
optical illuminating frequency modulation, allowing passive, remotely interrogated
interferometric sensors due to their self-referencing capability (see also Sec. 3.1.3).
Also, the compatibility with frequency-division multiplexing techniques, further
reviewed in Kersey et al. [181], where several optical sources with different modu-
lation frequencies f,, are used, makes them attractive for multiplexing fibre sensor
arrays. Outside its original use in fibre hydrophones [180], PGC has also found
applications in areas such as seismology [182], fibre-optic impact measurement [183],
fibre magnetometers [184] or fibre-optic accelerometers [185]. Hybrid PGC methods
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Figure 3.14.: [llustration of the working points in the Bessel function plot (a) and the demodulation
process (b) used in arctangent PGC phase recovery using dual carriers f; and fco.
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that use a technique related to the original DCM algorithm to determine the current
sinusoidal phase modulation amplitude A and use this knowledge to then correct the
arctangent method that is used to demodulate the phase signal ¢(t) have also been
proposed in recent years [186]. This approach combines the main advantage of the
DCM algorithm, i.e. demodulation without cyclic errors (see also Sec. 3.1.4), with
the immunity against power and visibility changes and the correct phase scaling that
arctangent demodulation offers.

In addition to what is generally termed PGC, several other dual carrier modu-
lated homodyne techniques using sinusoidal phase modulation waveforms have been
proposed, such as the sinusoidal phase modulating interferometry technique [187] in
the area of imaging interferometers, or, in the area of fibre-optics, the quadrature
recombination [188] or synthetic heterodyne [189] approaches. For instance, in the
synthetic heterodyne technique, signals from the first and second Bessel harmonic
carriers in Eq. (3.9) are multiplied by carriers at frequencies 2 f,,, and fy, respectively.
In both cases the sum frequencies lie at 3 f,, and, for the correct sinusoidal phase
modulation amplitude A, the appropriately filtered signals from these carriers can
be added to obtain a synthetic heterodyne carrier that can be demodulated in the
same way as a heterodyne carrier (see also Fig. 3.4).

3.4.2. Extended Dual Carrier Homodyne Processing

Extended dual carrier methods make use of more than two Bessel harmonic carriers
in Eq. (3.9) to obtain all the parameters required for the measurement of the
interferometric phase o (t) without the need for any calibration or feedback control.
In particular, the sinusoidal phase modulation amplitude A of Eq. (3.9) can be,
within limits, obtained directly in real time from the measurements and thus () can
theoretically be measured without cyclic errors (see also Sec. 3.1.1) even for changeable
environmental conditions. Techniques such as the J1..J4 approach [190,191] are
based on four Bessel harmonic carriers and analytically solve the parameters o(t)
and A. However, the valid range of the phase modulation amplitude A in J1..J4
techniques is still limited, typically to below A < 5rad [192]. Recently, in 2010, the
deep phase modulation approach evaluating up to 20 carrier harmonics has been
presented by Heinzel et al. [192] using direct phase modulation. Very recently, in
2015, a similar approach using optical frequency modulation of external cavity lasers
at kHz modulation frequencies has been proposed by Gerberding [193]. In all these
works, the Bessel equations are not analytically solved but numerical least-square
algorithms are used. Compared to phase extraction using the J1..J4 approach, the
deep phase modulation approach increases the valid range of A. Additionally, the
increase in measurement observables allows improvements in the signal-to-noise ratios
and permits the introduction of consistency checks [192].
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3.5. Summary Table

A brief summary of the main distinguishing features of the signal processing tech-
niques reviewed in Secs. 3.2, 3.3 and 3.4 for single interferometers is given in Table 3.1.

Table 3.1.: Comparison of optical interferometric signal processing techniques.
Abbreviations used: Advantage (+), Disadvantage (—), Direct Phase Modulation (DPM),
Direct Frequency Modulation (DFM), Optical Illuminating Frequency Modulation (OIFM)

Technique Notes
Passive Individual static phase offsets for multiple photo detectors
Homodyne  (+) No active element & unlimited bandwidth
[141,143-146] (—) Requires special hardware
Phase Multiple phase steps in a fixed temporal sequence
Stepping Phase steps applied using DPM or OIFM
[113,147-154] (+) Simple algorithms, minimized acquisition time
(—) Assumes static phase signals, errors from signal fluctuations
Active Interferometer held at quadrature point using control loop
Homodyne Quadrature point maintained using DPM or OIFM
[30,96,116]  (+) Very low-noise operation below 1 urad - Hz~%% possible
[155-160)] (—) One complete control loop required per interferometer

Single Carrier
Heterodyne
[3-9,138, 142]
[161-163]

Single Carrier
Serrodyne
Homodyne

[164-166]
[169-174]

Single Carrier
Windowed
Sinusoidal
Homodyne

[128,175-178|

Dual Carrier
Homodyne
[30,179-193]

(—) Control loop can overload, limiting dynamic range

Frequency offset introduced between two arms using DFM
(+) Stable demodulation without cyclic errors

(+) High quadrature bandwidths of many MHz possible
(—) No self-referencing configurations because DFM is used

Serrodyne modulation waveform applied using DPM or OIFM
Modulation scale tuned until unwanted sideband disappears
(4) Self-referencing configurations using OIFM

(—) Reproduction of serrodyne waveform difficult

(—) Cyclic errors result for wrong scale factor

Sinusoidal modulation waveform applied using DPM or OIFM
Appropriate window function suppresses unwanted sideband
(4) Self-referencing configurations using OIFM

(+) Simple sinusoidal modulation waveform

(—) Cyclic errors result for wrong scale or window width

Sinusoidal modulation waveform applied using DPM or OIFM
Two or more carrier harmonics are evaluated

Based on Bessel expansion for sinusoidal phase modulation
(+) Self-referencing configurations using OIFM

(+) Modulation scale can be self-calibrated using > 4 carriers
(—) Multiple carrier frequencies have to be evaluated
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4. Review of Configurations and
Signal Processing Relevant to
Fibre Segment Interferometry

This chapter aims to review basic configurations and range-resolved interferometric
signal processing techniques that have been used previously, or can, in principle, be
used to implement the fibre segment interferometry (FSI) approach that forms the
main theme of this thesis. In contrast to the previous chapters, the main focus here lies
on signal processing aspects arising from the interrogation of multiple interferometers
and on practicalities of interferometric measurements in FSI configurations. To limit
the scope of this chapter, some multiplexing techniques, such as coherence-division
multiplexing [134] are not reviewed, as, in an FSI setup, this approach would require
individual compensating interferometers for every reflective node present and hence
is not considered practical. Furthermore, wavelength-division multiplexing (WDM),
where interferometric sensors are separated in wavelength, could, in principle, be
used to multiplex several sensors in an FSI configuration (see also Kersey et al. [67]).
However, this requires a dedicated laser source for each interferometric sensor, which
is also not considered practical, except in combination with time-division multiplexing
(TDM), as discussed in Sec. 4.2. Comprehensive review articles covering the wider
field of interferometric sensor multiplexing (for both discrete and distributed sensing)
have also been compiled by Kersey et al. [103], Dakin [194], Kersey et al. [107],
Kersey [195], Rogers [69] and Kirkendall et al. [30].

In addition to techniques evaluating interferometric phase information, there are
several incoherent reflectometry techniques, such as subcarrier-based reflectometry
[196,197] or incoherent optical frequency-domain reflectometry [198] that are related
to FSI sensing. In common with FSI, these techniques may be used to interrogate
equidistantly spaced in-fibre partial reflectors forming fibre segments that act as long-
gauge length sensors, but because they do not use interferometric phase evaluation
these techniques generally operate at much lower measurement resolutions. However,
unlike interferometric phase evaluation techniques, these schemes directly measure
absolute optical path length values and are not polarisation sensitive and therefore
their use may be beneficial in certain applications.

In this chapter, some basic aspects of FSI, including typical configurations and the
choice of in-fibre partial reflectors, are first discussed in a general way in Sec. 4.1.
This is followed by more detailed reviews of prior work in TDM-based FSI in Sec. 4.2,
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FSI based on code-division multiplexing (CDM) in Sec. 4.3 and finally FSI based on
frequency modulation of the illuminating light before concluding with a summary
table of the reviewed FSI signal processing approaches.

4.1. Basic Aspects in Fibre Segment Interferometry

Fibre Segment Interferometry Configurations: In FSI, where a serial array of
low-finesse Fabry-Perot interferometers are interrogated, the occurrence of interference
signals from undesired reflector combinations or multiple reflections may lead to
considerable noise and crosstalk [103]. This is in contrast to other types of fibre
sensor array configurations, such as the forward-ladder topology [195], where different
terminals for input and return signals are used. Because sensors are interrogated
in a transmissive Mach-Zehnder configuration, these configurations are virtually
immune to the negative effects of undesired path combinations or multiple reflections.
However, unlike FSI, these configurations do not offer the simplicity and deployment
advantages of a single, continuous sensing fibre with light entering and exiting at
the same fibre end [199]. In FSI techniques, crosstalk can be reduced through signal
processing as well as by optimising the physical FSI configuration and both aspects
will be reviewed in detail in the remainder of this chapter.

Several interferometric configurations that can be used in FSI are illustrated in
Fig. 4.1. Here, all configurations are shown in a fibre-optic circulator-based setup,
however, at the penalty of increased losses, a simple fibre coupler could also be used.
In the direct configuration [10,11] shown in Fig. 4.1(a), light from neighbouring
reflectors interferes directly, yielding an interferometric phase signal, ¢(t), which
directly corresponds to the optical path difference (OPD) of the fibre segment that is
spanned between two neighbouring reflectors. For each segment, the nominal OPD is
1 = 2ng4ls, where [ is the physical length of the segment and n, is the group refractive
index of the optical fibre. In contrast, in the compensating configuration [199,200]
shown in Fig. 4.1(b), a compensating interferometer of OPD 7 = 2n,l reduces the
effective OPD of every segment interference to near zero, an approach related to
coherence-based path separation shown in Fig. 3.3(b). This OPD balancing can be
useful to reduce laser phase noise or to permit the use of low-coherence sources to
eliminate signals from undesired reflector combinations with non-zero OPD. In some
techniques, the compensating interferometer in Fig. 4.1(b) could alternatively also
be placed in front of the photo detector with equal performance.

Contrary to the direct and compensating configurations of Figs. 4.1(a) and (b),
which yield one interferometric phase signal per fibre segment, the common local
oscillator (LO) configuration [1,201-204] of Fig. 4.1(c) results in a separate inter-
ferometric signal for each individual reflector. Segment data can then be obtained
by numerical subtraction of the phase signals from two neighbouring reflectors.
Furthermore, in the common LO configuration, through altering the common LO
length, the position of the LO OPD balancing point can be placed anywhere along the
sensing fibre. In general, the direct and compensating configurations of Figs. 4.1(a)
and (b) are physically down-lead insensitive (see also Sec. 3.1.3), while the common
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(a) Direct Configuration Circulator L L
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Detector R2&R3 (n=2n,l)

(b) Compensating Configuration Circulator | L | L  continued
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(c) Common LO Configuration Circulator Iy . L | L  continued
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Figure 4.1.: Illustration of three basic FSI configurations. In (a), the interference occurs directly
between signals from neighbouring reflectors at segment distance s at non-zero OPD 1 = 2n,l;,
where ng is the group refractive index of the optical fibre. In (b), a compensating interferometer of
OPD n = 2n,l; is used to reduce the OPD of the desired interference signals to near zero. In (c), a
common local oscillator (LO) is used to interrogate signals from each reflector individually, leading
to unique OPDs for each reflector. Here, the LO offset length l,g, measured from the LO balance
point, is additionally required to calculate the OPD 7, as shown in the bottom right corner.

LO configuration of Fig. 4.1(c) only achieves down-lead insensitivity after numerical
subtraction of the reflector data when segment data is calculated.

In all three configurations shown in Fig. 4.1, an optional direct frequency or phase
modulator can be inserted for techniques that require such a modulator. In the
direct configuration of Fig. 4.1(a), the modulator inherently acts on both arms of any
segment interferometer, while in the compensating and common LO configurations,
the modulation within the two arms is different. Out of the three configurations
shown in Fig. 4.1, only the common LO configuration of Fig. 4.1(c) can be used for
techniques based on optical illuminating frequency modulation (discussed further
in Sec. 4.4), because there each reflector signal needs to be addressed by a unique
nominal OPD. In the common LO configuration, through the placement of the
LO balance point, signals from any unintended direct segment interference can
be arbitrarily offset in OPD from the desired reflector signals interfering with the
common LO, thus allowing range-based rejection of undesired signals, which will
be used beneficially in the experiments in Chap. 6. However, because the light,
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especially for the further away reflectors, has to travel long distances through the
fibre before interference, there is greater susceptibility to polarisation-induced signal
fading [98,99] (see also Sec. 2.4) in the common LO configuration of Fig. 4.1(c),
compared to the other configurations of Figs. 4.1(a) and (b). Key aspects of the
three FSI configurations of Fig. 4.1 are also summarised in Table 4.1.

The properties of the in-fibre partial reflectors used also influence the choice of
FSI configuration. For a given reflective power r Py, with reflectivity r of the in-fibre
partial reflectors and input power P,,, the direct and compensation configuration
of Figs. 4.1(a) and (b) lead to an effective interferometric power P, according

to Eq. (3.3), of Pug ox {/72P% = rP,. This means that the interference signals
of undesired, non-neighbouring reflector combinations are principally on the same
power level as the desired interference signals between neighbouring reflectors, while
multiple reflections are at power levels o r°P,,, where o is the multiple reflection
order. In contrast, for the common LO configuration of Fig. 4.1(c) with LO power
Pro, P is proportional to \/rv/ PpLo P, using the phenomenon of heterodyne gain
that has been previously described in Sec. 3.1.1. Therefore, by increasing P o or
lowering r, the power ratios between desired interference signals, where light from
the reflectors interferes with the LO, and undesired interferometric signals from
direct interference between reflectors as well as multiple reflections, with power
levels as described above, can be changed, allowing suppression of direct reflector
interference. Furthermore, in the common LO configuration of Fig. 4.1(c), a strong
LO also lowers the reflectivity requirements and therefore eases reflector production
effort, which will be used beneficially in the later experiments in Chap. 6. In general,
a lower limit on the reflectivity of the partial in-fibre reflectors in FSI, apart from
carrier-to-noise concerns, is also set by the natural occurrence of Rayleigh scattering
(see also Sec. 2.2), where the signal from the reflectors needs to be significantly
stronger than the Rayleigh back-scatter returned from the fibre. The effects of
reflector power in fibre sensor arrays are also further discussed in Kersey et al. [107].

Table 4.1.: Comparison of the three FSI configurations of Fig. 4.1.
Abbreviations used: Advantage (+), Disadvantage (—)

Configuration Notes

Direct Direct interference between segment signals.
(4) Simple configuration which yields segment signals
(—) Multiple reflections and path combinations may present
(—) Phase noise due to OPD-imbalanced operation

Compensating Compensating interferometer reduces segment OPDs to = 0.
(4+) Allows OPD-balanced operation and yields segment signals
(4+) Low-coherence sources allow suppression of unwanted paths
(—) More complex interferometric configuration

Common LO Interference of individual reflector signals with common LO.
(+) Reflectivity requirements are relaxed
(4+) Unwanted path combinations are suppressed
(—) Phase noise due to non-zero OPD
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Choice of In-Fibre Partial Reflectors: The choice of partial reflector is very im-
portant for the practical implementation of FSI. Historically, the first FSI imple-
mentations [10] used mechanical fibre splices, as illustrated in Fig. 4.2(a), where a
small gap between adjacent fibre ends is maintained by a mechanical fixture and
the glass-to-air Fresnel reflections are used to provide a return signal. Apart from
bulkiness and possible mechanical instability, this solution may also cause light
losses and consistent reflectivities are difficult to achieve. However, this approach is
low-cost and simple to set up and is used during parts of this thesis. Later works
on FSI for fibre optical hydrophone arrays, such as Cranch et al. [11,12], often use
coupler-based reflectors. Here, a fibre coupler is used to guide parts of the incoming
light towards a fibre-end mirror, as shown in Fig. 4.2(b), or towards a fibre loop [200].
The reflectivity of this assembly can be tailored by adjusting the coupler split ratio.
While still being bulky, this all-fibre solution offers increased stability compared to
the use of mechanical splices.

(a)

(b) () (d) (e)
P— — o)
=== B == =

Figure 4.2.: Partial reflectors for FSI: (a) Mechanical splice reflector (b) Coupler-based reflector
(¢) Fusion splice reflector (d) Cavity-based reflector (e¢) FBG-based reflector

Further possibilities for in-fibre reflectors include the use of fusion-spliced, cavity-
based or FBG-based partial in-fibre reflectors. Fusion-splice reflectors [205], illustrated
in Fig. 4.2(c), can be formed by coating one fibre end with a thin layer of a reflective
substance, such as TiO,, before fusion splicing. The reflectivity of the splices can then
be adjusted by altering the coating thickness and splice parameters. In cavity-based
reflectors, illustrated in Fig. 4.2(d), a cavity, with dimensions on the order of um, is
formed within the core of an optical fibre and acts as a partial in-fibre reflector. A
cavity can be fabricated using techniques such as selective etching of the core [206]
or femtosecond laser-induced micro-void inscription [207]. When FBGs are used as
in-fibre partial reflectors in FSI, as first proposed by Morey [208], and demonstrated
by Okawara et al. [199] and illustrated in Fig. 4.2(e), the FBGs need to be sufficiently
broadband to return signals in all conceivable strain and temperature conditions.
Very short and therefore very broadband FBGs have also been successfully used as
in-fibre partial reflectors [94] in techniques related to FSI. In general, for both cavity
and FBG-based reflectors, the use of infrared femtosecond lasers [209] would allow
the inscription of the reflectors without removing the fibre coating, which would
offer many practical advantages, such as increased mechanical strength and ease of
production. As previously mentioned in Sec. 2.3, for FBG-based reflectors similar
practical advantages could also be expected from the use of draw-tower gratings [75].
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4.2. Fibre Segment Interferometry Based on
Time-Division Multiplexing

In time-division multiplexing (TDM), which originates from light /radio detection
and ranging (lidar/radar) technologies [210], a pulsed signal is used to address
multiple constituent interferometers and time-dependent gating is used to separate
the return signals into individual range channels according to their time-of-flight.
The spatial resolution in TDM is proportional to the resolvable pulse duration and is
thus inversely related to the modulation hardware bandwidth. In the context of fibre
sensing, TDM is also frequently used as optical time domain reflectometry [43] for
the incoherent multiplexing of intensity-based sensors such as FBGs (see Sec. 2.3)
or in distributed sensing (see Sec. 2.2). A general feature of TDM multiplexing in
both coherent and incoherent cases is the dependence, due to the potential overlap
of pulses, of the duty cycle D on the maximum number of sensors /N that can be
multiplexed, with D = N~! being the maximum duty cycle possible. Low duty cycles
limit the achievable carrier-to-noise ratios (CNR), where for the case of a direct FSI
configuration of Fig. 4.1(a), the CNR was found to be proportional to D? [11].

As previously discussed in Sec. 2.4, historically the first FSI technique has been
proposed by Dakin et al. [10] using a two-pulse, or differential delay, TDM approach
employing the direct interference configuration of Fig. 4.1(a). This is also illustrated
in Fig. 4.3, with further implementations demonstrated by Cranch et al. [11,12] and
Liao et al. [211,212]. Here two sequential light pulses of different optical frequencies
fopt.1 and fope 2 exit the acousto-optic modulator (AOM), which are separated by a
time difference equal to the time-of-flight required to traverse one fibre segment of
length [g and back. Upon returning from the sensor array, the light of the reflectors
forming a segment interferes and the resulting photo detector signal can be range-
gated. For each range channel, the signals can then be demodulated similar to regular
heterodyne interferometry (see Sec. 3.3.1) at the difference frequency of fo.1 and
fopt.2 to extract the phase signals ¢(t) for each segment. Fig. 4.3 also illustrates how
a tail of multiple reflections as well as unwanted reflector combinations can be present
in the photo detector signal, both within and after the intended gating periods for
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Figure 4.3.: Illustration of the two-pulse TDM FSI setup used by Dakin et al. [10] and Cranch
et al. [11]. Here two sequential light pulses of different optical frequencies fope1 and fop,2 exit
the acousto-optic modulator (AOM) and the resulting signals at the photo detector are shown by
the inset, marking the signals due to the desired segment interference as well as showing a tail of
signals due to undesired path combinations.
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the desired range channels. Here, in some cases, advanced algorithms based on
a layer peeling inverse scattering approach [213] have also been used to separate
undesired path combinations from the desired phase signals. A further group of FSI
techniques, often referred to as path-matched differential interferometers (PMDI),
originate from the work by Brooks et al. [214] for a non-FSI ladder configuration.
FSI implementations of PMDI, using a compensating configuration of Fig. 4.1(b),
have been proposed by Kersey et al. [200] using fibre loop reflectors and recently
by Okawara et al. [199] using FBGs as in-fibre partial reflectors, where phase-
generated carrier processing (see Sec. 3.4), employing a phase modulator within the
compensating interferometer, was used for interferometric phase evaluation.

A general feature of the cited PMDI works that use homodyne processing [199,
200,214] is that the pulse frequency is much greater than the signal processing carrier
frequencies, effectively sampling the homodyne carrier signals. This is in contrast to
dual-pulse heterodyne processing techniques [10-12], illustrated in Fig. 4.3, where
the heterodyne carrier frequency is much faster than the inverse pulse duration and
the interferometric phase signal can be independently evaluated for every pulse.
Furthermore, TDM can also be combined with interferometric signal processing
techniques that use optical illuminating frequency modulation, such as the phase-
generated carrier technique (see Sec. 3.4), in a compensating configuration with
non-zero OPD [215] or using serrodyne modulation in a non-FSI forward ladder
configuration [216]. There has also been considerable recent work combining TDM
with WDM for large scale hydrophone arrays [11,12,211,212]. Here WDM is
conveniently used to allow several banks of sensors to be addressed in parallel using
an individual wavelength for each bank, where the two-pulse TDM FSI configuration,
shown in Fig. 4.3, is then used to multiplex sensors within each bank. In one recent
implementation in 2013 by Liao et al. [211], TDM FSI multiplexing of a total of 1024
sensors in four wavelength channels with phase noise levels of 40 urad - Hz7%° was
demonstrated for seismic reservoir exploration.

4.3. Fibre Segment Interferometry Based on
Code-Division Multiplexing

CDM is a group of multiplexing techniques that are widely used in areas such as
wireless communications and global positioning systems [136], where they are also
known as code-division multiple access (CDMA) techniques, allowing several senders
to transmit data simultaneously over one channel using coded modulation. Often
pseudo-random sequences, such as the maximum length sequence (MLS) (further
discussed in Sec. 5.2.2), are used due to their good auto-correlation properties,
allowing signal energy to be dispersed evenly for out-of-range signals. A general
feature of CDM techniques is that continuous-wave sources are used and therefore
the duty cycle D can reach values of up to 50 % [217], allowing higher CNR levels to
be achieved at lower peak powers, when compared to TDM approaches discussed in
the previous section. Similar to TDM, the spatial resolution in CDM is proportional
to the code symbol duration and thus inversely related to the modulation bandwidth.
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CDM has also been applied to lidar [218-220], which has related requirements to
FSI in some respects, however, there have only been few reported applications of
CDM techniques in interferometric sensor multiplexing. These can be grouped into
intensity-modulated interferometric and phase-modulated interferometric schemes,
where a phase-modulated interferometric CDM scheme is also proposed and demon-
strated in this thesis in Chap. 5. Phase-modulated interferometric CDM schemes
inherently allow interferometric phase measurements, while intensity-modulated
techniques only use CDM for range-based signal separation and rely on further inter-
ferometric signal processing techniques for interferometric phase evaluation. Here, the
theoretical work by Street et al. [217], which is relevant to both intensity-modulated
and phase-modulated CDM, recognised the importance of the anti-aliasing filter
to crosstalk performance in CDM. Whilst this work did not receive much public
attention, the investigation presented in this thesis in Chap. 5 also highlights the
importance of anti-aliasing filtering in CDM.

Intensity-modulated interferometric CDM was first demonstrated in 1990 by Al-
Raweshidy et al. [221] for multiplexing two Mach-Zehnder interferometric sensors.
Advanced implementations of this concept have since been described by Kersey et
al. [222] and Kullander et al. [223]. All of these publications demonstrate range-
based signal separation in non-FSI interferometric configurations, but do not detail
any interferometric signal processing techniques used for phase determination. In-
terestingly, Kersey et al. [222] also found that unipolar-bipolar MLS coding and
decoding arrangements can result in theoretically zero crosstalk, a general result
that is applicable to both intensity and phase-modulated interferometric CDM and
that will be used in the work presented in Chap. 5.

The first phase-modulated interferometric CDM system that could, in principle, be
applied to interferometric sensor multiplexing, was proposed by Rask et al. [4,219] in
the area of coherent Doppler lidar anemometry in the early 1990s. Here, in a common
LO configuration related to Fig. 4.1(c), one AOM is included in the measurement arm
and an additional AOM in the common LO arm. The AOMs can be driven to have
a relative phase difference of 0° or 180° by reversing the AOM drive polarity, thus
introducing a phase-modulated code. Additionally, a frequency offset between the
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Figure 4.4.: Illustration of the original free-space digitally enhanced heterodyne implementation
by Shaddock [1]. Here an AOM introduces the heterodyne carrier f. into the common LO of the
interferometer and a MLS code is applied by the EOM. Return signals originate from partial mirrors
M1, M2 and M3 and the digital signal processing performs range-based signal separation using
suitably delayed versions of the code.
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two AOMs allows heterodyne interferometric signal processing (see also Sec. 3.3.1).
However, because AOMs only allow slow reversal of polarities, the spatial resolution
achievable was low, on the order of 150 m. More recently, in 2007, a related approach,
using the common LO configuration of Fig. 4.1(c), where an AOM is included in the
LO to introduce a heterodyne carrier and an electro-optic phase modulator (EOM) is
inserted in the other interferometric arm to introduce 0° and 180° code symbols for
CDM has been proposed by Shaddock [1]. This technique, named “digitally enhanced
heterodyne processing”, has gained considerable popularity [201-203], mainly in the
area of precision interferometry and this approach is illustrated in Fig. 4.4, however,
it used two active modulators and cannot be used in a self-referencing configuration.
Using high-speed digital signal processing, sub-metre spatial resolutions have been
achieved in the very recent (2014) work by Isleif et al. [203], where also noise levels
as low as 9 urad - Hz7%® at 10 Hz have been demonstrated using a high-end laser
system for the measurement of a single constituent interferometer.

Very recently, in 2012, a technique named “digitally enhanced heterodyne pro-
cessing” has been proposed by Sutton and Shaddock et al. [204] that uses a mono-
lithically integrated dual parallel Mach-Zehnder phase modulator (DPMZ) [224],
also known as an optical quadrature modulator, which allows the introduction of
four discrete code symbols with phase modulation [0°,90°,180°,270°] through a
nested MZ configuration, as illustrated in Fig. 4.5. Here two digital bit streams
for the real and complex component of the phase modulation are required and the
amplitudes of the two bit stream signals as well as the bias voltage on the outer MZ
interferometer need to be controlled precisely by the DPMZ controller. While the
digital homodyne approach can be used in a common LO configuration according to
Fig. 4.1(c), it can also be used in a self-referencing configuration, as illustrated in
Fig. 4.5. This opens interesting new applications for this technique as a competitor
to self-referencing techniques based on optical illuminating frequency modulation
discussed later. A particular advantage of the digital homodyne approach compared
to techniques based on optical illuminating frequency modulation in this context
is that signals can be separated both by delay and OPD, once a minimum OPD is
exceeded, in principle also allowing the use of digital homodyne schemes in the direct
interference configurations shown in Fig. 4.1(a). However, the digital homodyne
technique requires the use of a complex DPMZ modulator with two high-speed
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Figure 4.5.: Self-referencing implementation of the digitally enhanced homodyne technique pro-
posed by Sutton et al. [204]. Here, a DPMZ can introduce four code symbols. This demonstration
involves sequential passes through a fibre ring to produce test signals R; that are each delayed by
7; and interfere with the LO formed by the direct pass through the fibre-ring coupler.
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digital drive signals and associated control circuits and, in contrast to the optical
illuminating frequency modulation approach discussed later, spatial resolution is
proportional to the hardware bandwidth of the modulation equipment.

4.4. Fibre Segment Interferometry Based on Optical
llluminating Frequency Modulation

A general property of range-resolved interferometric signal processing techniques
(see also Sec. 3.1.2) based on optical illuminating frequency modulation (OIFM) is
that spatial resolution is a property of the optical frequency excursion achievable
by the laser source. Therefore spatial resolution is decoupled from the modulation
bandwidth in OIFM, contrary to both the TDM and CDM multiplexing approaches
discussed earlier. This allows very high spatial resolutions to be achieved using
OIFM, even for moderate signal processing hardware capabilities, as will also be
experimentally demonstrated in Chap. 6. Since the 1980s, many continuous-wave
ranging techniques based on OIFM, capable of absolute OPD measurements over large
dynamic ranges, have been demonstrated, originating from earlier work in radar [225].
This includes linear (serrodyne or triangular) [226,227] schemes, often referred to as
frequency modulation continuous-wave (FMCW) techniques or wavelength scanning
interferometry [228,229] in the context of imaging interferometry, but also sometimes
based on sinusoidal [230,231] modulation approaches. Absolute OPD accuracies on
the orders of parts-per-millon have been achieved using linear OIFM systems based
on widely-tunable lasers, equating to uncertainties on the orders of ym over a typical
maximum range of 1 m [227]. However, there have only been few instances, as will be
reviewed below, where interferometric phase evaluation was additionally attempted
using these ranging techniques. In general, interferometric phase evaluation increases
measurement resolution by many orders of magnitude, but raises the complexity,
particularly due to the interferometric 27 phase ambiguity (see also Sec. 3.1.1).

Linear Range-Resolved Signal Processing Techniques: In the literature, linear
range-resolved signal processing techniques that allow interferometric phase determin-
ation are generally techniques that extend the previously discussed pseudo-heterodyne
scheme (see Sec. 3.3.2) [172], which uses a serrodyne OIFM waveform, to multi-
plex interferometers. This is sometimes also referred to as FMCW multiplexing or
frequency-division multiplexing (FDM)!. Following the first applications of OIFM-
based ranging [232], it was recognized, as described by Sakai [102,233,234], that this
could also be used for the phase-resolved interrogation of multiple interferometers.
Furthermore, it was found that proper operation without crosstalk requires the
nominal OPDs of every constituent interferometer to adhere to an integer grid. This
is because the peak optical frequency excursion can, in principle, be then tuned so
that each constituent interferometer experiences a peak phase excursion that is a
multiple of 27. This is in addition to the previously described general requirement

!The term FDM is loosely defined and also refers to the multiplexing of interferometric sensors
using several lasers [103], modulated at different frequencies using the phase-generated carrier
method (see Sec. 3.4), which does not constitute a range-resolved signal processing technique.
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Figure 4.6.: Illustration of linear OIFM-based interferometric sensor multiplexing, adapted and
extended from Zheng [235], using serrodyne OIFM at modulation frequency fr,. (a) shows the
setup used, while (b), (c) and (d) plot the carrier amplitudes corresponding to each constituent
interferometer (I1, I2 and I3) in the frequency domain, where the path length of I3 is not an integer
multiple of the base length unit I}, for instructive purposes.

of the pseudo-heterodyne technique (see Sec. 3.3.2) for the peak phase excursion to
be a multiple of 27 in order to avoid cyclic errors [173].

This principle is also explained in Fig. 4.6, adapted and extended from Zheng [235].
Here Fig. 4.6(a) shows the setup for three free-space long gauge-length interferometric
displacement sensors with differing nominal OPDs. These are multiplexed using
serrodyne OIFM of modulation frequency f,,. In Fig. 4.6, for instructive purposes,
only two (I1 and I2) constituent interferometers adhere to the integer OPD grid,
derived from the base length unit [, while the third constituent interferometer
(I3) is chosen to have a fractional OPD relation to I1 and I12. The peak frequency
excursion of the serrodyne modulation waveform is tuned so that I1 and 12 have
peak phase excursions that are integer multiples of 27r. In this case, Figs. 4.6(b) to
(d) show typical signals from each interferometer in the frequency domain, exhibiting
frequency components at multiples of the modulation frequency f,,. These can then
be used as carriers to demodulate (see Sec. 3.1.4) the desired phase signals.

In Figs. 4.6(b) to (d) a sinc-shaped envelope is drawn using dashed lines, which
is a direct result of the serrodyne ramp. Here, it can be seen that when the OPDs
of constituent interferometers are placed on the correct grid, as for I1 and 12 in
Figs. 4.6(b) and (c), respectively, the signal is ideally concentrated in the main
peak. Because the sinc-shaped envelope has zeros at multiples of the modulation
frequency f.,, there is no signal amplitude at any other carrier frequency. Therefore,
no crosstalk into other interferometers originates from I1 and I2. In contrast, for
a constituent interferometer that is not placed on the integer OPD grid, as, for
example 13 shown in Fig. 4.6(d), the carrier amplitudes spread over many frequencies
with an amplitude distribution that is determined by the sinc-shaped envelope. This
reduces the amplitude of the desired demodulation carrier, but more importantly,
also causes crosstalk into other interferometers, where in Fig. 4.6(d) it can be seen
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that carrier components of non-zero amplitude at the demodulation frequencies of
the other constituent interferometers, 2f,, for I1 and 4f,, for 12, exist.

It is important to note that in the linear OIFM-based multiplexing approaches
discussed, constituent interferometers that are not on the integer OPD grid and that
can thus cause crosstalk can also originate from parasitic reflections or undesired
path combinations. In some cases these are therefore unavoidable or place further
restrictions on the choice of permissible OPDs of constituent interferometers [102,233].
In general, for realistic serrodyne modulation waveforms with a non-instantaneous
fly-back period, frequency content corresponding to the fly-back will also be present in
other parts of the carrier spectrum [232]. A further challenge is that ideal serrodyne
optical frequency sweeps are often difficult to reproduce in practice due to the
high frequency content of the serrodyne modulation signal [174,236], leading to
broadened peaks in the frequency domain, which, in some cases, can be improved
using triangular sweeps [121,174]. Linear OIFM-based multiplexing of interferometric
sensors does not appear to be widely used [195], with papers mainly limited to the
1980s [102,216,233,237,238] and only two more recent papers in 2001 [239] and in
2007 by Zheng [235]. Although the application of linear OIFM-based multiplexing
to FSI has been proposed previously by Morey [208], only one paper by Won et
al. [239] uses a common LO FSI configuration of Fig. 4.1(c) and only demonstrates
the multiplexing of two fibre segments.

Sinusoidal Range-Resolved Signal Processing Techniques: The only range-
resolved interferometric signal processing technique based on sinusoidal optical
illumination modulation that has been found in the literature is the windowed si-
nusoidal homodyne processing technique by Sakai et al. [128]. In this context, the
well-known phase-generated carrier [180] method (see also Sec. 3.4) is also based
on sinusoidal optical illumination modulation but does not, however, allow multiple
interferometers to be interrogated using only a single laser source and a single photo
detector. The technique by Sakai et al. [128] has previously been discussed for
signal processing in single interferometers in Sec. 3.3.2, and Fig. 4.7(a) illustrates the
setup used by Sakai et al. [128] to multiplex several interferometers with different
OPDs, however, in a non-FSI configuration. In general, as discussed previously, the
advantages of sinusoidal over linear waveforms lies in the ease of modulation, with
a sinusoidal modulation waveform only consisting of a single spectral component
without any harmonics. To be applied to FSI, the sinusoidal approach by Sakai et
al. [128] would require the common LO configuration of Fig. 4.1(c).

The upper graph of Fig. 4.7(b) shows a typical photo detector signal resulting
from the sole interrogation of interferometer 1 (I1) in Fig. 4.7(a), which has an
OPD corresponding to 4 times the base length unit [,. Also indicated is the
rectangular gating period of duration T,. The lower graph of Fig. 4.7(b) then
shows the corresponding frequency content of the signal after gating. The working
conditions of the technique as laid out by Sakai et al. [128] assume that the gating
period is short enough that the part of the photo detector signal under the gating
period can essentially be viewed as a single-frequency carrier and require that the
sinusoidal optical frequency modulation amplitude is tuned so that an integer number
of carrier periods fit within the gating period. For I1 this can be approximated by a
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Figure 4.7.: Tllustration of the setup (a) used by Sakai et al. [128] with forward-coupling MZ
interferometers, where the OPDs correspond to integer multiples of the base length unit [,. The
upper graphs of (b) and (c¢) plot the photo detector signals attributed to interferometers (I1 and
12) in the time domain along with the rectangular gating function of duration 7}, while the lower
graphs show the carrier amplitudes and the sinc-shaped envelope after gating.

sinc-shaped envelope centred at a frequency of 4Tg_1 and with zeros at every other
multiple of T, ' as shown in Fig. 4.7(b). Fig. 4.7(c) shows the analogous case for
the signals originating from interferometer 2 (I12) at an OPD corresponding to 71y,.
These spectra are related to the case of linear OIFM-based multiplexing shown in
Figs. 4.6(b) to (d), with the key difference being that the frequency base unit in
Sakai et al. [128] is determined by the inverse gating duration T, ' and not by the
modulation frequency f,,. Just like in the previous case of serrodyne modulation,
in order to avoid crosstalk, the OPDs of the constituent interferometers need to
be on a grid derived from integer multiples of [}, so that the sinusoidal modulation
amplitude can, in principle, be tuned for the maximum of the sinc-shaped envelope
of each constituent interferometer to fall on the zeros in the sinc-shaped envelope of
every other interferometer. The signals for each interferometer can then be uniquely
separated by demodulation at the corresponding peak frequencies of the sinc-shaped
envelope. Also, in comparison with linear OIFM-based multiplexing, the duty cycle
in sinusoidal OIFM-based multiplexing is reduced by the requirement for gating,
reducing the achievable CNR. For sinusoidal OIFM, crosstalk levels of —35dB were
demonstrated experimentally [128] for the interrogation of two interferometers, with
factors influencing crosstalk performance identified as the quality of the gating
window implementation and the precision of the OPDs matching the OPD grid.

In general, for both linear and sinusoidal modulation approaches discussed here,
it is obvious that the requirement of integer OPD ratios considerably reduces the
flexibility and practicality of the techniques. Here, a key improvement will be the
sinusoidal modulation approach presented in Chap. 6. There, a smooth window
function is used instead of rectangular gating, which, together with a time-variable
demodulation approach, permits continuously variable placement of the OPDs of the
constituent interferometers once a minimum OPD separation is exceeded, removing
any need to adhere to an integer OPD grid.
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4.5. Summary Table

A brief summary of the main distinguishing features of the reviewed range-resolved
signal processing techniques for FSI of Secs. 4.2, 4.3 and 4.4 is given in Table 4.2.

Table 4.2.: Comparison of range-resolved optical interferometric signal processing tech-
niques in prior work that are, in principle, capable of FSI operation. Abbreviations used:
Optical Mluminating Frequency Modulation (OIFM), Advantage (+), Disadvantage (—)

Technique

Notes

Two-Pulse
Time-Division

[10-12,211-213]

Path-Matched
Time-Division

199,200, 214]

Digitally
Enhanced
Heterodyne
Code-Division
Code-Division
[1,201-203]

Digitally
Enhanced
Homodyne
Code-Division
[204]

Linear
OIFM
(102,216, 233]
[235,237-239)

Stnusoidal
OIFM
[128]

Two pulses, offset in optical frequency, are reflected from either
side of fibre segment and coincide at photo detector.

(4) Uses simplest possible, direct FSI configuration

(+) Large sensor arrays over 1000 sensors when used with WDM
(—) Multiple reflections and path combinations may be present
(—) Low duty cycle of source limits carrier-to-noise ratio

One pulse is reflected from either side of fibre segment

and compensating interferometer reduces OPD to near zero

(+) Allows OPD-balanced operation with low phase noise

(4+) Low-coherence sources allow suppression of unwanted paths
(—) Low duty cycle of source limits carrier-to-noise ratio

Heterodyne interferometry is combined with phase modulation
to perform phase-modulated code-division multiplexing

(+) Good carrier-to-noise ratio from high duty cycle of source
(4+) Sub-metre spatial resolution

(—) No self-referencing configurations possible

(—) Requires two active modulators

Quadrature phase modulator is used for both interferometric
signal processing and code-division multiplexing

(+) Self-referencing configuration possible

(4+) Good carrier-to-noise ratio from high duty cycle of source
(—) Requires complex quadrature phase modulator

Linear OIFM modulation allows OPD-dependent separation
of interferometers by carrier frequency

(4) Spatial resolution decoupled from processing bandwidth
(—) Difficult modulation waveform with many harmonics
(—) Crosstalk if OPDs do not adhere to integer grid

Sinusoidal OIFM modulation allows OPD-dependent separation
of interferometers by carrier frequency after rectangular gating
(+) Spatial resolution decoupled from processing bandwidth

(4) Simple modulation waveform with one frequency component
(—) Reduced duty cycle due to requirement for gating

(—) Crosstalk if OPDs do not adhere to integer grid
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5. Code-Division Multiplexing
Technique for Fibre Segment
Interferometry

5.1. Introduction

In this chapter, a novel range-resolved interferometric signal processing technique,
primarily intended for fibre segment interferometry (FSI) applications, is proposed.
Here, phase-modulated code-division multiplexing (CDM) (see also Sec. 4.3), provid-
ing range-based signal separation, is combined with single-sideband [164,165] (SSB)
homodyne signal processing (see also Sec. 3.3.2), performing interferometric phase
evaluation. This is novel because previous range-resolved optical interferometric
signal processing techniques based on phase-modulated CDM, as reviewed in Sec. 4.3,
required either two active modulators or a complex, dual parallel Mach-Zehnder phase
modulator. By combining CDM with SSB homodyne signal processing as proposed in
this thesis, both range-based signal separation and interferometric signal processing
can be performed using only a single, regular electro-optic phase modulator with
a single drive signal. This is applied to FSI applications in the common LO FSI
configuration of Fig. 4.1(c).

In the first section of this chapter, the theory required for the combination of SSB
with phase-modulated CDM is developed, extending the Fourier series expansion
approach used to describe regular SSB processing [164,165]. These extended equations
allow the calculation of range-dependent crosstalk and sideband suppression values
for an arbitrary phase modulation waveform. Additionally, the effects of inter-symbol
interference caused by anti-aliasing filtering, necessary in any practical digital signal
processing system, are considered. It should be noted that in prior phase-modulated
CDM works [1,4,201,202,204] (see also Sec. 4.3), the influence of anti-aliasing
filtering appears to be neglected or not specifically investigated. As discussed in
Sec. 4.3, the only publication that researches the impact of anti-aliasing filtering is
the work by Street et al. [217]. From the modelling performed there, it is concluded
that, due to the influence of the anti-aliasing filter, the minimum sensor spacing
needs to be increased in some cases and that strict rules describing these constraints
are difficult to formulate. In this thesis, the influence of anti-aliasing filtering is
included in the theoretical description, allowing both crosstalk and cyclic errors to
be quantified in order to use this for system design decisions. Furthermore, the steps
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necessary to design the modulation waveform are detailed and, using the theoretical
description, it is shown how the impact of the anti-aliasing filter can be mitigated by
the introduction of guard times at code symbol transitions, an approach that should,
in principle, also be applicable to other CDM techniques. Following this theoretical
treatment, the experimental setup and the electronic implementation are discussed.
In the subsequent sections, results of quantitative measurements of cyclic errors,
noise, crosstalk and dynamic response are presented. Also results from a strain
measurement that is exemplary for the envisaged FSI applications, such as dynamic
strain and curvature measurements on large engineering structures, are shown. At
the end of the chapter, the general practicality of the scheme and improved concepts
for future research are discussed, before concluding with a brief summary.

5.2. Theory

5.2.1. Single-Sideband Equations in Prior Work

SSB is a generic theory describing the shape and scale that a periodic phase modu-
lation waveform must possess so that the desired phase signal ¢(t) of Eq. (3.3) can
be unambiguously demodulated at a single carrier frequency, as discussed previously
in Sec. 3.3.2. This is possible when a suitable, periodic phase modulation wave-
form is scaled until one of the two carrier sidebands present in the complex Fourier
spectrum, either at positive or negative frequencies, disappears. It is then said to
be in single-sideband operation and SSB theory allows the prior calculation of the
scale factor for the phase modulation waveform. In general, for a periodic phase
modulation waveform of modulation frequency f.,, in addition to the desired carrier,
there will also be a comb of carriers at other harmonics of the phase modulation
waveform. Thus only interferometric signals ¢(t) with quadrature bandwidths (see
also Sec. 3.1.4) Bq < 0.5fy, are in principle permitted, otherwise signals may be
folded back into the original signal band by the other carriers of the comb.

In the following, the SSB equations derived by Ostwald et al. [164] and Voges et
al. [165] are rewritten to fit the notation of this thesis and the demodulation of the
phase signal o(t) is also included. This derivation is thought to be instructive for the
extended SSB equations discussed later. An additional periodic intensity modulation
function, included in prior work, is not needed in this thesis and dropped.

Starting off with the equation for the signal at the photo detector Upq(t), originating
from a single interferometer:

Upa(t) = R(Po + Pegt - cos[io(t) + s0(t)]) (5.1)

Here, R, P, and P.g are the photo detector responsivity, stationary offset intensity
and effective interferometric intensity, respectively, as previously used in the context
of Eq. (3.3). However, the phase modulation function 6(t) of Eq. (3.3) is replaced by
s0(t), where s is a dimensionless phase scale factor and 0(t) is the normalised phase
modulation waveform. g(t) is now required to be periodic with modulation period
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T' = fm. As described by Ostwald et al. [164] and Voges et al. [165] and detailed
in App. A.1, all periodic terms in Eq. (5.1) with s6(¢) are separately expanded
into a complex Fourier series, allowing Eq. (5.1) to be rewritten using complex
Fourier coefficients. Then, as shown in App. A.1, after demodulation with a complex
carrier function of integer harmonic index n and subsequent low-pass filtering with
quadrature cut-off frequency fqco < 0.5fm, the resultant complex quadrature signal

Uq.n(t), for the relevant cases with n # 0, is given by:

Uqn(t) = 0.5RP. - (cn ~explj - p(t)] + ¢, - exp|—j - @(t)]) (5.2)

The complex coefficients ¢, can then be stated as:
I 5
Cp = T /T; exp [j : (s@(t) - 27mfmt)}dt (5.3)

It can be seen that the periodic phase modulation function sf(t) is missing in
Eq. (5.2) and is completely incorporated into the coefficients ¢, given by Eq. (5.3).
To achieve single-sideband operation, the scale factor s will be tuned until one of the
coefficients, or sidebands, c,,, or c_,, vanishes. The remaining sideband can then be
used as a carrier and, for the case where the positive sideband is selected as carrier,
the sideband suppression ratio Sy, [165] is given by:

[

S = (5.4)

|Cn|

When single-sideband operation is reached, Sy, theoretically approaches zero. It
has been shown by Ostwald et al. [164] that single-sideband operation is, in principle,
possible for every waveform g(t) with odd symmetry and any integer harmonic carrier
with index n # 0 can theoretically be chosen for the demodulation of the phase signal.
The phase signal ¢(t) can then easily be obtained by applying an arctangent function
on the complex quadrature signal Ug ,(t) of Eq. (5.2), where, when single-sideband
operation is achieved, only one exponential term should remain.

5.2.2. Maximum Length Pseudo-Random Sequences for
Code-Division Multiplexing

In CDM, the outgoing signal is encoded with a digital code, and the signal returning
from a particular range is recovered using a time-delayed code version, represented
by the decoding function d(t — 74) with the decoding delay 74, ideally equal to
the expected time-of-flight of the desired signal. In this and in many other works
[1,204,222] on CDM for optical sensing applications, a special class of pseudo-random
sequences, known as maximal length sequences (MLS) [240,241], are used for digital
encoding. For a MLS of positive integer order ¢, the corresponding MLS code symbol
length y, i.e. the number of bits in a MLS code sequence, is given by:

y=(2-1) (5.5)
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In CDM, the autocorrelation function can be used to mathematically express the
expected code overlap between the code at encoding and a delayed version at decoding.
The special autocorrelation properties of MLS results in a constant autocorrelation
value for any non-zero code delay. The resulting quadrature crosstalk suppression
ratio S, is then given by the ratio between autocorrelation values at zero and non-zero
code delays, i.e. between in-range and out-of-range signals. Also, a bipolar [—1, 1]
MLS is derived from the original unipolar [0, 1] MLS by exchanging every 0 with a
—1. Kersey et al. [222] first showed that decoding a signal with a unipolar MLS that
was previously encoded with a bipolar MLS or vice versa will have an infinitely low
amplitude suppression ratio resulting in theoretically zero crosstalk between range
channels. This shall be referred to here as unipolar-bipolar coding with theoretical
quadrature signal crosstalk suppression coefficient Sey yp—1p. In contrast, other CDM
schemes often use bipolar-bipolar coding with theoretical suppression ratio Se; bp—bp-
Both Serbp—bp and Ser up—bp in units of dBs for a MLS of length y are given by [222]:

Scr,bp—bp = —20 logl()[y] (56)

Scr,up—bp = =0

5.2.3. Extended Theory Combining Single-Sideband Processing
and Code-Division Multiplexing

In this work, the SSB equations that were given in prior work and presented in
Sec. 5.2.1 are extended to incorporate multiple signal sources, phase-modulated
CDM, the effects of anti-aliasing filtering as well as the complete interferometric
demodulation process. As an overview of the signal processing steps discussed in
detail later, four distinct phases can be identified and are summarised below:

Encoding and Photo Detection: Includes the phase modulation using the SSB-CDM
code and the reception of the return signal by an ideal photo detector where no
change in the frequency characteristic of the optical signal has occurred yet.

Anti-Aliasing Filtering: The filtering of the photo detector signal includes analogue
and any additional digitally induced alterations in the frequency characteristic of
the ideal photo detector signal prior to digital range decoding.

Range Decoding: The CDM decoding function is applied to the anti-aliasing filtered
signal in the digital domain to separate the signals by range, resulting in an
individual signal for each range channel.

Demodulation: By applying a complex carrier function at a chosen integer carrier
harmonic and passing the signal through a low-pass filter, a complex quadrature
signal can be obtained that directly contains the desired phase information.

Throughout this section, typical signal shapes at each intermediate signal processing
step are illustrated in Fig. 5.1, while the actual experimental signal processing
implementation is also illustrated later in Fig. 5.13. In this section, the theory
is explained in detail, while the derivation steps required to obtain the discussed
equations are performed in App. A.2.
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Figure 5.1.: Illustration of typical signals at intermediate stages of the signal processing with a
detailed description of each stage given in the main text. For illustrative purposes, the plotted
signals originate from a single interferometer £k = 1 with zero time-of-flight 7,—; = 0 and are
evaluated for a stationary phase value ¢1 = 7/3 in the simplified case of Pog = 0 and RPeg1 = 1.
In this figure, real functions are drawn in blue, while for complex functions cyan (real) and magenta
(imaginary) line colours are used and all signals are drawn normalised and unitless.

The depicted section shows how a unipolar code [0, 1, 1], corresponding to an MLS with ¢ = 2 in
Eq. (5.5) is modulated (a), photo detected (b), anti-alias filtered (d) using the filter with impulse
response heomp (t) shown in (¢). The resultant signals are then decoded, demodulated and low-pass
filtered using the corresponding bipolar MLS code [-1, 1, 1], which is illustrated for both in-range

signals (e)-(i) and out-of-range signals (j)-(n), resulting in the low-pass filtered complex quadrature
signals shown in (i) and (n).
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Encoding and Photo Detection: The interferometric phase of the outgoing light
in the proposed CDM technique is encoded with a pseudo-random MLS code. This
code is now incorporated within the phase modulation function sg(t). Here, similar
to the case of the basic SSB equations in Sec. 5.2.1, it is helpful to express sg(t)
using the product of the dimensionless scale factor s, and g(t), the normalised phase
modulation function. In contrast to the earlier case, 6(¢) now contains the complete
MLS code with y code symbols, as given by Eq. (5.5), where each code symbol
of duration 7y, can contain z individual SSB waveform templates of length Ty
and corresponding repetition frequency fy¢. Thus sg(t) is periodic only with the
repetition frequency of the whole code f.oqe, Which is given by:

fcode = Tcg(lie == (Tsymb : y)il = ('rwa : ZJ)fl = fwf : (.CL’ : y>71 (57)

The reason for introducing multiple waveform templates per code symbol, as will
become apparent later in this section, is to allow for code transition grace periods
that are needed to avoid negative effects arising from anti-aliasing filtering.

To describe the return signal resulting from k., constituent interferometers
requires extending Eq. (5.1) to include multiple, time-delayed interferometric signals,
leading to the signal Uyq(t) at the photo detector that is given by:

kmax

Upda(t) = RPog + Z (R.Peﬂ,k - cos|pr(t + 1) + Sg(t + Tk)D (5.8)

Here, the responsivity R and the stationary offset power P, were first introduced
in the context of Eq. (3.3), while Peg  is the effective interferometric power. Peg
depends on the individual coherence and polarisation overlap between the two
interferometer arms for each of the k.. constituent interferometers. Note that it is
mathematically irrelevant whether the k., constituent interferometers are formed by
the interference of one local oscillator with k.., return signals or by more complicated
interferometric configurations. ¢y (t 4+ 7) is the desired interferometric phase signal
of the kth constituent interferometer and both (¢ 4 7) and the phase modulation
function sf(t + 73) are delayed with the propagation delay 7 corresponding to the
time-of-flight between the two arms of the kth constituent interferometer plus any
offset delay due to the signal processing. Note that the inclusion of an additional
intensity modulation function, performed in prior work [164,165], is not required in
this thesis and has therefore been dropped. However, adding intensity modulation in
future work should still be possible, but will require a more complicated notation to
take care of transient effects.

The normalised phase modulation function, 0~(t), similar in shape to the one used in
later experiments, is shown in Fig. 5.1(a). Here, it can be seen to incorporate the code
[0, 1, 1], the simplest of all MLS (see Sec. 5.2.2) for i = 2, with Eq. (5.5) then yielding
y = 3 code symbols, theoretically allowing three range channels to be multiplexed.
Each of these code symbols then consists of x = 3 waveform templates, which is similar
to the later experiments. For the plotted phase modulation waveform 6(t), the optimal
phase scale factor for single-sideband operation is s = 0.9107 and the determination
of this value will be detailed later in Sec. 5.3.3. In Fig. 5.1(b), the resultant photo
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detector signal Upq(t) of Eq. (5.8) is shown for a single interferometer k£ = 1 at zero
time-of-flight delay 7 = 0. The effect of the cosine-shaped transfer function of the
interferometer for an arbitrarily chosen stationary phase value ¢; = 7/3 can also be
seen in Fig. 5.1(b), where for illustrative purposes, no intensity offset P,g = 0 and
full visibility RP.g; = 1 is also chosen.

Anti-Aliasing Filtering: After photo detection, the electronic signal is subjected to
anti-aliasing filtering. In general, anti-aliasing filtering is necessary for the conversion
from continuous-time to discrete-time signals to satisfy the Nyquist sampling theorem
[242] and also to limit the noise bandwidth affecting the signal. However, even with
ideal filters, there is a trade-off between anti-aliasing performance and the length of
the impulse response, where a short impulse response without ringing is desirable to
limit inter-symbol interference in CDM. In this work, the combined anti-aliasing filter
impulse response hcomp(t), incorporates the effects of both analogue anti-aliasing
filtering, described by hanag(t), as well as any additional digital filtering, described by
haig(t), after digitisation. The combined impulse response heomb(t) = Ranag(t) * Raig ()
is then given by the convolution of both filtering operations and heomp(t), similar
in shape to the later experimental implementation, is also plotted in Fig. 5.1(c).
Ideally, heomp(t) does not show any ringing and is thus zero-valued for any point in
time outside the filter length 7;,. The additional digital filtering described by hqig()
is inserted for several reasons:

o The digital filter can reduce ringing in the combined filter response hcomp(t).

o The digital filter makes the combined filter impulse response more digitally
controllable to avoid suffering from part variations in analogue components.

o As discussed in App. A.2, there is an additional requirement for the combined
filter response heomp(t) to have zero DC transmission, which can be easily
implemented using a digital filter with a band-pass characteristic.

In general, because all individual filtering operations are now incorporated mathem-
atically into heomp(t), filtering of the photo detector signal Uyq(t) of Eq. (5.8), shown
in Fig. 5.1(b), in can now be fully described by a single convolution of Up,q(t) with
heomp(t). For simplicity, this treatment remains in the analogue domain even after
digitisation, assuming straightforward conversion to the digital domain as long as
the Nyquist sampling theorem is satisfied. The resultant anti-aliasing filtered signal
Uaa(t) is given by:

Uaa(t) = heomp(t) * Upa(t) (5.9)

This signal is also plotted in Fig. 5.1(d), where it can be seen how signal energy can
leak into neighbouring code symbols due to ringing by the anti-aliasing filter.

Decoding: Following the convolution with heom (), the resultant signal is multiplied
with the CDM decoding function d(t — 74), which is also periodic in Tioqe and
dependent on the decoding delay 74. The decoding function d(t — 74) is shown
in Fig. 5.1 for two cases of the decoding delay 74. Here, Figs. 5.1(e) to (i) shows
the decoding of an in-range signal, where the decoding delay 74 is set equal to the
physical time-of-flight 7, between the two arms of the kth constituent interferometer
plus any offset signal processing delay. This ideally selects the desired interferometric
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signal and suppresses signals from all other ranges. Conversely, Figs. 5.1(j) to (n)
shows the case for out-of-range demodulation, where 74 # 7%, illustrating range-based
signal suppression in CDM. Apart from the code information, d(t — 74) additionally
incorporates zero-valued grace periods of length Tiy... between the code symbols
as also illustrated in Figs. 5.1(e) and (j). As discussed before, this is intended
to prevent code symbol transition effects due to ringing of the anti-aliasing filter
from causing inter-symbol interference, which can lead to both crosstalk of signals
between range channels and to cyclic errors due to non-ideal sideband suppression.
In this work, Tyrace is set equal to the anti-aliasing filter impulse response length
Th, theoretically ruling out any influence from one code symbol on the next. The
anti-aliasing filtered and spatially decoded signal Uge.(t, 7q), following from Eq. (5.9)
and plotted in Figs. 5.1(f) or (k), can then be stated as:

Usee(t, 7a) = d(t = 7a) - Una(t) = d(t = 7a) - (heomb(t) * Upa(t)) (5.10)

Analogous to the derivation of the original SSB equations in Sec. 5.2.1, the extended
SSB equations can be obtained by a Fourier series expansion, now incorporating
d(t — 73) and the convolution with hcomp(t). For brevity, this expansion is detailed in
App. A.2. A caveat of this derivation is, however, the requirement for stationary phase
signals ¢y (t 4+ 7) := k. This is mathematically necessary due to the convolution
with heomp(t). The assumption of stationary phase signal appears to hold well in
the later experiments, presumably because the phase signals in the experimental
demonstration vary over time scales much longer than the duration 7}, of heomp(t).

Demodulation: The final demodulation of the phase signals ¢, is analogous to
the generic interferometric demodulation process described by Fig. 3.4. As detailed
in App. A.2, this then involves digital multiplication of Ugec(t,7q) of Eq. (5.10)
with a complex carrier C),(t) and subsequent low-pass filtering at cut-off frequency
fq.co given below. The corresponding signals are illustrated in Figs. 5.1(f) to (i)
for in-range demodulation and in Figs. 5.1(k) to (n) for out-of-range demodulation.
The complex demodulation carrier function C,(t) at the chosen carrier of integer
harmonic index n is then given by:

Cy(t) = exp[—j - 20 feodel] (5.11)

For proper SSB operation, the carrier frequency n - feoqe in Cp(t) that is used to
demodulate Ugec(t, 7q4) has to correspond to an integer multiple of the SSB waveform
repetition frequency fy¢. Therefore n has to be an integer multiple of x -y, according
to Eq. (5.7), with the number of waveform templates per code symbol x and the
MLS code length y. In the example shown in Fig. 5.1, where x = 3 and y = 3, the
carrier Cy,(t) at the ninth harmonic n = 9 of the code repetition frequency feoqe, also
given by Eq. (5.7), is chosen for demodulation. Theoretically, higher values for n,
such as n = 18 or n = 27 are equally possible, however, these may require higher
signal processing bandwidths and are therefore not the optimal choice in most cases.

After multiplication with C,,(t), the resultant signals are low-pass filtered with a
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quadrature cut-off frequency fq o given by:

fQ,co < fQ,Co,max = 0-5fcode =0.5 c:)(lie (512)

This leads to the complex quadrature signal Ug ,(t, 74), which, for the relevant cases
with n # 0, is given by:

kmax

Uqun(t,7a) = > 0.5RP.g - (C+n7k(7’d) -explj - or] + ¢, 1 (7a) - exp[—] - cka (5.13)
k=1

The complex coefficients ¢, x(7a), describing the amplitude and phase of the positive
and negative sideband carriers respectively, incorporate the choice of modulation
waveform and anti-aliasing filter and also depend on the constituent interferometer
index k£ and the decoding delay 74. The coefficients ¢, j(74) are then given by:

1 Hleode
entl(Ta) = T | e <d(t—7d)'
CO(ie”fciode ’
2 ~
([ o Trcomn(t) - exply - st — ¥+ m)at’): (5.14)

exp|—j - 27mfcodet]) dt

Once single sideband operation is achieved, one of the sidebands at +n or —n will
disappear, allowing the desired phase signal ¢, to be demodulated using the arctan-
gent of the complex quadrature signal if the decoding delay 74 is set approximately
equal to the time-of-flight delay 7 of the desired constituent interferometer & plus
any additional offset signal processing delay. As a consequence of the MLS code,
the coeflicients ¢, j(7q) will ideally both reduce to zero when 74 differs from 74, by
more than the permitted source separation Ty, For the parameters of the later
experimental implementation, plots of the calculated spatial dependence of ¢, x(74)
will be shown and discussed later in Sec. 5.3.3.

When the positive sideband is chosen for demodulation, the sideband suppression
Sebnk(Ta) and quadrature signal crosstalk suppression Se;p x(74), which should both
approach zero in an ideal case, can be defined as:

|k (Ta)|
Ss nk\Td) = — 5.15
bk (Td) oo (72| (5.15)
k/:kmaz
> (lenr (7l + lenp(ra)l)
k'=1
k'+£k
Scrn - 5.16

These suppression values then allow a simple assessment of the modulation waveform
and anti-aliasing filter design choices in the later sections of this chapter.
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5.3. Modulation Waveform and Filter Design

In this section, the design choices for the modulation waveform and the filter
arrangement are detailed, starting with the shape of the basic phase modulation
waveform template. This is followed by a discussion of the chosen filter impulse
responses and concluded by examining the complete phase modulation waveform
using the theoretical description developed in the previous section.

5.3.1. Modulation Waveform Template Design

In this work, in order to allow the implementation of the previously discussed grace
periods, each of the y MLS code symbols may itself consist of x phase modulation
waveform templates of individual duration Ty (see also Fig. 5.1(a)) and the design
of these templates will be detailed in this section. As discussed previously in Sec. 4.3,
in CDM, the minimal spatial separation between signal sources is proportional
to the temporal duration of the code symbols and thus inversely proportional
to the modulation bandwidth. Therefore, the individual modulation waveform
templates have to be designed with high bandwidth efficiency so that they are as
short as possible and thus achieve the highest spatial resolution at a given hardware
modulation bandwidth. Furthermore, there is a requirement for the modulation
waveform templates to be zero-valued at both start and end of the template so
that CDM encoding can be accomplished without discontinuities at code symbol
transitions. The only additional requirement due to SSB theory for the design of
the modulation waveform template, as discussed previously in Sec. 5.2.1, is odd
symmetry around the centre of the template. Therefore, in order for the modulation
waveform template to be both bandwidth efficient and capable of SSB operation, a
design that is based on an exact Blackman window function [243] and multiplied
with a sine function to obtain the required odd symmetry is proposed in this work
and outlined in the following.

The exact Blackman window [243], Wg w¢(¢;), having even symmetry, for the
ith out of a discrete number of Dy samples, with coefficients [qo, ¢1, ¢2] equal to
@ - [7938, 9240, 1430], in the form relevant for this thesis, is given by:

2
Ty
Wpwi(ti) = Z Gm cos[2mmt;]  for t; = —wi [

~D, D,
ol e

0,, —— 5.17
2 7 7 2 ( )

m=0

The exact Blackman window is also shown in the time domain in Fig. 5.2(a), with
its frequency spectrum shown in Fig. 5.2(b), for the value of Dy = 8 samples per
modulation waveform template that is used in the later experimental implementation.
It can be seen in Fig. 5.2(b) that only three frequency components and no further side-
lobes are present in the spectrum, therefore this window function can be considered
to be very bandwidth efficient. The Blackman window function [243] is very widely
used in signal processing and was therefore used as an initial choice. Nevertheless, in
future work, further window functions could also be investigated and may offer even
better performance in some cases.
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Figure 5.2.: Plot of the exact Blackman window Wp w¢(t;) of Eq. (5.17) in the time domain
(a) and the frequency domain (b). In (a), the discrete samples are drawn for Dys = 8 and the
continuous line is for Dyt — oo, while (b) is compiled for the case of Dy = 8.

The exact Blackman window Wpg ¢ (t;) of Eq. (5.17) is then multiplied by a sine
function of period Ty to obtain the modulation waveform template with the required
odd symmetry, leading to the following expression for the normalised template gwf(t),
with normalisation factor Gy =~ 1.7779:

~ Tw _DW DW
Oui(t:) = G sin(—2mt,) W () for t; = 2 [—2%,,0,, =% — 1]

5.18
Dwf 2 7 29 2 ( )

Here, a DFT-even representation [243], where the last sample is at index (0.5Dys — 1)
and not at 0.5Dy¢, as in a true-even representation, is used, allowing the modulation
waveform template to be repeated seamlessly in the later assembly of the complete
modulation waveform. The normalised phase modulation waveform template gwf(t)7
given by Eq. (5.18), is plotted in Fig. 5.3(a) with the corresponding spectrum shown
in Fig. 5.3(b), where it can be seen that again only three spectral components up to
a maximum frequency of 37, ' are present. An additional advantage of the chosen
design for Oy¢(;) is that there is no DC component visible in Fig. 5.3(b), which is an
advantage for practical signal generation, as will be discussed further in Sec. 5.4.2.

_ To confirm the principle suitability of the phase modulation waveform template
Ot (t;) of Eq. (5.18) for SSB signal processing, the coefficients c;1 and c¢_; are calcu-
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Figure 5.3.: Plot of the normalised phase modulation waveform template fy¢(;) of Eq. (5.18)
in the time (a) and frequency (b) domain. In (a), the discrete samples are for Dy¢ = 8 and the
continuous line is for Dyt — oo, while (b) is compiled for D¢ = 8.
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lated according to the basic SSB equations of Eq. (5.3). Therefore, the fundamental
component of the waveform template at positive harmonic index n = +1 in Eq. (5.3)
is selected for demodulation, corresponding to a carrier frequency equal to T,;. A
carrier frequency equal to T, will also be used in the complete phase modulation
waveform discussed later in Sec. 5.3.3. The dependence on the scale factor s on the
coefficient amplitudes is shown in Fig. 5.4(a), where it can be seen that the coefficient
c_1 vanishes at s = 0.9107, allowing SSB signal processing to be performed. This
is also echoed by Fig. 5.4(b), which plots the corresponding sideband suppression
Seb,+1 according to Eq. (5.4).
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Figure 5.4.: Plot (a) of the dependence of the amplitude of coefficients c1; and ¢_; on the scale
factor s for Oy¢(t;) of Eq. (5.18) for Dys = 8, where the amplitudes are normalised to the maximum
of c11. (b) shows the corresponding sideband suppression Sgp, 11.

5.3.2. Filter Design

In any digital signal processing scheme, analogue reconstruction filtering at the output
of a digital-to-analogue converter (DAC) or analogue anti-aliasing filtering at the
input of an analogue-to-digital converter (ADC) are prerequisites for proper operation
satisfying the Nyquist sampling theorem [242]. In CDM, long ringing periods that
commonly occur in analogue filters can lead to inter-symbol interference, where
signal energy can penetrate into succeeding code symbols, for both reconstruction
and anti-aliasing filtering. This can be the cause of crosstalk between signal sources
and cyclic errors due to non-ideal sideband suppression can also occur as a result of
these filtering operations.

The requirements for DAC reconstruction filtering and ADC anti-aliasing filtering
are compared in the frequency domain in Figs. 5.5(a) and (b), respectively, for the
example of the previously shown time-domain signals of Figs. 5.1(a) and (b), which
are also repeated in the insets. The dashed vertical lines in Figs. 5.5(a) and (b)
illustrate the Nyquist limits for a representation of the signals by Dy = 8 samples
per waveform template, the value used in this thesis for both DAC and ADC sample
rates. It can be seen qualitatively from the plotted examples that the proportion of
signal content above the Nyquist limit is considerably higher for the incoming ADC
signal in Fig. 5.5(b) than for the spectrum of the outgoing phase modulation function
at the DAC in Fig. 5.5(a). This is because for the incoming ADC signal U,q(t), the
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Figure 5.5.: A typical example of the Fourier spectra of the phase modulation waveform 6(t) and
the resulting photo detector signal Up,q(t) are plotted in (a) and (b), respectively. The corresponding
time domain signals were previously used in Figs. 5.1(a) and (b), respectively, and are also sketched
in the insets. The plots, calculated for Dy — oo, are shown in units of the inverse waveform
template duration Tv;fl and the dashed lines mark the Nyquist limit for a signal representation by
Twi = DywiTy = 8T, samples per waveform template.

non-linear nature of the cosine-shaped interferometric transfer function of Eq. (3.3)
drastically increases the harmonic content compared to the outgoing phase modulation
signal 0(t), driven by the DAC. Therefore the requirements for DAC reconstruction
filtering are considerably lower than those for ADC anti-aliasing filtering, making
ADC anti-aliasing filtering much more critical to the overall performance of the
system. Furthermore, it is also possible to improve ringing due to DAC reconstruction
filtering using the modulation waveform pre-shaping technique discussed in Sec. 5.4.2.
Therefore, it is assumed that any ringing in the outgoing phase modulation waveform
driven by the DAC can be neglected and the calculations in this section focus solely
on the characteristics of the ADC anti-aliasing filter.

As previously discussed in Sec. 5.2.3, in an effort to make the anti-aliasing impulse
response digitally controllable, reduce ringing and also remove any DC transmission
of the filter, a digital filter is inserted after the analogue anti-aliasing filter. Therefore,
the resulting combined impulse response heomb(t) = Ranag(t) * haig(t) is given by the
convolution of Aapnag (%), the analogue filter impulse response, with hqie(t), the digital
filter impulse response. For the design of hgis(t), as a compromise between short
impulse response and good anti-aliasing performance, a target cut-off frequency of
2T was chosen. Also, as previously discussed in Sec. 5.2.3, there is a need to have
zero DC transmission in the anti-aliasing filter, resulting in a band-pass characteristic
incorporated into the digital filter. The chosen digital filter is based on the previously
used exact Blackman window, however, the filter needs a duration of Dy, = 16 = 2D
sample periods to achieve the stated requirements, thus resulting in a filter length of
Ty, = 2Ts. Here, for the definition of the digital filter impulse response hgig(t), the
exact Blackman window [243], W, (¢;), with even symmetry, for the ith out of a
discrete number of Dy, sample periods and with coefficients [qo, ¢1, ¢2] again equal to

o - [7938, 9240, 1430], s given by:

T [_Dh Dh] (5.19)

2
Wen(t:) = Z qm cos|2mmt;]  for t; = Dy A ,0,, -

m=0
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To maximise the usable signal energy, the filter response is peaked at the target
demodulation carrier frequency of T; by multiplying a sine of frequency T to
the Blackman window of Eq. (5.19), which also removes any DC transmission of the
filter. The frequency of the sine has to be adjusted by a factor of D, D} to achieve
a peak at T.;'. Because the digital filter is designed to be applied to non-periodic
signals, mathematically, it needs to be defined over an infinite interval, with the
digital filter impulse response hqig(t;) set to zero outside the filter length 7j,. Using
the normalisation coefficient G}, &~ 1.2318, this results in hqg;y(;) given by:

G}, sin (2ﬁti%)WB,h(ti) for t; = %‘; [‘5“, ,0,, %}

(5.20)
0 for t; > 0.57;, or t; < —0.5T},

hdig (t1> - {

The digital filter response given by Eq. (5.20) is shown! in Fig. 5.6(a) for the chosen
value of Dy, = 16. It can be seen in the spectrum of Fig. 5.6(b) that this filter peaks
at a frequency of T, has minimal DC transmission and that a cut-off of ~ 270" as
well as a stop-band attenuation below —70 dB can be achieved. Again, different filter

choices using other window functions could also be investigated in future work.
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Figure 5.6.: Plot of the discrete, normalised digital filter impulse response of Eq. (5.20) in the
time domain (a) and frequency domain (b). In (a), the discrete samples are for Dy, = 16 and the
continuous line is for Dy, — oo, while (b) is compiled for a non-periodic input signal for the case of
Dy, = 16. Note the use of units of Tyt = 0.571, to allow comparison with previous graphs.

In order to determine the anti-aliasing filter performance of the filtering arrange-
ment, the frequency spectra of the analogue filter (Mini-Circuits BLP50+) that is
used in the later experimental implementation, with impulse response hanag(t), the
digital filter hqiy(t) discussed above, and their combination with impulse response
heomb(t), are plotted in Fig. 5.7(a). The analogue impulse response hanag(t) was
determined using a high-speed oscilloscope and a pulse generator. Here it can be
seen that the analogue filter provides the necessary attenuation above the Nyquist
frequency. The digital filter has a much tighter characteristic that allows the required
control of the filtering characteristic to shorten the impulse response and remove
the DC component, however, on its own the digital filter would lead to aliasing for

1To assess the performance of the digital filter on a non-periodic input function, the Fourier
spectrum has to be evaluated over an infinite period of zeros before and after the filter impulse
response shown in Fig. 5.6(a), leading to the continuous spectrum shown in Fig. 5.6(b).
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Figure 5.7.: To assess the anti-aliasing performance, (a) plots the filter frequency characteristics of
the analogue filter, the digital filter and their combination in response to an incoming continuous-
time signal. (b) shows the result of the combined filter on the spectrum of the example photo
detector signal previously depicted in Fig. 5.5(b). In both (a) and (b), the Nyquist frequency for
Twt = 8T is drawn using dashed lines.

frequencies above the Nyquist limit, which would result in a repetition of the filter
characteristic at multiples of the sample frequency f; = DyT.;. However, it can
also be seen in Fig. 5.7(a) that the spectrum of the combined filter, which is the
product of both analogue and digital spectra, largely follows the spectrum of the
digital filter but additionally attenuates aliased signals with by ~ 50dB. When
this filter is applied to the example ADC signal previously shown in Fig. 5.5(b), it
can be seen in Fig. 5.7(b) that with this filtering arrangement the expected aliased
signal components are at levels of 70 dB below the main carrier. This is considered
acceptable for the purpose of this work, but could be improved by more stringent
analogue filtering in future implementations of this scheme, which, on the other hand,
also has potential to worsen the ringing performance if not compensated carefully.

Finally, in order to quantify the ringing performance of anti-aliasing filter con-
figuration, Fig. 5.8 draws the resulting filter impulse responses.? It can be seen in
Fig. 5.8 that heomn(t) approximates the shape of the digital impulse response hgg (%),
but, unlike hgig(t), heomn(t) does show some low-level ringing above 275, as visible
in the inset in Fig. 5.8. This exceeds the length of the previously discussed grace
periods of length Tyace = 27y and therefore has some negative effects on crosstalk
and sideband suppression that will be quantified in the next section by calculating
the spatial dependence of the carrier amplitude coefficients, later shown in Fig. 5.10.
Nevertheless, compared to the case where only the analogue filter would be used,
an improvement in the ringing performance can be observed, and this combined
anti-aliasing filter configuration is also employed in the later experimental imple-
mentation. In this context, an additional correction scheme that would theoretically
allow the shortening of the combined filter impulse response to the exact length of the
digital filter impulse response by incorporating detailed knowledge of the complete
analogue signal processing chain will also be outlined in the discussion in Sec. 5.6.1.

2Here, the analogue filter response hanag(t) is drawn as a continuous-time signal, while the
impulse responses of the digital haig(t) and combined filters hcomb(t) are ultimately defined in the
digital domain and are drawn as discrete-time signals accordingly.
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Figure 5.8.: The impulse responses of the analogue filter hanag(t), used in the later experimental
implementation, the proposed digital filter, hqiy(t), and the combined filter, hcomn (t), are compared,
with the inset illustrating the ringing performance of the individual impulse responses. Here,
Twt = DywiTs = 8T is 53.3 ns for a sample frequency of f; = T;l = 150 MHz.

5.3.3. Complete Phase Modulation Waveform

In this section, the complete phase modulation waveform is analysed using the
theoretical description developed in Sec. 5.2.3, which, as discussed there, is only valid
for stationary phase signals ¢(t). Nevertheless, in this work this is sufficient to show
that in order to prevent inter-symbol interference due to anti-aliasing filtering, two
grace periods for every one evaluated modulation waveform template, as illustrated
in Fig. 5.1(e), are required. This leads to a minimum of x = 3 waveforms per code
symbol (see also Eq (5.7)). The complete normalised phase modulation waveform
0(t) can be straightforwardly assembled from the individual modulation waveform
templates fy¢(t). The resultant waveform 6(t) is shown in Fig. 5.1(a) for an MLS code
of length y = 3, whereas for the calculations in this section and the later experimental
implementation a MLS code of length y = 15 is used, which theoretically allows
y = 15 range channels to be addressed.

With these parameters for x and y fixed, the target demodulation carrier frequency
of 1Ty of the modulation waveform template gwf(t), chosen in Sec. 5.3.1, translates
to x -y = 45 repetitions per complete modulation waveform HN(t) of length Tioge,
according to Eq. (5.7). Therefore, the harmonic index n for the demodulation will
also be n = 45 and the coefficient amplitudes ¢, ;(74) with n = £45 can be calculated
according to Eq. (5.14), using the combined anti-aliasing filter impulse response
heomp(t). This is shown in Figs. 5.9(a) and (b) as a function of the phase modulation
scale factor s for zero decoding delay 74 = 0 for a single interferometer of index
k = 1. Here, single-sideband operation is achieved for a scale factor s of s = 0.910m,
which is the same as the value extracted from Fig. 5.4 for the single modulation
waveform template without considering the influence of the anti-aliasing filter.

After the optimal scale factor s = 0.9107 is found by evaluating the peak position
in Fig. 5.9(b), the spatial dependence of the coefficients ci451(74) is investigated for
the optimum value of s as a function of the decoding delay 74. In order to investigate
the influence of the anti-aliasing filter choice and associated ringing performance on
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Figure 5.9.: (a) plots the dependence of the amplitude of coefficients c445.1(0) and c_45.1(0) on
the scale factor s, calculated using Eq. (5.14) for Dyt = 8 and using the combined anti-aliasing
filter impulse response heomp (t). This is shown for the chosen carrier harmonic n = x - y = 45 for
an MLS of code length y = 15 and for a single source, k = 1, placed at zero time-of-flight delay
71 = 0 and demodulated at 74 = 0. In (a), the amplitudes of the coefficients are normalised to the
maximum of c;45,1(0) and (b) shows the corresponding sideband suppression Ssp, 45.1(0).

the spatial dependence of the coefficients, the coefficients are calculated separately
for different filter operations and the results are shown in Fig. 5.10. Here, for the
case of analogue filtering only, Ranag(t) is used instead of hcomp(t) in Eq. (5.14), with
results shown in Figs. 5.10(a) to (b). For the case of digital filtering only, hqy(%)
is used instead of heomy(t) in Eq. (5.14), with results shown in Figs. 5.10(c) to (d).
Finally, results for the combination of both filters, using hcomp (t) in Eq. (5.14), which
is the case that is valid for the later experimental implementation, are shown in
Figs. 5.10(e) to (f). The plots for x = 3 waveform templates per code symbols, as
used in the later experiments, are shown in Figs. 5.10(b),(d) and (f) on the right.
Furthermore, in order to verify the general need for the introduction of the discussed
grace periods, the calculations are also carried out for the hypothetical case of x =1
without any grace period, with results shown in Figs. 5.10(a),(c) and (e) on the
left. For the case where x = 1, the appropriate carrier harmonic for demodulation is
n = 15, while n = 45 is appropriate for x = 3 as discussed before. In each sub-plot of
Fig. 5.10, the values of the coefficients ¢, x(7q) are drawn in the upper panel, while
the lower panel plots the values of the sideband suppression ratio S, x(7a), given by
Eq. (5.15), and the quadrature signal crosstalk suppression ratio Se; . x(7a), given by
Eq. (5.16). In the upper panel, the coefficients for the main source at k = 1 at zero
propagation delay 7,—; = 0 are plotted using solid lines. Also, in order to evaluate
crosstalk, additional signal sources, with their resulting coefficient dependencies
plotted using dashed lines, are placed regularly with time delays corresponding to
OPDs equal to the minimal permissible source separation, i.e. the MLS code symbol
length Tiymp. Here, Tyymp, corresponds to 1- Ty for x = 1 and 3 - Tyt for x = 3.

The need for the introduction of grace periods becomes obvious when comparing
the graphs on the left side, i.e. Figs. 5.10(a), (c¢) and (e), where z = 1, with the
graphs on the right side, i.e. Figs. 5.10(b), (d) and (f), where x = 3. It can be
seen that when there is no grace period, there is strong inter-symbol interference
for any filtering arrangement, limiting both the achievable sideband suppression
Seb,15,1(7a) and crosstalk suppression Se; 151(74) to unacceptable levels. When this is
compared to the corresponding graphs on the right side, Figs. 5.10(b), (d) and (f),
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Figure 5.10.: Plots of the spatial dependence of the coefficient amplitudes ¢4, x(74), the sideband
suppression Sgb.n k(7a) and the crosstalk suppression Se;n k(74) as a function of the decoding delay
Tq for a fixed scale factor s = 0.9107. The coefficients are shown for a single source, k = 1, placed
at zero delay 7,—1 = 0 (solid) and for further sources placed equidistantly with separations equal to
Tsymb = Ty (dashed). The demodulation carrier harmonic n for an MLS of code length y = 15
is n = 15 for the case without grace period, i.e. © =1, shown in (a),(c) and (e), and n = 45 for
the case with the previously described grace period, i.e. = 3, shown in (b), (d) and (f). This is
calculated for three filtering operations individually, for analogue filtering only, using hanag(t), in
(a) and (b), for digital filtering only, using haig(t), in (c¢) and (d) and for combined analogue and
digital filtering, using hcomp(t), in (e) and (f).
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the positive influence of the grace period on the sideband and crosstalk suppression
becomes obvious, confirming the case for their introduction. Furthermore, when
comparing the responses for the different anti-aliasing filter arrangements for x = 3
in Figs. 5.10(b), (d) and (f), it can be seen in Fig. 5.10(b) that analogue only
filtering has a profound effect on the results. In this case, the asymmetry of the
analogue impulse response hanag(t), which is also visible in Fig. 5.8, leads to highly
asymmetric coefficient dependencies. Also, the strong ringing in fapag(t) limits
sideband and crosstalk suppression to values above ~ —60dB in the theoretical
calculation. This is in contrast to the response of the digital filter only, plotted
in Fig. 5.10(d), which exhibits perfect symmetry and where very high sideband
and crosstalk suppression values can theoretically be achieved over a wide range of
propagation delay values, allowing the OPDs of the constituent interferometers to
be placed with very relaxed spatial tolerances. However, as described previously, in
practice, a digital filter cannot be used on its own due to the aliasing that would
occur. Finally, in Fig. 5.10(f), it can be seen that the combined filter arrangement
that is used in the later experiment approximates the ideal behaviour of the digital
filter, however, the tolerance band is smaller than in the hypothetical case of digital
filtering only. Also, a slight asymmetry can be observed in the calculated values.
Nevertheless, these calculations show that the performance improvement in terms of
sideband and crosstalk suppression that can be theoretically achieved using grace
periods is significant. This therefore also confirms the rationale for the use of the
described filter configuration in the experimental work in this chapter.

5.3.4. Design Parameter Summary

Table 5.1 shows the chosen design parameters for the assembly of the complete
phase modulation waveform 6(t). The spatial resolution resulting from this choice of
parameters and the specific experimental details are then discussed in Sec. 5.4.3.

Table 5.1.: Design parameters chosen in this thesis for the phase modulation waveform
6(t) at a given sampling period of Ty = f; 1.

Parameter Value Description
x 3 Number of waveform templates per code symbol
Y 15 MLS code length and max. number of range channels
n x-y =45 Harmonic index of the chosen carrier
Dyt 8 Number of samples in waveform template
Dy, (x-1)-Dyr=16 Number of samples in digital filter impulse response
Tt Dyt T Length of one modulation waveform template
Th Dy Ty Length of the digital filter impulse response
Tgrace T Length of the grace period
Toymb X Tt Length of each code symbol
Teode V- Tsymb Length of the whole code
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5.4. Implementation

This section discusses the details of the experimental implementation. Here, the
optical setup is described in Sec. 5.4.1, and the measurement arm configuration is
detailed in Sec. 5.4.3. The electronic components can be separated into the signal
generation chain and the signal processing chain that will be discussed in Sec. 5.4.2
and Sec. 5.4.4, respectively.

5.4.1. Optical Setup

In the optical setup of this implementation, as illustrated in Fig. 5.11, light from a
1552 nm single-mode fibre-coupled diode laser EP1550-NLW-B from Eblana Photonics
(for full characterisation see App. B), driven at an output power of 8 mW and
temperature controlled to 25° C, enters the interferometer constructed using regular
SMF-28-type optical fibre. The setup corresponds to the common LO configuration
of Fig. 4.1(c). Here, in one arm, a polarisation controller [100] was constructed
and is used to align the linear polarisation direction of the incoming light with the
principal polarisation axis of the electro-optic phase modulator (Photline MPZ-LN-
10), which has a bandwidth of 10 GHz and which is a lithium niobate travelling-wave
phase modulator widely used in the telecoms industry. This is necessary because
of the inherent dependence of the voltage-to-phase-modulation transfer function on
the polarisation direction in lithium niobate modulators [114], leading to different
voltage-to-phase modulation conversion factors for each principal polarisation axis.
A further in-fibre polariser is inserted after the phase modulator and also aligned
to the principal polarisation axis of the phase modulator in order to filter out any
remaining light of the undesired polarisation direction.

Signal Generation

S | Analogue |_| Amp- |
FPGA [ DAC Filter |7 lifier

Measurement Arm

v Circulator Segment 1 Segment 2 .
Phase A\ /
P Modulator
Pol t
((j)oarﬂfgnlgrn In-Fibre Reflector 1  Reflector 2 Reflector 3
st Polariser
Polarisation Signal Processing

Controller Common LO Photo Analo
; gue |, .
50%  |Detector|™| Filter || APC [7[FPGA

Figure 5.11.: Setup used in the experimental implementation in this chapter. Light emitted by
the laser diode is split by a directional coupler, where one part is passed to the common LO and
another part is guided to a polarisation controller before being phase modulated by the modulation
signal from the signal generation chain. After traversing an in-fibre polariser, the modulated light
is then guided by a circulator to the measurement arm. Here, following reflection by in-fibre partial
reflectors, return light is directed by the circulator towards a directional coupler, where it is mixed
with unmodulated light from the common LO that has also been subject to further polarisation
control to optimise visibility of the reflector signals. After mixing and photo detection, the resulting
signals are then processed in the signal processing chain.
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To achieve high sideband suppression for SSB signal processing without cyclic errors,
an optimum value for the scale factor of s = 0.9107 rad was calculated in Sec. 5.3.3 for
the chosen phase modulation waveform. As discussed above, the phase modulation
efficiency is dependent on the polarisation direction within the phase modulator in
addition to the voltage scaling of the drive signal, thus requiring simultaneous tuning
of both quantities. In practice, due to the unknown voltage-to-phase-modulation
conversion factor of the phase modulator, the calculated value of s can only give an
indication of the correct value and manual tuning is required. For tuning of both
polarisation direction and driving voltage scale, a test signal with phase excursion
> 27 is induced in the measurement arm in any of the experimental configurations
discussed later in Sec. 5.5. Then the following procedure is performed:

» First, the principal polarisation axis of the phase modulator with the highest
phase modulation efficiency is aligned with the output polarisation of the
polarisation controller. To achieve this, the phase modulator is driven with the
regular phase modulation waveform that allows SSB-CDM signal processing, as
described in Sec. 5.3.3, however, at slightly lower than anticipated drive voltage
scale. Then, the maximum modulation efficiency of the phase modulator,
which should coincide with one of the principle polarisation axes, is found by
adjusting the polarisation controller so as to minimise the ellipticity of the
measured quadrature signal Uq ,,(t) of Eq. (5.13), when plotted in the complex
plane (see also Fig. 3.6).

e The polarisation direction of the in-fibre polariser is then adjusted to coincide
with the polarisation direction of the outgoing light from the phase modulator
by tuning the FC/PC connector orientation of the fibre link between modulation
and polariser until the photo detector signal amplitude is maximised. This is
intended to filter out any remaining light that is not aligned with the principle
polarisation axis of the phase modulator.

« Finally the drive voltage scaling is increased until Uq ,(t) appears completely
circular in the complex plane and complete sideband suppression is achieved.

While theoretically a single polarisation controller should be sufficient to align the
incoming polarisation axis to the principal polarisation axis of the phase modulator,
it was found that only the combination of polarisation controller and polariser allowed
for drift free and stable operation. However, once all fibre leads were fixed to the
table and the above tuning procedure was followed, the experiment did not require
any further tuning, even over several weeks. As will be discussed further in Sec. 5.6.1,
it is recommended that a phase modulator with polarisation maintaining input fibre
is used in future implementations. This avoids the need for the polarisation controller
and polariser as well as the tuning procedure described above.

In Fig. 5.11, light leaving the in-fibre polariser is directed by a circulator to the
measurement arm. Here, as detailed in Sec. 5.4.3, in-fibre partial reflectors provide
the return signals that are then evaluated by this scheme. After returning from
the measurement arm, the circulator guides the light towards the signal processing
chain that will be detailed in Sec. 5.4.4. Before entering the photo detector, light
from the measurement arm is mixed with the light from the common LO. A second
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polarisation controller is inserted into the common LO arm and is tuned so that no
complete polarisation-induced signal fading [98,99] (see also Sec. 2.4) occurs in any
of the return signals from the measurement arm. It is recognized that in a real-life
application, the use of a second polarisation controller in this way, while having
allowed the experiments in Sec. 5.5.1 to be carried out, cannot guarantee the absence
of polarisation-induced fading in all cases. Potential ways to mitigate this will be
further detailed in Sec. 5.6.1.

5.4.2. Signal Generation

As illustrated in Fig. 5.11, the signal generation chain driving the phase modulator
consists of the field programmable gate array (FPGA), the DAC, an analogue
reconstruction filter and a high-frequency amplifier. The FPGA controls both the
signal generation and processing to ensure precisely synchronised modulation and
demodulation, which is a necessity in CDM. The working principle of an FPGA is also
outlined in App. C. In this implementation, an Altera Cyclone IV FPGA on a Terasic
DE2-115 development board was used in conjunction with a data acquisition daughter
board containing the 14 bit ADC and 14 bit DAC, both running at a clock and
sample frequency of f, = T, ' = 150 MHz. With the help of Table 5.1 and Eq. (5.7),
this yields a waveform template repetition frequency of T.;' = DT = 18.75 MHz,
a code symbol repetition frequency of TS;Ilnb = (x - Tyt)™t = 6.25 MHz and a code
repetition frequency of T.oh. = (¥ - Toymn) ™' = 417kHz. As discussed in Sec. 5.3.1 a

target carrier of 1- Ty is chosen, leading to a demodulation carrier C,,(t) of Eq. (5.11)
at harmonic index n = z - y = 45 and frequency n - 7.}, = 18.75 MHz.

code

The DAC is connected to an analogue low-pass reconstruction filter (Mini-Circuits
BLP-90+) with a cut-off frequency of 90 MHz. While this cut-off frequency is not
ideally situated for the Nyquist frequency of 0.5f; = 75 MHz no other filter was
available, however, the correction procedure outlined below also mitigates against this
apparent drawback. After passing the reconstruction filter, the signal is amplified
by a high-frequency amplifier (Mini-Circuits ZHL-32A; Gain: 25 dB; Passband:
0.05 to 130 MHz) to boost the drive voltage of the phase modulator to reach the
required phase modulation depth of s = 0.9107, determined in Sec. 5.3.3. For the
operation of the amplifier it is advantageous that there is no DC component in the
modulation waveform 6(¢), as discussed in Sec. 5.3.1, otherwise non-linear behaviour
in the amplifier could result.

In general, because every component in the signal generation chain introduces its
own specific frequency characteristic, in particular the high-frequency amplifier, the
resulting waveform at the input of the phase modulator will be distorted. This can
be seen in Fig. 5.12, where ringing at the end of the depicted code symbol can be
observed that can lead to inter-symbol interference. To counteract this non-ideal
frequency response, the waveform transmitted by the DAC is digitally pre-shaped
incorporating the measured impulse response of the signal generation chain hg(?).
To measure hg,(t), a singular, non-zero impulse of one sample was generated by the
DAC and the resulting response after the amplifier is recorded using an oscilloscope of
input impedance 50 (2. Then, to digitally pre-shape the normalised phase modulation
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waveform 6(t), the following procedure is performed:

o First, the reciprocal [Hg(f)]™" of the complex Fourier transform Hg(f) =
F{hs(t)} of the measured impulse response hg, (%) is calculated.

 Then the reciprocal spectrum [Hy,(f)]™! is multiplied with the complex spec-
trum of the desired output signal F{6(t)}.
o Finally, the inverse Fourier transform of the above product results in the

pre-shaped output signal ]-"_1{[Hsg(f)]_1 : ]-"{g(t)}}

The result of this procedure is shown in Fig. 5.12, showing a marked improvement in
the fidelity of the output waveform that almost completely overlaps with the desired
theoretical waveform where pre-shaping is carried out.

3 ! ! ! ! ! I I

; ; : ; : — Theoretical Waveform
— Without Preshaping
— With Preshaping 5

0 20 100 150 200 250 300 350 400
Time [ns]

Figure 5.12.: Output signal of the signal generation chain after the amplifier, measured with an
oscilloscope. Here the measured signal overlaps very well with the appropriately scaled theoretical

phase modulation waveform 6(t) (see Sec. 5.3.3) for the case with waveform pre-shaping, but show
distortions and ringing without pre-shaping, which is particularly evident in the inset.

It should be noted that due to the lack of knowledge of how the impulse response
is translated into the optical domain by the phase modulator, the pre-shaping
procedure outlined above is incomplete. It is plausible the phase modulator has a
reasonably flat frequency response over the relevant frequency region, as the maximum
bandwidth of the phase modulator is 10 GHz and thus far away from the modulation
bandwidths used here, however, there is no data from the manufacturer available in
this regard. Also, as the characteristic impedance of the phase modulator is given
as 40 €2 and the high-frequency amplifier is designed for 50 €2, thus there is further
uncertainty about the actual transmission from the amplifier to the phase modulator,
in particular the possibility of RF signal reflections. In future implementations, it is
therefore recommended to determine the optical impulse response of the complete
signal generation chain, including the phase modulator, in order to remove these
uncertainties. This could be achieved using a procedure that will be outlined in the
discussion in Sec. 5.6.1.

5.4.3. Measurement Arm Configuration

In unipolar-bipolar CDM for multiple reflectors that are correctly positioned, no
discernible crosstalk should occur. This is the case when the OPDs of the constituent
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interferometers correspond to an equidistant grid with individual time-of-flight
differences of one MLS code symbol length T, wWith Ty, = 27w = Dy
according to Table 5.1. The lack of crosstalk theoretically expected for this case is
also evident when comparing the dashed and the solid lines in the upper panel in
Fig. 5.10(f). Additionally, it can be observed in Fig. 5.10(f) that there should be a
tolerance band in the positioning of the partial in-fibre reflectors resulting from the
parameter choice in this work. The unit fibre segment length [, corresponding to a
return time-of-flight of duration Tg,,, between the segment reflectors, with sample
frequency f; = T, ', fibre group index of refraction ng = 1.46 and vacuum speed of
light ¢, is then given by:

Co co- Dy 2.47-10°ms!
ls = 5 " Tsymb - -
2ng - s s

2n,

For the parameters in this experimental implementation with f; = 150 MHz, this
equates to [y = 16.5m. Thus, neighbouring reflectors need to be placed equidistantly
on a grid with a separation of [ for proper operation of this technique. In general,
there also exists an additional offset signal processing delay for all range channels,
which can easily be accounted for by adjusting the decoding delays in the FPGA
signal processing. It can be seen in Eq. (5.21) that with the modulation waveform
parameters fixed according to Table 5.1, there are no other fundamental limitations
influencing the minimally achievable unit fibre segment length I in Eq. (5.21) apart
from the sample frequency fs. Thus [ is inversely proportional to f; and independent
of the MLS code length y of Eq. (5.5). The maximum number of reflectors that can
be addressed is then given by the MLS code length y and subsequently the maximum
number of fibre segments that can be addressed is y — 1. Range channels where no
reflector is placed do not produce a signal and are of no concern.

(5.21)

In this work, using the common LO configuration of Fig. 4.1(c), where a strong local
oscillator provides considerable heterodyne gain, it is assumed that the reflectivities
of the reflectors are sufficiently small not to substantially reduce the incident light
of other reflectors or cause interference between unintended path combinations or
multiple reflections, as previously discussed in Sec. 4.1. As the later experimental
results in Fig. 5.19 show, in the current implementation, making use of the heterodyne
gain phenomenon previously discussed in Sec. 3.1.1, the technique can be expected
to work well down to reflectivities of —45dB (0.003%). In the experiments in this
chapter, pairs of FC/PC connectors that are slightly detuned to achieve weak back
reflections are used. This approach is only feasible in a lab environment due to its
instability and the extensive tuning it requires, where further options for in-fibre
partial reflectors have also been discussed in Sec. 4.1.

5.4.4. Signal Processing

The signal processing is illustrated in Fig. 5.13. After photo detection (New Focus
1592; Gain: 1100 VW1 Passband: 10kHz to 3.5 GHz), the electrical signal is filtered
with an analogue anti-alias filter (Mini-Circuits BLP-50+ with cut-off frequency
50 MHz), characterised by the impulse response Aanag (), and then digitized at sample
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Figure 5.13.: Outline of signal processing implementation (compare also with Fig. 5.1), illustrated
for the decoding of signals from three reflectors R1, R2 and R3. Here, real signals are drawn
in blue, while complex signals are drawn in magenta. After analogue anti-aliasing filtering with
impulse response hanag(t) and digitisation by the ADC, the photo detector signal enters the FPGA.
Here, after digital filtering with impulse response haig(t), the signals are separated into three
range channels for R1, R2 and R3 by delaying the multiplication with the decoding function d(t)
by decoding delays 74 equal to 71, 70 and 73, respectively. Each range channel is subsequently
demodulated by multiplication with the complex carrier C145(¢) and finally digitally low-pass
filtered at quadrature cut-off frequency fq .. After being transmitted from the FPGA to a PC,
the quadrature signals of R1, R2 and R3 are subject to a complex division to subtract the phases
and finally phase unwrapping, resulting in the desired phase signals for two segments S1 and S2.

frequency f; = 150 MHz by the ADC before being transmitted to the FPGA. Here,
as previously discussed in Sec. 5.3.2, further digital filtering, characterised by the
impulse response hgig(t), is carried out, resulting in the combined impulse response
Peomb(t) = Nanag(t) * haig(t) for the anti-aliasing filtered photo detector signal Uy, (%)
of Eq. (5.9). Separately for each range channel, Uy, (t) is then multiplied with delayed
versions of the decoding function, given by d(t — 74) in Eq. (5.10). For each range
channel the decoding delay 74 corresponds to 74 = 7%, the time-of-flight to the kth
reflector. As discussed in Sec. 5.2.2 and also observable when comparing Figs. 5.1(e)
to (i) with Figs. 5.1(j) to (n), in unipolar-bipolar MLS coding the autocorrelation
for code iterations with different code delays is zero and out-of-range signals should
cancel, leaving, in theory, only the signal from the reflector at the desired range, i.e.
with the correct delay 74 = 7%, to accumulate in the corresponding range channel.

Following decoding into range channels, the complex quadrature signals Uq (¢, 74)
of Eq. (5.13) results from the demodulation with the complex carrier C,(t) of
Eq. (5.11) and subsequent complex digital low-pass filtering at cut-off frequency
fq.cos according to Eq. (5.12). Here, the chosen carrier harmonic for demodulation
is n = +45. Care has to be taken to demodulate a positive carrier harmonic
cink(7a) With a positive complex frequency and vice versa to obtain meaningful
results, as this was an error causing delay during the practical implementation.
As previously discussed, the chosen parameters according to Table 5.1 lead to a
possible maximum quadrature cut-off frequency fq comax, according to Eq. (5.12),
of fQ.comax = O.5TC:)(11e = 208 kHz. It will be detailed in the discussion of the later

experiments in Sec. 5.5.1 that in this work quadrature noise can lead to spurious
unwrappings (see also App. D.2) that requires the low-pass filter cut-off frequency of
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the complex quadrature signal to be significantly lowered to fq ., = 20 kHz.

In the current implementation, due to capacity limitations on the used FPGA, a
total of 12 range channels can be interrogated simultaneously, and, as can be seen in
Fig. 5.13, the filtered complex quadrature signals, at a data rate of 50.4 kHz each,
are then transferred serially from the FPGA to a personal computer (PC) for further
processing. This was done in order to limit FPGA programming complexity, however,
in future implementations all digital signal processing could equally be performed on
the FPGA. In the current implementation, the transfer of data from the FPGA to
the PC and the associated buffering constituted a bottleneck, limiting the continuous
recording time to less than a second. However, this is only a technological problem
that could be solved using faster data transfer links in future implementations.
Finally, in order to evaluate segment data, the phases of neighbouring range channels
are subtracted by complex division of the quadrature signals on the PC. This
is followed by complex phase determination using the arctan function and phase
unwrapping [112], resulting in the desired phase signals for each fibre segment.

5.4.5. Implementation Parameter Summary

Table 5.2 shows the signal processing implementation parameters used in this chapter.

Table 5.2.: Signal processing implementation parameters for the demonstration of the
CDM technique.

Parameter Value Description
fs 150 MHz  Digital hardware sample frequency
fut =T 18.75MHz Waveform template repetition frequency
TS;rlnb 6.25MHz Code symbol repetition frequency
feode = Tk, 417kHz  Repetition frequency of the whole code
fQ,comax 208 kHz  Maximum possible quadrature filter cut-off frequency
fa.co 20kHz  Used quadrature filter cut-off frequency
ls 16.5m Unit fibre segment physical length

5.5. Experiments

In this section, results from an experimental demonstration of the proposed combined
SSB-CDM signal processing technique will be presented. First, in Sec. 5.5.1, a
detailed analysis of linearity, noise and crosstalk performance for a configuration with
only a single reflector present is carried out, evaluating the best case performance
that can, in principle, be expected using the proposed technique and allowing
theoretical predictions originating from the previous sections to be tested. This
is followed in Sec. 5.5.2 by characterising the performance for multiple reflectors,
which is more relevant for FSI applications, in a suitable test setup. Finally, in
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Sec. 5.5.3, the multiplexing of four long-gauge length fibre optic strain sensors in an
FSI configuration will be trialled. A critical discussion of both these experiments
and future improvements to the implementation will then be carried out in Sec. 5.6.

5.5.1. Single Reflector Measurements

Linearity: To analyse the linearity and noise properties of a system where only
a single reflector is present, the measurement arm configurations R1 to R5 that
are illustrated in Fig. 5.14 are used. Here, up to four fibre segments that have
FC/PC connectors on both ends and that are of unit fibre segment length [s can be
used, where [ equals 16.5m according to Eq. (5.21) for the experimental parameters
described there. In each measurement configuration R1 to R5, only a single signal
from the respective open FC/PC connector fibre tip reflection at positions 1 to 5 is
present in the measurement signal. The other FC/PC connectors are in close contact
and therefore ideally return no signal. The signals are measured for a total of 36
equidistant range channels, recorded sequentially in three sessions for the maximum
number of 12 range channels that are implemented on the FPGA. Each range channel
is separated by four samples or 0.5 - Ty¢, corresponding to a physical distance of
2.75m between range channels. In order to introduce a phase signal sweep, required
to equalise the point density in the later plots of the quadrature ellipses, an additional
slow (33 Hz) laser injection current modulation of the source can be used.

Polar scatter plots (see also Fig. 3.6) of the complex quadrature signals Uq 45(t, 7a)
of Eq. (5.13), with n = 45 according to Table 5.1 and 74 = 7, where k = 1...5 for

LO Balance Point 391 m
26.9 m 23.1m
99m |6.5m
=g = = =
R Position 1 Position 2 Position 3 Position 4 Position 5
| | | | | Reflector
R4 | | | | R5 only
| | | | Reflector
R3 | | | | R4 only
| | | Reflector <
| | | R3only
R2 )
| | Reflector
| | R2only
R1 o)

4_,_| Reflector
R1 only
<

Key: | Two FC/PC Connectors in Contact Single, Open FC/PC Connector
(No Reflection) (Fibre Tip Reflection)

Figure 5.14.: Five measurement arm configurations for single reflector measurements in conjunction
with the setup of Fig. 5.11. Here, for each configuration R1 to R5, a single return signal occurs
where the respective FC/PC connector at position 1 to 5 is left open, while no reflection should
result from the other connectors that are in close contact. Also shown are the physical distances of
positions 1 to 5 with respect to the common LO balance point (see also Fig. 4.1).
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the time-of-flights to the respective reflector of the five configurations R1 to R5,
are then used to determine the achievable linearity of the technique. These are
shown in Fig. 5.15(a), where the blue dots trace the end-points of every quadrature
signal phasor over a period of 0.5s, with the quadrature signal low-pass filtered at a
bandwidth of fq ., = 20kHz. The green lines then represent the angular average of
this data over 30 angular sectors, with both plots normalised to the mean phasor
amplitude. The differences in noise in R1 to R5 will be analysed in the next section,
however, it can be seen qualitatively that all plots appear centred and circular and
should therefore result in highly linear interferometric phase measurements with low
cyclic error magnitudes. To quantitatively determine the magnitude of the remaining
cyclic errors, the dependence of the complex phasor amplitude on the phasor angle
for the angular averaged quadrature data was fitted to the cyclic error model given
by Eq. (3.8). The results of this fitting procedure can be inspected in Fig. 5.15(b).
Here, a very good agreement can be seen between the fitted model, drawn using
continuous lines, and the measured angular averaged phasor amplitude values, drawn
using dots of the same colour. This very close match is particularly obvious for the
curves for R2 and R3 due to the lack of noise, and proves that the signal properties
in regards to linearity can be very well described by the model given by Eq. (3.8).
Using this model, the resulting angular distortions are shown in Fig. 5.15(c), where
it can be determined that the maximum angular errors are +30 mrad for R1 and
below £20 mrad for R2 to R5. It can further be seen in Fig. 5.15(c) that the angular
distortion of the signal from R1 is dominated by a sine of frequency one per cycle,
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Figure 5.15.: (a) shows a scatter plot of the complex quadrature signals for the single reflector
configurations R1 to R5 according to Fig. 5.14. Here, the locations of the tip of the complex
quadrature phasor are traced over 0.5s, normalised to the mean quadrature amplitude. This is
represented by the blue dots, while the green lines plot the angular average of this data over 30
angular sectors. (b) shows the normalized quadrature amplitudes for R1 to R5 for the angular
averaged data using crosses, while the fits of this data to the ellipse model of Eq. (3.8) are drawn
using lines of the same colour. (c) then plots the angular errors calculated using this model.
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which on closer analysis corresponds to a lateral displacement of the ellipse drawn in
Fig. 3.6(b) and described by a non-zero coefficient ag in Eq. (3.8). In contrast, the
angular errors of the signals from R2 to R5 are dominated by two-cycle non-linearity
errors, which can be seen to be a result of a non-zero coefficient ay in Eq. (3.8) that
controls the ellipticity of the complex quadrature signal plot.

To investigate the positioning tolerance for the reflectors, the spatial dependence
of the ellipticity and lateral displacement of the complex quadrature ellipses are char-
acterized by plots of the coefficient ratios ag/a; for ellipticity, shown in Fig. 5.16(a),
and a3 /a, for lateral displacement of the ellipse, shown in Fig. 5.16(b). Here a; is the
amplitude of the desired exponential term and is used to normalise the amplitudes
ay and ag of the undesired exponential terms in Eq. (3.8). Note that in both graphs,
the results from the five individual measurement configurations R1 to R5 are plotted
into a single graph and that the coefficient ratios are only drawn near the reflector
positions where the signal is sufficiently strong to calculate the coefficients. As will
be discussed below, the coefficient ratio ay/a; directly corresponds to the achievable
sideband suppression and it can be seen in Fig. 5.16(a) that the spatial dependence
of the ratio ay/ay, including the flat plateau at ~ —40dB over four range channels,
appears broadly similar for all five measurements R1 to R5. In this experiment,
the distances between the four evaluated range channels that form the plateaus
correspond to 3-2.75m ~ 8m. Fig. 5.16(b) then plots the coefficient ratio as/ay,
which, as discussed above, is a measure of the lateral displacement of the complex
quadrature ellipse and thus, as illustrated in Fig. 3.6, an indication for the presence
of a stationary offset signal within the respective range channel. At this point, it is
unclear where this offset signal originates, whether from within the signal processing
or from crosstalk by parasitic reflections, however, it can be seen in Fig. 5.16(b)
that the coefficient ratio ag/a; decreases from R1 through to R5, which equals a
reduction in the discussed offset signal. This explains the decrease of the one-cycle
non-linearities from R1 through to R5 that is visible in Fig. 5.15(c). Therefore, from
Fig. 5.16 it can be concluded that the flat plateau in the spatial dependence of both
as/ay and az/a; values permits a linearity performance comparable to Fig. 5.15 to
be obtained over a relatively wide reflector positioning tolerance band of ~ 8 m.
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Figure 5.16.: Logarithmic plot of the measured coefficient ratios as/a; in (a) and as/a; in (b)
resulting from the fit of the ellipse model according to Eq. (3.8). In both (a) and (b), the results
for the five measurement configurations R1 to R5 are drawn into one graph as a function of the
physical distance to the LO balance point and only the data points around the reflectors with
sufficient signal amplitude to calculate the coefficients are shown.
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The coefficient ratio as/a; directly corresponds to the sideband suppression
Sebask(Ta), given by Eq. (5.15) for the relevant harmonic index n = 45, a fact
that becomes obvious when comparing the coefficients a; and as of the exponen-
tial terms in Eq. (3.8) with coefficients cy,x(74) and c¢*,, ;(74) of the exponential
terms in Eq. (5.13). This allows for a convenient method of testing the theoretical
approach that was developed in this chapter in Sec. 5.2.3. The spatial dependence
of Sepask(7a), predicted by Eq. (5.15), and the measured as/a; coefficient ratios,
first shown in Fig. 5.16(a), are compared in the upper panels of Figs. 5.17(a) to
(e) for R1 to R5, respectively. The corresponding lower panels then plot, on the
same logarithmic scale, the spatial dependence of the quadrature signal amplitude
|Uq.a5| of Eq. (5.13), normalised to the peak value. Note that only a straightforward
conversion between spatial dependence in metres and corresponding time-of-flight,
including the appropriate offset distances to the reflectors R1 to R5, was conducted
to allow the measured data points and the theoretical predictions to be drawn on
top of each other, but that no further alteration of the plots was performed. Using
the combined anti-aliasing filter impulse response heomp(t), detailed in Sec. 5.3.2,
the sideband suppression S, 451(74) was calculated according to Eq. (5.15) both for
the optimal value of the phase scale factor s of s = 0.9107 and for a non-optimum
scale factor of s = 0.9047, with this value chosen by a visual fit in the top panels
in Fig. 5.17. The curve for s = 0.9107 is equal to the one previously depicted in
Fig. 5.10(f) and drawn in Fig. 5.17 using black dotted lines, while the curve for the
non-optimum scale factor s = 0.9047 is drawn using continuous black lines. It can
be seen in the top panels in Fig. 5.17 that the curves for s = 0.9107 and s = 0.9047
only substantially differ in the plateau height and that for s = 0.9047 the calculated
sideband suppression agrees well with the measured coefficient ratio ay/a; values.
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Figure 5.17.: A comparison of the measured coefficient ratio as/a; for R1 to R5, previously
depicted in Fig. 5.16(a), with the calculated sideband suppression ratios Sgp 45 (7a) of Eq. (5.15)
shown in the upper panels. Here, the plots for the coefficient ratio as/a; are drawn in colour,
while the sideband suppression ratios Sgp 45.%(7a) are drawn in black, with the curve calculated
for the non-optimal phase scale factor s of s = 0.9047, drawn using black continuous lines and
with the curve calculated for the optimal value of s = 0.9107, similar to Fig. 5.10(f), drawn using
black dotted lines. The corresponding lower panels then show the measured quadrature amplitude
|Uq, 45/, along with the predicted curves, overlapping for both s = 0.9047 and s = 0.9107, in black.
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The generally good agreement of the height of the plateaus with the calculated
curve for s = 0.9047 leads to the conjecture that the appearance of the plateau is due
to a non-perfect setting of the modulation scale factor s and associated polarisation
control, as detailed in Sec. 5.4.1 and Sec. 5.4.2, however, the setting of s was still
achieved to within 0.7 % of the optimum value. The lower panels of Fig. 5.17 then
plot the spatial dependence of the quadrature amplitude |Uq 45|. Here, the measured
values are compared with the theoretically calculated values using the theory of
Sec. 5.2.3, drawn in black, where in this case both theoretical curves for s = 0.9047
and s = 0.9107 lie on top of each other. The spatial dependence of |Uq 45| also
shows a very good agreement with the theoretical predictions. Furthermore, because
the reduction of the quadrature amplitude in the lower panels is more than an
order of magnitude less than the observed changes in the coefficient ratio ay/a;, also
confirms that the observed spatial dependence of the measured coefficient ratio as/a;
is completely unrelated to the drop in |Uq4s|. The results shown in Fig. 5.17, with
the very good fit of the width of the peak shapes as well as the peak symmetry for
all five measurements R1 to R5 as well as the good overlap of the spatial dependence
of the calculated quadrature amplitude values, highlight the power of the theoretical
approach developed in Sec. 5.2.3. In general, both peak width and peak asymmetry
are highly dependent on the filter choice, as can be seen in Fig. 5.10. Therefore
the results shown also indicate that the combined filter impulse response heomp () is
correctly modelled in Sec. 5.3.2.

Quadrature and Phase Noise: As well as providing a measure of linearity, the
plots of the complex quadrature signal shown in Fig. 5.15(a) also yield qualitative
information about the noise present in the quadrature signals. In Fig. 5.15(a) it
can be observed that quadrature noise varies considerably for the single reflector
configurations R1 to R5. The properties of quadrature noise are discussed further in
App. D.1. In general, strong quadrature noise increases the likelihood of spurious
phase unwrappings, as explained in App. D.2. A single spurious phase unwrapping
can lead to a permanent phase error of +27 that cannot be unambiguously corrected
in post-processing and thus needs to be prevented in the first place by sufficiently
averaging the quadrature signal. In this work, the onset of spurious phase unwrappings
required the reduction of the quadrature signal bandwidth from its maximum value of
fQ.comax = 208 kHz, as given by Eq. (5.12), down to fq.co = 20kHz, only 9.6 % of the
maximally possible cut-off frequency fq comax. In order to mitigate this considerable
performance limitation, a thorough understanding of the origins of the quadrature
noise is required, which will be investigated below. Following on from this, options
for allowing larger bandwidths in future work will be discussed in Sec. 5.6.1.

In addition to the dependency of the quadrature noise on reflector position when
a single reflector is present, as evident in Fig. 5.15(a), it was also observed in other
experiments with multiple reflectors, detailed in Sec. 5.5.2, that the quadrature noise
level in any one range channel is dependent on the signal levels of other reflectors
present at different ranges. This leads to the conclusion that there is considerable
leakage of quadrature noise from the originating signal source to other range channels.
To investigate this, the same measurement with five single reflector configurations
R1 to R5 of Fig. 5.14, previously used to analyse linearity, is evaluated with regard
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to quadrature and phase noise. Fig. 5.18(a) plots the root-mean square (RMS) signal
amplitudes, normalised to the respective peak RMS signal amplitude, for all 36 range
channels used. Here it can be seen qualitatively that the RMS signal amplitude in
the baseline is dependent on the position of the originating single reflector.

This dependence is quantified in Fig. 5.18(b), where the average baseline value is
plotted as a function of the OPD 7. Here, for the common LO FSI configuration
of Fig. 4.1(c), n is twice the physical distance to the LO balance point multiplied
by the group index of refraction n, = 1.46. To obtain the baseline RMS amplitude
data, only the average of the four rightmost range channels, which are also marked in
Fig. 5.18(a), are used, as these channels are positioned beyond the fibre tip reflection
and no physical return signals can originate here. Therefore these values should not
be influenced by parasitic reflections from the other connectors that are assumed
to be in close contact in Fig. 5.14. In Fig. 5.18(b), a linear least square fit of this
data is also drawn using a continuous line. In general, for Figs. 5.18(b) and (c) and
for later figures, the OPD dependence of measurements is verified using least-square
fits against the absolute OPD value |n|. For a generic measurand Y, the linear or
quadratic least square fits are described by the following equation, where for a linear
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Figure 5.18.: For the five single reflector configurations R1 to R5 of Fig. 5.14 in a single plot,
(a) shows the RMS values of the complex quadrature amplitudes in each of the 36 interrogated
range channels, with the amplitudes normalised to the respective peak values. (b) then plots
the RMS amplitude of the baseline, with values averaged over the four rightmost points that are
also marked in (a), as a function of the distance of the originating reflector from the LO balance
point. Finally, for the reflector signals evaluated at the respective peak range channel, (¢) plots
the standard deviation of the amplitude noise oamp norm due to quadrature noise, normalised to
the mean quadrature amplitude, and, on the secondary y-axis, the standard deviation of the
apparent phase noise ophage- () also plots the direct phase noise levels ophase, direct; Which exclude
excess phase noise caused by quadrature noise and were computed using the model detailed in
App. D.1. For each range channel, all noise standard deviation levels in (¢) were determined for
noise frequencies between 1kHz and 20kHz and in both (b) and (c), the solid lines represent linear
or quadratic least square fits, according to Eq. (5.22), of the OPD dependence of the measurements.
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fit the coefficient Y5 equals zero:
Y(n) = Yo+ Yy |n| + Yan® (5.22)

It can be seen in Fig. 5.18(b) that the normalised RMS signal amplitude in the baseline
for each of the configurations R1 to R5 shows a largely proportional dependence
on the absolute OPD |n| with only a very small offset value Y, in Eq. (5.22) of
Yy = 0.001. This confirms that the signal levels in the baseline are, to a large part,
OPD dependent, indicating that the baseline noise is not caused by a constant
background noise source but rather by quadrature noise leakage that is linearly
dependent on the absolute OPD of the originating reflector.

Furthermore, Fig. 5.18(c) evaluates amplitude and phase noise in the reflector
signals themselves at the respective peak range channel, also as a function of the
reflector OPD 7. Here, the standard deviation of the complex amplitude noise
Tamp is normalised by the mean quadrature amplitude to obtain ampnorm- Also the
standard deviation of the apparent phase signal oppase is plotted in units of rad on
the secondary axis in Fig. 5.18(c). Additionally, Fig. 5.18(c) plots the direct phase
noise standard deviation oppase direct, Where direct phase noise that is thought to be
caused by laser frequency noise is separated from excess phase noise that is thought
to be induced by the quadrature noise. To obtain ophase direct; the contributions of
the excess phase noise are subtracted according to the model detailed in App. D.1.
Both quadrature and phase data have been filtered to only take into account noise
frequencies above 1kHz, where environmental and 1/f noise is subdued, and below
the quadrature filter cut-off frequency fqco = 20kHz. In this frequency range, the
signals generally exhibit a flat noise floor. Again, in Fig. 5.18(c), a linear least square
fit of the direct phase noise ophase direct 15 shown using a continuous line. The linear
fit of the direct phase noise shows a very good agreement with the ideally linear
dependence on ||, with an offset value Yy in Eq. (5.22) of Yy = 0.006 rad and a slope
of Y7 = 0.0030rad m~*. For future reference, this also equates to a phase noise slope
value of 22 urad - Hz7%5m™!. A quadratic least square fit according to Eq. (5.22)
of the normalised amplitude noise Gamp norm also shows very good agreement with
the measured data in Fig. 5.18(c). Whilst the reason for this quadratic behaviour is
not clear at this point and a single measurement would not warrant such a claim, a
quadratic OPD dependence of 0ampnorm 18 also found in Fig. 6.18(b) in Chap. 6 for
the sinusoidal optical frequency modulation technique presented there. Therefore the
quadratic behaviour is thought to be a general phenomenon that will also be discussed
further in Chap. 6. In summary, the experiments visualised in Fig. 5.18 confirm a
linear or quadratic OPD dependence of the leaked baseline RMS signal amplitude as
well as of the amplitude and phase noise in the reflector signal themselves, proving
that, with only a single reflector present, the noise behaviour is dominated by an
OPD-dependent noise source.

In order to additionally investigate any dependence of the noise behaviour on the
return signal amplitude and to characterise the performance of the technique for
low signal powers, a further experiment, using the measurement configuration R3
in Fig. 5.14, was conducted. In this experiment, the return power of the fibre tip
reflector was successively lowered by inducing bend loss in the fibre lead. The return
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power levels range from —15dB (3.5 %) for the fibre tip Fresnel reflection without
additional attenuation to —57 dB (0.0002 %), as measured by a power meter instead
of the photo detector in Fig. 5.11 and with the common LO arm disconnected. The
spatial dependence of the average RMS signal amplitude over 20 range channels
at each of the four return power settings is shown in Fig. 5.19(a), with the RMS
amplitude normalised to the respective peak power. Comparing the measurements
from —15dB to —45dB, the normalised RMS amplitude baseline values can be seen
to remain largely constant. Only at —57dB does this relationship start to break
down. This behaviour is quantified in Fig. 5.19(b), where the average normalised
baseline RMS amplitude value is plotted as a function of the return power. To obtain
these values, only the average of the four rightmost range channels, which are also
marked in Fig. 5.18(a), are again used to calculate the baseline RMS amplitudes.
Finally, similar to Fig. 5.18(c), for the peak range channel as a function of return
power for noise frequencies between 1 kHz and 20 kHz, Fig. 5.19(c) plots the standard
deviation of the amplitude noise Gampnorm, Normalised by the mean quadrature
amplitude, and the phase noise standard deviations ophase and Ophase direct, as detailed
in App. D.1, on the secondary y-axis. It can be seen that the quadrature noise power
dependency mimics the variation of the baseline RMS amplitude in Fig. 5.19(b),
and that the apparent phase noise also shows an increase for low return powers.
Fig. 5.19(c) shows that the direct phase noise levels ophase direct, caused by laser
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Figure 5.19.: For variable return powers of the single reflector configuration R3 of Fig. 5.14 in a
single plot, (a) plots the root-mean square (RMS) values of the complex quadrature amplitudes in
each of the 20 interrogated range channels, with the amplitudes normalised to the respective peak
values. (b) then plots the height of the baseline, with values averaged over the four rightmost points
that are also marked in (a), as a function of the return power. Finally, for the reflector signals
evaluated at the respective peak range channel, (¢) plots the standard deviation of the variation
of the complex quadrature amplitude Gamp norm due to quadrature noise, normalised to the mean
quadrature amplitude, and, on the secondary y-axis, the standard deviation of the apparent phase
noise ophase- Here, all noise levels in (c) were determined for noise frequencies between 1kHz and
20kHz. Additionally, (c) also plots the direct phase noise levels ophase direct, Which excludes excess
phase noise caused by quadrature noise and was computed using the model detailed in App. D.1.
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frequency noise, are independent of the return signal power, therefore the increase in
phase noise at low power levels can be entirely attributed to the strong increase in
quadrature noise. In summary, the experiment visualised in Fig. 5.19 shows that the
noise behaviour for strong to medium return power levels, i.e. —15dB to —45dB,
is independent of the signal power and this behaviour only starts to break down at
very low return signal powers below —45dB.

From the experiments shown in Fig. 5.18 and Fig. 5.19 it can be deduced that
the noise behaviour for low return powers, i.e. —45dB or above, is dominated by a
noise source that is dependent on the absolute distance of the originating reflector
from the LO balance point. This rules out direct crosstalk from spurious reflections
outside the measurement arm, shot noise, laser intensity noise as well as detector and
signal processing noise as possible causes, because all of these would not show any
dependence on the distance of the interrogated reflector to the LO. This only leaves
laser frequency noise, with its conversion into phase noise at non-zero OPD, as a
possible noise source. However, laser frequency noise, on its own, cannot explain the
signal leakage into other range channels, evident in Fig. 5.18(b), or the increase in
quadrature noise in the reflector signals, evident in Fig. 5.18(c), which, as discussed
previously, ultimately limits the achievable quadrature signal low-pass filter cut-off
frequency fqco in this technique.

It has been discovered by Kirkendall et al. [244] and also discussed in Liao et
al. [212] that for high-channel count, i.e. low duty-cycle, time-division multiplexing
(TDM) systems (see also Sec. 4.2) the multitude of carrier harmonics that result
from the inherent gating in TDM can considerably decrease the phase sensitivity.
This is because high-frequency laser phase noise can become aliased into the signal
band by higher carrier harmonics. This noise behaviour is a fundamental property of
any TDM multiplexed system and cannot be corrected by anti-aliasing filtering [244].
It has further been determined by Kirkendall et al. [244] that the aliased noise level
increases with the square root of the duty cycle and thus with the square root of the
maximum number of signal sources that can be multiplexed. Similar to TDM, the
number of carrier harmonics in CDM is also dependent on the maximum number of
signal sources that can be multiplexed, which is equivalent to the MLS code length y
given by Eq. (5.5). Therefore, it is presumed that the phenomenon of high-frequency
noise aliasing can also be observed in the presented CDM experiments. In general,
any aliased high-frequency phase noise will be the sum of noise contributions from
many different carrier harmonics and will thus be uncorrelated to the desired phase
signal. In this work, it is therefore assumed that the observed quadrature noise is
dominated by aliased high-frequency laser phase noise. However, for low powers,
quadrature noise might additionally result from other noise, such as shot or electronic
noise. In either case, the quadrature noise is presumed to be uncorrelated to the
desired phase signal and can cause excess phase noise as discussed in App. D.1.

In summary, since aliased high-frequency phase noise should affect every range
channel equally, both on-peak amplitude noise in Fig. 5.18(c) and off-peak RMS
signal amplitude leakage into the baseline evident in Figs. 5.18(a) and (b) could be
explained using aliased high-frequency phase noise. Also, because the magnitude of
the aliased high-frequency phase noise is proportional to the OPD, the strength of
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the RMS amplitude leakage should be proportional to the LO position, as observed
in Fig. 5.18(b). It can thus be concluded that at medium to high return power
levels, i.e. > —45dB, the bulk of the quadrature noise, which in this work limits the
quadrature signal cut-off frequency fq o, and thus the measurement bandwidth of
the technique, is likely to be caused by aliased high-frequency laser phase noise.

Crosstalk in Quadrature Signals: In this section, results of an investigation into
direct signal crosstalk in the complex quadrature signal are presented, allowing the
comparison of the bipolar-bipolar MLS coding arrangement, used in prior phase-
modulated MLS techniques [1,204], and the unipolar-bipolar MLS coding arrangement
used in this work (see also Sec. 5.2.2). Additionally, these measurements also allow
the theoretical predictions on the crosstalk suppression Se; 45 x(7a), given by Eq. (5.16)
and plotted in Fig. 5.10(f), to be tested.

The setup used for the crosstalk experiment is shown in Fig. 5.20, where a
sinusoidal test signal of frequency 70 Hz and amplitude 19rad is introduced by a
Piezo-electric transducer (PZT). In this case, the resulting quadrature signal of
the signal returned by the fibre tip reflection at position 0 contains many Bessel
harmonics (see also Eq. (3.9)) and crosstalk at the Bessel harmonic frequencies into
the complex quadrature signals at positions £1 and 42 is then evaluated. Both
bipolar-bipolar and unipolar-bipolar MLS coding arrangements were implemented
in the FPGA for a MLS code length of y = 15. Because in this experiment, data
had to be recorded over long time periods to sufficiently lower the noise floor, a
specially adapted FPGA implementation, where only 3 range channels are evaluated
and where the output data was downsampled to a data rate of 5kHz, had to be
used, in order to allow continuous serial transfer of the data to the PC over 500 s.

Figs. 5.21(a) and (b) show the Fourier spectra resulting from the crosstalk meas-
urements according to Fig. 5.20 for bipolar-bipolar and unipolar-bipolar MLS coding
arrangements, respectively, plotting both the desired quadrature signals at position
0 and the crosstalk into range channels corresponding to positions +1. It can be ob-
served qualitatively in both Figs. 5.21(a) and (b) that the crosstalk is approximately
constant for all Bessel harmonics. Also, in both Figs. 5.21(a) and (b), the zoom of

Position -2 Position -1 Position 0 Position +1 Position +2
I £ | Fibre Tip
| ) | Reflection

PZT < only

Key: | Two FC/PC Connectors in Contact ’Single, Open FC/PC Connector
(No Reflection) (Fibre Tip Reflection)

Figure 5.20.: Measurement arm configuration for the crosstalk experiment in conjunction with
the setup shown in Fig. 5.11. Here, only one physical signal source due to the fibre tip reflection
at position 0 is ideally present in the return signal. A PZT fibre stretcher is used to introduce a
sinusoidal phase signal of frequency 70 Hz and amplitude 19rad. Quadrature signal crosstalk that
originates from the return signal of the fibre tip reflection into the range channels corresponding
to positions +1 and 42, at multiples of the unit fibre segment length Iy = 16.5m according to
Eq. (5.21), is then evaluated in this experiment.
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Figure 5.21.: Fourier spectra of the crosstalk measurements, showing the original quadrature
signal at position 0 as well as the signals corresponding to positions £1 that exhibit crosstalk.
Here, (a) shows the case for a bipolar-bipolar coding arrangement, while (b) shows the case for
unipolar-bipolar coding. In both (a) and (b), the peak marked by the vertical dotted line at 700 Hz
is shown enlarged to the right of the main plot.

the exemplary peak at 700 Hz, shown on the right of each main plot, confirms that
the crosstalk for the bipolar-bipolar coding arrangement is indeed higher than for
the unipolar-bipolar coding arrangement.

The crosstalk suppression is further quantified in Fig. 5.22, where extracted peak
crosstalk values are plotted as a function of the Bessel harmonic index for all 24
Bessel peaks present in Figs. 5.21(a) and (b). From Fig. 5.22(a) for position —1 a
mean crosstalk suppression value of —23.6dB and for position +1 in Fig. 5.22(b)
a mean crosstalk suppression of —22.8dB can be extracted in the bipolar-bipolar
MLS coding arrangement, which, for both positions shows little dependence on the
Bessel harmonic index. These values are in very good agreement with the crosstalk
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Figure 5.22.: Evaluation of crosstalk levels in the quadrature signal peaks as a function of the
Bessel harmonic index. Here, only data points for peaks at least 3dB above the noise floor are
drawn. (a) and (b) plot the crosstalk levels for a bipolar-bipolar coding arrangement for positions
—1 and 41, respectively. (c) and (d) plot the crosstalk levels for unipolar-bipolar coding, here both
for positions —1 and —2 in (c) and for positions +1 and +2 in (d).
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suppression Se;pp—bp = —23.5dB predicted for the case of y = 15 by Eq. (5.6),
proving that the current experimental configuration can in principle measure correct
crosstalk suppression values.

Figs. 5.22(c) and (d) then show crosstalk plots for the unipolar-bipolar coding
arrangement that was used in this work. Here, an additional measurement at positions
+2 was also carried out. Some Bessel harmonic peaks can be seen to be very weak
in Fig. 5.21(b), and the resulting crosstalk level values that are either buried in
the noise floor or do not rise at least 3dB above the noise floor are not drawn.
The measurements of Figs. 5.22(c) and (d) confirm that crosstalk is also uniform
across all Bessel harmonics for unipolar-bipolar coding. Mean crosstalk values of
—32.1dB and —47.8 dB can be determined from Fig. 5.22(c) for positions —1 and —2,
respectively, while mean values of —36.1dB and —46.0 dB are found from Fig. 5.22(d)
for positions +1 and +2, respectively. These values are not in agreement with the
theoretical prediction of zero crosstalk Se;up—pp = —00 expected from Eq. (5.6) and
also don’t correspond to the calculation of a crosstalk suppression Se; 45(7a) of
—70dB expected when taking the combined anti-aliasing filter impulse response into
account, as plotted in Fig. 5.10(f). The fact that the crosstalk suppression increases
with distance from the originating source further indicates that this mismatch is
due to non-ideal control of the DAC signal generation chain or the anti-aliasing
filter impulse response for the ADC, as discussed in Sec. 5.4.2 and Sec. 5.4.4,
respectively. Here, any remaining ringing in the respective impulse response could
straightforwardly explain the observed behaviour. Nevertheless, crosstalk suppression
values in the quadrature signals of —32 dB and below have been demonstrated, which
is an improvement compared to the bipolar-bipolar approach used in prior phase-
modulated CDM implementations [1,204]. Also, as will be shown in the next section
and in App. D.3, the resulting crosstalk in the phase signals, which is more relevant
to practical operation, is often at considerably lower levels than quadrature crosstalk,
at least for non-stationary phase signals. However, crosstalk suppression of the
quadrature signal could be improved in future work through better control of the
experimental parameters in order to remove ringing of the filter impulse response, as
will be discussed further in Sec. 5.6.1.

5.5.2. Multiple Reflector Measurements

While the previous section investigated the performance of the proposed technique
for the case of only a single reflector present in the system, thus demonstrating
the best case performance levels that can, in principle, be expected, the current
section investigates the performance with multiple reflectors present, which is more
relevant to future FSI applications. Here, the achievable linearity, noise and crosstalk
performance for four reflectors is investigated. Then the dynamic performance limits
of the present implementation are determined and, finally, the recovery of the segment
signals from the reflector signals is demonstrated.

Measurement Arm Configuration: The measurement arm configuration used for
these experiments is shown in Fig. 5.23. Here four interferometric signals arise from
four reflectors R1 to R4 at positions 1 to 4 relative to the LO balance point. While
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Figure 5.23.: Measurement arm configuration for multiple reflector experiments in conjunction
with the setup shown in Fig. 5.11. Here, four physical return signals are introduced by reflectors
R1 to R4. These originate from the fibre tip reflection at position 4 and from the three FC/PC
connectors at positions 1 to 3 that are adjusted with a small gap to yield a weak reflection. Three
fibre segments S1 to S3 of physical length Iy = 16.5 m are then formed between the four reflectors
R1 to R4, with PZT A inserted into S1 and PZT B inserted into S3 as test signal sources.

the signal from R4 is simply due to the Fresnel fibre tip reflection of an open FC/PC
connector, the signals for R1 to R3 are obtained by leaving a small gap between two
FC/PC connectors. In this case, the reflectors are not in direct contact so that a
Fresnel reflection can be obtained, but are still sufficiently close for transmission
losses to be minimised. This approach is low-cost and simple, but suffers from lack
of stability, with further options for in-fibre reflectors discussed in Sec. 5.6.1. In
total, three fibre segments S1 to S3 of physical length 16.5m, according to the unit
segment length [ of Eq. (5.21), are then formed between the four reflectors R1 to
R4. For all measurements in this section, a sinusoidal test signal of frequency 370 Hz
and amplitude 13.7 rad was introduced into S1 by PZT A and a sinusoidal test signal
of frequency 570 Hz and amplitude 19.8 rad was introduced into S3 by PZT B.

Linearity of Reflector Signals: Similar to Fig. 5.15 for the case of a single reflector,
Fig. 5.24 can be used to analyse the linearity of the technique for multiple reflectors.
Here, Fig. 5.24(a) again plots the complex quadrature phasor tip traces over 0.5s
using blue dots, with the angular average over 30 angular sectors drawn using green
lines. In contrast to Fig. 5.15(a), the plots Fig. 5.24(a) are not normalised and are
drawn in the original signal processing units. It can be seen qualitatively that the
four plots again appear broadly circular and centred on the origin. To quantitatively
determine the magnitude of the remaining cyclic errors analogous to Fig. 5.15,
the dependence of the complex phasor amplitude, normalised to the mean phasor
amplitude, on the phase angle is plotted using crosses in Fig. 5.24(b) for the angular
averaged quadrature data. Also, these values are again fitted to the cyclic error model
given by Eq. (3.8), with these fitted curves drawn in Fig. 5.24(b) using continuous
lines of the same colour. The calculated angular errors using this model are then
shown in Fig. 5.24(c), exhibiting magnitudes of up to £30 mrad, which is comparable
to the results for single reflectors, plotted in Fig. 5.15(c). While the exact shape
of the angular distortion curves in Fig. 5.24(c) appears unrelated to the curves in
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Figure 5.24.: Scatter plot of complex quadrature signals originating from the four reflectors R1 to
R4 in the multiple reflector configuration according to Fig. 5.23. Here, for every reflector, (a) traces
the locations of the tip of the complex quadrature phasor over 0.5s using original signal processing
units. This is represented by the blue dots, while the green lines show the angular average of this
data over 30 angular sectors. (b) plots the normalized quadrature amplitudes for R1 to R4 as a
function of complex phasor angle for the angular averaged data from (a) using crosses, while the fit
of this data with the ellipse model of Eq. (3.8) is drawn using continuous lines of the same colour.
Finally, in (c) the angular errors calculated using this model are shown.

Fig. 5.15(c), it can, however, be concluded that the magnitude of the cyclic errors
appears largely unaffected by the presence of multiple reflectors.

Noise of Reflector Signals: It can be seen qualitatively in the polar plots in
Fig. 5.24(a) that the mean signal amplitude varies for the return signals from the
four reflectors. Fig. 5.24(a) also shows that the quadrature noise appears broadly
similar in all four plots, regardless of the mean signal amplitude. This behaviour
is quantified in Figs. 5.25(a) and (b), which plot the mean complex quadrature
signal amplitude and the standard deviation .y, of the complex quadrature signal
amplitude, respectively. Here, the units in both Figs. 5.24(a) and (b) are the original
signal processing units and .y, is again computed for noise frequencies between
1kHz and 20 kHz. The differences in reflector effective powers by up to a factor of
two, evident in Fig. 5.25(a), are likely to be the result of the tuning differences of
the individual reflectors, unavoidable with the type of reflector used here. Also, the
effective powers of the reflector signals may be affected by polarisation changes within
the fibre, which can only partially be compensated using the second polarisation
controller in the common LO that was shown in Fig. 5.11. In theory, differences in
reflector effective return powers can be tolerated, as they do not directly affect the
retrieval of the phase information. In practice, however, due to the observed leakage
of quadrature noise, a weak reflector signal may be subject to strong quadrature
noise induced by other reflectors, which can lead to spurious phase unwrappings (see
also App. D.2). For these reasons, a minimum return signal level that is dependent
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Figure 5.25.: The mean amplitudes of the complex quadrature signals are plotted in (a) as a bar
chart for the four reflectors R1 to R4, using original signal processing units. (b) then shows the
corresponding standard deviation of the amplitude noise oamp of the same data and in the same
units as (a). Analogous to Fig. 5.18(c), (c) illustrates the noise present in the reflector signals as
a function of the OPD. Here oump of (b) is normalised using the mean quadrature amplitude of
(a), yielding oamp norm, and, on the secondary y-axis, the standard deviation of the apparent phase
noise Ophase 1S also plotted. Additionally, (c) also shows the direct phase noise standard deviation
Ophase,direct, Where the influence of quadrature noise was compensated using the model detailed in
App. D.1. A linear least square fit of ophase,direct according to Eq. (5.22) against the OPD is also
shown in (c) using the red continuous line. Both amplitude and phase noise levels were determined
for noise frequencies between 1kHz and 20 kHz.

on the particular effective return power constellation, the OPDs of the reflectors and
on the averaging defined by the quadrature signal cut-off frequency fq ., is required
for reliable operation of the technique.

It can be seen in Fig. 5.25(b) that the complex quadrature phasor amplitude noise
Oamp levels are broadly similar for all four reflectors, with little discernible influence
of either the effective power that is plotted in Fig. 5.25(a) or the distance from the
LO balance point. In line with the previous arguments in Sec. 5.5.1, this remarkable
behaviour can be explained by quadrature noise that is caused by aliased high-
frequency laser phase noise. In this case, the resultant quadrature noise from any one
reflector would be evenly distributed over all range channels. The quadrature noise
contribution due to aliased high-frequency laser phase noise from each originating
reflector is proportional to the individual reflector effective power as well as its OPD.
The common quadrature noise level that then affects all reflector signals equally
is thought to be the quadratic sum of all quadrature noise contributions from the
individual reflectors. Therefore, in practical FSI applications, quadrature noise is
dominated by strong reflectors with large OPDs.

Fig. 5.25(c) then quantifies the contribution of the quadrature noise onto the
resulting phase noise of the reflector signals. As detailed in App. D.1, quadrature
noise can cause excess phase noise that is proportional to the normalised complex
quadrature signal amplitude noise oampnorm- Fig. 5.25(c) then plots dampnorm, de-
termined from the data shown in Figs. 5.25(a) and (b), and, on the secondary y-axis,
the standard deviation of the apparent phase noise oppase, Where both oamp norm and
Ophase are computed for noise frequencies between 1 kHz and 20 kHz. Using the model
of App. D.1 then yields 0phase direct; the phase noise standard deviation solely due to
laser frequency noise where the excess phase noise due to quadrature noise is com-
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pensated, which is also plotted against the secondary y-axis. A linear least square fit
according to Eq. (5.22) of 0phase direct 8gainst the OPD 7 is also shown in Fig. 5.25(c),
drawn using the continuous red line. Similar to linear fit of oppase direct i Fig. 5.18(c)
for the case where only a single reflector is present, the fit of ophase direct i Fig. 5.25(c)
for multiple reflectors also results in a good agreement for the linear dependency of
Ophase,direct O11 the OPD. However, for the case of multiple reflectors a large offset
value of Yy = 0.060rad is present, ten times the value for the corresponding single
reflector experiment in Fig. 5.18(c). The reasons for this offset value in ophase direct
is not understood, but is likely to be due to shortcomings in the validity of the
assumptions that are required for the application of the model of App. D.1. In this
case, a partial correlation between quadrature noise components of the individual
reflectors would invalidate the assumption of random quadrature noise phase that is
used in App. D.1, with this question requiring further theoretical and experimental
analysis. Nevertheless, it can be concluded from Fig. 5.25(c) and previous sections
that the phase noise behaviour for a FSI configuration with multiple reflectors is a
complex and not well-understood interplay of laser phase noise and quadrature noise,
mainly caused by high-frequency aliased laser phase noise and which can furthermore
also leak into other reflectors in the system.

Reflector Signal Time Traces, Spectra and Crosstalk: After analysing linearity
and noise of the multiple reflector experiment shown in Fig. 5.23, the time traces
of the four reflector phase signals are plotted in Fig. 5.26(a) over a period of 20 ms.
Here, it can be seen that the signal from R1 carries no excitation, while the signals
for R2 and R3 carry the test signal at 370 Hz of PZT A and that the signal for R4
carries the combined test signals of PZT A at 370 Hz and from PZT B at 570 Hz. For
comparison with later work, Fig. 5.26(b) then plots the apparent phase noise levels
in the reflector signals, previously shown in Fig. 5.25(c), however, now in units of
mrad - Hz=%® for phase noise frequencies between 1kHz and 20kHz. Here, broadly
comparable phase noise levels for all four reflector signals can be observed.

The Fourier spectra of the phase signals, computed over the whole recording time
of 0.5, are shown in Fig. 5.26(c) on a logarithmic frequency scale in units® of dBi.q.
Here a Blackman window [243] was applied before the Fourier transform to reduce
peak broadening due to spectral leakage. It can be seen in the spectra in Fig. 5.26(c)
that 1/f noise at low frequencies gradually converges into a flat noise floor above
~ 100 Hz for all four reflector signals and that non-linear harmonics of the phase
signal are at least 50 dB below the main peaks. Figs. 5.26(d) and (e) then enlarge
the spectrum around the test signal peaks on a non-logarithmic frequency scale, with
Fig. 5.26(d) showing the presence of the 370 Hz signal of PZT A for R2, R3 and R4,
while Fig. 5.26(e) shows that the 570 Hz signal of PZT B is only present for R4.

In general, as detailed in App. D.3, due to the rules of phasor addition, crosstalk
into phase signals does not only depend on the quadrature crosstalk suppression,
but also on the phase signal waveforms of both the signals from which the crosstalk
originates and the phase signal that is subjected to the crosstalk as well as the
relative effective power ratio between them. It can be seen in the experimental

3For a phase value ¢ in units of rad, the value in units of dB,.q is given by 20 - log;,[¢]
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Figure 5.26.: Plot of the time trace of the phase signals from reflectors R1 to R4 in response to
sinusoidal test signals at frequencies 370 Hz and 570 Hz, introduced by PZT A and B in Fig. 5.23,
respectively. The bar chart in (b) plots the phase noise level, with data previously used in
Fig. 5.25(c), now in units of mrad - Hz=%%, for noise frequencies between 1kHz and 20kHz. (c)
then plots the Fourier spectra (computed over 0.5s) of the four phase signals on a logarithmic
frequency scale, while (d) and (e) plot enlarged versions of the two main peaks in (c), at 370 Hz
and 570 Hz, respectively, on a non-logarithmic scale.

results in Figs. 5.26(c), (d) and (e) that crosstalk levels in the phase signals were
found to be at, or below, the noise floor level at —40 dB,,q and thus, for the peak
signals at 370 Hz and 570 Hz, a crosstalk suppression in the phase signals of at least
—60dB was demonstrated for the particular experimental conditions. Furthermore,
the analysis in App. D.3, especially Fig. D.4, confirms that, even if the worst-case
quadrature crosstalk suppression of —32dB, derived from Fig. 5.22(c), is applied
throughout, crosstalk induced signal components are expected to mostly stay well
below —40dB,.q4. Crosstalk signal contributions are therefore expected to be below
the noise floor of the data shown in Fig. 5.26(c), confirming the validity of the
experimental findings. Further experimental characterisation of phase signal crosstalk
would require longer measurement periods to lower the noise floor sufficiently to
identify crosstalk contributions that are currently beyond the limits of detection.

Dynamic Characteristics: As previously described in Sec. 3.1.4, the calculation of
the bandwidth requirements of the complex quadrature signal is non-trivial and can
be approximated by Carson’s rule of Eq. (3.4) for the simplified case of a sinusoidal
phase signal. In the experimental setup of Fig. 5.23, two sinusoidal phase signals
of frequency 370 Hz and amplitude 13.7rad and of frequency 570 Hz and amplitude
19.8 rad, introduced by PZT A and B, respectively, are present. According to Carson’s
rule, PZT A requires a quadrature bandwidth of Bq = 5.4kHz and PZT B requires
Bq = 11.9kHz. It is assumed that the quadrature bandwidth requirement for the
signal of reflector R4, where phase signals from both PZT A and PZT B are present,
can be approximated by the sum of the bandwidth requirements for the individual
sinusoidal phase signals, resulting in Bqg = 17.3 kHz.
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Figure 5.27.: The Fourier spectra of the complex quadrature signals for the four reflectors R1 to
R4 are shown, which are subject to low-pass filtering in the FPGA at quadrature filter bandwidth
of fq,co = 20kHz. For R2, R3 and R4 the calculated bandwidth requirements according to Carson’s
rule of Eq. (3.4) are marked using the dashed line.

To compare the calculated quadrature bandwidth requirements with the exper-
imental data, the Fourier spectra of the reflector complex quadrature signals are
plotted in Fig. 5.27 for the four reflectors R1 to R4. It can be seen in Fig. 5.27 that
the quadrature signal spectra broadly adhere to the respective bandwidths defined
by Carson’s rule, which are marked by the dashed lines for R2, R3 and R4. In
combination with the plots of the phase signals in Fig. 5.26, Fig. 5.27 confirms that
the proposed signal processing technique can indeed reproduce phase signals of a
quadrature bandwidth B, according to Eq. (3.4), of at least 87% of the quadrature
low-pass filter cut-off frequency fq ., without distortions. Since the consequences of
not adhering to the bandwidth requirements, such as spurious phase unwrappings, are
potentially more serious in interferometric signal processing than in communication
engineering, it is proposed, as used here, to generally maintain a safety margin of
10% to 15% for the quadrature bandwidth limit Bq of the phase signals relative to
the given quadrature low-pass filter cut-off fq .

Segment Signals: Analogous to the reflector phase signals shown in Fig. 5.26,
Fig. 5.28 shows the corresponding segment phase signals, obtained by subtracting
reflector signals as explained in Sec. 5.4.4. Fig. 5.28(a) plots the segment signals
in the time domain over a period of 20 ms and now directly reproduces the phase
signals from PZT A and PZT B in segments S1 and S3, respectively. Also, the
signal for segment S2 shows the complete suppression of the test signal of PZT A,
which is present in both constituent reflectors R2 and R3 of segment S2, as visible
in Fig. 5.26(a). Fig. 5.28(b) then plots the phase noise levels in the segment data,
again for phase noise frequencies between 1kHz and 20 kHz. Similar to the reflector
phase noise levels shown in Fig. 5.26(b), the segment data phase noise levels show
little discernible OPD dependence, with mostly constant phase noise levels up to
a maximum value of 2.2mrad - Hz7%5. Fig. 5.28(c) then plots the Fourier spectra,
again computed over the whole recording time of 0.5s, on a logarithmic frequency
scale. The two main peaks at 370 Hz and 570 Hz, introduced by PZT A and PZT B,
are then enlarged in Fig. 5.28(d) and Fig. 5.28(e), respectively, on a non-logarithmic
frequency scale. Fig. 5.28(d) and Fig. 5.28(e) show that the two test signals in
segments S1 and S3 can be completely separated by the signal processing and also
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Figure 5.28.: Plot of the time trace of the phase signals from segments S1 to S3 in response to

sinusoidal test signals at frequencies 370 Hz and 570 Hz, introduced by PZT A and B in Fig. 5.23,

respectively. The bar chart in (b) plots the phase noise level in the segment data in units of

mrad - Hz=%5, for noise frequencies between 1kHz and 20kHz. (c) then plots the Fourier spectra

(computed over 0.5s) of the three phase signals on a logarithmic frequency scale, while (d) and (e)

plot enlarged versions of the two main peaks in (c), at 370 Hz and 570 Hz, respectively.

confirms the absence of crosstalk in the segment phase signals.

When comparing the Fourier spectra of the segment data in Fig. 5.28(c) with the
spectra of the reflector signals in Fig. 5.26(c), it can be seen that, while the flat
noise floor above ~ 100 Hz appears comparable in both cases, the 1/f noise below
~ 100 Hz differs considerably. For segment data it can be seen in Fig. 5.28(c) that
1/f noise components appear mostly similar across all three segments, indicating
that the 1/f phase noise signals might be the same in all three segments. This is
further investigated in Fig. 5.29, where Fig. 5.29(a) repeats the plot of the Fourier
spectra of Fig. 5.28(c) in order to compare this with the case where the phase signal
of segment S2, where no test signal was induced, is taken as a reference segment
and subtracted from the phase signals for S1 and S3 before calculating the Fourier
spectra. A similar approach to suppress low-frequency laser phase noise has also
previously been demonstrated by Wuchenich et al. [202] using a digital heterodyne
CDM technique (see also Sec. 4.3).

The resulting suppression of low-frequency phase noise is demonstrated in
Fig. 5.29(b), showing that 1/f noise, along with higher 50 Hz harmonics likely
to be due to mains interference, can be largely suppressed with the help of the
reference measurement and that a mostly flat phase noise floor at low frequencies
results. This behaviour can be easily explained by low-frequency laser phase noise
that is faithfully reproduced by the signal processing and partially corrected when
the reflector signals are subtracted to obtain the segment data. However, in this
case the segment data still carries a residual laser phase noise contribution that
is proportional to the segment length. This residual laser phase noise is, at least
at low frequencies, similar in all segments, and can be corrected by subtraction
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Figure 5.29.: (a) repeats the plot of the Fourier spectra over three phase signals on a logarithmic
frequency scale, previously shown in Fig. 5.28(c), in order to compare this with (b), where the
phase signal of segment S2 is subtracted from the phase signals for segments S1 and S3 before
calculating the Fourier transform. (c) shows the direct phase noise levels for the corrected signals
of (b) for noise frequencies between 1kHz and 20 kHz.

of an appropriate reference measurement of similar segment length. A drawback
of this subtraction process is, however, a general increase of the segment phase
noise floor, measured for frequencies between 1kHz and 20kHz. An increase by
V2 would be expected when subtracting signals with uncorrelated phase noise and
an increase on this scale is found by comparing the phase noise levels plotted in
Fig. 5.29(c) and Fig. 5.28(b), where worst-case phase noise levels can be seen to
increase from 2.2mrad - Hz=%% to 3.2mrad - Hz=%? for the case where a reference
segment is used. Because low-frequency phase noise can be corrected well, it appears
that the correlation of the phase noise is strong for low frequencies but that the
degree of correlation reduces for higher noise frequencies. Here, the slight increase in
the phase noise floor for high frequencies in Fig. 5.29(b) is a further indication of this
phenomenon, however, a comprehensive explanation of this is not straightforward
and should be a topic of future research. In summary, the measurements shown here
confirm that the principle of the FSI approach proposed in this work, which requires
the numerical subtraction of measured reflector phase signals to obtain the desired
segment phase signals, appears to works very well in practice and may even be useful
for suppressing low-frequency laser phase noise.

5.5.3. FSI Strain Measurements

Finally, to conclude the experimental section of this chapter, the SSB-CDM signal
processing system was used to make exemplary FSI strain measurements, which also
illustrates its potential use as long-gauge length interferometric strain sensor (see also
Sec. 2.4). The sensor configuration for this experiment is shown in Fig. 5.30. Here,
Fig. 5.30(a) shows the measurement arm configuration, in conjunction with Fig. 5.11,
where four fibre segments S1 to S4 of unit fibre segment length [ = 16.5m, according
to Eq. (5.21), are formed between five reflectors R1 to R5. Again, FC/PC connectors
that are tuned to return a small reflection while maintaining high transmission are
employed as the first four reflectors R1 to R4, while the fibre tip Fresnel reflection is
used for R5. In each of the four segments, a section of fibre is used for strain sensing,
while the remainder of the fibre is rolled up and thus remains inactive.
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Figure 5.30.: The measurement arm configuration for the FSI experiment, in conjunction with
the setup shown in Fig. 5.11, is shown in (a). Here five physical signal sources are introduced by
reflectors R1 to R5. For R1 to R4 these originate from the reflections of the four FC/PC connectors
that are adjusted with a small gap to yield a weak reflection and for R5 from the fibre tip reflection.
Four fibre segments S1 to S4 of physical length l; = 16.5m, according to Eq. (5.21), are then
formed between the five reflectors and act as fibre strain sensors for part of their length, while the
remainder of the fibre is rolled up. (b) then shows the arrangement of the four fibre strain sensors
of active gauge length 2m, attached to the four opposite sides of a steel pipe, as also illustrated in
the cross section, with the pipe fixed on one end and free to move on the other.

Fig. 5.30(b) illustrates the sensing arrangement, with the sensitive parts of the
fibre segments corresponding to a gauge length [, = 2.0m. Here, the strain sensing
sections of the four segments S1 to S4 are attached to four opposing sides of a steel
pipe of outer diameter 3/4” = 19.05 mm, as additionally illustrated in the cross
section in Fig. 5.30(b), with the steel pipe fixed at one end but free to vibrate at
the other. This experiment is designed to obtain test signals of low frequency but
with high signal amplitudes. Signals of these characteristics are expected to be
encountered in many real applications of long-gauge length interferometric strain
sensing, particularly for large engineering structures.

Example measurements using the sensing arrangement in Fig. 5.30 are shown in
Fig. 5.31. The phase data measured by the fibre segment sensors is plotted on the
primary y-axis and corresponds to equivalent strain data with units shown on the
secondary y-axis. Here, the strain change Ae(t) = €(t) — €(o) can be calculated from
the measured phase signal change Ap(t) = p(t) — p(to) relative to the measurement
start time t(, using the following equation adapted from Kirkendall et al [30]:

Ap(t) - Ao

2 - 27 -1y - K

Ae(t) = (5.23)

Here Ay = 1552 nm is the vacuum wavelength of the laser light, where the values
n, = 1.46 for the fibre group index and x = 0.795 for the fibre strain sensitivity factor
K, according to Roths et al [97] for SMF-28 type fibre, are also used. An additional
factor of two is included in the denominator because in an FSI configuration the
light passes the sensor gauge length [, twice. In general, it can be seen in Eq. (5.23)
that the strain sensitivity in interferometric strain sensing is inversely proportional
to the sensor gauge length [, allowing very large strain sensitivities to be achieved
with long-gauge length strain sensors. In Fig. 5.30(a) it is shown how the steel pipe
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Figure 5.31.: Example strain measurement using the sensing arrangement illustrated in Fig. 5.30
for a horizontal excitation, recorded at a quadrature bandwidth of 20 kHz. Here, the phase signals
from the four segments S1 to S4 are directly plotted in (a), with the secondary y-axis showing the
equivalent strain values for a sensor gauge length of I, = 2.0m, calculated according to Eq. (5.23).
(b) then shows an enlarged version of the region marked in (a).

vibrates horizontally, resulting in large signals for S1 and S2 at a frequency of about
4 Hz after manual excitation after ~ 0.3s. Fig. 5.30(b) then shows an enlarged plot
of the region that is also marked in Fig. 5.30(a) in order to allow visual inspection of
the measurement quality. On closer analysis, using a separate measurement with the
same configuration according to Fig. 5.30 but without any manual excitation, typical
instantaneous phase noise standard deviations of 0.4 rad, or equivalent instantaneous
strain noise below 0.02 pe, can be determined over the total measurement bandwidth
up to 20kHz. When noise is evaluated for noise frequencies between 1kHz and
20 kHz the standard deviation of the phase noise drops to 0.29rad. This corresponds
to phase noise levels of 2.1 mrad - Hz=%°, which is comparable to the previous phase
noise levels shown in Fig. 5.28(b).

One potential application for the FSI technique is thought to be interferometric
curvature or shape sensing, which is based on the measurement of the differential
strain in optical fibres attached to opposing sides of a curving structure. In order to
demonstrate the potential of the technique in this area, the measurement previously
shown in Fig. 5.30 is re-evaluated to obtain tip displacement data of the free end of
the steel pipe illustrated in Fig. 5.30(b). Here, the simple cantilever model also used
by Blanchard et al. [26], where the cantilever length is equal to the sensor gauge
length I, = 2.0m was used. Using Eq. (5.23), this can be then be expressed as:

ASO(t) ’ lg Ao

67 -1y - K+ deore

Altip - (524)

Here, Al is the tip displacement along one Cartesian direction relative to the
displacement at the start of the measurement, with the measured phase signal
difference Ap(t) defined analogous to Eq. (5.23). Here, for an optical fibre of outer
radius 125 um (including coating), the relevant distance between the fibre cores dcore
is the pipe diameter 19.05 mm plus twice the fibre radius, thus dcoe = 19.30 mm.

Eq. (5.24) was used to calculate tip displacement values for horizontal (Segments:
S2 — S1) and vertical (Segments: S4 — S3) movement of the steel pipe. The results
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Figure 5.32.: Example tip displacement measurement using the sensing arrangement illustrated
in Fig. 5.30 for a horizontal excitation, recorded at a quadrature bandwidth of 20 kHz. Here, the
measured differential strain signals are plotted in (a), with the secondary y-axis showing the tip
displacement values of the steel pipe calculated according to Eq. (5.24). (b) then shows an enlarged
version of the region marked in (a).

of this re-evaluation for tip displacement measurements are shown in Fig. 5.32, where
the measured phase differences are plotted in units of rad on the primary y-axis and
the equivalent tip displacement values are plotted in units of mm on the secondary
y-axis. Here, in Fig. 5.32(a), a maximum tip displacement of 20 mm in the horizontal
direction can be observed, obtained after manually releasing the pipe from its initially
curved position at about 0.25s. It can also be seen in Fig. 5.32(a) that there is little
movement in the vertical direction. Fig. 5.32(b) then allows a closer inspection of the
measurement quality by enlarging the area also marked in Fig. 5.32(a), where some
signal spikes that are thought to be due to data transmission errors are also visible.
When the measurement without excitation that was previously used to determine the
strain noise standard deviation is evaluated for tip displacement, a standard deviation
of the tip displacement of 4 ym can be found. Unfortunately, no further independent
measurement of the tip displacement was carried out at the time of the experiment.
Nevertheless, the value of 20 mm peak to peak tip displacement appeared to be in
the right order of magnitude with the visually perceived tip displacement. In any
future curvature sensing demonstration an independent verification measurement,
possibly using free-space interferometric vibrometry, such as the technique proposed
in Chap. 7, for direct tip displacement measurements would be highly recommended.

5.6. Discussion and Future Work

5.6.1. Discussion and Improvements to Current Work

Polarisation Sensitivity: The optical setup used in this work, as shown in Fig. 5.11,
is relatively complicated, employing a polarisation controller and in-fibre polariser
to maintain a stable phase modulation depth of the phase modulator output. This
was necessary because of the strong inherent dependence of the phase modulation
efficiency on the polarisation of the incoming light, typical of most electro-optic
phase modulators [114]. In future implementations it is strongly recommended to
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use a phase modulator with a polarisation-maintaining fibre input lead and employ a
wholly polarisation-maintaining link, including the directional coupler, between the
laser and the phase modulator input in Fig. 5.11. This would allow operation without
any polarisation controlling and filtering equipment, both before and after the phase
modulator, also avoiding the complicated tuning procedure outlined in Sec. 5.4.1
as well as ensuring that the setup will be tolerant to any drift in the polarisation
properties. In future implementations, regular single-mode fibre could then be used
after the phase modulator, for the remainder of the optical setup. However, the
separate issue of how to prevent polarisation-induced fading [98,99] might require
further use of polarisation-maintaining fibre as discussed below.

In the setup shown in Fig. 5.11, a second polarisation controller was inserted
into the common LO arm and tuned to optimize visibility across all participating
reflectors in the measurement arm. While this procedure was sufficient to compensate
polarisation-induced fading during this work, it is recognized that in a real-life
application, the use of a second polarisation controller in this way cannot guarantee
the absence of polarisation-induced fading. This would require the use of polarisation-
maintaining fibre throughout the measurement arm and the remaining optical setup.
Alternatively, polarisation-diversity detection [101] could be employed, where three
detectors with linear polarisation filters that are individually offset by 60° are used,
and where there is certainty that no complete fading can occur. This would avoid the
use of expensive polarisation-maintaining fibre and couplers in the measurement arm
and remaining setup, but would, however, require three photo detectors, analogue
filters and ADCs in the signal processing chain.

Choice of In-Fibre Reflector: In the experiments in this chapter, pairs of FC/PC
connectors that are slightly detuned to achieve weak back reflections are employed
as partial in-fibre reflectors. This approach, while being low-cost and simple to set
up, lacks stability and is therefore only applicable to a lab environment. For future
implementations and real-life applications, the use of weak, broadband fibre Bragg
gratings (FBGs), as used in Chap. 6, or other types of in-fibre partial reflector that
have been reviewed in Sec. 4.1 are recommended to ultimately allow cost-effective and
mechanically stable FSI sensing fibres. The permissible tolerances of the reflectivities
for the partial in-fibre reflectors in the measurement arm should theoretically be
very large. However, the discussed onset of quadrature noise that can also be seen in
Fig. 5.24(a) and the associated requirement to prevent spurious phase unwrappings
(see also App. D.2) at all times considerably lowers the permissible variances in the
reflectivity values, with leaked quadrature noise from strong reflectors at large OPDs
overshadowing the return signals from weaker reflectors. Additionally, the effective
signal powers will also be affected by differences caused by polarisation mismatch.

Spatial Resolution: In order to improve the spatial resolution, i.e. reduce the unit
fibre segment length [, with all other parameters of Table 5.1 unchanged, the speed
of the signal processing would need to be increased. If the current signal generation
and signal processing sample frequency f; = 150 MHz is scaled up by a factor p to
fs = p-150 MHz, I, will reduce to [y = 16';”“, according to Eq. (5.21). The maximally

possible quadrature signal frequency fq comax 0f Eq. (5.12) will also increase when
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the signal processing is scaled up by a factor p to fq comax = 3.125 MHz- 5, where the
MLS code length y, according to Eq. (5.5), determines the maximum number of range
channels that can be separated. In this context, signal generation and processing at
many GHz clock frequencies is state of the art in optical communications technology
and has also been demonstrated for optical measurement applications [245]. If
crosstalk or linearity expectations are lowered, a further option for improving the
spatial resolution is the amendment of other signal processing parameters given
by Table 5.1, in particular the number of waveform templates per code symbol z
or the number of samples per waveform template Dy¢. Here, any impact on the
expected linearity and crosstalk performance can be conveniently analysed using the
theoretical description developed in Sec. 5.2.3, using plots similar to Fig. 5.10.

Signal Generation and Processing Impulse Responses: Better control of both
the signal generation and processing impulse responses may lead to improvements in
both linearity and crosstalk due to a reduction of inter-symbol interference caused
by ringing, with some ringing still visible in the inset in Fig. 5.8. In the current
implementation, there is a lack of knowledge of how the electrically measured impulse
responses transform to and from the optical domain, both at the phase modulator
and at the photo detector. Therefore all measured impulse responses used so far
in this work are incomplete in this regard. A possible method of measuring the
complete impulse responses, including the optical domain, could involve the use of an
active homodyne approach (see Sec. 3.2.3) in a simple Mach-Zehnder interferometric
configuration, as illustrated in Fig. 3.9. Here, the PZT keeps the interferometer in
quadrature (see also Sec. 3.1.1), so that there is linear signal transmission from the
electrical to the optical domain. Using a high-speed oscilloscope and photo detector
with measurement bandwidths well above the phase modulation bandwidth used
would then allow the measurement of the complete impulse response of the signal
generation chain as a result of an impulse introduced by the DAC. Following this, the
regular photo detector and signal processing chain used for this implementation could
be connected to the active homodyne setup to allow a corresponding measurement
of the complete impulse response of the combined signal generation and processing
chains by evaluating the ADC signal on the FPGA. Using these two measurements
it is then possible to mathematically determine the impulse response of the signal
processing chain only, which has been referred to as hanag(t) in the previous sections,
and which would then include the optical and electrical response of the photo detector.

The enhanced knowledge of the impulse response of the signal generation chain
will be useful in improving the pre-shaping technique outlined in Sec. 5.4.2. Also,
measurement of the impulse response hanag(t) of the signal processing chain could
enhance the quality of the theoretical predictions, such as those shown in Fig. 5.10.
In a further step, the knowledge of hapag(t) could be used to implement a pre-shaping
procedure, similar to the one that was used in the signal generation chain and whose
principle effectiveness in reducing ringing is evident in Fig. 5.12, to be applied to
the signal processing chain as well. This would potentially allow the realisation of
an effective combined impulse response heomp(t) that would completely adhere to
the design of the digital impulse response hqig(t) (see Sec. 5.3.2). This would make
heomb (t) completely digitally controllable and should theoretically achieve the total
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elimination of any ringing, which is currently still present in Fig. 5.8.

Quadrature Bandwidth and Dynamic Range: For the originally proposed ap-
plications of FSI in strain and shape sensing of large engineering structures, the
most critical issue in the current implementation is thought to be the occurrence
of quadrature noise due to aliased high-frequency laser phase noise. Quadrature
noise can cause excess phase noise, as discussed in App. D.1. Also, as discussed
before, quadrature noise can lead to a reduction in the reflectivity tolerances of
the constituent reflectors, but, more importantly, it limits the usable quadrature
signal cut-off frequency fqco. In this implementation, the reduction of f, ., from
its maximum value fqcomax by over a factor of 10, as discussed in Sec. 5.4.4, was
necessary to prevent spurious phase unwrappings (see App. D.2) at all times.

For a given quadrature bandwidth Bgq, the permissible amplitude of a sinusoidal
phase signal is approximated by Carson’s rule of Eq. (3.4). For the value of the
quadrature cut-off frequency fq o = 20kHz used in this implementation, including
the safety margin of 15% discussed in Sec. 5.5.2, Bq equals 17kHz. Fig. 3.5 plots
the permissible amplitude range for a sinusoidal phase signal in this case. For an
example 4 Hz sinusoidal strain signal, similar to the fundamental vibration component
in Fig. 5.31(a), the maximum amplitude is 4.3krad according to Fig. 3.5, which,
using Eq. (5.23), equates to a strain amplitude of 0.23me for the sensor gauge
length I, = 2.0m that was used. If the theoretically largest possible quadrature
cut-off frequency fq comax = 208 kHz according to Sec. 5.4.4, with a corresponding
quadrature bandwidth of Bg = 177kHz, could be used, the permissible strain
amplitude would increase to 2.3 me for a 4 Hz example signal according to Fig. 3.5.

It should be noted that in the common LO FSI configuration of Fig. 4.1(c) imple-
mented in this work, any measured reflector signal carries the signal contributions
from all previous reflector signals, as can be seen in Fig. 5.26(a), where the signal
from reflector R4 carries both contributions from PZT A and PZT B in Fig. 5.23.
Therefore, the dynamic range available in any one fibre segment is dependent on the
phase signals in other segments and the available quadrature bandwidth is shared
by all fibre segments sensors present in the sensing fibre. This is a considerable
limitation in any practical application as the required quadrature bandwidth Bq will
need to be specified high enough to encompass the sum of the phase signals of all
fibre segment sensors. This could be mitigated in future work by the use of direct
segment interference, as will be detailed in Sec. 5.6.2.

Because, as discussed in Sec. 5.5.1, the quadrature noise is thought to be the
result of aliased high-frequency laser phase noise [212,244], which itself is due to
laser frequency noise in an OPD-imbalanced setup, the simplest way to improve the
dynamic performance of the technique would be to employ a laser with lower intrinsic
frequency noise. The laser used in this implementation was measured in App. B to
have a linewidth of 0.6 MHz, while the linewidth specified by the manufacturer is
0.2MHz. As detailed in App. B, it is thought that this performance reduction is
due to current noise of the laser driver (Profile LDC200). If this is correct, the use
of a better laser driver could improve laser frequency noise performance by up to
a factor of 3. This, in turn, would lower the standard deviation of the laser phase
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noise, which is proportional to the laser frequency noise, also by a factor of up to
3. In general, for a flat phase noise floor, an increase in the phase noise bandwidth
by a factor of p would increase the instantaneous phase noise standard deviation by
a factor of /p. Therefore, a reduction in the instantaneous phase noise standard
deviation, which for aliased high-frequency noise should be directly proportional to
the instantaneous quadrature noise standard deviation, by a factor of 3 through the
use of a better laser driver should result in an increase of the achievable quadrature
bandwidth by a factor of 9. This is close to the maximally possible frequency
fQ.comax = 208 kHz for the current system parameters. Therefore, there is reason
to believe that the performance could be improved even for the current laser diode
simply by using a driver with improved noise characteristics. Furthermore, the use of
integrated external cavity lasers that can also be comparatively cost-effective could
improve phase noise performance [246] by several orders of magnitude. Another
option to reduce quadrature noise would be the use of a low-coherence source in an
OPD-balanced compensating FSI configuration, as will be outlined in Sec. 5.6.2.

Phase Noise and Dynamic Strain Sensitivity: In Sec. 5.5.3, typical instantaneous
phase noise standard deviations for a fibre segment were found to be 0.4 rad over
all frequencies up to 20 kHz, which incorporates, as evident in Fig. 5.28(c), strong
contributions from 1/f noise at low frequencies. This is lowered to 0.29 rad for noise
frequencies between 1kHz and 20 kHz, where a flat phase noise floor is present. In
general, the statement of a dynamic strain sensitivity value per v/Hz, which is the
conventional means of comparing different strain sensors, requires a flat noise floor to
be meaningful. In FSI long-gauge length strain sensing, low frequency phase signals
are expected to be dominant, therefore any dynamic strain sensitivity value that
is relevant must also include low frequencies. As demonstrated in Fig. 5.29(b) it
is possible to compensate low-frequency laser phase noise and obtain a flat noise
floor down to low frequencies by subtracting the phase signal of the desired segment
from the measurement of a reference segment. The resulting mostly flat noise
floor then allows the extension of the validity of the measured phase noise level
of 3.2mrad - Hz7%5, originally valid only for noise frequencies between 1kHz and
20 kHz, down to low frequencies. Using this value of 3.2 mrad - Hz=%5 then permits
the statement of a dynamic strain sensitivity value of 0.17 ne - Hz=%%, now valid from
low frequencies up to 20 kHz, using Eq. (5.23) for the demonstrated sensor gauge
length of I, = 2.0m. If the whole fibre segment length of [y = 16.5m is used for
strain sensing, the sensitivity would improve to 21 pe - Hz=%%. The presented long-
gauge length interferometric sensor system, in line with most fibre strain sensors (see
Sec. 2.1), suffers from a strong inherent sensitivity to temperature due to the material
properties of silica optical fibres. This can negatively affect strain measurements
and temperature-strain discrimination has not yet been addressed in this scheme.
Possible options, such as a two-wavelength approach, are reviewed by Jones [21].
However, temperature-induced variations of the laser emission wavelength can be
compensated by the proposed reference segment measurement as described before
and should then cause no concern.

When compared to high-end optical hydrophone applications, where sensitivities
below 1 urad - Hz7%% [96] have been obtained using an OPD-balanced active homo-
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dyne approach (see also Sec. 3.2.3), the obtained phase noise levels of 3.2 mrad - Hz 7
are not very good. This difference in performance is primarily attributed to the use
of an internal cavity diode laser in an OPD-imbalanced setup, where internal cavity
diode lasers, such as DFB diode lasers, are known to have phase noise levels orders of
magnitude higher than solid state Nd:YAG lasers commonly used for fibre optic hy-
drophones [30,246]. Also, in high-end strain sensing applications, active FBG-based
fibre laser sensors have achieved dynamic strain sensitivities as low as 7fe - Hz =93,
However, apart from the high-end systems discussed above, when compared to other
cost-effective strain sensing techniques, such as regular FBG-based strain sensing,
the achieved dynamic strain sensitivities of the proposed approach, well below the
ne - Hz7%% level, compare very well. Here, wavelength-based FBG interrogation (see
Sec. 2.3) can reach dynamic sensitivities [65] as low as 5ne - Hz7% [65,247], while
interferometric FBG interrogation (see also Sec. 2.3), which, in common with the
proposed FSI technique does not provide absolute strain values, has also been shown
to achieve sensitivities in the ne - Hz7%° range [65,248,249], but requires a separate
readout interferometer per sensor, which is very impractical. Therefore, it can be
said that the dynamic sensitivity of the proposed FSI technique is comparable to or
surpasses most other cost-effective strain sensing applications and could be further
improved by a reduction in laser frequency noise as outlined before. Furthermore,
the proposed FSI technique has already demonstrated the stated strain sensitivities
for frequencies up to 20 kHz and has the potential to reach much higher bandwidths,
therefore also promising usefulness for high-speed applications.

Linearity and Crosstalk: Maximum non-linearity errors were found to be £0.03 rad
in Fig. 5.15(c) for the current implementation. Using Eq. (5.23) and realizing that
systematic errors, such as cyclic errors, in the reflector data can enter the segment
data twice in the worst case, the maximum systematic phase error can be given
as +0.06rad, or 4ne for the gauge length of [, = 2.0m used in the current FSI
implementation. Also, because the magnitude of the cyclic error can never exceed
0.5 and is non-cumulative, this systematic error is bound in magnitude to below
0.17 pe for the gauge length of [, = 2.0m, even in a worst-case scenario, however,
these systematic errors values obviously require the total absence of spurious phase
unwrappings (see also App. D.2). It is also worth noting that strain noise and
systematic errors scale inversely with the sensor gauge length, leading to even higher
strain sensitivities and reduced systematic errors for longer sensor gauge lengths.

In this work, crosstalk suppression levels in the phase signals below —60dB were
demonstrated even though crosstalk suppression levels in the quadrature signals
were found to be as high as —32dB. The reasons for this behaviour are explained in
App. D.3, where the simulation performed there confirms that phase signal crosstalk
suppression levels below —60 dB can indeed be expected for the current experimental
implementation. This compares well with prior work in phase-modulated CDM,
where Wuchenich et al. [202] demonstrated a crosstalk suppression ratio in the phase
signal of —52 dB using a digitally enhanced heterodyne interferometry technique (see
also Sec. 4.3). For the originally proposed applications of strain and shape sensing for
large engineering structures, systematic error levels due to cyclic errors and crosstalk
on the scales seen in this work can be deemed negligible, but nevertheless future
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applications in other application areas might benefit from further improvement using
some of the measures discussed in this section.

5.6.2. Future Research Directions

Apart from implementing the improvements to the current setup outlined in the
previous section, the following conceptual changes could also be investigated in
future research to see if performance in FSI applications can be enhanced. Also, the
proposed concepts may open up new application areas of SSB-CDM signal processing
outside FSI for large engineering structures. In general, there is also the option to
combine FSI with regular FBG sensing operating at other wavelengths to obtain
both short-gauge and long-gauge length strain information from the same sensing
fibre. In contrast to the common LO configuration of Fig. 4.1(c) that was used so
far in this work and where the signals returning from the in-fibre partial reflectors
interfere with a strong common LO, the newly proposed configurations rely on direct
interference between individual reflector signals. The main advantage of this is
that the system is approximately OPD-balanced, which should reduce overall laser
phase noise even though more intrinsically noisy low-coherence sources will be used.
Furthermore, the dynamic range for each sensor is not shared with other sensors in
the sensing fibre, as is the case for the common LO configuration discussed in the
previous section. Also, because the return reflector signals travel to and from the
fibre segment together and their paths only differ while traversing the actual fibre
segment, much greater polarisation overlap can be expected in many cases, easing the
problem of polarisation-induced signal fading discussed before. However, as detailed
in Sec. 4.1, the return signals of the in-fibre partial reflectors do not experience
heterodyne gain, i.e. effective amplification by a strong LO signal, therefore the
reflectivities need to be larger and the potential for undesired path combinations and
multiple reflections to distort the measurements is greater.

In the three previously reviewed basic FSI configurations of Fig. 4.1, the reflector
signals interfere directly in the configurations of Figs. 4.1(a) and (b), theoretically
permitting the advantages discussed above. Out of these two configurations, the
direct FSI configuration of Fig. 4.1(a) is deemed incompatible with the current SSB-
CDM technique, because the current SSB-CDM technique requires the interference of
the phase-modulated light with unmodulated LO light. However, the compensating
configuration of Fig. 4.1(b), using a low-coherence source, is compatible with SSB-
CDM because here an unmodulated LO is provided by the light bypassing the
phase modulator in the compensating interferometer. The principle setup for a FSI
configuration implementing the compensating FSI configuration of Fig. 4.1(b) is
plotted in Fig. 5.33(a). Here the delay 7comp in the compensating interferometer
is chosen to compensate the OPD n = 2n,ls over one fibre segment, with a fibre
group index of refraction n, and with the unit fibre segment length /s of Eq. (5.21).
Because all desired segment signals are approximately OPD-balanced, the low-
coherence properties of the illuminating light suppresses signals from all other path
combinations as well as multiple reflections. Furthermore, the use of an approximately
OPD-balanced setup should mostly eliminate direct laser phase noise, as well as
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Figure 5.33.: Proposed future extensions to the FSI concept, employing a low-coherence source
and fibre of group index of refraction ng. Here, (a) implements the compensating FSI configuration
of Fig. 4.1(b) for fibre segments corresponding to the unit segment length [, according to Eq. (5.21).
(b) highlights the possibility of shortening the fibre sensors to a user-definable gauge length I, while
still maintaining a sensor spacing of unit fibre segment length 5. In (c), a second compensating
interferometer is used to interfere the signals returned from the same reflector but separated by a
user-definable delay time 7¢omp, resulting in a direct measurement of the phase change rate.

associated aliased high-frequency phase noise causing quadrature noise. This should
ease the previously discussed bandwidth limitations caused by quadrature noise.
The required low coherence could be a natural property of the source or could be
introduced artificially through additional modulation [135]. However, due to the
fibre couplers used, a compensating configuration introduces additional losses

The compensating FSI configuration of Fig. 5.33(a) can also be altered to multiplex
fibre sensors with shorter gauge lengths by changing the delay 7comp in the com-
pensating interferometer. This is illustrated in Fig. 5.33(b), where the interference
signals from pairs of reflectors that are separated by the reduced sensor gauge length
ly is evaluated and the delay Tcomp is appropriately adjusted to correspond to the
OPD n = 2n,4l, over the reduced sensor gauge length only. In order to implement
SSB-CDM, the distances between the reflector pairs still need to adhere to the unit
segment length [, but there are no further limitations on [/, other than that the
coherence length of the source has to be much lower than 2n,l,. This approach could
potentially be applied to the multiplexing of short-gauge length Fabry-Perot sensors
(see also Sec. 2.4), where surplus optical fibre between sensors is of no concern.
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Finally, the setup shown in Fig. 5.33(c) shows a configuration employing two
compensating interferometers that can be used to directly measure the phase dif-
ference, i.e. the rate-of-change, of a segment signal over a user-definable delay
time Teomp. Here, for every reflector, there is approximate OPD-balance between
the phase-modulated arm of the interferometer (Path 1 and Path 4) and the LO
(Path 2 and Path 3), while other path combinations are suppressed when the co-
herence time of the light is much smaller than 7emp. This results in a separate
interference signal for every participating reflector, however, because the reflection of
the phase-modulated light of path 1 is initially not delayed, while the reflection of
the LO light of path 2 is delayed by 7comp, the phase of the resulting interference
signals will be non-zero only if there is a non-zero rate of change of the reflector
phase signals. The rate-of-change signal over any segment can then be obtained
by numerical subtraction of the measured rate-of-change signals from the reflectors
and the sensitivity can be adjusted by changing the delay Tcomp. This approach
could have advantages in applications where the rate-of-change of a strain signal
or a velocity signal is the primary measurand. Also, for high-frequency signals, the
direct measurement of rate-of-change phase signals provides an inherent suppression
of large undesired low-frequency phase signals, which could lead to lower quadrature
bandwidth requirements in many cases. Furthermore, because the interfering light
travels exactly the same fibre path no polarisation-induced fading is expected as long
as polarisation changes over the delay time 7comp can be ruled out.
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5.7. Summary

A novel signal processing technique that combines code-division multiplexing to
separate signals from multiple sources and single-sideband homodyne processing to
perform interferometric phase measurements, achieving both functions using only
a single phase modulator, was presented in this chapter. The scheme is primarily
aimed at FSI applications, such as strain and shape sensing in large engineering
structures, but further extensions to other applications have also been discussed.

A detailed theoretical description of the technique has been presented that allows
the calculation of relevant design parameters, with special emphasis on the anti-
aliasing filtering necessary in any digital signal processing system. The various design
choices for signal generation and processing have been described extensively and ana-
lysed using the theoretical approach developed. After describing the implementation
details, experiments with several measurement configurations to characterise different
performance aspects of the technique were carried out. This was followed by a com-
prehensive discussion of the limitations of, and possible improvements to, the current
implementation, before novel concepts for future research work were proposed. In
the experimental sections, using a cost-effective laser diode and phase modulator,
up to four fibre segments of length [y = 16.5 m were multiplexed with typical phase
noise levels of 3.2mrad - Hz7%% and a maximum quadrature bandwidth of 20 kHz
was demonstrated. Crosstalk suppression in the phase signals was found to be below
—60dB and the cyclic errors in the reflector signals were at a maximum of +0.03 rad,
leading to worst-case systematic distortion in the segment data of £0.06 rad. When,
as in the experimental demonstration, a reduced sensor gauge length of [, = 2.0m
is used, these noise levels equate to a strain sensitivity of 0.17 ne - Hz=%® and the
system has been applied to an example strain and tip displacement measurement of
a vibrating steel pipe cantilever.

The main limitation of the scheme in its current implementation was found to
be aliased high-frequency laser phase noise. This severely limited the achievable
quadrature bandwidth to less than 10% of the theoretically possible bandwidth,
however, it is thought that through the use of a better laser driver, and/or better
laser diodes, this could be easily improved. The current implementation theoretically
allows the multiplexing of 14 fibre segments without altering the signal processing
parameters, and faster digital signal generation and processing hardware could
be employed in order to reduce the minimum fibre segment length [; in future
implementations. Because the combined cost of all the equipment used in this
prototype was less than £6k, the possibility of a cost-effective strain measurement
system has been successfully demonstrated.
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6. Sinusoidal Optical Frequency
Modulation Technique for
Fibre Segment Interferometry

6.1. Introduction

In this chapter, a novel range-resolved interferometric signal processing technique
is proposed and several experiments are demonstrated, including an application to
the fibre segment interferometry (FSI) approach that forms the main theme of this
thesis. In contrast to the code-division multiplexing (CDM) technique presented
in the previous chapter, where direct phase modulation was used, the approach in
this chapter is based on sinusoidal optical frequency modulation (SFM) of the light
illuminating one or more interferometers of non-zero OPD (see also Sec. 3.1.2). Here,
for each constituent interferometer, the optical frequency modulation induces an
OPD-dependent phase modulation waveform and the interference signals resulting
from this can then be used as range-dependent carriers to demodulate the desired
interferometric phase signals. This allows the use of a very simple optical setup to
interrogate long-gauge length interferometric sensors (see also Sec. 2.4) in a self-
referencing interferometric configuration (see also Sec. 3.1.3) that offers high stability
and down-lead insensitivity. In this work, optical frequency modulation is induced
by injection current modulation of a diode laser, with further methods for optical
frequency modulation discussed in Sec. 3.1.2.

As the review of this area in Sec. 4.4 showed, prior work has been performed
using both linear or sinusoidal optical frequency modulation waveforms. Here, linear
techniques are conceptually simple but suffer from the difficulty of introducing a clean
linear frequency sweep due to their high harmonic frequency content [174]. Sinusoidal
range-resolved signal processing techniques, such as the approach used by Sakai
et al. [128], on the other hand use only a single modulation frequency component,
which greatly reduces complexity, but require gating with a rectangular window
function to select the relevant sections of the interference signals for evaluation.
As also discussed in Sec. 4.4, previously demonstrated range-resolved approaches,
using both linear and sinusoidal modulation, require the OPDs of the constituent
interferometers to adhere to a discrete set of permitted OPD values. In particular,
the sinusoidal approach by Sakai et al. [128] requires tuning of the phase carrier
amplitude to fit integer multiples of the carrier waveform inside the rectangular
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window function. The technique proposed in this chapter builds upon this idea
of windowing, however, it is shown that using a non-rectangular, smooth window
function, which can easily be applied to the photo detector signal using digital signal
processing, the restriction of fitting integer carrier multiples within the window
period vanishes. Additionally, demodulation is now performed using a time-variant
carrier frequency that approximately matches the complex interferometric signal
expected at the photo detector for the OPD of the desired interferometer. Together,
these measures allow continuous and independent variation of the OPDs, subject
to a minimum separation, of one or more interferometers. Therefore the necessity
to adhere to a discrete OPD grid as in prior work is removed, greatly increasing
the flexibility and practicality of the approach. Furthermore, when compared to
other interferometric multiplexing techniques, such as time-division or code-division
multiplexing, both reviewed in Chap. 4, where spatial resolution is proportional to the
processing bandwidth, spatial resolution in optical frequency modulation approaches,
such as in the proposed technique, is proportional to the optical frequency modulation
amplitude, thus becoming a property of the laser source. In this way, as will be
shown, many GHz of optical frequency modulation amplitude can be harnessed to
improve spatial resolution whilst using digital signal processing hardware that only
needs to be capable of much lower processing bandwidths, effectively decoupling
spatial resolution from processing bandwidth.

In this chapter, the theory of the SFM technique is explained in detail in Sec. 6.2,
including numerical modelling of expected linearity and crosstalk performance. In
Sec. 6.3, an experiment using a nested Mach-Zehnder (MZ) configuration with three
constituent interferometers is used to demonstrate the working principle of the signal
processing as well as procedures that are required to operate the technique, such
as finding the correct demodulation parameters. Also, in this section, experimental
results of phase measurements as well as quantitative measurements of the achievable
linearity, crosstalk and tolerance against instrumental drift are presented. Following
this, in Sec. 6.4, a simple, single MZ interferometric configuration is used for quant-
itative measurements of noise as a function of signal power and OPD. In general, the
use of transmissive MZ interferometers in Sec. 6.3 and Sec. 6.4 for the characterisation
of the signal processing technique is very versatile and offers very high signal powers.
It is therefore an ideal test-bed before finally applying the technique to a reflective
FSI configuration in an experiment using six fibre segment strain sensors that is
presented in Sec. 6.5. Here, the capabilities of the technique are demonstrated by
measuring the speed-of-sound in a suspended metal rod. In contrast to the CDM
approach in Chap. 5, a fibre segment length [; of 12.5c¢m is demonstrated here, an
improvement of more than two orders of magnitude, using the same basic FPGA
signal processing hardware. Furthermore, the use of low-reflectivity, broadband
fibre Bragg gratings (FBGs) (see Sec. 2.3), all inscribed at the same wavelength, to
act as partial in-fibre reflectors (see also Sec. 4.1) could prove beneficial for future
applications. A thorough discussion of the achieved performance and options for
future improvements is held in Sec. 6.6 before a brief concluding summary in Sec. 6.7.
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6.2. Theory

6.2.1. Basic Equations

This section discusses the derivation of the basic equations of the proposed SFM
technique, before a detailed explanation of the range-dependent behaviour of the
resulting interference signals is presented in Sec. 6.2.2. Here, the key equations
from the analysis of sinusoidal optical frequency modulation by Zheng [121] are
restated in the notation of this thesis, with their detailed derivation also shown
in App. E. In this work, this previous analysis [121] is then extended to describe
multiple interferometers and to include the complete demodulation process of the
proposed SFM technique. This can be split into four distinct phases:

Modulation: A sinusoidal optical frequency modulation causes a phase modulation
waveform of OPD-dependent amplitude in each constituent interferometer.

Photo Detection: The characteristic signals resulting from the constituent interfero-
meters are recorded, digitised and compensated for signal processing delays.

Windowing: A smooth window function is applied to the photo detector signal.

Demodulation: By applying a range-dependent complex carrier function to the
windowed signal and then passing the signal through a low-pass filter, the com-
plex quadrature signal can be obtained that directly encodes the desired phase
information for each constituent interferometer.

Fig. 6.1 illustrates typical signals at each intermediate processing step in this section,
while the used signal processing implementation is also shown later in Fig. 6.8.

Modulation: The optical frequency f,u¢(t), emitted by a source of optical centre fre-
quency fopt.c, subject to sinusoidal optical frequency modulation of optical frequency
modulation amplitude A f,¢, at modulation frequency fy,, is given by:

fopt(t) = fopt,c + Afopt Sin[27rfmt] (61)

The frequency modulation waveform of Eq. (6.1) is also illustrated in Fig. 6.1(a).
For each of the k = 1...k.c constituent interferometers with average time-of-flight
delays 75 between the respective interferometer arms, the applied optical frequency
modulation (see also Sec. 3.1.2) then results in the phase modulation function 6(t),
extended from Eq. (E.11) in App. E, using the assumptions stated there:

Gk(t) = Ak sin[27rfm(t - 05Tk)] (62)

Here, the phase carrier amplitude, Ay, in units of rads, was extended from Eq. (E.12)
in App. E and is the amplitude of the sinusoidal phase modulation waveform that
results from the applied sinusoidal optical frequency modulation for the OPD n; of
the kth interferometer, using the vacuum speed of light c,:

2A Ie) m 2 A O
A = Jopt sin Vf nk} ~ Jopt for ny <0 (6.3)
fm Co Co T Jm
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Modulation, Photo Detection and Windowing
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Figure 6.1.: Illustration of typical signals at intermediate stages of the signal processing with a
detailed description given in the main text. For illustrative purposes, the plotted signals originate
from a single interferometer k£ = 1 with zero time-of-flight ; = 0 and are evaluated at stationary
phase value ¢1 = 7/3 for RPogr = 0 and RP.g; = 1. In this figure, real functions are drawn in
blue, while for complex functions, cyan (real) and magenta (imaginary) line colours are used and
all signals, with the exception of (a) and (b), are drawn normalised and unitless.

The figure shows the modulation and demodulation for a single interferometer with an OPD
n resulting in a phase carrier amplitude A; = 80 rad. (a) plots the applied sinusoidal optical
frequency modulation, (b) shows the resulting phase modulation, while (c¢) plots the photo signal
for this case, with the window function for a width parameter of ¢ = 0.0225 drawn in (d). (e)
to (g) then show the resulting signals for in-range demodulation (Aq = 80rad = A;), with the
carrier used shown in (e), the demodulated signal shown in (f), while (g) then shows the complex
quadrature signal, i.e. the low-pass filtered (LP) version of (f). Analogous to (e) to (g), (h) to (j)
show the corresponding signals for out-of-range demodulation (A4 = 40rad # A;).
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Thus, for ;, small relative to co(mfwn) ', i.e. for time-of-flights 75, small relative to
the modulation period T},, A is independent of the modulation frequency, f,,, but
proportional to the optical frequency modulation amplitude of the source, A f,,, as
well as the OPD 7, of the kth interferometer. The latter property permits range-
resolved interferometry to be performed with this technique. In general, the use
of the phase carrier amplitude, Ay, instead of directly using OPD or time delay
units in the theoretical description allows an abstract analysis of the characteristics
of the signal processing, in particular with regard to spatial resolution (detailed in
Sec. 6.2.3 later), independent of the source specific parameter A f,,;. An example
phase modulation waveform is illustrated in Fig. 6.1(b) for a single interferometer
(k =1) with OPD n; and for a frequency modulation amplitude A f,; that leads to
a phase carrier amplitude A; = 80rad, a value typical for the later experiments.

Photo Detection: After photo detection, the photo detector signal is digitized,
where, in contrast to the CDM signal processing technique presented in Chap. 5,
anti-aliasing does not appear to be critical to the experiments in the SFM technique.
Therefore anti-aliasing filtering is not included in the theoretical description at this
stage. Furthermore, in future work, any detrimental effects could be compensated
using an additional digital input filter, as discussed in Sec. 6.6.1. For proper operation
of the proposed technique any signal processing delay 7y, that occurs after modulation
will need to be compensated. Without loss of generality, 74, can be set to include
all analogue and digital delays occurring between modulation and signal processing.
In this theoretical treatment all signals after modulation are considered to be fully
compensated for 7, by introducing the compensated time variable ¢, which bears
the following relation with the regular time variable t:

t'=t— 1Ty (6.4)

An experimental method to a priori determine the signal processing delay 7y, using
demodulation maps will then be presented in Sec. 6.3.1. Extending Eq. (E.6) in
App. E for k.« constituent interferometers, the resulting photo detector signal,
Upa(t"), compensated for the signal processing delay 7y, is then given by:

kmax
Upa(t) = RPur+ " (RPu - cos [0u(t) + ou(t)] )

6.5

= RP,g + Zf: (RPeH’k - COS [Ak sin[27 fo, (' — 0.57%)] + @k(t’)D (0
The photo detector responsivity R, the stationary offset power P,g as well as
the effective interferometric power Py in Eq. (6.5) were first introduced in the
context of Eq. (3.3). Pesy depends on the individual power ratio as well as the
mutual coherence and polarisation overlap between the two interferometer arms for
each of the k.. constituent interferometers. The desired phase signal for the kth
constituent interferometer is represented by ¢ (t'), while 0y (t') is given by Eq. (6.2).
Fig. 6.1(c) then shows a typical photo detector signal Upq(t') resulting from the
previous example for the phase modulation waveform 6;(¢) for an example stationary
phase value ¢ = /3. Here, for illustrative purposes, no intensity offset RP.z = 0
and full visibility RP.g; = 1 is also assumed.
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Windowing: As will become more apparent later, a key step in the SFM approach
is the application of a smooth window function W (', 0, 74) to Upa(t'), with given
demodulation delay 74. In this implementation, for each modulation period of
duration T}, = f', a window function containing two individual windows that are
centred on the two points of the highest gradients in the sinusoidal optical frequency
modulation waveform of Fig. 6.1(a), where the photo detector signal Upq(t) most
rapidly changes, is used, as illustrated in Fig. 6.1(d). The individual windows are
of Gaussian shape, with a width specified by the width parameter o, the Gaussian
standard deviation. The complete window function, W (t', o, 74), periodic in T}, and
2T}, and incorporating both Gaussian windows, is then given by:

W(t',o,7a) :i {eXp[—1<(t,_Td)_”Tm>2] _|_eXp[_1<(t,_7'd)_(n+0.5)Tm)2} }

e 2 Tho 2 Tho
(6.6)

In contrast to prior work [128,175], as reviewed in Sec. 4.4, a smooth window
function is used in this approach, which, as will be detailed later in Sec. 6.2.2, is a
key improvement. In this particular implementation, a Gaussian window function
was chosen because it is a conceptually simple window function and because it can be
easily customised by the window width parameter o, where a larger value of o results
in a broader window function. Furthermore, the use of two Gaussian windows allows
a higher carrier-to-noise (CNR) ratio, rather than using only a single window as in
prior work [128,175]. It is stressed that the version of W(t', o, 7q) above is only an
initial choice and other window functions remain to be explored, as will be discussed
later in Sec. 6.6.1. It will be shown in Sec. 6.3.2 that for the current experimental
implementation, the best choice of ¢ is approximately o ~ 0.0225, therefore this
value is used in the following theoretical analysis. It is, however, emphasized that,
as also experimentally confirmed in Sec. 6.3.2, the technique can be made to work
over a wide range of the parameter o with only small performance penalties.

Demodulation: In the presented SFM approach, unlike regular heterodyne inter-
ferometry (see also Sec. 3.1.4), where a complex carrier of fixed frequency is used
for electronic demodulation, the complex carrier, C(t', Aq, 74), used in this approach
is time-variant and periodic within the modulation period, Ty, = f..!. When the
kth constituent interferometer is to be demodulated, the demodulation phase carrier
amplitude Aq is chosen to approximately match the phase carrier amplitude Ay,
i.e. Aq ~ A, and the demodulation delay 74 is chosen to approximately match half
of the time-of-flight delay 7, of that interferometer, i.e. 74 ~ 0.57;. In this case,
both A4 and 7y match the corresponding terms in the phase modulation waveform
of Eq. (6.2) that results from the applied sinusoidal optical frequency modulation
for that interferometer. The complex demodulation carrier function C(t', Aq, 7q)
then resembles a complex version of the interferometric signal expected at the photo
detector (see also Fig. 6.1(c)) for the desired interferometer and is given by:

C(t', Aq, 7q) = exp {j - Agsin[27 fi (' — Td>ﬂ (6.7)

For the previous example, the carrier C(t', Aq, 74 = 0) for in-range demodulation of
Upa(t') at Aq = 80rad = A, is plotted in Fig. 6.1(e), while Fig. 6.1(h) shows the carrier
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function for an example out-of-range demodulation amplitude of A3 = 40rad # A;.

After the windowed photo detector signal W (t', o, 7q)Upa(t’) is multiplied with
C(t', Aq,7Ta), the resulting demodulated signal is represented by Ugem(t', 0, Aq, Ta)-
Finally, Ugem(t', 0, Aq, 7a) is low-pass (LP) filtered with cut-off frequency fqco <
JQ.comax = 0.5 fu, resulting in the complex quadrature signal Uq (', o, Ag, 7). There-
fore Uq(t', 0, Aq, 74) can be seen as the baseband component of the demodulated
signal Ugem (t', 0, A4, Ta) around frequency 0. Expressing the cosine function in Upyq(t')
of Eq. (6.5) using complex exponential terms, Uq(t', 0, Aq, 7q) is given by:

Uq(t, o0, Ad,rd):LP{Udem(t’, . Ad,rd)} _ LP{C(t’, Ag, r)W (E 0, Td>Upd<t')}
:LP{W(t’, 0,7Ta) RPy exp [j - Ag sinfw, (¢ — Td)ﬂ +
k§X0-5W(t/707 Ta) RPest 1 (6.8)
gxll)[j(Adsin[%rfm(t’—Td) Apsinf2m fou (' = 0.57)] — () |+

I-
exxp (A SIn[2 fiu (' —7)]+ A sin[27 f (¢ —0.5Tk)]+gpk(t'))D}
The demodulated signal Ugen (¥, 0, Ag, 7q) and the resulting low-pass filtered complex
quadrature signal Uq(t', 0, A4, 74) for the previous example cases are also plotted
in Figs. 6.1(f) and (g), respectively, for in-range demodulation and in Figs. 6.1(i)
and (j) for out-of-range demodulation. As will be discussed in detail later, for in-
range demodulation, the non-zero average or baseband signal component visible for
both real and imaginary signals in Ugen(t', 0, Aq, 7q) in Fig. 6.1(f) carries the phase
information of the desired phase signal ¢;. This phase signal can then be retrieved
from the resulting low-pass filtered complex quadrature signal Uq(t', o, Aq, 74) shown
in Fig. 6.1(g). This is in contrast to out-of-range modulation, where Ugen (t', 0, Ag, 7a)
in Fig. 6.1(i) can be seen to carry no average or baseband component and consequently
results in Uq(t', o, A4, 74) with zero complex amplitude visible in Fig. 6.1(j).

In order to simplify Eq. (6.8) relevant to typical conditions in the later experiments,
the phase shifts in the sines caused by both 74 and 7, can be considered negligible,
i.e. |1q| < T,y and |1,| < T, relative to the modulation period T, = f;!. These
assumptions will be used in the remainder of this chapter and allow rewriting of
Eq. (6.8) using generic complex exponential terms, E(t', A, p(t')), given by:

E(t', A, gp(t’)) = exp [j (A sin[27 fit'] + w(t'))} (6.9)

Here, the sinusoidal amplitude A is representative of any combination of A =
Aq+ 10, £A] occurring in the simplified version of the quadrature signal Uq(t', 0, Aq)
given below, where the described assumptions of zero 74 and 75, were used:

Uq(¥', 0, Ag) = LP{Udem(t’, -, Ad)} . LP{C’(t’, Ag, OW (2, 0, O)Upd(t’)}
kmax
zLP{W(t’,a, 0)RP.gE(t', Ag,0) + 55 0510 (o, O)Rpeﬁ,k( (6.10)
k=1

Bt (A — A, —oul®)) + B(, (s + Ay), gpk(t’))>}
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When the demodulation phase carrier amplitude Ay of the complex carrier func-
tion C(t', Aq,0) of Eq. (6.7) is chosen to approximately match the phase car-
rier amplitude of the desired kth interferometer, i.e. Aq = A, the sinusoidal
part of the complex exponential term E(t',(Aq — Ag), —¢x(t')) in the approxim-
ated version of the complex quadrature signal Uq(t', 0, Aq), given by Eq. (6.10),
vanishes because A = Aq — Ay =~ 0. The desired phase signal, (t), is then
directly encoded in Eq. (6.10) by the baseband signal component of this term
E(t', (Aq — Ag), —pr(t')) = exp[—j - ¢r(t')]. However, the presence of the other
complex exponential terms with A # 0 in Eq. (6.10) prohibits straightforward phase
extraction, because, in general, each of these terms also adds its own baseband signal
components to Ugem (', 0, Aq) and thus to Ug(t', 0, Aq). If, however, the window func-
tion, W (#', 0,0), is chosen such that the baseband components of all complex exponen-
tial terms with sufficiently large sinusoidal amplitudes A are suppressed in Eq. (6.10),
then only the previously mentioned term E(t', (Aq — Ax), —pr(t')) = exp[—j - or(t')]
that carries the desired phase information contributes significantly to the baseband
component of Ugem(t', 0, Aq). Therefore, Uq(t', o, Aq) will only carry phase inform-
ation from the desired interferometer and undesired crosstalk from the baseband
components of other complex exponential terms in Eq. (6.10) can be avoided. In this
case @ (t') can be recovered using an arctan function on the complex quadrature
signal Uq(t',0,Aq). This is the key working principle of this technique and the
baseband crosstalk suppression behaviour of the window function will be quantified
and explained in detail in the following section.

6.2.2. Demodulation Process

Baseband Suppression Properties of a Single Complex Exponential Term: Be-
fore discussing the complete demodulation represented by all terms in the approx-
imated complex quadrature signal of Eq. (6.10), it is instructive to first investigate
the effect of the window function, W (#',,0), on the suppression of the baseband
component of a single, generic complex exponential term E(t', A, ¢(t')) of Eq. (6.9).
This is illustrated in Fig. 6.2 for the term E(t',36,0) for an example sinusoidal
amplitude value of A = 36rad, where this value was also chosen to tie in with the
discussion later in this section. Fig. 6.2(a) plots the real and imaginary parts of
E(t',36,0) as well as W (#',0.0225,0), given by Eq. (6.6), for width o = 0.0225, in the
time domain, while Fig. 6.2(b) compares the corresponding Fourier spectra with and
without application of W (t',0.0225,0). It has been verified that the phase term ¢(t')
in Eq. (6.9) has no influence on baseband suppression and can thus be neglected in
this discussion and set to zero. In general, the application of the smooth window
function results in a distinctly peaked signal spectrum with maxima at frequencies
~ +Af, and it can clearly be seen in Fig. 6.2(b) that the application of the smooth
window function on E(t',36,0) strongly suppresses any baseband signal component.
In this example, the baseband suppression ratio Sy, between the peaks at =~ +36 f,,
and the value at frequency 0, also marked in Fig. 6.2(b), is Sy, = —143 dB.

Additionally Fig. 6.2(a) plots an example of the single rectangular window /gating
function M(¢’) that was used in prior work by Sakai et al. [128] and Fig. 6.2(b)
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Figure 6.2.: Illustration of the effect of windowing on a single complex exponential term E(¢', 36, 0).
(a) plots the real and imaginary part of E(¢,36,0) over one modulation period Ty, as well as the
smooth window W (¢,0.0225,0) and, additionally, a rectangular window 1(¢') for comparison with
prior work. (b) compares the corresponding spectra of E(t,36,0) with and without application of
W (t',0.0225,0) or M(t'). Here Sk, = —143dB for W (#',0.0225,0) is also marked.

then shows the corresponding spectrum after application of M(t'). In Fig. 6.2(b),
when comparing the Fourier spectrum resulting from the application of the smooth
window function W (#',0.0225,0) with that resulting from M(¢’), the differences in the
magnitudes of the sidelobe components for the two types of windows are obvious.
Here, the smooth window function produces virtually no sidelobe components, while
these are of considerable magnitude for the rectangular window function and only
decay very slowly. In prior work [128], as detailed in Sec. 4.4 and illustrated in
Fig. 4.7, the occurrence of sidelobe components required the placement of multiple
sources on an integer OPD grid. In contrast, the avoidance of sidelobe components
through the use of a smooth window function permits continuously variable placement
of the OPDs of constituent interferometers, subject to a minimum OPD separation,
which is a key advantage of the proposed technique.

For the Gaussian window function W (t', 0,0) of Eq. (6.6) that is used in this work,
Fig. 6.3 then quantifies the baseband suppression ratio Sy, by plotting the dependence
of Spp on the sinusoidal amplitude A of the generic complex exponential term
E(t', A,0) after application of W (#', o, 0) for various values of the width parameter o
and without any windowing (¢ — o0). In Fig. 6.3, the example value Sy, = —143dB
of Fig. 6.2(b) can then easily be extracted from the curve for o = 0.0225 at A = 36 rad.

0 W\Y ”‘Au A A A A AN A A A AN AR AN AA AN AN AN AANA AN AN AN AR AN A A

Y| Y YV 5 —=0.0075 |
AT FHA B

g : (L T — 7 =0.0675 |
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W [ \ | N ]
_2 [ . . . | . . . . | . . . A | . . . . | . . N N ]

OOO 50 100 150 200 250

Sinusoidal Amplitude A [rad]

Figure 6.3.: The baseband suppression ratio Sy}, resulting from the application of W (', o,0) of
Eq. (6.6) to a generic complex exponential term E(t', A,0) of Eq. (6.9) is plotted as a function of
sinusoidal amplitude A for various width parameters o and without windowing, i.e. o — 0.
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Complete Demodulation Process: As described previously, the basic working
principle of the proposed SFM technique is the suppression of the baseband signal
components of all complex exponential terms in the simplified complex quadrature
signal Uq(t', 0, Aq) of Eq. (6.10), except for the term E(t', (Aq — A), —pi(t')) that
carries the desired phase signal ¢ (t') of the kth constituent interferometer and
where Aq — A, =~ 0. The previous results for the baseband suppression on a single,
generic complex exponential term E(t', A, p(t')) can now be extended to include
all 1 4+ 2k,.x complex exponential terms that are present in the approximated
demodulated signal Ugen(t', 0, Aq) and the resulting quadrature signal Uqg(t', 0, Aqg)
in Eq. (6.10). This is possible because all complex exponential terms in Ugen (t', 0, Aq)
form a linear combination and thus add independently in the Fourier domain. This
is illustrated in Fig. 6.4 for two example constituent interferometers with OPDs
that result in phase carrier amplitudes of A; = 83rad for interferometer 1 and
Ay = 47rad for interferometer 2 and with arbitrarily chosen, stationary phase values
of o1 = m/3 and s = 87/7. In this example, the values for A; and A, were used
because they are prime numbers and therefore no simple integer multiple of each
other. For this example, the plots on the left in Figs. 6.4(a), (c) and (e) show
the photo detector signals U,q(t') resulting for the cases where interferometer 1
only, interferometer 2 only and where both interferometers 1 and 2, respectively, are
present, along with the window function W (#',0.0225, 0) that is used. Figs. 6.4(b), (d)
and (f) on the right then show the corresponding Fourier spectra of the demodulated
signal Ugem (', 0, Aq) = W(t',0,0)C (', Aq, 0)Upa(t’) with (o = 0.0225) and without
(o — 00) application of the window function. Here, the demodulation carrier function
C(t', Aq,0) was set to demodulate the first interferometer at A; = 83rad by letting
Aq = 83rad. In all cases in Fig. 6.4, Upyq(t') was normalised and an offset intensity
of RP,g = 1 and full visibility RFPes = 1 was assumed.

[t can be seen in the spectra of the demodulated signals Ugen (t', 0, Aq) in Figs. 6.4
(b), (d) and (f) that without windowing (¢ — oo) the spectra are widely spread
out, whilst for windowing at width parameter ¢ = 0.0225 distinct peaks that
correspond to the different complex exponential terms of Eq. (6.10) are observable.
As discussed earlier, a complex exponential term of sinusoidal amplitude A will
cause peaks with maxima at + ~ Af,. Therefore the peaks occurring in the
spectra of Ugen(t',0.0225,83) in Figs. 6.4(b), (d) and (f) can be easily traced to the
originating complex exponential terms and are labelled according to Table 6.1. Each
interferometer causes two unique sets of peaks, No. 1 and No. 5 for interferometer
1 and No. 2 and No. 4 for interferometer 2, while the non-zero offset intensity
RP.s is the cause of peak No. 3 for both interferometers. Fig. 6.4(f), where
both interferometers are present, then exhibits all five peaks. Because the first
interferometer was chosen for demodulation by letting Aq = A;, the desired phase
signal is contained in peak No. 5, which is present in Fig. 6.4(b) and (f) and, unlike
the other peaks, displays a comb-like structure, visible in the insets, that will be
discussed in the following paragraph. As obvious from Table 6.1, peak No. 4 at
Aq = 36rad due to interferometer 2 is the complex exponential term that is closest
in the Fourier spectrum to the desired peak No. 5 in Fig. 6.4(f). Thus crosstalk
from interferometer 2 into interferometer 1 will be mostly caused by this peak.
This crosstalk will ultimately limit the achievable spatial resolution, as discussed
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Figure 6.4.: Illustration of the complete demodulation process for two constituent interferometers
with OPDs that result in phase carrier amplitudes A; = 83rad and A; = 47rad. (a), (c) and (e)
plot the window function W (#’,0.0225,0) and the normalised photo detector signals Up,q(t') for the
cases where interferometer 1 only, interferometer 2 only and both interferometers, respectively, are
present. Analogously, (b), (d) and (f) plot the corresponding Fourier spectra of the demodulated
signal Ugem (t', 0, Aq) = W(t',0,0)C(t', Aq,0)Upa(t’) of Eq. (6.10) with (o = 0.0225) and without
(0 — o00) application of the window function and where the first interferometer was targeted for
demodulation by letting Aq = 83rad. Here, the resulting peaks for the case with windowing are
marked with numbers according to Table 6.1. Also, the relevant baseband suppression Sy, that
ultimately defines the spatial resolution is marked in (d) and the insets in (b) and (f) reveal the
comb-like structure of peak No. 5.
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Table 6.1.: Complex exponential terms in Eq. (6.10) occurring in Figs. 6.4(b), (d) and
(f) for the described example with two constituent interferometers at A; = 83rad and
Ay = 47rad and where interferometer 1 is demodulated by letting Aq = 83 rad.

Peak No. Term Value of A Description
1 E(t', (Aqd+ A1), ¢1) 166 rad Sum frequency term for A
2 E(t', (Aq+ Az), ¢2) 130rad  Sum frequency term for A,
3 E(t', Aq4,0) 83 rad Term due to offset power RP,g
4 E(t', (Aq — Az), —¢2) 36 rad Difference frequency term for A,
5 E(t', (Aq— A1), —p1) Orad Difference frequency term for A,

further in Sec. 6.2.3. In general, the quadrature signal crosstalk suppression levels
Ser then directly correspond to the baseband suppression values Sy, that are plotted
in Fig. 6.3. In Fig. 6.4(d), the baseband suppression ratio Sy, = —143dB in this
example is also marked and the value of Sy, = —143 dB found here is similar to the
earlier value for a single complex exponential peak illustrated in Fig. 6.2(b).

It can also be seen from Eq. (6.9) that for peak No. 5 where A = 0 the sinusoidal
part of the complex exponential term vanishes, ideally leaving an exponential term
exp[—j - ¢1(t")] that only contains the desired phase signal ¢;(¢’). This exponential
term would appear as a delta peak at frequency 0 in the Fourier domain, however, this
is broadened by the convolution with the periodic window function W (t',0.0225,0),
which leads to a set of carrier harmonics that limit the unambiguous quadrature
bandwidth. Because W (t',0.0225,0) of Eq. (6.6) is periodic in 2f;,, a comb-like
structure, visible in the insets in Figs. 6.4(b) and (f) arises where every second carrier
harmonic is missing, yielding a theoretical unambiguous quadrature bandwidth of
fm. However, in practice, weak carrier components at & f,, appear due to non-perfect
matching of the phase carrier amplitude Ay of the desired interferometer to the
demodulation carrier amplitude Ag, leading to a usable unambiguous maximum
quadrature bandwidth of fq comax = 0.5 fm. This is the value that has been previously
used for the derivation of Eq.(6.10) and, as discussed there, the extraction of the
desired phase signal from the demodulated signal Ugen (¢, 0, Aq) then requires low-
pass filtering of Ugem(t', 0, Aq) at a cut-off frequency fqco < fQ.comax. This yields
the complex quadrature signal Uq(t', 0, A4) that, using an arctan function, allows the
phase signals ¢ (') to be determined, with this phase signal subsequently subjected
to phase unwrapping [112] as a final processing step.

6.2.3. Spatial Resolution

The suppression of crosstalk from undesired complex exponential terms after the
application of the window function can be quantified by the baseband suppression
ratio, as plotted in Fig. 6.3. In order to establish a formula for the minimum OPD
separation between constituent interferometers it is necessary to specify an acceptable
baseband suppression level Spp accept i the design of the implementation. For a given
window width parameter, o, the corresponding minimum sinusoidal amplitude A,;,
at Spbaccept Ccan then be extracted from Fig. 6.3 and A > A, has to be exceeded
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by all complex exponential terms in Eq. (6.10) apart from the desired baseband
term, where A = 0, in order for the technique to work as specified. The value for
Anin determined in this way can then be inserted into the following formula for the
minimum OPD difference An,;, that is derived from the approximated version of
Eq. (6.3):

COAAmin
27 A fopt

In this technique, A7y, is the minimum OPD that has to be maintained for the
first interferometer, and, for multiple constituent interferometers, the minimum OPD
separation between constituent interferometers.

A77min ~ (611)

This highlights that, in this technique, spatial resolution is dependent on a sub-
jective choice of an acceptable baseband suppression level Syp, accept- As an example,
at a width parameter o = 0.0225 and for a chosen value of Spp acceps = —200dB,
Fig. 6.3 yields a value A,,;;, = 40rad. For an optical frequency modulation amplitude
of fopt = 8.4GHz, the value obtained in the practical implementation described
later, Eq. (6.11) then results in OPD Any,, = 0.23m. However, if an acceptable
baseband suppression level of only Spp accept = —50 dB is specified, A, would reduce
to 25rad for ¢ = 0.0225 according to Fig. 6.3, which results in Any;, = 0.14m.
Furthermore, Fig. 6.3 also shows that for Spbaccept = —50dB, a choice of o = 0.045
would yield an even lower value of A, = 11rad, leading to Ay, = 0.06 m. Using
baseband suppression curves similar to Fig. 6.3 with a finer o resolution would then
allow the best spatial resolution and the corresponding optimum value of ¢ to be
obtained. In an FSI configuration, where the light traverses the fibre of typical
group index of refraction ng = 1.46 twice, the above values of Ay, correspond to a
minimum segment length s of I; = 0.08 m for Spp, accept = —200dB and Iy = 0.02m
for Spp accept = —50dB at o = 0.045.

6.2.4. Non-Linearity and Crosstalk due to Quantisation Errors

The theoretical treatment in the previous sections has been carried out for ideal
conditions where no quantification errors are present. However, in any practical
implementation of a digital signal processing system, quantification errors are un-
avoidable because a digital system will only have a limited number of discrete signal
levels available. Assuming that the processing bitwidths of the digital multipliers for
the application of the window and carrier function can be made sufficiently large,
the actual processing bitwidth in this technique is limited by the initial digitisation
of the photo detector signal Upq(t') of Eq. (6.5) in the analogue-to-digital converter
(ADC). In the following, it will be shown through numerical modelling that, in
this technique, the occurrence of quantisation errors is the key phenomenon that is
thought to limit the achievable crosstalk and linearity performance and this will also
be confirmed by the later experimental results in Sec. 6.3 and Sec. 6.5.

Analogous to Fig. 6.2(b), the Fourier transformed spectra of a windowed complex
exponential term W (¥, 0,0)E(t,36,0), with this signal now quantisised into #2°
discrete levels for the processing bitwidth values b = [6, 12, 18] bit, are plotted in
Fig. 6.5(a) for window width parameter ¢ = 0.0225 and in Fig. 6.5(c) for o =
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0.045. It can be seen in both Figs. 6.5(a) and (c) that, compared to the respective
spectra without quantification also plotted there, the presence of quantisation errors
introduces a mostly flat baseline in the spectra at levels that are dependent on the
processing bitwidth b. Furthermore, the corresponding baseband suppression graphs
for b = [6,12, 18] bit and for the case without quantisation are plotted in analogy
to Fig. 6.3 in Fig. 6.5(b) for o = 0.0225 and in Fig. 6.5(d) for o = 0.045. It can
be seen in both Figs. 6.5(b) and (d) that quantisation also introduces a baseline of
the achievable baseband suppression values Sy,. These baseline levels do not show
any signs of decay with increasing sinusoidal amplitude A and are independent of
the value of o in both Figs. 6.5(b) and (d). As discussed in Sec. 6.2.2, for multiple
constituent interferometers, the baseband suppression Sy, directly corresponds to
the quadrature signal crosstalk suppression S... For all graphs in Fig. 6.5 it can
be concluded that, for every doubling in the number of quantisation levels, i.e. the
processing bitwidth b increasing by a value of 1, the baseline levels and therefore the
suppression values S, and Sy, are lowered by approximately 6 dB or a factor of 2.

It can be concluded from the lack of decay of the baseband suppression with A
that undesired contributions from all other complex exponential terms in Eq. (6.10)
will be present in the complex quadrature signal of the desired interferometer for
a digital signal processing system with limited processing bitwidth. This includes
stationary contributions from the complex exponential term RP,zE(t', Aq,0) for
a non-zero offset power P,g and crosstalk from other constituent interferometers
due to the remaining complex exponential terms in Eq.(6.10). While it was shown
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Figure 6.5.: Analogous to Fig. 6.2(b), the spectra of the windowed complex exponential term
W(t',o,0)E(t',36,0) are plotted in (a) for o = 0.0225 and in (c) for o = 0.045 for various values of
the processing bitwidth b and without any quantisation. The corresponding baseband suppression
graphs, analogous to Fig. 6.3, are then plotted in (b) for o = 0.0225 and in (d) for o = 0.045.
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for the CDM technique in App. D.3 that non-stationary crosstalk contributions,
especially from high-amplitude fast-moving phase signals, can often be neglected in
practice, stationary crosstalk contributions, such as those that originate for non-zero
P.g but also from other constituent interferometers with stable phase signals, can
offset the quadrature signal circle/ellipse in Fig. 3.6 and therefore cause one-cycle
non-linearities, as discussed in Sec. 3.1.4.

Apart from resulting in crosstalk between different complex exponential terms in the
complete demodulation process (see also Fig. 6.4), quantisation errors can also cause
imperfect sideband suppression Sy, between the two sidebands of the same complex
exponential term. As detailed in Sec. 3.1.4, this leads to two-cycle non-linearities.
In order to model non-linearities introduced by imperfect sideband suppression, the
offset power P,g was set to zero to exclude one-cycle non-linearities caused by the
complex exponential term RP,gE(t', Aq,0) in Eq. (6.10). This was then simulated
for a single interferometer at phase carrier amplitude A; and typical results are
illustrated in Fig. 6.6(a) for demodulation parameters Aq = A; = 36rad, o = 0.0225
and for a processing bitwidth of b = 6 bit. In this calculation, an ideal test signal
¢1(t") with phase values increasing linearly from 0 to 27 is introduced. Then the phase
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Figure 6.6.: An illustration of a typical result from the numerical linearity modelling is shown in
(a), where the demodulation for a single interferometer at Aq = A; = 36rad for o = 0.0225 in a
quantised system at processing bitwidth b = 6 bit is shown for an ideally linear test signal with
phase values ranging from 0 to 2. Here, (b) plots an enlarged version of the difference signal of
(a), with the two-cycle error amplitude also marked. For both o = 0.0225 and ¢ = 0.045, scatter
plots of the two-cycle error amplitude values obtained in this way are drawn as a function of b on a
double-logarithmic scale, where for a phase value ¢ in units of rad, the value in units of dB,,q is
given by 20 - log,,[¢]. Here, (c) shows the case for a single interferometer at Aq = A; = 36rad and
(d) for a single interferometer at Aq = A; = 180rad.
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signal resulting from demodulation under the described conditions is subtracted,
with the difference signal displaying the resulting cyclic errors. In Fig. 6.6(a), the
input and demodulated signals cannot be distinguished and the difference signal is
flat on the scale used, therefore the difference signal is enlarged in Fig. 6.6(b). Here,
the resulting two-cycle error amplitude is also marked, corresponding to a value of
2.0 mrad in this example.

Double-logarithmic scatter plots of the dependence of the two-cycle error amplitude
on the processing bitwidth b that were obtained in the way described above are
then shown in Fig. 6.6(c) for the previous example of A3 = A; = 36rad and in
Fig. 6.6(d) for the case of a large phase carrier amplitude at Aq = A; = 180rad.
Both Figs. 6.6(c) and (d) also compare the cases for o = 0.0225 and o = 0.045.
In general, because the effects arising from quantisation errors are very sensitive
on the exact number of quantisation levels, the values in Figs. 6.6(c) and (d) are
scattered widely. However, for not too large values of b, a clearly linear dependence
of the error amplitudes can be observed, with the phase error amplitude again
dropping by approximately a factor of 2 or 6 dB,,q4 for every increase in b of 1, i.e.
for every doubling of the available quantisation levels. However, apart from the
data for o = 0.0225 in Fig. 6.6(d), the initially linear decline in the error amplitude
asymptotically reaches a limiting value. For example, the scatter plot for o = 0.045
in Fig. 6.6(c) asymptotically reaches the value of —116 dB,,q or 1.5 urad for large
processing bitwidths b. This is numerically equal to the baseband suppression value
of Sy, = —116dB that can be extracted from Fig. 6.3 for the same demodulation
parameters Ay = 36rad and ¢ = 0.045. Similar equivalences can be found in the
remaining asymptotic cases, indicating that the calculated values for the baseband
suppression values Sy, are equal to the sideband suppression ratio Sy, although the
theoretical description incorporating this is still outstanding.

In summary, the modelling results presented here show that both the baseband
suppression values Sy}, measuring crosstalk from other complex exponential terms
in the demodulation process that can cause one-cycle non-linearities, and sideband
suppression values S, measuring imperfect sideband suppression that causes two-
cycle non-linearities, approximately halve for every 1 bit increase in signal processing
bitwidth. Therefore, for large signal processing bitwidths and sufficient separation
between the OPDs of the constituent interferometers, very low non-linearity errors
can theoretically be expected using this technique.

6.2.5. Correction of Non-ldeal Modulation Characteristics

So far, this theoretical treatment has neglected any intensity modulation that is
normally associated with laser injection current modulation, or any deviation from
a purely sinusoidal optical frequency modulation waveform. As shown by the later
experiments in Sec. 6.3, these effects may be present but their influence is limited
and can be corrected to improve performance. Therefore, in this section the previous
equations of Sec. 6.2.1 are extended to describe these corrections theoretically.

As a result of the non-ideal current-to-frequency modulation characteristic of laser
diodes (see also App. B.1), even ideal sinusoidal laser injection current modulation
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can result in non-linear optical frequency modulation. This non-ideal sinusoidal
optical frequency modulation waveform may contain harmonic terms of sinusoidal
modulation frequency n f,, at positive integer harmonic index n for n > 2, which may;,
in general, also show a phase shift §,, relative to the fundamental component. The
relative contribution of each harmonic term compared to the fundamental component
can be expressed by the fractional harmonic amplitude (,,. Because the derivation
detailed in App. E can readily be extended for multiple sinusoidal optical frequency
modulation terms, these non-linearities are proportionally represented in the phase
modulation function 0 (t) of Eq. (6.2), which can then be extended to:

O e () = Ak(l SIn2 fn(t — 0570)] + 3 Bo sin[2mnfn(t — 0.57,) — M) (6.12)

n=2

Also, the laser diode may show sinusoidal optical intensity modulation at frequency
fm, which, due to the very linear injection current-to-laser power relation (see also
App. B.1) typical for laser diodes can be assumed to be purely sinusoidal without
harmonics. However, it is well-known [250] that laser diodes undergoing rapid
injection current modulation exhibit a delay 71 between intensity modulation and
optical frequency modulation. In this work, in order to comply with the previous
notation, where the time origin is set relative to the optical frequency modulation
waveform, the intensity modulation delay is incorporated by employing a negative
delay —71. Using the relative amplitude £ of the sinusoidal intensity modulation, the
intensity modulation function I(¢') is given by:

I(t) = (1 + &sinf2rm fint’ + 7)) (6.13)

The physically measured photo detector signal U,q(t') of Eq. (6.5), incorporating
intensity and non-linear optical frequency modulation, can then be described by:

kmax
Unat) = I(t') (RPog + 3 (RPate - 08 [Bens(¥) + gok(t’)D> (6.14)
k=1

In this work, both intensity modulation and non-linear optical frequency modulation
can be corrected by modifying the demodulation carrier function C(t', Aq,7q) of
Eq. (6.7). Here, the additional sinusoidal terms in Eq. (6.12) are incorporated, where,
for demodulation similar to the previous derivation in Sec. 6.2.1, Aq is set equal to
A and 74 is set equal to 0.57;. To correct intensity modulation, I(¢') of Eq. (6.13) is
then inverted, yielding the corrected demodulation carrier function Ceopn (¢, Aq, 7q):

Coone (', A, 7a) = I(')~" - exp [j  Ag(1- sinf2mfu(t — o)+

~ (6.15)
nz=:2 B sin2mnfo(t' — 7q) + %])]

It is straightforward to see that for the correct intensity modulation parameters £ and
71, the multiplicative application of Ceop (', Aq, 7a) to Upa(t') completely corrects the
intensity modulation in the photo detector signal Upq(t') of Eq. (6.14). Furthermore,
the demodulation process of Sec. 6.2.1 and Sec. 6.2.2 remains principally as described
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when the non-linear optical frequency modulation parameters 3, and 9,, are included
in the corrected carrier function Ceo(t', Aq, 7q). In the remainder of this work,
when the corrected carrier function Ciop,(t', Aq, 7q) of Eq. (6.15) is used instead of
non-corrected carrier function C(t', Aq,7q) of Eq. (6.7), the resulting demodulated
signal and the resulting complex quadrature signal of Eq. (6.10) are denoted by
Udem,corr (', 0, Ag) and Uq core(t', 0, Aq), respectively.

6.3. Nested Mach-Zehnder Experiment

6.3.1. Implementation

Setup and Processing A suitable setup to test the proposed signal processing
technique is the nested MZ interferometric configuration shown in Fig. 6.7, which
is constructed using regular SMF28e+ fibre and standard directional couplers and
where test signals can be introduced using Piezo-electric transducers (PZT). Because,
unlike an FSI configuration, the MZ interferometer (see also Sec. 3.1.3) works in
transmission, the signal powers involved are generally very high, permitting the
investigation of the proposed SFM technique in favourable conditions. The nested
MZ configuration includes an inner interferometer, consisting of arms A and B,
subsequently referred to as interferometer 1 (I1), while the extra outer arm C gives
rise to two additional interferometers, referred to as interferometer 2 (12) for the
interference of arms B&C and interferometer 3 (I3) for the interference of arms A&C.
Test signals can be introduced by PZT A into arm A and PZT C into arm C. The
physical path lengths were designed to increase by at least 0.16 m, corresponding to
an OPD difference of 0.23 m per constituent interferometer, i.e. the spatial resolution
calculated in Sec. 6.2.3 for Spp accept = —200dB. When measured with a Luna OBR
4400 Reflectometer, the actual OPDs were found to be 0.21 m, 0.51 m and 0.73 m for
I1, 12 and I3, respectively. These OPD values also allow to prove that, in contrast
to prior work (see Sec. 4.4), the technique can be made to work for constituent
interferometers that do not form a simple integer OPD relationship with each other.
The nested MZ setup was also chosen because it highlights novel measurement

Laser 10%
A
i Injection N—
i Current S~ .
i Modulation PZT C Processing
— Amplifier|<c{ DAC || FPGA || ADC  |mtoomon LOW-PASS | (¢
Filter

~-
To Personal Computer
Figure 6.7.: Setup for the nested MZ experiment with arms A, B and C, where the three constituent
interferometers 11, 12 and I3 correspond to the interference between arms A&B, B&C and A&C,
respectively. PZTs are integrated in arms A and C to induce test signals. Both modulation and
signal processing are controlled by the FPGA, which controls the ADC and DAC, and performs
time-critical demodulation steps, with the data sent to a personal computer for final processing.

125



Chapter 6 SEM Technique for FSI Section 6.3.1

possibilities that range-resolved interferometry can offer, allowing the differential
signal induced by PZT A as well as the common-mode offset signal induced by PZT
C to be measured simultaneously with a single laser and photo detector. It is also
important to note that both the differential and the offset signal can be derived in
two ways, either measured directly from I1 or 12, respectively, or by subtracting the
signals of the other two interferometers, allowing a straightforward method to assess
the performance of the technique.

In the experimental setup shown in Fig. 6.7, the laser diode (Eblana Photonics
EP1550-NLW-B on Profile LDC200 driver; centre wavelength: 1552 nm, temperature
controlled to 25° C, output power: 6 mW at bias current I1p = 125 mA, see App. B for
full characterisation) was modulated by a sinusoidal injection current modulation of
amplitude Al;p = 45mA at a modulation frequency f,, = 98 kHz. The measurements
shown in App. B.3 then yield a value for the optical frequency modulation amplitude
Afopt of 8.4GHz. All modulation and signal processing functions are controlled
by a field programmable gate array (FPGA) (see also App. C) to ensure precisely
synchronized modulation and demodulation, which is essential for the working of the
technique. The FPGA (Altera Cyclone IV on Terasic DE2-115 board) is connected
to a data acquisition daughter board that runs at a sample frequency fs of 100 MHz
at £13 bits resolution for both ADC and digital-to-analogue converter (DAC). Here,
the sinusoidal laser diode injection current modulation is driven, using an additional
amplifier and low-pass filter with cut-off at 1.9 MHz, by the DAC. The ADC then
samples the resulting interferometric signals from the photo detector (New Focus
1592; Passband: 10kHz to 3.5 GHz), which have been low-pass anti-aliasing filtered
(BLP50+ from Mini-Circuits) with a cut-off frequency of 50 MHz.

The signal processing is also illustrated in Fig. 6.8 for three range channels, although

Digital LP| ||| Phase  |Signal
/ g Filter fq.co Unwrapping| 3
Photo |, | Analogue Digital LP| || Phase |Signal
Detector|”| Filter || APC " Filter fa.co -»Unwrapping w2 [
Digital LP___> Phase  |[Signal|
Filter fa.co Unwrapping| #1
Lookup- Lookup- Lookup-
Table Table Table

w- Ccorr w- Ccorr w- Ccorr
(Aa = A1)| [(Aq = A2)| |(Aa = 45) Digital Processing
Analogue Processing Digital Processing in FPGA in PC

Figure 6.8.: Illustration of the signal processing, where real signals are drawn in blue and complex
signals are drawn in magenta. After analogue anti-aliasing filtering and digitisation by the ADC,
the photo detector signal enters the FPGA. Here, the demodulation of signals is illustrated for
three range channels, where the demodulation solely involves the multiplication with a complex
lookup-table. These tables incorporate the window function W (t', o, 0), the corrected Ceor (¢, Ag,0)
or non-corrected C (¢, Aq, 0) carriers with the demodulation carrier amplitude Aq set to the expected
value Ay of the kth interferometer and where any signal processing delay 7o, is taken into account
in the calculation of the lookup-table values. After digital low-pass filtering at quadrature cut-off
frequency fq,co, the resulting quadrature signals Uq(t', 0, Aq) of Eq. (6.10) are transmitted from
the FPGA to a PC, where phase unwrapping is performed, yielding the desired phase signals ¢ (¢').
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in the implementation used for this work eight range channels can be demodulated
simultaneously by the FPGA. For each range channel, the demodulation solely
involves multiplication with a lookup-table of a length equal to one modulation
period Ty, and containing the complex product of the window function W (¢, g, 0)
of Eq. (6.6) and the non-corrected carrier function of C(#', A4q,0) of Eq. (6.7) or
the corrected carrier Ceon(t', Ag,0) of Eq. (6.15). Here, the demodulation carrier
amplitude Aq is set to the approximate value of A, expected for the desired kth
interferometer. Also, for the calculation of these lookup-tables, the signal processing
delay 7o, with its value determined as described in the next section, is taken into
account to allow compensation of 7y,. After the multiplication with the complex
lookup-table the resultant demodulated signal for each channel is low-pass filtered
with a cut-off frequency of fq ., = 43kHz, slightly below the maximally possible
value of fqcomax = 0.5fm = 48kHz to allow the practical implementation of the
low-pass filter in the FPGA. This then results in the complex quadrature signal
Uq(t',0,Aq) of Eq. (6.10). Following this, the complex quadrature data is then sent
to a personal computer (PC). The PC initially calculates the look-up tables for the
FPGA and then performs phase unwrapping for the complex quadrature data of
each range channel, yielding the desired phase signals ¢ (t'). The phase unwrapping
could, however, also be performed in the FPGA in later implementations.

Signal and Modulation Properties Fig. 6.9(a) shows a typical photo detector
signal, Upq(t), over one modulation period, T, = f;' = 10.24 us, arising from the
three constituent interferometers present in the setup of Fig. 6.7. When the symmetry
centre of Upq(t) in Fig. 6.9(a) is compared to Fig. 6.1(c), a signal processing delay 7,
of approximately a quarter of 7}, can be observed. The Fourier transform of U,q(?)
is shown in Fig. 6.9(b). The largest phase carrier amplitude that is present in the
configuration of Fig. 6.7 is Az for interferometer 3 (I3). The value of A3 is found to
be A3 = 146.5rad using the method that will be discussed in the next section. It can
be seen in Fig. 6.9(b) that the spectral width of the photo detector signal is 15 MHz,
approximately numerically equal to the product of the modulation frequency f,, and
the phase carrier amplitude As of the constituent interferometer with the largest
OPD. In this technique, this product thus determines the bandwidth requirements
for the ADC and for the remaining processing hardware.

Analogous to Fig. 6.4(f), the complete demodulation process in the frequency
domain is illustrated in Fig. 6.9(b). This is done at a demodulation phase carrier
amplitude of Aq = A3 = 146.5 rad and using the previous simplification of 74 = 0.
To enable demodulation, the signal processing delay has been compensated using the
exact value of 7y, = 2.775 us as determined later. Similar to Fig. 6.4(f), the effect of
the separation of the spectra of the complex exponential terms into distinct peak
regions can be observed in Fig. 6.9(b) when the window function W (¢',0.0225,0)
of Eq. (6.6) with o = 0.0225 is applied. Seven complex exponential peak pairs are
expected for the case of three constituent interferometers and can be clearly identified
in Fig. 6.9(b), where the baseband peak at frequency 0 corresponds to the desired
complex exponential term and the expected comb spectrum is clearly visible.

In Fig. 6.9(a), a strong intensity modulation envelope of the photo detector signal
Upa(t) is visible. As discussed in Sec. 6.2.5, this intensity modulation, described by
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Figure 6.9.: (a) directly plots an instance of the photo detector signal Upq(t) from the ADC over
one modulation period, along with the window function W (¢,0.0225,0). Here, the signal processing
delay 7y, has not yet been compensated. (b) plots the Fourier transform of Upq(t), and, similar
to Fig. 6.4(f), (b) then shows the Fourier spectrum after demodulation at A4 = 146.5 rad with
(o = 0.0225) and without (¢ — co0) application of the window function, where 75, has now been
compensated to enable demodulation. Analogously, (c) and (d) plot the corresponding corrected
signals, where in (c) the intensity modulation I(t), and, in (d), both intensity modulation and
non-linear optical frequency modulation have been corrected according to Sec. 6.2.5.

the function I(#') in Eq. (6.13), can be corrected with knowledge of the parameters
71 and £. Here, App. B.3 describes a simple method used in this work to measure
these parameters, where, for the previously described injection current modulation
parameters, values of 1 = 5.92us and £ = 0.45 were found. The value of 7
corresponds to an equivalent phase shift of 208° relative to the sinusoidal injection
current modulation waveform, which is comparable to the literature [250], where a
phase shift of 225° at 100 kHz was found for a typical DFB laser diode. Using these
correction parameters to invert the intensity modulation, the corrected photo detector
signal I(t)~'U,q(t), plotted in Fig. 6.9(c), can be obtained. Here, it can be seen
that the correction works well and ensures a constant envelope of the interferometric
signals. However, it can also be seen in Fig. 6.9(c) that the correction introduces
an artefact that resembles a distorted sinusoid of fundamental frequency f,,. This
is because in this implementation, the photo detector signals are AC-coupled and
there is no transmission of the DC signal levels that are assumed to be there in the
correction procedure. In this experiment this is of no particular concern because the
frequencies of the distorted sinusoid are well away from the frequencies evaluated
by the windowed carrier function. Furthermore, in order to complete the correction
procedure, the non-linear optical frequency modulation parameters 3, and ¢, of
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Eq. (6.12) have to be determined. The experiment used to measure these parameters
is described in App. B.3. Here, fractional amplitudes of 5, = 4.1% for the first
harmonic and 3 = 0.3% for the second harmonic were found and it was also verified
that all higher harmonics are negligible. Corresponding phase shifts of d; = 12° and
03 = 121° have also been extracted. In this work, due to the small value of 83 and
negligible higher harmonics, the correction procedure was only implemented for the
first harmonic term using parameters [, and 0s.

As described in Sec. 6.2.5, all described corrections can be included in the corrected
carrier function Ceopn(t', Aq, 7q) of Eq. (6.15) and are easily incorporated into the
FPGA demodulation look-up tables. Fig. 6.9(d) then shows the spectrum of the
demodulated signals with corrections applied. It can be seen that, compared to the
case without corrections in Fig. 6.9(b), the comb of the baseband signal is larger and
more symmetric. In general, one of the aims of this work is to show the robustness
of the proposed technique and prove that high-quality measurements can be made
even without performing any corrections. Therefore, throughout the remainder of
this section, there will be a comparison between corrected and uncorrected results.

Determination of Demodulation Parameters For the practical operation of the
proposed technique, the correct demodulation parameters, i.e. the signal processing
delay, 74, as well as the approximate phase carrier amplitudes, Ay, for each constitu-
ent interferometer of index k£ have to be identified without any prior knowledge. Both
Top and the values for Ay can be found by plotting a map of baseband signal amp-
litude of the low-pass filtered complex quadrature signal |Uq(t — 7sp, 0, Aq, 7a = 0)|
of Eq. (6.8) as a function of the demodulation phase carrier amplitude A4 and the
signal processing delay 74,. Here, the compensated time variable ¢’ has been replaced
with ¢ — 7, according to Eq. (6.4) and the demodulation delay 74 is set to zero.
These calculations were performed on a PC, where it is stressed that the maps shown
in Fig. 6.10, despite their smooth appearance, were calculated from the raw photo
detector signal, using the same dataset over a single modulation period T, = 10.24 us
already plotted in Fig. 6.9(a).

These maps are shown in Figs. 6.10(a), (c) and (e) on the left without any of
the corrections of Sec. 6.2.5, while in Figs. 6.10(b), (d) and (f) on the right these
corrections were used. Also three values of the window width parameter o are
compared in Fig. 6.10, where the upper plots in Figs. 6.10(a) and (b) are calculated
for o = 0.0225, the value use in the discussion so far, the middle plots in Figs. 6.10(c)
and (d) for o = 0.045 and the lower plots in Figs. 6.10(e) and (f) for o = 0.0675. In
the resulting maps in Fig. 6.10, patterns consisting of sets of nodes spread horizontally
for each of the three constituent interferometers can be seen. The horizontal distance
between these nodes decreases proportionally with the phase carrier amplitude Ay of
the kth constituent interferometer. The horizontal patterning seen in the maps can
only be explained using the unapproximated equation for the complex quadrature
signal that is given by Eq. (6.8), where the delays 74 and 74 are taken into account.
However, in all maps a set of nodes that overlap vertically can be found and a line,
shown in white on the maps, can be drawn connecting the centres of these nodes. This
line marks the correct signal processing delay, 7y,, and the assumptions of negligible
time-of-flight delays of the constituent interferometers 7, ~ 0, used to obtain the
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Figure 6.10.: Determination of the demodulation parameters using demodulation phase carrier
amplitude A4 versus signal processing delay 7y, maps. Here, the cases without the corrections of
Sec. 6.2.5 are shown on the left in (a), (¢) and (e), while the cases with these corrections applied are
shown on the right in (b), (d) and (f). The window width parameter o increases from 0.0225 in (a)
and (b), to 0 = 0.045 in (c) and (d) and o = 0.0675 in (e) and (f). These maps plot the baseband
signal amplitude of the complex quadrature signal normalised to the overall maximum value as a
function of Aq and 7y, with a common colour-bar shown on the right. The white, vertical lines
mark the chosen evaluation locations and the signals along this line are also plotted on the panel
next to each map on a logarithmic scale.
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approximated version of the complex quadrature signal given by Eq. (6.10), are valid
here. In this work, all signal processing was carried out on this line by digitally
compensating 7, in the demodulation look-up tables on the FPGA, where a value of
Tsp = 2775ns can be extracted from all maps in Fig. 6.10. Furthermore, the panels
on the right of each map in Fig. 6.10 plot the baseband signal amplitude along the
white evaluation line on a logarithmic scale. These plots allow the phase carrier
amplitudes Ay of the constituent interferometers to be found, where extracted values
of Ay = 43.5 rad, A; = 103.0 rad and A3 = 146.5 rad were subsequently used to
demodulate the signals of 11, I2 and I3, respectively. In all plots in Fig. 6.10, the
peaks near Aq = 0 are due to the DC-offset and/or the discussed artefacts due to
the correction procedure in the photo detector signals shown in Figs. 6.9(a) and (c).

In Fig. 6.10, when comparing the maps on the right, where the corrections of
Sec. 6.2.5 have been applied, to the maps on the left without corrections, it can be
seen that the corrections make the map patterns appear much more regular. These
maps can therefore also serve as a visual diagnostic tool to verify the parameters of
the correction procedure, especially for higher values of o, were, for ¢ = 0.0675, the
corrected and uncorrected map pattern can be seen in Figs. 6.10(e) and (f) to differ
strongly. Also, when comparing the maps on the top where o = 0.0225 to the maps
at the bottom where o = 0.0675, it can be seen that the A4 resolution, and therefore
the range resolution, increases and that very regular, symmetric peaks shapes can be
obtained, which are particularly narrow in the right panel in Fig. 6.10(f). When a
suitable range calibration is performed, this information can also be used to plot the
return signal amplitude of the constituent interferometers as a function of range.

6.3.2. Results for Nested Mach-Zehnder Experiment

Quadrature Signals: Using the operating conditions and demodulation parameters
described in Sec. 6.3.1, for a window width parameter ¢ = 0.0225, measurements
employing the nested MZ interferometer shown in Fig. 6.7 have been performed.
Here, a sinusoidal test signal of frequency 10 Hz at peak-to-peak phase amplitude
7.2 rad was induced by PZT A, and a test signal of frequency 180Hz at peak-
to-peak phase amplitude 6.8 rad was induced by PZT C and both signals were
generated asynchronously by separate function generators. For these excitations,
a typical time trace of the corrected low-pass filtered, complex quadrature signal
Uq,core(t',0.0225, A;) for interferometer 11 is pictured in Fig. 6.11(a). Figure 6.11(b)
then shows the polar plots for I1, 12 and I3, tracing the complex phasor tip coordinates
of the corrected complex quadrature signal for every data point over a period of
5s without any averaging. On visual inspection, the polar plots are found to be
both concentric and highly circular, where both concentricity and circular shape
are requirements for linear measurements in the absence of cyclic errors (see also
Sec. 3.1.4). Compared to the polar plots for the CDM technique in Fig. 5.24(a), the
polar plots in this technique exhibit considerably less amplitude noise, presumably
because the OPDs involved in the experimental setup of Fig. 6.7 are two orders of
magnitude lower. In this context, a detailed noise analysis of the proposed SFM
technique will be carried out in Sec. 6.4 using a single MZ experimental setup.
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Figure 6.11.: The corrected low-pass filtered complex quadrature signal Uq corr(t’,0.0225, A;) is
shown in (a) as a time series over 0.2s for I1, while (b) shows the polar plots of all three constituent
interferometers I1, I2 and I3 in the complex plane without any averaging. Analogous to Fig. 5.24,
(¢) plots the normalized quadrature amplitudes, averaged into 30 angular sectors, for I1, 12 and 13
as a function of phasor angle of the complex quadrature signal using crosses, while the fit of this
data with the ellipse model of Eq. (3.8) is drawn using continuous lines of the same colour. Finally,
in (d) the angular errors calculated using this model are shown.

Linearity: Analogous to Fig. 5.15 and Fig. 5.24, the cyclic error model of Eq. (3.8)
is applied to the complex quadrature amplitude data, averaged into 30 angular
sections. This is shown in Fig. 6.11(c) for the case where the corrections of Sec. 6.2.5
have been applied. Here, the crosses mark the averaged amplitude data and the
continuous lines of the same colour represent the fit according to Eq. (3.8). A
very good agreement between the fit and the measured data can be observed for
all three constituent interferometers. When compared to the CDM technique, the
maximum amplitude variations are reduced by more than an order of magnitude,
from =~ 2% in Fig. 5.24(b) down to 0.12% in Fig. 6.11(c). The angular errors resulting
from these fits are then shown in Fig. 6.11(d), with extracted error values equal
to [+0.8 mrad,+1.0 mrad,+0.3 mrad] for [I1,12,13]. The corresponding angular error
values for non-corrected data are [£1.0 mrad,£1.3 mrad,+1.4 mrad] for [I1,12,13] and
thus slightly higher. It can furthermore be seen in Fig. 6.11(d) that one-cycle non-
linearities are stronger than two-cycle non-linearities, with a numerically determined
amplitude ratio of ~ 3 between them for all three interferometers. The signal
envelope of the corrected photo detector signal can be seen in Fig. 6.9(c) to be
approximately £1200 ADC quantisation levels wide. Therefore, using the amplitude
ratios evident in Fig. 6.9(b), this results in an approximate processing bitwidth b
(see also Sec. 6.2.4) of b = 9bit for I1 and 13, and b = 8 bit for 12. For two-cycle non-
linearities, Figs. 6.6(c) and (d) estimate two-cycle error amplitudes between 0.1 mrad
and 2mrad for these bitwidths, with a wide scattering of error amplitude values
expected. A similar magnitude of one-cycle non-linearities due to crosstalk from other
complex exponential terms can also be expected as discussed in Sec. 6.2.4. However,
in general, crosstalk levels are more difficult to quantify as they are dependent on
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the effective powers and temporal variation of the phase signals ¢ (t') of the other
interferometers (see also App. D.3) and on any remaining offset value in the ADC
signal causing a non-zero offset power term P,g. Nevertheless, the observed angular
errors of £1 mrad or —60dB,.q in Fig. 6.11 are on the same order of magnitude and
thus entirely consistent with the quantisation error modelling in Sec. 6.2.4.

Phase Signals: Fig. 6.12 then shows the time traces of the unwrapped phase
signals from the experiment and for the test signals described previously. The
data in Fig. 6.12 is shown without any corrections of Sec. 6.2.5 applied. This is to
demonstrate that high-quality measurements can be achieved even in the simple
case without corrections, while the corresponding plots with corrections applied
appear virtually indistinguishable. Fig. 6.12(a) plots the signals from the three
constituent interferometers over 0.2s, while the inset shows the same signals over an
extended time period of 5s. As discussed previously, the nested MZ interferometer
configuration of Fig. 6.7 permits the common-mode offset phase signal, induced by
PZT C, to be recovered in two ways: directly from I2 or indirectly by subtracting
the signals from I3 and I1. Both these signals are compared in Fig. 6.12(b), again
with an inset over 5s, along with their difference signal, referred to as residual signal
in the following. Analogously, the differential phase signal, induced by PZT A, can
be recovered directly from I1 or indirectly by subtracting the signals from 13 and 12,
which is shown in Fig. 6.12(c) along with their residual signal.

It is found that both residual phase signals ¢, (¢') of Figs. 6.12(b) and 6.12(c) are
mathematically equal and given by the same equation:

@e(t') = @3(t') — pa(t’) — pu(t) (6.16)

Fig. 6.12(d) then plots the residual signal ¢, (') in detail, along with a low-pass
filtered version of ¢,(t') at a cut-off frequency of 600 Hz. The inset in Fig. 6.12(d)
shows that the filtered residual signal stays remarkably constant, even in the presence
of large overall phase changes visible in the other insets in Fig. 6.12. This highlights
the high quality of the measurements that can be achieved with the presented
technique. Nevertheless, the residual signal should theoretically be zero-valued, even
in the presence of laser wavelength drift or laser frequency noise, because the OPDs
corresponding to the direct and indirect signals mathematically cancel. However,
in Fig. 6.12(d) it can be seen to have a mean value of 3.03 rad, where it was also
observed that long-term changes of the residual signal phase can occur. It is thought
that this is a manifestation of the, in general, unrelated polarization states of the
light within the fibre arms, leading to OPD values of the constituent interferometers
that are minutely different from those expected when polarization dependence is
neglected. This could explain the observed non-zero phase values in the residual
signal as well as any associated slow drifts.

Finally, Figs. 6.13(a) and (b) show the Fourier spectra of the directly and indirectly
obtained offset phase signals, induced by PZT A, along with the residual signal, while
Figs. 6.13(c) and (d) show the Fourier spectra of the directly and indirectly obtained
difference phase signals, induced by PZT C, again together with the residual signal.
Here, Figs. 6.13(a) and (c) on the left show the case without any corrections of
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Figure 6.12.: Time traces of the phase signals over 0.2s in the main plots and over 5s in the
insets are shown without any corrections of Sec. 6.2.5. (a) directly plots the phase signals ¢ (¢'),
p2(t') and @3(t') from the three constituent interferometers I1, 12 and I3, exhibiting excitations at
10Hz from PZT A (in I1 and I3) and at 180 Hz from PZT C (in I2 and I3). (b) plots the offset
phase signals (induced by PZT C) obtained directly ¢2(t') or indirectly ¢3(t') — ¢1(t') along with
their difference, the residual signal ¢, (t'). (c) shows the differential signal (induced by PZT A)
obtained directly o1 (t') or indirectly ¢3(t') — w2(t'), again with the residual signal ¢, (t') as their
difference. (d) plots only the residual signal ¢, (t") = p3(t') — @2(t') — v1(t’), given by Eq. (6.16)
and mathematically identical for both (b) and (c). Here a low-pass filtered version of ¢, (¢') with a
cut-off at 600 Hz is also plotted and the inset over 5s only shows the filtered signal.
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Figure 6.13.: The Fourier spectra (computed over 5 s) of the direct and indirect versions of
the offset signal from PZT C as well as the residual signal ¢,(¢') are shown in (a) without any
corrections and in (b) with corrections according to Sec. 6.2.5. Analogously, (¢) and (d) plot the
spectra of the direct and indirect versions of the differential signal from PZT A along with ¢, (t').
All plots are shown on a double logarithmic scale up to the quadrature bandwidth of 43 kHz used.
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Sec. 6.2.5 applied, while Figs. 6.13(b) and (d) on the right show the case incorporating
these corrections. In all plots, the respective directly obtained and indirectly obtained
signal spectra appear virtually indistinguishable. Furthermore, there is no discernible
difference between the non-corrected spectra on the left and the respective corrected
spectra on the right, except for small differences in the residual signal spectra. In all
spectra in Fig. 6.13, the residual signal is free from most noise frequency components
that are present in the differential or offset signals, exhibiting a mostly flat noise
floor of & —80dB,.q = 0.1 mrad. For the recording time of the Fourier spectra of
5s, this corresponds to a noise level of ~ 0.2 mrad - Hz~%°. In all cases the spectra
of the residual signal contains harmonics of the original phase signals at 10 Hz and
180 Hz, which are thought to be caused by cyclic errors and that can reach levels up
to &~ —66 dB,,q = 0.5 mrad, the same order of magnitude as the cyclic error levels
determined previously in Fig. 6.11(d).

Crosstalk Fig. 6.14 plots the Fourier transformed spectra of the complex quadrature
signals in Fig. 6.14(a) and phase signals in Fig. 6.14(b) for interferometers I1 and
[2, subject to the previously discussed sinusoidal test phase signals of 10 Hz and
180 Hz, respectively, on a double logarithmic scale. These plots are shown here
without any of the corrections of Sec. 6.2.5 applied, with comparable plots resulting
for the case where these corrections have been applied. According to Eq. (3.9), the
quadrature signals subject to the sinusoidal test signals from PZT A and PZT C
carry a series of Bessel terms at harmonics of the test signal frequencies. To improve
clarity, the signals for interferometer 13, which contains contributions at both test
signal frequencies and thus cannot be used to evaluate crosstalk, are not shown in
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Figure 6.14.: Comparison of the Fourier transformed spectra (computed over 5s) of the complex
quadrature signal of interferometer I1 and 12 in (a) and the resulting phase signals in (b). None of
the corrections detailed in Sec. 6.2.5 were used and the spectra are drawn on a double logarithmic
scale. In each plot the inset enlarges the peak at 180 Hz on a non-logarithmic frequency scale.
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Fig. 6.14. It can be seen in Fig. 6.14(a) that the peaks at 20 Hz, 30 Hz and 40 Hz
of the quadrature signal of interferometer I1 are also present in the quadrature
signal of interferometer 12 with a reduction of the peak heights of approximately
—60dB. It can furthermore be seen in the Fourier spectrum of the phase signals in
Fig. 6.14(b) and in the inset there that no phase signal crosstalk at the fundamental
frequencies 10 Hz and 180 Hz rises above the noise floor, yielding a phase signal
crosstalk suppression of at least —70dB. Nevertheless, it can be seen in Fig. 6.14(b)
that harmonic peaks of the 10 Hz test signal appear in the phase signals at frequencies
of 20 Hz, 30 Hz and 40 Hz at approximately equal peak heights for both I1 and 12.

Using the data available, the origin of the harmonic peaks at 20 Hz, 30 Hz and
40 Hz in the phase signal Fig. 6.14(b) cannot be deduced. These could result from
quadrature signal crosstalk or could genuinely be present due to physical crosstalk.
Thus, it is not clear whether the harmonic peaks in the quadrature signal for 12,
visible in Fig. 6.14(a), are solely caused by direct quadrature crosstalk or are also the
result of a genuine phase signal change. Nevertheless, the available data is sufficient
to conclude that the quadrature signal crosstalk suppression S, does not exceed
—60dB. This limit value for the upper quadrature crosstalk suppression S, is entirely
consistent with the predictions for the baseband suppression Sy, = S & —55dB to
Sty = Ser & —85dB due to the presence of quantisation errors that result from the
discussion in Sec. 6.2.4 for the processing bitwidths b between 8 and 9 bit that were
determined earlier. In general, the values for S., achieved here are at least an order
of magnitude better than the quadrature signal crosstalk suppression determined for
the CDM technique in Fig. 5.22. For phase signal crosstalk, as detailed in App. D.3,
the magnitude of crosstalk is also dependent on the effective power levels of the
individual interferometers involved and, importantly, the resulting crosstalk levels
in the phase signals are highly dependent on the temporal variations of the phase
signals involved. Particularly due to the latter point it comes as no surprise that
no direct crosstalk in the phase signals can be observed to rise above the respective
noise floor in Fig. 6.14(b) for the 10 Hz peak and for the 180 Hz peak in the inset,
confirming that direct phase signal crosstalk stays < —70dB.

Residual Measurements Often in prior work on the assessment of cyclic errors in
precision interferometry, such as McRae et al. [142], a very linear movement is induced
experimentally and cyclic errors are determined by subtraction of the measured phase
signal from the assumed linear phase change. Furthermore, the amplitude of the
complex quadrature signal can be employed to detect cyclic errors [251], as was
also used in this work in Fig. 6.11, where the complex quadrature signal amplitude
was averaged into angular sectors. However, the former approach is based on
the assumption of linear movement, while the latter approach assumes that the
quadrature amplitudes remain constant, apart from the variations induced by the
cyclic errors themselves, requiring constant effective powers. In the nested MZ setup,
as discussed in the previous section, the possibility of measuring signals in two ways
and subtracting them to obtain the residual signal permits a further method of
assessing the linearity of the measurements that does not rely on any assumptions of
linear movement or constant amplitudes. This measurement can thus serve as an
independent verification of the cyclic errors determined in Fig. 6.11(d) and will also
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be used here to investigate the effect of changing the window width parameter ¢ and
the influence of the corrections described in Sec. 6.2.5.

In this approach, the residual phase signal ¢.(t') of Eq. (6.16), with its mean
removed, is averaged over time and plotted on a two dimensional map as a function
of the phases of PZT A (taken from I1) and PZT C (taken from 12). As can be seen
in the setup in Fig. 6.7, the signal from PZT C provides the offset phase to the inner,
differential interferometer excited by PZT A and thus all possible phase combinations
that can occur in the nested MZ interferometer are covered if both PZT A and C
have peak-to-peak phase excitations > 27 and are not synchronous to each other.
The maximum absolute residual values occurring in these maps yields an upper
limit on the cyclic errors occurring in the combined system of the three constituent
interferometers. This value corresponds to the sum of the maximum cyclic error
amplitudes over all three constituent interferometers. This method assumes that
the previously discussed slow polarization drifts can be neglected, which is deemed
acceptable as the measurements are taken in quick succession.

The results of these measurements are shown in Fig. 6.15, where the residual
measurements described above, recorded over 25s, are binned and averaged into
20x20 phase sectors. Figs. 6.15(a) and (b) show these maps for ¢ = 0.0075 and
o = 0.0225, respectively, in each case both with and without using the corrections of
Sec. 6.2.5. The residuals in Fig. 6.15(a) for 0 = 0.0075 are shown as an example of
the occurrence of strong cyclic errors, with maximum residual absolute values up
to 0.38 rad. In contrast, Fig. 6.15(b) shows the maps corresponding to the optimal
choice of o of approximately 0.0225. Here the maximum residual absolute values
are 3.1 mrad and 4.4 mrad for the cases with and without corrections, respectively,
and the maps exhibit complex patterns that cannot be straightforwardly interpreted
but are repeatable. Finally, Fig. 6.15(c) compares the maximum residual absolute
values obtained in this way over a wide range of the window width parameter o. It
can be seen that the best choice of o for the present interferometric configuration
is approximately o = 0.0225 for both corrected and non-corrected data. Both data
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Figure 6.15.: Residual maps for the cases of (a) o = 0.0075 and (b) o = 0.0225, note the different
colourbar scaling, are shown both with and without corrections according to Sec. 6.2.5. (c¢) plots
the maximum residual absolute values of these maps over a wide range of the width parameter o.
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sets show a strong increase in non-linear behaviour for ¢ < 0.015, which can be
explained by the strong widening of the baseband suppression peaks in Fig. 6.3
for very small o. For the case with corrections, a remarkably flat behaviour of the
maximum residual absolute values exists up to ¢ = 0.06, confirming the quality of
the applied corrections. Above ¢ = 0.06 the cyclic error amplitudes rise in both
cases due to the increase in baseline power also evident in Fig. 6.3. Nevertheless, for
a value of 0 = 0.0225 it can be seen that even in the case without any corrections,
very linear measurements with a sum of all cyclic error amplitudes of +4.4 mrad,
dropping to £3.1 mrad with corrections applied, can be performed. For the case
with corrections, the sum of the maximum cyclic error amplitudes of the three
constituent interferometers can be determined to be £2.4mrad from Fig. 6.11(d).
This is less than the value of £3.1 mrad extracted from Fig. 6.15 from the residual
maps. This discrepancy could be due to insufficient noise averaging, increasing the
apparent maximum residual values in the residual maps, or due to an inadvertent
change or drift in the experimental conditions, as this experiment was performed on
a separate occasion. However, these values are still on the same order of magnitude
and therefore these residual measurements independently confirm the high linearity
values that can be obtained with the presented SFM technique as well as the wide
range of the width parameter ¢ for which the technique can be made to work.

Detuning Tolerance In the final experiment for the nested MZ configuration, the
robustness of the obtainable linearity behaviour is tested against detuning of the
demodulation parameters. Here, the demodulation phase carrier amplitude, Ay,
and the signal processing delay, 7,, were detuned from their optimal positions, for
all three constituent interferometers simultaneously, and the resulting maximum
residual absolute values were determined using the same method employed to obtain
Fig. 6.15. For each interferometer, Ay was altered by values of [—2,0, 2] rad and
Tsp Was altered by values of [—10,0, 10]ns, resulting in nine detuning parameter
combinations [a,...,i] at locations that are illustrated in the inset of Fig. 6.16(a).
The window width parameter o = 0.0225 was kept constant throughout. As this
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Figure 6.16.: The locations of the 9 parameter combinations [a,...,i] are shown on the demodulation
parameter map in (a), drawn analogous to Fig. 6.10(a). The resultant maximum residual absolute
values are compared in (b), where uncorrected and corrected results according to Sec. 6.2.5 are
represented by the blue and green bars, respectively, with values in units of mrad also given.
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experiment was performed on a separate occasion from the previous determination of
the demodulation parameter map, the signal processing delay 7, had changed by 2ns
compared to Fig. 6.10(a). This is a typical example of instrumental drift observed in
Tsp and is significantly smaller than the chosen maximum variation of 7y, of £10ns
used for this experiment. Also no significant drifts of the phase carrier amplitudes
Ay, were ever observed in practice, therefore this experiment can be considered a
worst-case scenario. The resulting maximum residual absolute values are illustrated
in Fig. 6.16(b) for the nine detuning parameter combinations used. It is evident that
the signals where the corrections of Sec. 6.2.5 have been applied are generally more
robust against detuning of the signal processing parameters than those measurements
without corrections. Nevertheless, while there is a considerable increase in the
magnitude of cyclic errors, up to 24 mrad in parameter combination g, there is never
a complete breakdown of linearity and the scheme can thus be considered reasonably
robust against detuning, especially when the corrections discussed are applied.

6.4. Single Interferometer Noise Investigation

Analogous to the single reflector noise measurements performed in Sec. 5.5.1 for
the CDM technique, the quadrature noise and phase noise behaviour of the SFM
technique presented in this chapter is investigated for the case where only a single
interferometric signal source is present. Again, this is done for a variation of effective
power at constant OPD and for a variation of OPD at constant effective power. The
setup used for this investigation is the single MZ interferometer illustrated in Fig. 6.17.
Here, various fibre sections of physical length 38 cm and 89 cm can be inserted between
the two FC/PC connectors to alter the OPD of the interferometer. Also, the effective
power of the measurement can be attenuated, while keeping the LO power stable, by
using the in-fibre attenuator within one arm of the interferometer. In this section,
only data corrected according to Sec. 6.2.5 is used and all noise standard deviation
values were computed for noise frequencies between 1kHz and the quadrature cut-off
frequency fqco = 43kHz, removing the influence of low-frequency 1/f noise. In
all other aspects, the experimental parameters and processing implementation are
similar to the previous nested MZ setup experiment of Sec. 6.3, except for the use
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Figure 6.17.: The experimental setup for the noise investigation using a single MZ interferometer,
allowing changes to the OPD by inserting fibre sections between the two FC/PC connectors and
permitting attenuation of the effective power using an in-fibre attenuator within the interferometer
path, where the signal processing is similar to the previous nested MZ experiment of Fig. 6.7.
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of the window width parameter ¢ = 0.025 instead of o = 0.0225. This was done
for reasons of conceptual simplicity, because it was shown in Fig. 6.15(c) that for
corrected data this leads to no significant change in linearity performance.

Effective Power Dependence In Chap. 5, the measurement of the power depend-
ence of the noise shown in Fig. 5.19 relied on external power measurements using a
power meter. This is only approximate as the simple measurement of the return and
LO power neglects any variations in visibility, whilst direct visibility measurements
of the interferometric signals are difficult to obtain for low power signals. Instead,
in this chapter, the effective power, which is directly obtainable from the signal
processing output but in an a priori unknown unit, is calibrated to obtain physical
power units. This calibration requires a dedicated setup, with the method and results
detailed in App. F. This was then used in the following to determine the effective
power P, of the single MZ interferometer illustrated in Fig. 6.17 for a constant
OPD 7n; = 0.92m under various levels of power attenuation.

The results of this procedure are shown in Fig. 6.18(a), where the dependence
of the normalised amplitude noise standard deviation oampnorm and the apparent
phase noise standard deviation ophase are plotted as a function of the effective power
Peg1 on a double logarithmic scale. Fig. 6.18(a) also plots the direct phase noise
standard deviation oppase direct, representing phase noise caused by laser frequency
noise which was corrected for excess phase noise caused by quadrature noise as
described in App. D.1. On the secondary x-axis of Fig. 6.18(a), the processing
bitwidth b, corresponding to 42 quantisation levels, is also shown. Because the
processing bitwidth for small effective power levels is difficult to determine, the direct
proportionality between b and effective power, confirmed for large values of Pug is
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Figure 6.18.: For the single interferometer setup of Fig. 6.17, the measurement of the noise
dependence on effective power at a constant OPD of ; = 0.92m is shown in (a), while (b) shows
the noise dependence on the OPD at a constant effective power of Peg1 = 40 ¢W. In both (a)
and (b), the normalised amplitude noise standard deviation oamp norm is drawn on the primary
y-axis and the apparent phase noise standard deviation opnase as well as the direct phase noise
standard deviation ophase,direct; corrected for the excess phase noise according to App. D.1, are
plotted on the secondary y-axis. In (a), all axis are on a logarithmic scale and the secondary x-axis
additionally shows the estimated processing bitwidth b. In (b), fits of Camp norm and Gphase,direct
according to Eq. (5.22) are drawn using continuous lines of the respective colour. In both plots, the
noise standard deviation values were computed for frequencies between 1kHz and 43 kHz.
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extrapolated for small values of P, ; to obtain this axis scaling. This extrapolation,
however, does introduce some uncertainties and the processing bitwidth at small
values of b can only be considered an approximation.

It can be seen in Fig. 6.18(a) that for large effective powers, a phase noise dominated
region exists, because both the apparent phase noise opnase and the direct phase
NOISe Ophase direct Standard deviation levels are flat and show no dependence on the
effective power there. In Fig. 6.18(a), the amplitude noise oamp norm initially shows a
flat baseline for large Pes 1 and then starts to rise from its baseline value at effective
powers of &~ 10 uW. Similar to previous discussions for the CDM technique in
Sec. 5.5.1, it is thought that for large effective powers, amplitude noise is dominated
by aliased high-frequency laser phase noise [244], because, as also discussed below,
Tampnorm Shows a clear OPD dependence in Fig. 6.18(b). It is, however, unknown
whether the observed rise in oamp norm below ~ 10 uW is solely caused by the onset
of other physical noise sources, such as shot, electronic or laser intensity noise or
whether signal processing effects, such as quantisation, also play a role.

In Fig. 6.18(a), for low effective powers, the amplitude noise oamp norm can be seen
to rise proportionally with the decrease in Pog ;. Similar to the results for the CDM
technique in Fig. 5.19(c), it can be seen that oppasedirect Stays virtually constant,
regardless of a rise in oampnorm. Thus any apparent increase in laser phase noise can
be entirely attributed to excess phase noise caused by quadrature noise, as detailed in
App. D.1. The reason for the very slight curvature in oppase direct at very low values of
P.g 1 is unclear but could be due to shortcomings of the validity of the assumptions
for the model of App. D.1. It was also verified that spurious phase unwrappings, as
discussed in App. D.2, are not present even for the lowest values of Py 1, confirming
that quality phase measurements can still be obtained even for effective powers as
low as 0.1 uW. In summary, it can be seen from Fig. 6.18(a) that the SFM technique
can be used for measurements at very low effective powers and that for large effective
powers measurements are dominated by laser phase noise.

OPD Dependence The results for the OPD dependence of the single interferometer
setup in Fig. 6.17 at a constant effective power of Peg; = 40 uW are then shown in
Fig. 6.18(b). This value for P.g; is well within the phase noise dominated region,
as established in Fig. 6.18(a). Again, dampnorm 1S plotted on the primary y-axis and
Ophase aNd Ophase direct ar€ plotted on the secondary y-axis. A linear least square fit
Of Ophase,direct a0d & quadratic least square fit of oampnorm against the OPD 7;, both
according to Eq. (5.22), are also shown in Fig. 6.18(b). This is in analogy to the plots
of the single reflector experiment for the CDM technique shown in Fig. 5.18(c). It can
be seen in Fig. 6.18(b) that the linear fit of ophase direct 1S In excellent agreement with
the expected proportional OPD dependency of opnase direct, With an offset value Yj in
Eq. (5.22) of only Yy = 0.39 mrad. The slope factor Y; for this fit is ¥; = 0.033 rad m™*
for phase noise frequencies between 1kHz and 43 kHz, which corresponds to a phase
noise slope value of 0.16 mrad - Hz=%® - m~!. This slope value is more than a factor
of 7 higher than the value of 0.022 mrad - Hz7%% - m~! extracted from Fig. 5.18(c) for
the CDM technique. It is thought that this significant increase in direct phase noise
is due to the strong injection current modulation used in the SFM technique. One
plausible explanation is that the laser driver that was used simply cannot control
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rapidly changing injection currents as well as the stationary injection currents that
were used in the CDM technique, therefore increasing current noise and thus laser
phase noise. Furthermore, it was also observed that the laser phase noise slope can
vary for different measurements. For instance, the value of ophase direct €xtracted from
Fig. 6.18(a) at Peg1 = 40 uW iS Ophase direct = 0.023rad, where the OPD for that
measurement was 7; = 92 cm. For the same OPD value, Fig. 6.18(b) would yield a
phase noise value of ophase direct = 0.031rad. These measurements were conducted
over the space of several days with otherwise identical parameters but show an
increase in phase noise of 35%. Again a plausible explanation is that it is caused by
the laser driver, but to confirm this will require further investigation.

The clear OPD dependence of amplitude noise visible in Fig. 6.18(b), which echoes
the finding for the CDM technique in Fig. 5.18(c), indicates that the origin of the
quadrature noise causing the amplitude noise is fundamentally related to laser phase
noise, with aliased high-frequency laser phase noise [244] the most likely origin, as
was discussed previously in Sec. 5.5.1. The particular reasons for a quadratic OPD
dependence of the quadrature noise, clearly displayed in both Fig. 5.18(c) for the
CDM and in Fig. 6.18(b) for the SFM technique, rather than a linear dependence
is unknown. One possible explanation for the SFM technique is that, as the OPD
increases, both the laser phase noise itself and, due to the proportional increase in
the phase carrier amplitude, the number of the evaluated Bessel terms of Eq. (3.9)
increases. Therefore, when aliased high-frequency phase noise is assumed as the cause
of the quadrature noise, both the number of carriers evaluated that can introduce
aliased high-frequency phase noise and the magnitude of the phase noise itself
increases, which would lead to a quadratic OPD dependence of the quadrature noise.
However, it is not obvious how to extend this theory to explain the quadratic OPD
dependence in the CDM technique. Therefore, an investigation of the exact origins
of the observed quadrature noise is a high priority for future work and a dedicated
experiment will be discussed in Sec. 6.6.1. In summary, the results of Fig. 6.18(b)
show that the OPD dependence of direct phase noise in a single interferometer
appears reasonably well understood, however, the origins of the quadrature noise, in
particular its quadratic OPD dependence will require further in-depth analysis.

6.5. Fibre Segment Interferometry Experiment

In this section, the SFM technique that was described and characterised in the
previous sections is applied to the FSI approach that forms the main theme of
this thesis, demonstrating the interrogation of six fibre segments spanned by seven
FBG-based in-fibre partial reflectors.

6.5.1. Implementation
Setup When used for FSI, the SFM technique permits down-lead insensitive in-

terrogation in a self-referencing configuration (see also Sec. 3.1.3). This effectively
combines the simplicity and the physical down-lead insensitivity of the direct inter-
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ferometric FSI configuration of Fig. 4.1(a) with the practical advantages arising from
heterodyne gain for the choice of in-fibre reflector and the avoidance of undesired path
combinations of the common LO configuration of Fig. 4.1(c). This is illustrated by
the setup in Fig. 6.19(a), where the common LO is provided by the Fresnel reflection
of the cleaved fibre tip at the end of the FSI sensing fibre and where the fibre lead
between the interrogation unit and the sensing fibre can be of arbitrary length. The
fibre lead is thus completely down-lead insensitive, which was also verified in practice
by introducing manual fibre movements.

In the setup of Fig. 6.19(a), the sinusoidally modulated light leaving the laser diode
is guided by a fibre-optic circulator to the FSI sensing fibre and the return signals
from the seven FBG-based partial in-fibre reflectors and the fibre tip reflection
providing the common LO are directed by the circulator to the photo detector.
In this setup, the laser emission wavelength is also temperature tuned, with the
temperature-wavelength tuning characteristic of the laser detailed in App. B.1. Again,
all experimental parameters and the FPGA processing implementation were similar
to the previous nested MZ setup experiment of Sec. 6.3, except for the use of the
window width parameter o = 0.025. The details of the signal processing equipment
are not drawn in Fig. 6.19(a) but are similar to Fig. 6.7, with the corrections of
Sec. 6.2.5 used throughout. Analogous to Fig. 6.9(c), a typical photo detector
signal, with the intensity modulation corrected according to Sec. 6.2.5, is shown in
Fig. 6.20(a), along with the window function used. Here the recorded signal can
be seen to extend over approximately +200 quantisation levels, which, assuming
equal distribution over all seven reflectors, corresponds to a processing bitwidth
b of b ~ 5bit or &~ +2° quantisation levels per reflector. In Fig. 6.19(a), the FSI
sensing fibre is attached to a solid steel rod (type 316 stainless steel, length: 78.2 cm,
diameter: 1.9cm) using an epoxy adhesive. It can be seen in the photograph in
Fig. 6.19(b) that the rod is freely suspended at the side of an optical table and that,
as illustrated in Fig. 6.19(a), a hammer can be used to excite the rod.

In this setup, the FBG-based in-fibre partial reflectors were separated by physical
distances of 12.5cm, setting the segment length Iy also equal to Iy = 12.5cm.
Additionally, an offset distance of 1.5[; = 18.75cm between the LLO and the first

(a) Fibre Reflectors  Fibre Segments
Circulator R7__R6_R5_ R4__R3_/R2) R1
Laser S6 S5 .54 .53 .52 51
Diode Fibre 5 S S S S

=] p=)
2 Lead ¢ ) 5" )0

?Dignal «DP?OttO In-Fibre FBG Suspended  Fibre Tip Reflection as
roc. GLECLOr| partial Reflectors  Steel Rod  Interferometric Reference

Figure 6.19.: The experimental setup used for the FSI experiment is illustrated in (a). Sinusoidally
optical frequency modulated light leaving the laser diode is guided by a fibre-optic circulator and a
fibre lead to the FSI sensing fibre, where seven FBG-based in-fibre partial reflectors span six fibre
segments and the interferometric reference is taken from the cleaved fibre tip. The return light is
then guided to the photo detector and the resulting signals processed. The sensing fibre is attached
to a freely suspended stainless steel rod, which can be excited using a hammer stroke at the end of
the rod, with a photograph of the suspended rod also shown in (b).
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Figure 6.20.: Analogous to Fig. 6.9(c), (a) shows a plot of the photo detector signal corrected
for intensity modulation according to Sec. 6.2.5 along with the window function used. (b) then
shows the OPD dependence of the return signals as a function of demodulation carrier amplitude
Aq analogous to the right panels in Fig. 6.10, with the seven signals R1 to R7 clearly identifiable.

reflector R1 was used. The segment length [, = 12.5 cm results in a phase carrier
amplitude separation A1 — A of 56 rad between the return signals from adjacent
reflectors. This is approximately a factor two more than the value of A,;, required
according to the spatial resolution calculation in Sec. 6.2.3 for a specified baseband
suppression values of Sypmax = —H0dB at ¢ = 0.025. While the common LO
configuration is generally tolerant to undesired path combinations, as discussed in
Sec. 4.1, the additional offset of 1.5[5 was introduced to interleave any remaining
undesired signals due to direct interference between reflectors with the desired signals
due to interference with the common LO. Analogous to the right panels in Fig. 6.10,
Fig. 6.20(b) plots the OPD dependence of the quadrature signal amplitude as a
function of the demodulation carrier amplitude Aq. Here, it can be seen how undesired
peaks due to direct interference between reflectors appear at integer multiples of
56 rad, while the first desired reflector peaks, arising from interference with the
common LO, appears at 1.5 - 56 rad = 84 rad, with the remaining desired reflector
peaks then appearing at subsequent increments of 56 rad at 140rad, 196 rad, etc. In
Fig. 6.20(b), the amplitude of the highest undesired peak at 56 rad is ~ 13 dB, while
the amplitude of the lowest desired peak at R3 is =~ 30 dB. While some successful
phase measurements could still be carried out with this level of crosstalk, the simple
avoidance of any crosstalk from direct interference between reflectors by spatially
offsetting the desired and undesired interferences in this way could prove to be
valuable for applications where high linearity is needed. However, this procedure
comes at the price of an increase in the minimally permissible spatial separation
between reflectors by a factor of two. A further option to increase suppression of
signals from undesired path combinations and also to improve general signal strengths
would be to increase the reflectivity of the fibre tip from its current level of 3.5%,
due to Fresnel reflection, by using a fibre-end mirror or reflective coating.

FBG Inscription In general, as discussed in Sec. 4.1, FBGs used as in-fibre partial
reflectors in FSI need to be sufficiently broadband to return signals under all con-
ceivable strain and temperature conditions, typically requiring a spectral width of at
least 1 to 2nm. Here, chirped gratings offer a very broad return spectrum, however,
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Figure 6.21.: The reflectivity spectra of the seven FBGs R1 to R7, measured by the Luna OBR
4400 Reflectometer, are shown in (a). Here, a region of spectral width 2nm that is accessible to
wavelength tuning of the laser diode is marked. (b) then shows the spectra of the square root of
the reflectivity /7 over this region.

the point of reflection moves with changes in strain or temperature in a chirped
grating [65], which would introduce an additional OPD change into the segment
phase signals, making chirped gratings unsuitable for FSI. For non-chirped FBGs,
the spectral width generally broadens with decreasing gauge length. The production
of non-chirped broadband FBGs of suitable quality for FSI, with a gauge length
of 16 um, a full-width half maximum spectral width of 50 nm and a reflectivity of
r = 107* has also been demonstrated using hydrogenated standard SMF-28 fibre [94],
where hydrogenation yielded the necessary high index modulation of 1.2 - 10~* to
achieve relatively high reflectivity over a large spectral width.

The non-chirped FBGs used here were inscribed! using a frequency-quadrupled
ND-YAG laser emitting at a wavelength of 266 nm on non-hydrogenated SMF-28
fibre. A slit of width of 1.5 mm was placed 24 cm from the phase mask with the fibre
2mm behind the phase mask. During FBG inscription peak growth was monitored
live using the current SFM implementation. The final FBG spectra for reflectors R1
to R7 were then measured using a Luna OBR 4400 Reflectometer and are shown in
Fig. 6.21(a). These spectra reach peak reflectivities r of up to 0.008% and show two
distinct regions of ~ 2 nm spectral width each, separated by a region where r almost
drops to zero. Generally, the maximum reflectivities for the spectra of reflectors
R1 to R7 vary by a factor of 5 and the reflectivity in the upper spectral region at
wavelengths above 1550 nm is reduced by more than a factor of 2 compared to the
lower spectral region. Nevertheless, a region of 2nm width, marked in Fig. 6.21(a), in
the upper spectral region is accessible to the experiment through temperature tuning
of the laser emission wavelength. The spectrum of the square root of the reflectivity
/1 over this region is also plotted in Fig. 6.21(b), where /r is proportional to the
effective powers P,g ;, measured by the SFM technique for the seven reflectors.

!The inscription of the FBG-based in-fibre partial reflectors was not considered part of this
thesis on signal processing and the reflectors used in this experiment were manufactured by
Dr. Ricardo Correia and Prof. Steve James
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6.5.2. Linearity and Noise Measurements

Linearity The quadrature phasor traces resulting from an acoustic excitation of
the steel rod, computed over 20 ms for the seven reflectors R1 to R7, are shown in
Fig. 6.22(a) in the complex plane. Here, the quadrature amplitudes for the different
reflectors vary by up to a factor of three and the resulting quadrature signals can be
seen to be both circular and concentric (see also Sec. 3.1.4). In order to quantify the
magnitude of any resulting cyclic errors, for each reflector, the angular average over
30 angular sectors is computed analogous to the previous treatment in Fig. 6.11. The
results are shown in Fig. 6.22(b), where the fits of the angular averaged data for the
seven reflectors with the model of Eq. (3.8) are shown using continuous lines. The
data points for the measured angular averages, drawn using crosses, are only shown
for reflector R7 to improve clarity, however, the spread of the data points displayed
there is representative for the data spread of the other reflectors. It can be seen
in Fig. 6.22(b) that the quadrature amplitude can vary by up to 0.8%, with both
one-cycle and two-cycle non-linearities occurring. The angular errors calculated using
Eq. (3.8) from the fitted quadrature amplitude data are then shown in Fig. 6.22(c),
where angular error amplitudes of up to +6.4 mrad are reached. Compared to the
previous nested MZ experiment in Fig. 6.11, this is an increase in the non-linearity
error of approximately a factor of ~ 6. However, as was established in Sec. 6.5.1,
the processing bitwidth b in this FSI experiment is only b =~ 5 bits per reflector, a
decrease of 3 bits relative to the case for the nested MZ experiment. Therefore, an
increase in the cyclic error amplitudes of a factor of 23 = 8 is expected following the
discussion in Sec. 6.2.4 due to the decrease in the number of available quantisation
levels. This is close to the observed increase of a factor of ~ 6 and therefore these
results are entirely consistent with the order of magnitude calculations of Sec. 6.2.4.
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Figure 6.22.: The time traces of the complex quadrature signal for the seven reflectors R1 to
R7 are shown in (a), recorded over a period of 20 ms during acoustic excitation of the steel rod.
Analogous to Fig. 6.11(b) and (c), for each reflector R1 to R7, (b) plots the fits of the normalized
quadrature amplitudes, averaged into 30 angular sectors, as a function of phasor angle of the complex
quadrature signal according to the model of Eq. (3.8). Here, the measured angular averaged data is
plotted using crosses, however, only for R7 to improve clarity. The non-linearity errors resulting
from these fits are then drawn in (c).
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Noise Dependency on Interrogation Wavelength It can be seen in Fig. 6.21(b)
that the reflectivities of the FBGs vary considerably with wavelength. Therefore
the noise behaviour is investigated as a function of the interrogation wavelength
by tuning the laser diode temperature Ti,p. The effective power Pug i, plotted as a
function of T1p, is shown in Fig. 6.23(a) for all seven reflectors R1 to R7. Here, the
secondary x-axis is shown in wavelength units, where the values of T1p is converted
using the calibration measurement of App. B.1. When comparing the plot of the
square root of the reflectivity in Fig. 6.21(b) with Fig. 6.23(a), a very strong similarity
between the spectra measured using the Luna OBR 4400 Reflectometer and the
spectra measured using the SFM technique can be observed, also indicating that
the technique could, in principle, be used for wavelength-based FBG interrogation
(see also Sec. 2.3) or for other intensity-based sensor concepts. However, due to
a lack of cross-calibration the absolute wavelength scales differ by approximately
0.5nm between Fig. 6.21 and Fig. 6.23(a). In this context, it is also interesting to
note that the sinusoidal optical frequency modulation amplitude A f,,; = 8.4 GHz
corresponds to a swept wavelength region about +0.067 nm, as shown in App. B.3.
However, especially for small values of the window width parameter o of Eq. (6.6),
the effective location of most of the evaluated signal is near the optical frequency
modulation centre frequency fopt. of Eq. (6.1) as visible in Fig. 6.1, therefore the
effect of wavelength averaging of the spectra in the SFM technique is expected to be
small relative to the wavelength sweep of +0.067 nm.

In Fig. 6.23(a), a working region of spectral width 1.3 nm has been defined and is
marked using dashed lines, within which the effective power of every reflector stays
above 0.5 uW. When comparing Fig. 6.23(a) with Fig. 6.21(b), this value can be
seen to correspond to a reflectivity of about r = 107% in the current experimental
configuration. The value of P ) > 0.5 uW was chosen as it can be seen in Fig. 6.18(a)
to be at the transition between phase noise dominated and amplitude noise dominated
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Figure 6.23.: The effective powers Peg ; of the return signals as a result of wavelength tuning
are plotted as a function of laser diode temperature Typ in (a) for all seven reflectors R1 to R7,
where the secondary x-axis was converted to wavelength units using the calibration measurement
of App. B.1. In (a), a working region can be defined, marked using the dashed lines, where the
effective power of all reflectors stays above 0.5 uW. (b) then plots the apparent phase noise standard
deviation oppase values, computed for noise frequencies for between 1kHz and 43 kHz, for all data
points within the working region of (a) on a double logarithmic scale.
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behaviour for a single reflector. Fig. 6.23(b) then shows a scatter plot of the phase
noise standard deviation oppase for every measurement within the working region in
Fig. 6.23(a), again calculated for noise frequencies between 1kHz and 43kHz. It
can be seen in Fig. 6.23(b) that while, overall, the apparent phase noise levels are
approximately proportional to the OPD, with reflector R1 having the lowest phase
noise levels and reflector R7 the largest, the ophase values also exhibit a U-shaped
variation with the interrogation wavelength. This variation is larger in magnitude
for the reflectors with larger OPDs. For reflector R7, data points at the borders of
the working region are also marked in Fig. 6.23(b), where a sweep pattern is visible
that is also echoed by the data points for the other reflectors. Interestingly, reflectors
R1 and R7, which strongly differ in OPD but can be seen in Fig. 6.23(a) to have
a very similar spectrum, exhibit very different levels of this additional U-shaped
noise dependence on the interrogation wavelength in Fig. 6.23(b). This confirms the
OPD-related origin of the U-shaped noise dependence and it can be concluded that
reflectors at large OPDs generally appear to exhibit a more complex noise behaviour.

In order to further investigate the noise behaviour, the amplitude and phase noise
standard deviation at specific interrogation wavelengths within the working region
defined in Fig. 6.23(a) are analysed in line with the previous investigation for a
single interferometer in Sec. 6.4. Plots of the OPD dependence of the noise are
then shown in Figs. 6.24(a),(b), (c¢) and (d) for measurements where T1p was set to
[10°C, 16°C, 18°C, 23°C], respectively. Figs. 6.24(a) to (c) additionally plot the linear
least-square fits of ophase direct according to Eq. (5.22) using a continuous line. The
fits of Ophase direct Cal be seen in Figs. 6.24(a) and (b) to be in very good agreement
with the expected proportionality of opnase direct 01 the OPD 7, however, an offset
value to this fit emerges in Fig. 6.24(c) and in Fig. 6.24(d) the fit has deteriorated
to such an extent that it is not drawn. In general, it has been verified that the
deterioration of the fit of ophase direct 15 Of @ gradual nature, where fits of opnase direct
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Figure 6.24.: Analogous to Fig. 6.18(b), the OPD dependence of the amplitude and phase noise is
investigated for various interrogation wavelengths within the working region defined in Fig. 6.23(a).
Here, again the normalised amplitude noise standard deviation oamp norm is drawn on the primary
y-axis and the apparent phase noise standard deviation ophase, as well as the direct phase noise
standard deviation ophase,direct,; corrected for the excess phase noise according to App. D.1, are
plotted on the secondary y-axis. Also fits of ophase,direct according to Eq. (5.22) are drawn in (a),
(b) and (c) using continuous lines. In all plots, the noise standard deviation values were computed
for frequencies between 1kHz and 43 kHz.
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that are in good agreement with the expected proportionality on n can be found
for all values between Tip = 10°C to Typ = 17° C and where the fit quality is
successively getting worse for values above Typ = 17° C. 1t is also found that, overall,
the amplitude noise standard deviations oamp norm are at a minimum at Typ = 16°C
and increase for other interrogation wavelengths in both directions, therefore the
remaining experiments were carried out at this temperature setting. Here, a value
of the slope factor ¥; = 0.025rad - m™! can be extracted from Fig. 6.24(b) for the
OPD dependence of the reflector phase noise oppase direct, Which is comparable to the
value of Y7 = 0.033rad - m™! for a single interferometer found in Sec. 6.4 when the
level of variation of this value discussed there is considered.

It was noted before for the CDM technique in Sec. 5.5.2 that for multiple reflectors
the noise behaviour is considerably more complex than for the case where only a single
reflector is present and that quadrature noise can leak from reflectors, particularly
for originating reflectors with large OPDs. A strong OPD dependency was also found
in the previous discussion of Fig. 6.23(b), where the observed phase noise variation
with interrogation wavelength increases with the OPD. Therefore, this complicated
noise behaviour warrants further theoretical and experimental investigation because
quadrature noise may ultimately determine the permissible reflector tolerances and
may also limit the maximum number of FSI segments that can be multiplexed. A
thorough understanding of this behaviour will therefore be very important for any
practical application of the proposed FSI technique. Nevertheless, the results shown
in Fig. 6.23(b) demonstrate that successful measurements for all seven reflectors over
the entire working region of 1.3nm spectral width can be conducted, with phase
noise standard deviations in the individual reflectors signals below 0.1 rad for noise
frequencies between 1kHz and 43 kHz.

Noise Dependency on Effective Power The phase noise standard deviations
Ophase; again computed for noise frequencies between 1kHz and 43 kHz, are shown in
Fig. 6.25(a) for reflectors R1 to R7 as a function of the effective power Pug ;. Here,
the necessary attenuation is introduced experimentally through fibre-bend loss in the
fibre lead in Fig. 6.19 and, similar to Fig. 6.18(a), the effective power was calibrated
according to the method detailed in App. F. This data was recorded for the laser
diode temperature set to Ty,p = 16°. It can be seen in Fig. 6.25(a) that for each
reflector R1 to R7, a unique plateau value exists, where, following the discussion
in Sec. 6.4, it is thought that the signals on this plateau are phase noise limited.
Plateau values for ophase range from 0.018 rad for R1 to 0.075rad for R7. For small
effective powers, the plateaus for all reflectors then asymptotically merge into a
common line, where the phase noise standard deviation, similar to the behaviour
shown in Fig. 6.18(a), increases proportionally with decreasing effective powers.

In Fig. 6.25(b), the opnase data is calculated for the six segment phase signals S1
to S6, obtained by subtracting the respective adjacent reflector signals. Here, the
assigned effective powers Pog ges for the segment data points are the arithmetic mean
of the effective powers of the participating reflectors. Similar to the discussion in
Sec. 5.5.2 for the CDM technique, it can be seen in Fig. 6.25(b) that the calculation
of the segment data goes some way in reducing the phase noise present in the reflector
signals in Fig. 6.25(a) and that, similar to reflector data, the segment phase noise data
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Figure 6.25.: A measurement at Tp = 16° of the dependence of the phase noise standard
deviation ophase 0f the seven reflectors R1 to R7 on the effective power is shown in (a). (b) then
plots the dependence of opnase On segment effective power Feg gop for segments S1 to S6. Here, the
effective power is attenuated by introducing bend loss in the fibre lead in Fig. 6.19. In both plots
the noise standard deviation values were computed for frequencies between 1kHz and 43 kHz.

points asymptotically merge into a common line. However, because all segments have
the same OPD, they should theoretically show equal phase noise standard deviations.
Here, the expected value of oppase direct Can be determined from the slope factor of the
reflector phase signals ¥; = 0.025rad m™" that has been extracted from Fig. 6.24(b).
In this setup, the OPD of each segment is n = 2n4l; = 0.365m for a group index of
refraction n, = 1.46 and a segment length l; = 0.125m. Therefore, the intrinsic phase
noise standard deviation for every segment phase signal, assuming the absence of
other noise sources, should be as low as 0.0093 rad, while in Fig. 6.25(b), at maximum
effective powers, segments 53 and S4 show oppase values up to 0.038 rad, four times the
theoretical value. No straightforward explanation for this behaviour was found and
imperfect suppression of the phase noise in the segment signals should be investigated
as part of the previously mentioned investigation into the noise behaviour for multiple
reflectors. Nevertheless, it was confirmed by this measurement that at Typ = 16°C
and without attenuation, the noise behaviour is phase noise limited. Also, for the
measurement at maximum effective power, oppase values in the segment data do not
exceed values of 0.038 rad for noise frequencies between 1kHz and 43 kHz, resulting
in equivalent segment phase noise levels below 0.19 mrad - Hz %5,

6.5.3. Speed-of-Sound Measurements

In the final experimental section of this chapter, demonstration measurements are
presented that confirm the usefulness of the SFM technique for high-speed FSI strain
measurements. Here, a hammer is used to acoustically excite the freely suspended
stainless steel rod, as illustrated in Fig. 6.19, and the FSI system is then used to
determine the speed-of-sound v in the rod employing two independent methods:

o Evaluation of the delays in the transient response of the different segments as
the hammer impact event propagates through the rod.

o Measurement of the vibration spectrum, where the fundamental longitudinal
mode frequency allows determination of ws.
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The results of the speed-of-sound measurements are shown in Fig. 6.26. Here,
Fig. 6.26(a) shows the phase signals for the six segments S1 to S6 over a period of
2ms around the time of the hammer impact. Here, equivalent strain units, calculated
using Eq. (5.23) for a sensor gauge length [, equal to [y = 12.5cm, are shown on
the secondary y-axis. This also allows quantification of the noise in the strain data,
where in Fig. 6.26(a), for the 1 ms period before the hammer stroke, instantaneous
noise standard deviations, over the whole quadrature bandwidth of 43 kHz, with
values between 17 mrad and 32 mrad are extracted. Using Eq. (5.23), this equates to
instantaneous strain noise standard deviation values between 14 ne and 27 ne.

The inset in Fig. 6.26(a) then enlarges the period of the initial signal rise after the
hammer impact, where the propagation delays for the different segments are clearly
visible. The segment phase data between measurement points was then linearly
interpolated to determine the propagation delays between adjacent segments at the
chosen threshold level of 0.5 rad, with the threshold level also marked in the inset in
Fig. 6.26(a). By evaluating the propagation delay between neighbouring segments
over 10 repeats of this experiment, where only the central segments S2 to S5 were
used to exclude edge effects, the speed-of-sound v in the rod was determined as
4.96 £ 0.34km - s71. These results are plotted in Fig. 6.26(b), where the dashed line
marks the mean and the dotted lines mark the interval corresponding to one standard
deviation. The value of vs = 4.96 £0.34km - s determined from Fig. 6.26(b) is well
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Figure 6.26.: Results of the speed-of-sound measurement for the stainless steel rod of Fig. 6.19.
(a) shows the phase signals for the six segments S1 to S6 at the time of the hammer impact,
with the secondary y-axis in equivalent strain units for a segment length I5 = 12.5 cm, calculated
using Eq. (5.23). In (a), the inset also enlarges the initial rise period and the threshold level at
0.5rad, where the delay times were determined, is marked. (b) then plots the results of 10 delay
measurements, excluding data from the outer segments S1 and S6, with the mean and standard
deviation marked using the dashed and dotted lines, respectively. (c) shows the complete vibration
spectra for segments S1 to S6 on a double logarithmic scale, while (d), (e) and (f) enlarge the peaks
corresponding to the fundamental longitudinal mode and its harmonics on a linear frequency scale.
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within the error limits of the calculated theoretical value [252] of 4.91km - s™! for a
longitudinal acoustic wave in a type 316 stainless steel [253] thin rod.

The vibration spectra for the phase signals of the six segments are shown in
Fig. 6.26(c) on a double logarithmic scale. Here, a range of vibration peaks can
be seen, with the fundamental transverse mode occupying a frequency of 137 Hz,
and where most of the peaks visible in Fig. 6.26(c) can be identified as direct,
integer harmonics of this peak. However, at a frequency of 3163 Hz, as visible in
Fig. 6.26(d), a further set of peaks, with harmonics at 6325 Hz and 9487 Hz as plotted
in Figs. 6.26(e) and (f), start to appear. These peaks are thought to be longitudinal
vibration modes and the speed-of-sound vs can by calculated [254] using the formula
vs = 2lf, where [ = 0.782m is the length of the rod and f = 3163 & 1 Hz is the
fundamental longitudinal mode frequency used. This yields a value for the speed-of-
sound of vy = 4.946 4 0.002km - s~!, which agrees to within less then 1% with both
the theoretical and the experimental values determined above, further confirming
the physical validity of the measurements. Therefore, it can be concluded that the
SFM technique can be used for high-speed measurements of transient strain events.
Here simultaneous strain measurements of six fibre segments of length [g = 12.5 cm,
with a worst-case instantaneous strain noise standard deviation value of 27 ne over
the entire 43 kHz quadrature bandwidth, have been demonstrated.

Finally, Fig. 6.27 shows a measurement over 0.1s of the six segment phase signals
S1 to S6 several seconds after the hammer impact, where all transient excitations
have subsided and only the fundamental transverse mode at 137 Hz remains, with
this mode also illustrated in the inset. The secondary y-axis in Fig. 6.27 is also
shown in equivalent strain units for a segment length [ = 12.5 c¢m, calculated using
Eq. (5.23). It can be seen in Fig. 6.27 that the signals for the outer segments S1
and S6, the signals for S2 and S5 and the signals for the inner segments S3 and S4
overlap, with the amplitude highest for the inner segments and lowest for the outer
segments. This measurement therefore agrees very well with the expected behaviour
for the fundamental transverse mode, with the highest vibration amplitudes in the
centre and the lowest amplitudes at the edges, and where symmetry with respect to
the centre of the rod is given. Thus, this measurement qualitatively confirms that
strain transfer onto the sensing fibre is well established, or at least comparable for
all segments, and that physically plausible strain signals can be picked up.
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Figure 6.27.: Measurement over 0.1s of the segment phase signals S1 to S6 after all transient
events have subsided and only the fundamental transverse mode at 137 Hz, also illustrated in the
inset, remains. Here, the secondary y-axis also shows equivalent strain units for a segment length
ls = 12.5 cm, calculated using Eq. (5.23).
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6.6. Discussion and Future Work

6.6.1. Discussion and Improvements to Current Work

Polarisation Sensitivity: Similar to the CDM technique, polarisation sensitivity of
the FSI sensing fibre has not yet been addressed. However, in the FSI experiments
shown, polarisation sensitivity is thought to be less critical for the SFM experiment
than for the CDM experiment of Sec. 5.5.3 because the OPDs involved are two orders
of magnitude lower, thus polarisation-induced signal fading (see also Sec. 2.4) is less
likely to occur. Also, compared to the common LO FSI configuration of Fig. 4.1(c)
used in the CDM technique, the physically down-lead insensitive FSI configuration
of Fig. 6.19 for the SFM technique eliminates any potential polarisation mismatch
originating from the fibre lead, further improving polarisation stability. Nevertheless,
there is still no guarantee for the absence of polarisation-induced signal fading and
further steps, such as the use of polarisation-maintaining fibre or polarisation-diversity
detection [101], may have to be employed. In general, because fibre-optic circulators
made from polarisation-maintaining fibre are nearly at the same cost as regular
fibre-optic circulators, the setup of Fig. 6.19 for the proposed SFM technique could
cost-effectively be adapted to the use of polarisation-maintaining fibre. This is in
contrast to the setup of the CDM technique in Fig. 5.11 where several fibre couplers,
which are very costly in their polarisation-maintaining versions, would be needed.

In-Fibre Partial Reflectors: The FSI experiment of Sec. 6.5 confirms the principle
compatibility of the use of FBG-based in-fibre partial reflectors with the SFM
technique, demonstrating successful measurements even for reflectivities of individual
reflectors as low as 1075, This is also a major improvement, particularly in terms
of stability, to the connector-based approach used in Chap. 5. As also discussed
in Sec. 4.1, FBG-based, in-fibre partial reflectors offer many practical advantages
compared to other in-fibre reflector techniques, such as the ability to be inscribed
through the coating [209] or by a draw-tower process [75], and are therefore thought to
have the highest potential for future use in FSI applications. In this work, successful
measurements have been demonstrated even though the FBG in-fibre reflectors do
not yet display the favourable properties, such as returning a broadband spectrum
while also showing comparatively large reflectivities, that were demonstrated in prior
work [94] and discussed in Sec. 6.5.1. Nevertheless, this allows to conclude that
the SFM technique is very tolerant to the reflector properties and that with some
improvements in FBG-inscription, the FBG spectra should be sufficiently broadband
and strong to allow interrogation in all practical temperature and strain conditions.

Spatial Resolution and Reflector Placement: A major advantage of the SFM
technique, compared to other interferometric multiplexing techniques, such as time-
division or code-division multiplexing (see also Chap. 4), including the CDM technique
of Chap. 5, is that in the SFM approach, spatial resolution is a property of the
laser optical frequency modulation amplitude A f,,; and not of the signal processing
hardware. Therefore, spatial resolution and signal processing bandwidth are de-
coupled and the many GHz of optical frequency modulation amplitude Af,,; that
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can be obtained by, for example, laser diode injection current modulation (see also
App. B.3), effectively determine the spatial resolution, as discussed in Sec. 6.2.3.
In this work, this allowed an improvement by more than two orders of magnitude
in the minimum segment length, decreasing from 16.5m for the CDM technique to
0.125m for the SFM technique. Furthermore, as also discussed in Sec. 6.2.3, some
improvement in the spatial resolution may also be obtained from the optimisation
of the window width parameters. In general, because the spatial resolution in the
SEFM technique has no fundamental limits other than Af,,, replacement of the
diode laser used, by, for example, a widely tunable, micro-electromechanical system
based external cavity (MEMS-ECL) laser, such as the one used by Baumann et
al. [255], could be considered. This laser was shown to exhibit a sinusoidal optical
frequency modulation amplitude A f,,; = 1 THz at 1kHz modulation frequency, thus
an increase in spatial resolution of a factor of 56 should be achievable compared to
the present laser diode. Therefore, in such a system, using a configuration similar
to Fig. 6.19(a), fibre segments of segment length Iy = 2mm could be resolved and
interrogated, albeit at lower quadrature bandwidths.

Furthermore, the continuously variable reflector placement that the SFM technique
permits, as demonstrated in Sec. 6.3 for the nested MZ experiment where the
OPDs are not simple multiples of each other, also relaxes the spatial reflector
placement tolerances in FSI. Additionally, the property of continuously variable
reflector placement also means that the optical frequency modulation amplitude
A fopy and thus the laser modulation waveform does not need to be adjusted or
controlled, which was the case in prior work, as discussed in Sec. 4.4.

Quadrature Bandwidth and Dynamic Range: For a given quadrature bandwidth
Bq, the permissible amplitudes of the phase signals are approximated by Carson’s
rule of Eq. (3.4). For the SFM technique, where a quadrature cut-off frequency
value of fq. = 43kHz was used, the usable quadrature bandwidth Bqg equals
37 kHz, including the previously discussed safety margin of 15%, with the permissible
amplitudes for a sinusoidal phase signal in this case also plotted in Fig. 3.5. In
general, in the common LO FSI configuration of Fig. 6.19(a), any measured reflector
signal carries contributions from all segments on the way to the LO, therefore the
highest quadrature bandwidth is required for reflector R7 in this case.

In order to increase the dynamic range, the modulation frequency f,, has to be
increased so that the quadrature LP filter cut-off frequency fq ., can be increased
accordingly. In Sec. 6.3.1, the required digital signal processing bandwidth of the
ADC and the FPGA-based processing was found to be the product of the modulation
frequency f,, = 98 kHz and the highest occurring phase carrier amplitude Ay. For
the FSI experiment demonstrated in Sec. 6.5, the highest value of A; can be seen in
Fig. 6.20(b) to be A7 ~ 420rad. The bandwidth of the raw signal is then expected
to be &~ 41 MHz, which is about 80% of the available ADC bandwidth defined by the
analogue anti-aliasing filter used in conjunction with the ADC. Therefore increasing
the quadrature bandwidth while still multiplexing seven reflector signals will require a
corresponding increase in the digital signal processing bandwidth, as will an increase
in the number of multiplexed reflectors. Note, however, that the required digital
signal processing bandwidth is independent of the segment length [ used, because, if
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the segment length in an FSI array is increased, a lower optical frequency modulation
amplitude Af,,, can be used, resulting in the same values for the phase carrier
amplitudes Ag. In this context, in the vibrometry experiment shown in the next
chapter, the modulation frequency f,, is increased by a factor of four, proving that
increases in f,, are technically straightforward as long as the laser driver supports the
modulation bandwidth. However, for diode lasers, the optical frequency modulation
efficiency for injection current modulation generally reduces with increasing f,,, in
turn reducing A fo,¢ and thus the spatial resolution achievable.

Phase Noise and Dynamic Strain Sensitivity: Following the corresponding dis-
cussion for the CDM technique in Sec. 5.6.1, a reference segment could be used to
remove 1/f laser phase noise, leading to a flat noise floor, which is a requirement for
the statement of phase noise levels in units of rad - Hz=%% over the whole quadrature
bandwidth. In the absence of a measurement with a reference segment, the phase
noise levels for the SFM technique can only be stated for phase noise frequencies
between 1kHz and 43kHz, where such a flat noise floor exists. Here, segment
phase noise levels up to 0.19mrad - Hz7%® were found in Fig. 6.25(b), four times the
value expected for the segment OPD from the measured reflector OPD dependence.
Therefore, segment phase noise is insufficiently suppressed and this phenomenon
requires further investigation. For the CDM technique, segment phase noise levels of
2.2mrad - Hz7%® were found between 1kHz and 20kHz in Fig. 5.28(b). The phase
segment noise levels stated above for the SFM FSI experiment are only 12 times
less than for the CDM FSI experiment, while the OPDs are 132 times less, therefore
the OPD specific phase noise levels in the SFM technique are greatly increased.
These findings are echoed by the single MZ interferometer experiment of Sec. 6.4,
and, as discussed there, it is thought that the ability of the control circuit in the
laser driver to suppress injection current noise, which is directly converted into laser
frequency/phase noise, is reduced in the presence of the strong injection current
modulation required in the SFM technique. Here, a different laser driver concept,
where the sinusoidal frequency modulation is supplied directly to the laser diode via
a Bias-T adapter, without influencing the control circuit of the driver, is proposed in
order to reduce laser phase noise in future implementations.

It was confirmed by plotting the power dependence of the signals for both the
single MZ experiment in Fig. 6.18(a), as well as for multiple reflectors in the FSI
experiment in Fig. 6.25(a), that, without artificial attenuation, the interrogation
is laser phase noise limited. Therefore, the noise performance is not dominated by
OPD-independent noise sources such as shot, intensity or electronic noise. However,
it is also recognized that the application of a window function reduces the effective
sampling time while maintaining the noise bandwidth of the measurement, which
would increase the detrimental effect of shot, intensity or electronic noise outside phase
noise limited operation. As shown in Fig. 6.18(b) for the single MZ interferometer
experiment, the direct proportionally of the laser phase noise on the OPD can be
confirmed as soon as excess phase noise caused by quadrature noise is corrected
according to the model in App. D.1. Also, in Fig. 6.18(b), the amplitude noise
resulting from quadrature noise is in very good agreement with the assumption of a
quadratic OPD dependence. The reasons for the quadratic OPD dependence are not
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clear, but also echo similar finding for the CDM technique. As discussed in Sec. 6.4,
a quadratic dependence could possibly be explained by aliased high-frequency laser
phase noise [244], with its influence proportional to both the OPD itself and the
number of Bessel carriers (see also Eq.(3.9)) in the photo detector signal. Both
quantities are proportional to the OPD and together could explain a quadratic OPD
dependence of the quadrature noise. In order to investigate this phenomenon, an
experiment where the OPD and the optical frequency modulation amplitude A f,p;
can be varied independently is proposed and where the same phase carrier amplitude
Ay can thus be achieved at different OPDs. This should help find the origins of the
quadrature noise, which is particularly important as a quadratic OPD dependence
of the quadrature noise would mean that excess phase noise will exceed direct laser
phase noise at a given OPD value and may therefore limit the practical application of
this technique. This investigation should also include research into the phenomenon
of imperfect segment phase noise suppression that can be seen in Fig. 6.25(b) and
into the reasons for the more complex noise behaviour when multiple reflectors are
present that can be seen in Fig. 6.24.

For the SFM technique, the phase noise levels of 0.19mrad - Hz=%% for frequencies
between 1kHz and 43 kHz stated above translate into dynamic strain sensitivities of
0.16 ne - Hz™%5 using Eq. (5.23) for a gauge length [, equal to the segment length
ls = 12.5cm. Because the FSI experiment for the CDM technique used a reduced
sensor gauge length of I, = 2m, the dynamic strain sensitivity values achieved
here are comparable to the levels achieved for the CDM technique even though the
OPD specific phase noise levels are increased in the SFM technique. Following the
previous discussion in Sec. 5.6.1, these dynamic strain sensitivity values are not
at the performance levels of high-end applications, such as optical hydrophones,
but do compare well with other commonly-used strain sensing techniques, such as
FBG-based strain sensing and could be improved by employing lasers with lower
intrinsic frequency noise levels. This is especially true for the SFM technique, having
a very simple and cost-effective setup and, compared to the CDM technique, offering
low gauge lengths of [, = I = 12.5cm that are more akin to the gauge lengths
found for FBG or LPG-based sensing concepts (see also Sec. 2.3). Furthermore, the
presented SFM interferometric technique inherently permits very high measurement
bandwidths. However, as an interferometric technique, FSI does not have the ability
for absolute measurements that most grating sensor concepts offer and may also suffer
from polarisation-induced fading. Furthermore, similar to the previous discussion
in Sec. 5.6.1, the inherent temperature sensitivity of fibre sensors has not yet been
addressed here and temperature compensation schemes may be required in practice.

Linearity and Crosstalk: Numerical simulations concerning the impact of quant-
isation errors were shown in Sec. 6.2.4 and it was experimentally confirmed for both
the nested MZ and the FSI experiments that the scale of the measured non-linearities
is dependent on the processing bitwidth of the photo detector signal at the point of
digitisation. It is, however, stressed that non-linear behaviour due to quantisation is
very sensitive to the exact number of quantisation levels and that experiments and
simulations can only yield or confirm the order of magnitude of error levels. Here,
in Fig. 6.11(d), for the nested MZ experiment, using the corrections of Sec. 6.2.5,
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angular errors in individual interferometers of maximally +1.0 mrad were found,
while for the FSI experiment, non-linearities in the reflector data of up to £6.4 mrad
were found due to the reduced processing bitwidth. This equates to worst-case
systematic errors in the FSI segment data of 213 mrad. Additionally, the residual
measurements for the nested MZ experiment allow a further method to quantify
non-linearity errors, measuring the sum of the maximum cyclic error amplitudes of
all three interferometers. Here, Fig. 6.15(c) shows that, even for the case without
the corrections of Sec. 6.2.5, measurements with total cyclic error amplitudes as low
as 4.4mrad can be obtained. This value drops to 3.1 mrad when these corrections
are applied and this value stays constant over a wide range of the window width
parameter 0. While not strictly comparable, it is interesting to note that typical
cyclic error amplitudes in precision free-space interferometry, using sophisticated
polarization isolation equipment for remote interrogation (see also Fig. 3.3), range
from 0.8° to 0.05° [142], and are thus on the same order of magnitude as the values of
1.0mrad = 0.063° achieved here. This clearly shows the potential for range-resolved
signal processing to enable highly linear interferometry, especially considering the
findings of the numerical calculations of Sec. 6.2.4, indicating that linearity could be
improved simply by increasing the processing bitwidth.

Quadrature signal crosstalk suppression values S, of < —60dB have been found
for the nested MZ experiment in Fig. 6.14. This is at least 20 dB better than the
corresponding values for the CDM technique shown in Fig. 5.22. In general, the
resulting crosstalk levels in the phase signals are highly dependent on the temporal
variations of the phase signals involved, as detailed in App. D.3. For this reason, the
crosstalk in the phase signals for the CDM technique did not exceed the noise floor
and this is also found for the nested MZ experiment, where crosstalk levels in the
phase signals are found to be < —70dB. In practice, crosstalk on these levels is not
deemed problematic for most applications and, following the findings in Sec. 6.2.4,
increasing the processing bitwidth may further reduce any remaining crosstalk.

Choice of Window Function: In this work, the dual Gaussian window function of
Eq. (6.6) was used because of its conceptual simplicity and because the parameter
o can be used to scale the window width. This allowed measurements such as
that shown in Fig. 6.15(c), where for data corrected according to Sec. 6.2.5, the
SFM technique can be seen to operate with almost constant linearity performance
over a wide range of 0. It can also be seen in the demodulation maps in Fig. 6.10
that the choice of o significantly alters the appearance of these maps and that for
large values of o, the range resolution, evident in the right-hand panels in Fig. 6.10
improves considerably. However, because the window function of Eq. (6.6) is only an
initial choice, future implementation could specifically investigate the effects of using
different types of window functions. Research options include:

¢ Window functions based on non-Gaussian functions.

« Singular window functions, where the window is only applied once per sinusoidal
modulation waveform.

e Multiple window functions, where the window is applied more than twice per
sinusoidal modulation waveform.
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e Asymmetric window functions, where the window function is not symmetric to
the optical frequency modulation centre frequency foptc of Eq. (6.1).

Improving spatial resolution and easing the process of finding the correct demodula-
tion and correction parameters are thought to be the main motivation for investigating
different window functions. Also, a further reduction in the susceptibility to instru-
mental drift and, using multiple, asymmetric windows, schemes that evaluate phase
differences resulting from changes of the effective optical frequency evaluation loca-
tions for different window positions on the sinusoidal optical frequency modulation
waveform could be investigated. In general, as mentioned before, the application
of a window function reduces the effective sampling time while maintaining the
noise bandwidth of the processing hardware, increasing the relative influence of shot,
intensity or electronic noise. This becomes relevant when very weak signals are
evaluated, where operation is no longer phase noise limited.

Signal Processing: It was shown in Fig. 6.16(b) that some detuning of the de-
modulation parameters can be tolerated, especially when corrected data is used.
In practice, changes in the signal processing delay 7, on the order of nanoseconds
were found to occur, and variations in 7, will become more critical for larger values
of the photo detector bandwidth, i.e. the product of the phase carrier amplitude
Ay of the constituent interferometer with the largest OPD and the modulation
frequency f,,. This may require an online compensation algorithm or more careful
system design in order to avoid variations in 7y, occurring at all. Furthermore, in the
current implementation of the SFM technique, the impulse response of the analogue
anti-aliasing filter has not yet been compensated, because it was not yet found to be
critical to the overall performance. However, in future implementations, it might be
necessary to include a digital anti-aliasing correction filter at the ADC input of the
FPGA in Fig. 6.8 in order to correct the analogue filter impulse response, similar to
the proposal put forward in the previous chapter for the CDM technique.

In this work, the optical frequency modulation waveform was deliberately kept
simple, using only a pure sinusoidal laser injection current modulation and applying
any corrections in post-processing only. Another approach that could be explored
would be to correct the deviations due to the non-linear injection current to optical
frequency modulation characteristic described in Sec. 6.3.1 by applying a pre-shaped
injection current waveform that would then result in a purely sinusoidal optical
frequency modulation. However, intensity modulation associated with laser injection
current modulation cannot be corrected in this way and would still require post-
processing corrections as described. In addition to the techniques used in App. B.3 to
measure the calibration parameters required for the corrections of Sec. 6.2.5, it could
also be fruitful to investigate new approaches to obtain this data. Here, it might be
possible to extract all necessary correction parameters using only raw measurement
data of a test system consisting of several constituent interferometers of known OPDs
and using an optimisation algorithm on the appearance of the demodulation maps
of Fig. 6.10. This would avoid the use of a dedicated optical setup, as was used in
App. B.3, to obtain the correction parameters and would permit laser diodes to be
exchanged more readily.
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6.6.2. Future Research Directions

FSI Applications A number of future FSI configurations using direct reflector
interference have been proposed in Fig. 5.33 for the CDM technique. The main
practical advantage of direct reflector interference, especially for strain sensing on
large engineering structures, is that the dynamic range for each sensor is not shared
over the sensing fibre, as is the case with the common LO configuration. However,
this option is not possible for the SFM technique in the current stage of development,
because range-resolved signal processing using the SFM technique is only possible
for constituent interferometers differing in OPDs, whereas the CDM technique can
distinguish signals based on their offset time-of-flight delays alone. Nevertheless,
the much higher spatial resolution possible with the SFM technique, as well as the
potential for simple and cost-effective interrogation units, opens up a number of
applications for FSI in structural health monitoring. Using a diode laser similar to
the one used in this work permits a spatial resolution on the order of 0.1 m. Here,
the quasi-distributed long-gauge length sensing (see also Fig. 2.1(c)) that FSI offers
could be of benefit for some applications that specifically require strain measurements
along the fibre without sensing gaps, guaranteeing that a structural disturbance
occurring along the sensing fibre is not missed. Additionally, FSI could be applied to
dynamic structural health monitoring techniques of engineering structures, such as
vibration-based condition monitoring [256], which could benefit from cost-effective
fibre-optic strain measurements [14].

Another potential application for FSI-based sensing for both the CDM and
SFM techniques is fibre optic shape sensing [26,27,76,81], where differential strain
measurements in laterally offset fibres are used to infer lateral displacements. Because
shape is a very important property for aerodynamic structures, this could have
applications in areas such as aerospace or wind power. For the simple example case
of a cantilever structure, the radius of curvature increases approximately with the
square of the cantilever length, therefore the differential strain that amounts to the
same tip displacement reduces with the square of the cantilever length, posing a
difficult measurement problem. For localised strain sensors, such as FBGs, this
leads to a reduction in tip displacement sensitivity with the square of the cantilever
length. However, because interferometric curvature sensors can integrate strain along
the whole cantilever length, the tip displacement sensitivity only reduces linearly
with the cantilever length [26], as also expressed in Eq. (5.24), giving long-gauge
length interferometric measurements a principal advantage for shape sensing on
large engineering structures. Because of the differential nature of this measurement,
relevant low-frequency phase noise is automatically suppressed in a manner similar to
the use of the reference segment measurement that was demonstrated in Sec. 5.5.2.

A third potential research direction for the SFM technique is high spatial resolution
FSI. In this context, the gauge length of regular FBG sensors is typically 5 to 10 mm
(see also Sec. 2.3), while short-gauge length interferometric Fabry-Perot sensors (see
also Sec. 2.4) offer much smaller gauge lengths but are difficult to multiplex. In
contrast, using a widely tunable laser, very short gauge lengths are possible in FSI,
whilst also allowing simple sensor multiplexing. Here, if the MEMS-ECL laser [255]
discussed in the previous section would be used, a sensor gauge length of 2 mm would
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be possible. Because, as discussed in Sec. 6.5.1, FBG-based partial in-fibre reflectors
with gauge lengths as low as 16 um can be inscribed, further significant reductions
in the sensor gauge lengths, using even more widely tunable lasers, are not limited
by the physical length of the in-fibre partial reflectors.

For FSI, a further area where using the SFM technique could be advantageous
is two or three wavelength interferometry, allowing absolute strain or temperature
measurements by extending the dynamic range of an interferometric measurement
beyond 27 [108,257]. Also, as discussed in Sec. 2.1, multiple-wavelength approaches
allow temperature/strain discrimination [20,21]. In all cases, the SFM technique
could be used favourably because multi-wavelength approaches require very high
linearities and because it would allow the cost-effective use of several diode lasers.

Non-FSI Applications In this context, an application of the SFM technique to
range-resolved multi-surface vibrometry is presented in the next chapter. A further
interesting direction of research to which the SFM technique could be applied is
absolute distance sensing. Here, the peak positions in the range data that can be
seen in the right-hand panels of the demodulation maps in Fig. 6.10 are evaluated for
absolute measurements of the OPD, and therefore the distance of an object from the
LO. This approach is related to the widely-used optical coherence tomography (OCT)
technique [258,259], with a spatial resolution proportional to the optical frequency
modulation amplitude A f,¢, however, unlike regular OCT, it uses sinusoidal optical
frequency modulation. In any practical application for absolute distance sensing, an
additional measurement of a reference segment of known length for online distance
calibration would also be required. One potential application of this is thought to
be an interferometric displacement sensor where high-quality relative displacement,
velocity and acceleration data, useful for control applications, is obtained using
interferometric phase evaluation and where the desired absolute distance measurement
serves as an additional proximity sensor with coarser spatial resolution.

It has already been demonstrated that the SFM technique allows very linear
interferometric measurements, with non-linearity errors as low as +1.0 mrad. Us-
ing a reflective interferometric configuration (see also Sec. 3.1.3), for a free-space
displacement measurement at a wavelength of Ay = 1552 nm, the achieved level of
linearity would correspond to a maximum systematic displacement error of 0.12 nm
when laser wavelength drifts are neglected. It has long been noted that “metrological
systems nowadays still suffer remarkably from nonlinearity errors” [260] and recently,
in 2012, several national metrology institutes set the target to bring systematic
interferometric errors down to 10 pm [261]. The simulation presented in Sec. 6.2.4
indicate that it is feasible, even using the current laser diode, to reduce non-linearity
errors down to —82dB,.q, corresponding to the 10 pm target, simply by increasing
the processing bitwidth b of the signals to values above 13 bit. It is thought that the
simple explanation for the good linearity performance of the SFM technique is that it
is range-based and does not rely on polarisation properties of optical components to
achieve polarisation-based path isolation (see also Sec. 3.1.3). Important applications
for highly linear interferometric measurements are scanning probe microscopy [260]
and wafer positioning for lithography [261], and the validity of the calculations of
Sec. 6.2.4 should be tested experimentally with high priority.
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6.7. Summary

In this work, a novel range-resolved interferometric signal processing technique has
been presented that uses sinusoidal optical frequency modulation of a laser diode by
injection current modulation. The theory has been described and explained extens-
ively. Here, using an appropriate time-variant carrier and a smooth window function
to suppress contributions from undesired signal components in the demodulation
process, highly linear phase signals can be obtained. Due to the proportionality
of the phase carrier amplitude to the OPD in optical frequency modulation, con-
stituent interferometers can be multiplexed based on their range. The OPDs of the
constituent interferometers are continuously and independently variable, subject to
a minimum OPD separation. Furthermore, a simulation regarding the expected
linearity performance resulted in quantisation errors being identified as the main
source of the remaining non-linearities, without any fixed theoretical limit.

In a nested MZ experiment, three constituent interferometers with a minimum OPD
separation of 21 cm have been multiplexed and maximum cyclic error amplitudes of
1.0 mrad were found. Crosstalk suppression in the quadrature signals was —60 dB
and measurements were taken over a quadrature bandwidth of 43 kHz. It has been
shown that non-ideal effects that arise due to injection current modulation, such
as intensity modulation and deviations from the ideal sinusoidal optical frequency
modulation waveform, can straightforwardly be compensated in post-processing and
that the technique can operate over a wide parameter range when these corrections
are applied. However, even without corrections, highly linear measurements can still
be obtained. It was further shown that the technique is reasonably robust against
detuning by instrumental drift. In a dedicated single interferometer setup, the system
was confirmed to be laser phase noise limited under typical operation conditions.
Furthermore, it was found that quadrature noise, which can cause excess phase noise,
displays a quadratic OPD dependence.

Finally, an application of the technique to FSI demonstrated the multiplexing of six
fibre segments of physical length 12.5 cm each, separated using FBG-based in-fibre
partial reflectors, where measurements could be obtained even for FBG reflectivities
as low as 107%. Maximum segment phase noise levels of 0.19 mrad - Hz=% for noise
frequencies between 1kHz and 43 kHz were found. The physical plausibly of the FSI
measurements was confirmed by measurements of the speed-of-sound in a stainless
steel rod using two independent evaluation methods, with results agreeing within
1% of each other and the theoretical value.

The noise behaviour when multiple reflectors are present, as well as the origins
of the quadratic quadrature noise OPD dependency, are not well understood and
further analysis is required. Key technical considerations and options for future
improvement have been discussed and a range of potential applications, both within
FSI, but also outside F'SI, have been proposed. It can be concluded that, considering
that a very simple optical setup with components totalling less than £3k was used, a
very linear, robust and cost-effective range-resolved interferometric signal processing
technique has been demonstrated.
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7. Application of the Sinusoidal
Frequency Modulation Technique
to Multi-Surface Vibrometry

7.1. Introduction

In this chapter, the SEFM technique presented in Chap. 6 is applied to free-space, multi-
surface vibrometry. Laser Doppler vibrometry [161] (LDV) is a widely-used technique
enabling non-contact interferometric displacement measurements of vibrating targets.
Commercial LDV systems [37,138,262,263] appear to be mainly based on heterodyne
signal processing (see also Sec. 3.3.1), using Bragg cells as direct frequency modulators
(see also Sec. 3.1.2), and employing a setup similar to Fig. 3.10, where heterodyne
signal processing offers high interferometric quadrature bandwidths of many MHz
[138,163]. The delivery of the laser light to and from the measurement object
can be free-space or fibre-coupled, where in fibre-coupled heterodyne measurements
[32, 33, 37], polarisation-based path isolation (see Fig. 3.3(a)), using polarisation-
maintaining fibres, is used to make the fibre down-lead insensitive.

In addition to heterodyne vibrometers, there are several instances in prior work
of fibre-coupled vibrometers that use self-referencing signal processing techniques
(see Fig. 3.3(c)). Here regular single-mode optical fibre can be used for laser light
delivery and the measurements are referenced against the LO provided by the fibre
tip reflection, yielding complete down-lead insensitivity. In these systems, signal
processing techniques based on optical illuminating frequency modulation (see also
Sec. 4.4) can be used, allowing a simple interferometric setup without an external
modulator. A particular advantage of self-referencing configurations is that very
compact sensing heads, consisting only of a fibre collimator, can be designed [35].
Prior work [34-36] in this area used various dual carrier Bessel signal processing
techniques (see also Sec. 3.4) in conjunction with laser diode injection current
modulation to obtain sinusoidal optical frequency modulation, typically enabling
quadrature bandwidths of several hundred kHz, which is, however, considerably lower
than heterodyne vibrometry. A major disadvantage of the use of dual carrier Bessel
signal processing techniques is that the sinusoidal optical frequency modulation
amplitude has to be maintained at a precise working point (see also Fig. 3.14(a)),
making these techniques susceptible to changes in the laser modulation efficiency
and requiring retuning for any change in the vibrometer working distance.
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The vibrometry techniques reviewed so far only allow the measurement of a single
reflective surface. In addition to this, so-called differential vibrometers [263] are also
commercially available [37], that allow differential vibration measurements by letting
two separate and spatially offset return beams interfere with each other. Applications
for differential vibrometers include the measurement of small differential vibrations
in the presence of large common-mode vibrations. However, a disadvantage of these
systems is that they can only yield differential vibration data whilst the common-
mode vibration information is lost. In contrast, in the self-referencing multi-surface
vibrometry system that is presented here, only a single delivery beam is employed
and range-resolved interferometric signal processing is then used to separate the
return signals based on their range. When multiple surface reflections are present
in the return beam, this allows the individual measurement of the movement of
each surface and both differential and common-mode vibration signals can then be
calculated. However, range-resolved techniques can have advantages even when only
a single surface is to be interrogated, as the influence of undesired signals, such as
window reflections [264], can be suppressed. In general, a very important practical
advantage of the presented SFM technique is the property of continuously variable
OPD placement of the constituent interferometers, subject to a minimum OPD
separation, that was previously discussed in Chap. 6. This allows measurements
to be taken anywhere along the beam path without retuning the laser modulation
parameters, which is of particular importance for multi-surface vibrometry because
there is normally no control over the geometry of the objects under test. In addition
to the approach proposed here, range-resolved vibrometry [265] has also recently
been demonstrated using an optical frequency comb technique. However, this
demonstration uses a complex optical setup and only allows the selection of the range
of a single location along the optical beam, thus, unlike the technique presented
here, it is not capable of simultaneous multi-surface vibrometry. Conversely, a
vibrometry technique with an even simpler optical setup than the proposed technique
is self-mixing vibrometry [263,266,267], where the signal returned from the target
object is used as feedback to a laser diode. However, while this technique is very
simple and cost-effective, it only allows the measurement of a single surface.

In the specific application presented in this chapter, the multi-surface vibrometry
system is applied, both during the development phases and for final product char-
acterization, to the measurement of the vibration characteristics of a commercial
table-top cryostat system [268] (OptistatDry), developed by Oxford Instruments
plc, and also depicted later in Fig. 7.4(a). Here, the first signal is provided by the
window of the outer vacuum chamber (OVC), while the second signal is reflected
off the solid metal sample holder inside the chamber. The sample holder is directly
connected to the piston-driven coldhead of the cryostat in order to cool the sample.
The coldhead introduces vibrations into the cryostat, in particular to the sample
holder through its direct link with the coldhead. In this application, independent
measurements of the movements of the OVC and of the sample holder relative to the
optical table are required to characterise the expected vibration levels of the final
product. Additionally, the ability to distinguish between common-mode vibrations
of the whole cryostat and differential vibrations between the OVC window and the
sample holder was used during the development phases of the cryostat to identify
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the origin of vibrations. These measurements provided an ideal test facility to
demonstrate the usefulness of the SFM technique outside fibre sensing, with the
implementation details and selected results shown and discussed in this brief chapter
that is an addition to the main FSI theme of this thesis.

7.2. Setup and Implementation

In Fig. 7.1(a), a picture of the portable signal processing implementation on a
breadboard is shown. Fig. 7.1(b) then details the optical setup. Here, sinusoidally
modulated light leaving the laser diode is guided by the circulator, using a regular
single-mode optical fibre lead that can be of arbitrary length, to the packaged
collimator, where it exits the fibre and is collimated by the lens. In general, a
collimated beam allows the reception of signals from multiple surfaces that are
sufficiently aligned, where, in this case, a fraction of the beam is reflected by the
Fresnel reflections of the OVC window, with the remainder reflected by the sample
holder surface. The return light collected by the collimator, together with the fibre
tip Fresnel reflection providing the interferometric reference, is then guided to the
photo detector and and the resulting interference signals are subsequently processed.

The details of the signal processing equipment are not drawn in Fig. 6.19(a) but
the equipment used is similar to Fig. 6.7. However, for the vibrometry experiment,
the FPGA implementation was modified, with the sinusoidal optical frequency
modulation frequency f,, increased by a factor of four to f,, = 391 kHz compared to
the previous implementation described in Fig. 6.3.1. The quadrature signal low-pass
filter cut-off frequency could then be set as high as fq., = 180kHz. However,
because long-term measurements also needed to be performed for this application,
the transmission data rate from the FPGA to the PC had to be reduced to enable
continuous transfer. Since the application only required the capture of mechanical
vibrations up to 1 kHz and no higher vibration frequencies were expected in the phase
signals, it was possible to reduce the transmission data rate by performing the phase
unwrapping on the FPGA and then downsampling the phase signals by a factor of
192. In this case, an interferometric quadrature bandwidth of fq ., = 180kHz could

(b) Arbitary Length  Packaged —
of Optical Fibre Collimator
Circulator i =
Laser /)\ e
Diode T —
_@b Fibre Tip Reflection L
Signal |_| Photo as Interferometric  Semireflective Sample
Proc. Detector Reference OVC Window Holder

Figure 7.1.: (a) shows a picture of the portable signal processing implementation on a breadboard.
(b) then illustrates the multi-surface vibrometry setup, where sinusoidally optical frequency modu-
lated light leaves the laser diode and is guided by a circulator, via the fibre lead, to a packaged
collimator. Reflections of the collimated beam from the OVC window and the sample holder
are returned into the fibre and are guided, together with the fibre tip reflection that forms the
interferometric reference, to the photo detector and processed by the signal processing hardware.
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still be resolved to capture low frequency phase signals of large amplitude, but the
transmission data rate could be reduced to 2.03kHz. Note, however, that in this
case the phase noise bandwidth still remains at 180 kHz.

Also, the corrections according to Sec. 6.2.5 were used throughout, however, the
correction parameters for the increase in the modulation frequency of a factor of four
were only estimated by manually optimising the appearance of the demodulation
maps shown in Fig. 6.10 and not directly measured as described in App. B.3.
Analogous to Fig. 6.20 for the SFM FSI experiment, Fig. 7.2(a) shows the photo
detector signal corrected for intensity modulation, along with the window function
used. It can be seen that the intensity modulation correction works well in keeping
the envelope of the interferometric signals constant. In this implementation, a
broader window with increased window width parameter of ¢ = 0.05 was used,
which, as discussed in Sec. 6.2.3, can provide higher spatial resolution if the baseband
suppression expectations are lowered. In Sec. 6.2.3, a spatial resolution on the order
of Anmin = 0.06 m was calculated for o = 0.045 and Sy, accept = —50dB, and similar
values could theoretically be expected here for the previous modulation frequency
of fun, = 98kHz. However, because the modulation frequency f,, was increased by
a factor of four, the optical frequency modulation efficiency of the laser diode is
reduced. No detailed characterisation measurements were performed, however, it
can be estimated from the range dependency of the return signal that the optical
frequency modulation amplitude Af,y is reduced by approximately a factor of
two, increasing the minimum permissible OPD separation to values A7y, ~ 0.12m.
Fig. 7.2(b) then shows the range dependency of the return signal, with the initial peak
at Aq = 5rad due to the artefact arising from the intensity modulation correction,
that is caused by the underlying distorted sinusoid of frequency f,, that can be seen in
Fig. 7.2(a), as previously discussed in Sec. 6.3.1. In Fig. 7.2(b), the range dependency
of the returned signals is plotted analogously to the right panels in Fig. 6.10 and
the signals are labelled according to their source, with the bounce number m that is
explained in the paragraph below also marked. The slight asymmetry in the range
dependency of the signals seen in Fig. 7.2(b) is thought to be because the parameters
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Figure 7.2.: Analogous to Fig. 6.9(c), (a) shows a plot of the photo detector signal corrected for
intensity modulation according to Sec. 6.2.5 along with the window function used, now at o = 0.05
and over a reduced modulation period Ty, = 2.56 us. (b) then shows the OPD dependence of the
return signals as a function of demodulation carrier amplitude A4 analogous to the right panels in
Fig. 6.10, with the two evaluated reflections and their bounce number m marked.
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for the corrections of Sec. 6.2.5 were only approximated. This does not appear to
affect the measurements significantly, which is in line with the discussion in Sec. 6.3.2,
where reasonable measurements were possible even without any corrections.

The spatial resolution Any;, ~ 0.12m calculated above is up to one order of
magnitude higher than the minimum return distances between the OVC window
and the sample holder for the cryostat. Therefore, the signals of the OVC and the
sample holder had to be separated by other means. In general, it was observed that
under certain alignment conditions, only the signal corresponding to the second
bounce of the OVC window is present, while the regular, first bounce reflection
is missing. Here, the light from the second bounce reflection of one of the OVC
window surfaces, upon returning from the initial reflection by the OVC window,
appears to be reflected by the collimator rim, then travels to the OVC window for a
second time, where it is again reflected and then coupled back into the fibre. This is
also illustrated in Fig. 7.3 for one of the OVC window surfaces using rays 1 to 4,
where the final ray 4 has been reflected twice by the OVC window surface. With
the fibre collimator (Thorlabs F280FC-1550) used, it was remarkably simple to align
for the second bounce signal and it is thought that concentric, machined grooves
on the collimator rim act in a similar manner to a retro-reflector [269], returning
light into its original direction for all angles of incidence. Another indication that
this phenomenon is based on retro-reflection is that this procedure was only possible
for the highly specular window reflections and not for light returned by the metal
sample holder, which has a rougher surface leading to more diffuse reflections.

Collimator
Rim

3
Fibre End

OVC Window Surfaces  Target Surface

Figure 7.3.: Explanation of dual bounce alignment, where the rim of the packaged collimator is
thought to act like a retro-reflector by directing ray 3 in the reverse direction of ray 2, so that ray
4, which ultimately reaches the fibre end, has been reflected twice by the OVC window surface.

The occurrence of retro-reflection in the collimator rim could explain the phe-
nomenon observed, however, this conjecture still has to be confirmed by other means.
Nevertheless, using this it was possible to consistently align the measurements in
such a way that only the second bounce of the OVC window and the first bounce of
the metal sample holder were exclusively present in the return signal. In this case
the OPDs of the two signals differ widely, allowing their straightforward separation
and the range dependence for such a case is shown in Fig. 7.2(b). This procedure was
possible for a range of working distances between collimator and cryostat for all three
Cartesian coordinate directions X,Y and Z where measurements were performed.
However, care had to be taken, using suitable plausibility checks and additional
single-surface measurements, using reflective tape on the OVC and thus exclusively
receiving this signal, to always correctly identify all peaks and the corresponding
bounce numbers m. A further point to note is that, in this work, the thickness of the
window of the OVC is much smaller than the minimum resolvable spatial separation
between sources. Therefore the phasor sum of the Fresnel reflections of both window
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surfaces is effectively taken as the OVC signal, which does not pose any problems as
long as the window thickness remains constant, which can generally be assumed for
the short vibrometry measurements shown here.

In general, neglecting small angular differences due to slightly non-normal incidence
in a multi-bounce alignment, using the bounce index m, for a phase signal Ap(t) =
©(t) — p(to) that was captured from time ¢, onwards, the displacement Al(t) =
[(t) — l(ty) of the surface in question can be given by:

Ao - Ap(t)
Al(t) = o o (7.1)
For the cut-off frequency fq.co = 180kHz used in this implementation, employing a
safety margin of 15% similar to the discussion in Sec. 5.5.2, the quadrature bandwidth
Bq that the vibration signals are allowed to take up is Bq = 153kHz. Plots of
permissible signal amplitudes for this case are also shown in Fig. 3.5. For a sinusoidal
test signal of frequency fs, = 1Hz, inserting Eq. 3.5 into Eq. (7.1), this corresponds
to a displacement amplitude of 19 mm for m = 1 and 8.9 mm for m = 2, however, for
a test signal of 100 Hz, this is reduced to 0.19 mm for m = 1 and 0.089 mm for m = 2.
Similar to common usage in LDV [138], in an approximation for low frequency phase
signals, this can also be described by the maximally resolvable target velocity of
119mm - s~ for m = 1 and 59mm - s~! for m = 2.

A picture of the whole cryostat, without the compressor located at the side of the
optical table, is shown in Fig. 7.4(a), where the optical windows of the cryostat can
be set to different working heights and where the working height differs between
Figs. 7.4(a) and (b). A typical measurement arrangement is then shown in Fig. 7.4(b),
illustrating a measurement in the X-direction, with the other Cartesian directions Y
and Z also marked. In all cases, a kinematic mount is used to align the optical axis
and both the window of the OVC and the sample holder inside the cryostat were
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Figure 7.4.: A picture of the whole cryostat is shown in (a), while (b) shows an annotated picture
of a typical physical measurement arrangement in the X-direction, where the cryostat was set
to different working heights in (a) and (b). In (b), light leaving the single-mode fibre lead and
packaged collimator is directed to the OVC window and the sample holder inside the cryostat, with
correct alignment achieved using the kinematic mount.

167



Chapter 7 Application of the SFM Technique to Multi-Surface Vibrometry  Section 7.3

measured using the previously described technique of dual-bounce alignment. For
the measurement in the Z-direction, the kinematic mount was lowered close to the
surface of the optical table and a 45° reflector prism was inserted under the cryostat
to direct light upwards through the bottom window. The measurements shown later
were obtained using reflective tape on the sample holder to increase signal strength,
but successful measurements on other occasions have also been obtained from the
unpolished copper surface of the sample holder.

7.3. Experimental Results

Using the described multi-surface vibrometry system, a large body of data has been
collected for different vertical working heights and operating temperatures of the
cryostat and during different stages of the development of the product. Fig. 7.5 shows
measurements for the final product at a cryostat temperature of 4 K and at a working
height of the optical windows of 172 mm. These measurements, which were recorded
sequentially for each Cartesian direction, are representative for the system, although
changes in the operating conditions, such as different cryostat temperatures and
working heights, result in somewhat different vibration signatures and amplitudes. In
Figs. 7.5(a), (c) and (e) on the top, the two displacement signals, determined using
Eq. (7.1), corresponding to the OVC and the sample holder, are plotted directly for
each of the three Cartesian measurement directions, respectively. Figs. 7.5(b), (d)
and (f) then plot the numerically computed difference signals between the OVC and
the sample holder. Here, the insets enlarge a section of the difference signal, with a
displacement scale that increases going from Fig. 7.5(b) to Fig. 7.5(f).

For final product characterization of the cryostat, the root mean square (RMS)
values of the individual surface measurements are required. Here, for the results shown
in Figs. 7.5(a), (c) and (e), RMS values of [6.5 yum, 1.3 pm, 4.1 pm] for the [X,Y,Z]
vibrations of the OVC, and of [5.8 um, 1.0 um, 8.4 ym]| for the [X,Y,Z] vibrations
of the sample holder were determined. Therefore it was confirmed that the RMS
values are within the product specification limit of 10 um. However, during the
product development phases, the diagnosis of the origin of the vibrations and their
quantification was of particular importance. In all the cases plotted in Fig. 7.5, there
is a dominant vibration at 1 Hz due to the movement of the coldhead piston. Also,
the OVC and the sample holder show considerable common-mode vibrations, for
instance at ~ 6 Hz for the X-direction as visible in Fig. 7.5(a) with a peak-to-peak
amplitude of 20 ym, with these vibrations completely absent in the corresponding
difference signal in Fig. 7.5(b). In the difference signal in the X-direction shown
in Fig. 7.5(b), a vibration at ~ 95Hz can be seen, also enlarged in the inset in
Fig. 7.5(b). This is further investigated in Fig. 7.6(a), which plots the two measured
signals together with the difference signals in a single plot, over a time span that
is the same as in the inset in Fig. 7.5(b). In Fig. 7.6(a) it can be seen that the
amplitude of the 95 Hz difference signal is larger than that of both the OVC and the
sample holder 95 Hz signals and that the phases of the OVC and the sample holder
95 Hz signals are nearly 180° apart. Therefore a mechanical resonance, where the
OVC and the sample holder vibrate anti-phase can clearly be identified in Fig. 7.6(b).
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Figure 7.5.: Plot of typical vibration signatures recorded over three seconds for the three Cartesian measurement directions. Here, the upper panels (a), (c)
and (e) directly plot the measured OVC and sample holder displacement signals for directions X, Y and Z, respectively, while the lower panels (b), (d) and
(f) show the corresponding numerically computed difference signals. In each of the lower panels, an inset that plots an enlarged section of the differential
vibration signal between 2.0s and 2.2s is drawn, where the displacement scale in the insets increases from +4 pm in (b) to £0.5 um in (f).
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Figure 7.6.: Enlarged versions over 0.2s of the signals of Fig. 7.5 in the X-direction are shown
in (a), while (b) shows the signals in the Z-direction. Here, the two directly measured signals are
plotted together with their numerical difference signals in order to enable their comparison.

The most striking result presented here is the difference signal in Fig. 7.5(f), which
shows that in the Z-direction there is a complete absence of any high-frequency
differential vibration signals, even though the 1 Hz coldhead piston movement is
clearly present. Again, this is further investigated in Fig. 7.6(b), which plots the
directly measured signals and their difference signal in a single plot over an enlarged
time-scale of 0.2s. Here, the complete absence of common-mode vibrations, in
particular the =~ 15 Hz vibration visible in the signals of both the OVC and the
sample holder, is evident in the difference signal. Therefore, it can be concluded from
both Figs. 7.5(e) and (f) and from Fig. 7.6(b) that in the Z direction, the system
is very stiff without any resonance, and that both the OVC and the sample holder
move practically as one unit, except for the differential coldhead piston movement.

Noise levels were determined from the difference signal in the Z-direction, recorded
when the cryostat cooling system was switched off, because the structure is very stiff
in the Z-direction and no mechanical resonances appear to exist. The differential
signal in the Z-direction can be expected to be mostly free from environmental noise
sources, because environmental noise is likely to be common to both measurement
surfaces. The resulting instantaneous noise standard deviation for the difference
signal in the Z-direction is 3.4nm. Due to the downsampling of the signals in the
FPGA that was described in Sec. 7.2, the phase noise over the whole quadrature
bandwidth of 180 kHz is aliased into the signal band below 1kHz, resulting in a high
but very flat noise floor. Therefore it is possible to calculate a displacement noise
level, which for the difference signal in Z-direction corresponds to 8 pm - Hz =%, From
further measurements it is known that the noise shows a clear range dependency,
which indicates that the measurements are laser phase noise dominated, as would be
expected from the discussions in Chap. 6.

7.4. Discussion

The results shown in Fig. 7.5 and Fig. 7.6 clearly highlight the high measurement
quality that can be obtained when the SFM technique is applied to vibrometry.
Because multiple surfaces are measured simultaneously and along the same optical
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beam, valuable insight into the origin of vibrations, allowing, for example, the iden-
tification of mechanical resonances, can be gained using the described approach.
Regular commercial vibrometers use low-noise helium-neon lasers and can be op-
erated in an OPD-balanced setup. Noise levels in commercial vibrometers [262] of
0.05pm - Hz7%® can thus be achieved, which are considerably lower than the value of
8 pm - Hz=%5 typical for the this system. However, it is thought that there are many
applications where the instrumental displacement noise is not the limiting factor.
Instead, the possibility of suppressing environmental noise [270] by local referencing
of the measurement could be a much more important practical advantage. The
ability of this approach to perform common-mode vibration suppression was clearly
demonstrated by the example measurements in this chapter, where common-mode
movements of the cryostat are suppressed to a high degree in the differential signal,
as particularly evident in Fig. 7.6(b).

Furthermore, the technique allows the suppression of spurious reflections based on
their range and also permits the verification of the range of the return signals, which
can be useful in practical operation in order to exclude reflections from surfaces, such
as windows [264], that are not of interest. Also, the technique is in principle extendable
to more than two measurement surfaces. In general, in a collimated measurement
configuration, return signal powers are lower than for a focused configuration.
Also, a collimated beam will result in a higher angular sensitivity than the focused
beam configurations typically used in LDV [138,262,263], requiring tighter angular
alignment tolerances of the surfaces. The optical configuration, however, is of no
relevance to the signal processing, as long as sufficient return power is received,
therefore a focused configuration could equally be used with the SFM technique
if only a single surface is of interest. It it thought that, due to the cost-effective
implementation and the simplicity of the fibre-coupled setup, the system could
have applications for permanently installed displacement or vibration sensors for
multi-surface interrogation, even if only a single surface is to be evaluated.

7.5. Summary

The range-resolved interferometric signal processing technique based on sinusoidal
optical frequency modulation presented in Chap. 6 has been applied to multi-surface
vibrometry. Using a very simple fibre-coupled optical setup with complete down-lead
insensitivity and with component costs totalling less than £3k, simultaneous meas-
urements of the vacuum window and the sample holder inside an industrial table-top
cryostat have been obtained. Vibration measurements with typical displacement
noise levels of 8pm - Hz=%? have been demonstrated, with an interferometric quad-
rature bandwidth of 180 kHz. These results highlight the ability of the approach to
separate common-mode vibrations of the whole cryostat from differential vibrations
between the sample holder and the window. It was demonstrated how this is useful
in identifying mechanical resonances. Further applications are envisaged in areas
where the cost-effectiveness and robustness of the setup would allow permanently
installed vibration or displacement sensors to be used or where local referencing,
using a window close to the target, would permit environmental noise suppression.
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8.1. Conclusion

During the course of this PhD project, two independent, novel, range-resolved optical
interferometric signal processing techniques, based on code-division multiplexing
(CDM) and sinusoidal optical frequency modulation (SFM), have been proposed and
experimentally demonstrated. Both of these techniques were applied to the fibre
segment interferometry (FSI) approach that forms the main theme of this thesis,
with the SFM technique additionally applied to multi-surface vibrometry.

The main novelty of the first technique is the combination of single-sideband (SSB)
signal processing with CDM. This allows both interferometric phase evaluation and
range-based signal separation to be performed using only a single, regular electro-
optic phase modulator. This is in contrast to prior work in this area, where more
complex modulator arrangements were used. A particular achievement of this work
it thought to be the realisation and quantification of the significant influence that
the anti-aliasing filtering, which is necessary in any digital signal processing system,
can have on the linearity and crosstalk performance. This is thought to be a general
result that is also applicable to other CDM techniques. In this work, the impact of
the anti-aliasing filtering has been included in the theoretical description, albeit only
for stationary phase signals in its current state of development. Nevertheless, it was
confirmed experimentally that this allows the prediction of the measured linearity
performance with good agreement. Therefore this theoretical approach can be used
to evaluate different filter design choices and thus accelerate future system design.

The SFM technique was experimentally demonstrated using sinusoidal injection
current modulation on a laser diode, leading to a very simple setup without any
external modulator. The key innovation in the SFM signal processing technique is
the application of a smooth window function to remove sidelobe energy compared
to the rectangular window/gating functions that were used in prior work in this
area. In addition to this, for the constituent interferometer to be interrogated, a
time-variant carrier is used for interferometric phase demodulation that resembles
the expected complex version of the interferometric photo detector signal expected.
The combination of these improvements then allows the interrogation of constituent
interferometers with continuously variable optical path differences (OPD), subject to
a minimum OPD separation, without any apparent drop in linearity. This greatly
improves the practicality and flexibility of the approach compared to prior work. A
detailed theoretical description has been developed for the SFM technique and it was
shown through numerical modelling that in practical operation of the SFM technique,
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linearity and crosstalk are mainly affected by the number of quantisation levels
available to the digitised photo detector signal and that there is no theoretical limit
for the achievable linearity. The approximate validity of these modelling predictions
was confirmed by two independent experiments. Furthermore, it was experimentally
demonstrated that non-idealities arising from injection current modulation in real
laser diodes can be reliably corrected in post-processing, however, even without any
correction, measurements at reduced performance are still possible.

The linearity, crosstalk and noise performance for both the CDM and the SFM
techniques was experimentally characterised using mostly the same criteria for both
techniques, where key performance parameters were also discussed individually for the
two techniques in the respective summary sections, Sec. 5.7 and Sec. 6.7. Additionally,
the most important performance parameters are also summarised in Table 8.1. When
comparing the two techniques, the demonstration experiments showed an order of
magnitude improvement in the non-linearity errors for the SFM technique compared
to the CDM technique, achieving cyclic error levels down to 1.0 mrad for the SFM
technique. Similarly, crosstalk suppression levels in the quadrature signals were
improved by an order of magnitude for the SFM technique, reaching typical values
of < —60dB. In both cases, it was found that crosstalk levels in the resultant phase
signals were lower than in the quadrature signals and phase signal crosstalk at the
determined magnitudes < —60dB is thought to be negligible in many applications.
It was established for both techniques that at typical power levels they are in laser

Table 8.1.: Comparison of key performance parameters of the two proposed techniques.

Parameter =~ Techn. Value Notes
Non- CDM +0.03 rad Fig. 5.24(c)
Linearity SEM +0.001 rad Fig. 6.11(d) for Nested MZ Exp.
Errors +0.006 rad Fig. 6.22(c) for FSI Exp.
Quadrature CDM < -32dB Fig. 5.22(c)
Crosstalk SFM < —-60dB Fig. 6.14(a)
Phase Signal ~CDM < —60dB Figs. 5.26(c), (d) and (e)
Crosstalk SFM < -70dB Fig. 6.14(b)
Quadrat CDM 20kHz (208 kHz) Dem. (Theo.); see Sec. 5.4.4
uadrature
Bandwidth SFM 43 kHz FSI, see Sec. 6.3.1
180kHz Vibrometry; see Sec. 7.2

Single Interf. CDM  0.022mrad Hz %*m™! Fig. 5.18(c) for 1kHz to 20kHz
Phase Noise ~ SFM  0.16 mrad Hz°?m™'  Fig. 6.18(b) for 1kHz to 43kHz

FSI CDM 4@ 16.5m see Sec. 5.4.3
Segments SFM 6 @ 0.125m see Sec. 6.5.1

FSI Segment CDM 2.2mrad Hz %5 Fig. 5.28(c) for 1kHz to 20 kHz
Phase Noise — SFM 0.19 mrad Hz % Fig. 6.25(b) for 1kHz to 43 kHz
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phase noise limited operation, and thus noise is a property of the quality of the
laser diode only. However, observed single interferometer OPD-specific phase noise
levels in the SFM technique at 0.16 mrad Hz=%® m~! were about seven times higher
than corresponding values from the CDM results, presumably due to the detrimental
effects of strong injection current modulation on the laser driver.

A further achievement in this work is thought to be the realisation of the significance
of quadrature noise caused by aliased high-frequency laser phase noise, which is
a phenomenon that has been observed before but does not appear to be widely
known. This quadrature noise is OPD dependent and can leak from one constituent
interferometer into others and has been observed for both CDM and SFM techniques.
Therefore, the number of constituent interferometers that can be multiplexed as well
as the permissible OPDs may ultimately be limited by quadrature noise. In this work,
for the CDM technique, strong quadrature noise due to the large OPDs involved in
the experiments has already led to a significant reduction in the available quadrature
bandwidth, reducing this to approximately 10% of the theoretically possible value.
It was found for both techniques that when only a single interferometer is present,
the quadrature noise has a quadratic OPD dependence. It was also found that
the noise behaviour for multiple constituent interferometers is very complex and
that a future investigation confirming the exact origin of quadrature noise and its
mutual interaction and correlation between multiple constituent interferometers is
an important open research question arising from this work.

Both techniques were shown to achieve large quadrature bandwidths of many tens
of kHz, with values up to 180 kHz demonstrated for the SEM technique. In this work,
low-reflectivity (typically 107°), broadband (=~ 5nm) fibre Bragg gratings (FBG)
have been shown to be a suitable partial in-fibre reflector technique for FSI-based
sensing, with measurements possible even for reflectivities as low as 107%. A key
advantage of the SFM technique over the CDM technique, apart from the simpler
and more cost-effective optical setup, is the significantly increased spatial resolution
possible. Here, using the same digital signal processing hardware, the minimum FSI
segment length could be reduced from 16.5m for the CDM technique to 0.125m
for the SFM technique, where 4 segments were multiplexed for the CDM technique
and 6 for the SFM technique. This has been possible because the SFM technique,
in contrast to the CDM technique, effectively decouples spatial resolution from the
signal processing hardware bandwidth, making it a property of the laser source
only. The high spatial resolution possible with the SFM technique also enabled
the demonstration of the novel concept of simultaneous, single-beam multi-surface
vibrometry in Chap. 7 as part of an industrial measurement. This also highlighted
the particular usefulness of the approach for the detection of resonances and for the
suppression of environmental noise through local referencing using a window.

Therefore, it can be concluded that in this work, two novel range-resolved op-
tical interferometric signal processing techniques, based on very different physical
principles, have been successfully theoretically described and experimentally demon-
strated. Their performance has been characterised in detail, the advantages and
disadvantage of each technique have been extensively discussed and a multitude of
future improvements, research directions and applications have been proposed.
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8.2. Outlook

Application Overview The future usefulness of the two proposed techniques will
most likely be decided by their spatial resolution capabilities, their linearity perform-
ance and their ease of deployment and cost-effectiveness. Based on these criteria,
the SFM technique offers very compelling advantages. Therefore, as discussed in
Sec. 6.6.2, the SFM technique could be beneficially used in many applications for
both FSI-based sensing as well as outside FSI. Potential future FSI applications for
the SFM technique could include structural health monitoring, fibre optic shape
sensing, high spatial resolution FSI and multi-wavelength FSI for absolute meas-
urements or temperature/strain discrimination. Also outside FSI, the application
to multi-surface vibrometry! the has already proven its usefulness in an industrial
environment and its extension to more surfaces, improving the spatial resolution by
using more widely-tunable lasers or increasing the quadrature bandwidth through
faster modulation remain further research avenues to be pursued. Furthermore,
the potential of replacing polarisation-based path isolation with range-based signal
separation in combination with the very high linearity values that the SEFM technique
is thought to offer for large processing bitwidths could lead to future impact in
high-precision displacement interferometry.

However, it is also thought that the CDM technique could be advantageously
used for longer range applications, using the direct interference, low-coherence FSI
configurations proposed in Sec. 5.6.2, and where the SFM technique cannot operate
in a direct interference FSI configuration. In direct segment interference, the dynamic
range set by the fixed quadrature bandwidth is not shared by all segments, where
the sharing of dynamic range between sensors would pose a particular problem for
long sensing fibres. Application areas could include structural health monitoring and
fibre optic shape sensing on large structures. Using widely available signal processing
hardware, the segment length in CDM FSI could be improved to several metres
and, for a direct interference configuration, where all segment data is nearly OPD
balanced and quadrature noise levels should thus be low, the multiplexing of many
more fibre segments is thought to be possible. Targeting total sensing fibre lengths
of several hundreds of metres, the CDM technique could bridge the gap between
fully distributed sensing techniques and fully localised sensing techniques. Here,
in contrast to other dynamic and relatively cost-effective distributed techniques,
such as distributed acoustic sensing, FSI, as an interferometric technique, inherently
offers fully quantitative measurements, and compared to localised grating-based
approaches, FSI offers continuous measurements without sensing gaps.

Application to Robotic End-Effector Sensing? A specific application of the SEM
technique that is highlighted here is robotic end-effector sensing. It has already been
discussed in Sec. 6.6.2 that the range information that is present in the demodulation
parameter maps of Fig. 6.10 could be used to measure the absolute distance between

Impact acceleration funding has been awarded to upgrade the breadboard-based setup of
Fig. 7.1(a) into an enclosed prototype to showcase the approach to interested parties (see Page 179).

2This proposal has won impact acceleration funding to build an initial demonstrator and
research council funding has been awarded to pursue this in a three year programme (see Page 179).
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the fibre-tip reflection and object when suitably calibrated, with feasibility studies
resulting in typical resolutions between 10 to 100 ym for absolute distance meas-
urements using modulation parameters similar to Chap. 6. In the proposed sensor
concept, using a system similar to the vibrometry setup illustrated in Fig. 7.1(b),
interferometric phase evaluation is used to obtain relative displacement measurements
with nm resolution alongside coarser absolute distance measurements as described
above. The high displacement resolution that the interferometric approach can
offer is particularly useful for obtaining accurate derivative velocity and acceleration
information for control purposes. Using at least three spatially offset interferometric
sensor beams would then additionally allow the measurement of angular changes
at high interferometric resolution and absolute tilt angles at lower resolution. This
is illustrated in Fig. 8.1(a) for a four-beam interferometric system, with the forth
beam used for redundancy purposes. In the proposed sensor concept this is then
combined with laser speckle velocimetry [271-273] to provide in-plane measurements
of relative motion and rotation, as illustrated in Fig. 8.1(b), with feasibility studies
indicating a spatial resolution in the ym range. The combined sensor could then be
mounted on a robotic end-effector, allowing the measurement of relative position
and angular changes between a robotic end-effector and a workpiece in all directions,
with absolute measurements of the out-of-plane distance and tilt measurements at
lower precision and with both techniques allowing high data rates well beyond 1 kHz.

ZroII, Q, y (@) (b)
pitch 2 ) + — Sensor
< 1

yaw,Q x

Absolute Distance: (z, Q x, Qy) Laser Speckle (Ax, Ay, AQZ End-effector
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(higher precision)  (z', Qx', Qy' ) (" y", Q") piece
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Figure 8.1.: Robotic end-effector sensing concept, where (a), using the SFM technique, shows a
multi-beam measurement of out-of-plane distance and displacement as well as tilt between robot
and the workpiece. (b) then illustrates how laser speckle velocimetry is used to measure in-plane
movement and rotation. Finally, (c) shows the combined sensor mounted on the robot end-effector.

The main application area of such an end-effector sensor is thought to be the
stabilisation and control of the end-effector relative to the workpiece in order to
reduce the negative effects arising from robot end-effector vibrations. Here, it is
intended to use the combined sensor to measure linear and angular movements
of the robot end-effector relative to the workpiece and use this data to correct
the production process. It is thought that this would be particularly beneficial in
the area of laser-based processing [274,275|, where the direction and focus of the
laser beam used for processing could be adjusted using beam steering and focusing
equipment that is often already present in advanced laser processing systems. Further
possible applications include motion tracking to lock the robot to a moving assembly
line [276] and relative positioning operations, where high relative tolerances between
component mounting positions require high-precision relative measurements [277].
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Application to Fibre Optic Shape Sensing® Fibre optic shape sensing [26,27,81],
often also referred to as bend or curvature sensing, allows the fibre path, and the
structure to which the fibre is attached, to be followed through space and any
lateral displacements to be inferred. Here, a key advantage is that the measurand,
curvature, is directly determined within the sensing fibre and does not rely on
strain transfer from the structure. Also, when differential measurements in multi-
core fibres (MCF) are used, common-mode influences, such as temperature and
longitudinal strain, are automatically compensated. It was discussed in Sec. 6.6.2 that
strain resolution increases proportionally with sensor gauge length in interferometric
curvature sensing, which is a considerable principle advantage. Here, competing
approaches are based on long-period gratings [81] (LPGs) and fibre Bragg gratings [26]
(FBGs) (see also Sec. 2.3). However, LPGs are difficult to multiplex and sensitive
to the surrounding medium, which affects robustness, whilst FBG-based sensing, as
discussed in Secs. 5.6.1 and 6.6.1, offers considerably lower dynamic strain sensitivities.

The fibre-optic shape sensing concept is illustrated in Fig. 8.2 for the SFM
technique. Here, using the FSI approach that is detailed in Sec. 6.5 where FBG
in-fibre partial reflectors are used, three cores of a commercially available four-core
MCF are separately interrogated. This results in curvature sensors for the two
Cartesian directions x and y, as illustrated in Fig. 8.2. However, in order to mitigate
polarisation-induced fading (see Sec. 2.4), polarisation-diversity detection [101] is
used, requiring three photo detectors and associated signal processing per interrogated
fibre core. In addition to the use of the SFM technique illustrated in Fig. 8.2, a
related interrogation approach using the CDM technique could have advantages for
longer range applications, where spatial resolution is not critical, as outlined before.

Interrogation Unit Four-Core Curvature | Curvature | Curvature Fibre
—_— MCF Sensor 1 | Sensor 2 | Sensor 3 Tip
x3 ) Mirror

-4 P

QLD Polarisation

Signal Diversity

Proc. Detector |||/ In-Fibre FBG Fibre Segments with

Not Used Partial Reflectors Differential Strain

Figure 8.2.: Application of the SFM technique to fibre optic shape sensing using MCF. The
interrogation setup is similar to the previous FSI setup in Fig. 6.19, except for the use of polarisation-
diversity detection, requiring three photo detectors and associated signal processing. Furthermore,
three complete detector units for each of the three interrogated MCF cores are required. Within the
MCF, the interferometric reference is provided by the fibre tip mirror, and three resulting curvature
sensors for both Cartesian directions x and y are illustrated.

Key applications of fibre optic shape sensing using the SFM technique are thought
to be active control of aerodynamic structures, such as aircraft wings [278,279] or wind
turbine blades [82,280] to improve efficiency and alleviate loads to increase service life.
Further applications include structural health monitoring for engineering structures,
in particular dynamic approaches such as vibration-based condition monitoring [256].
Additionally, due to the longer ranges it offers, the CDM technique could be applied
advantageously in the monitoring of civil engineering and geotechnical structures.

3A research proposal involving this approach is currently in preparation.
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A. Derivation of the Single Sideband
Equations

The derivation of the single-sideband equations (SSB) is not explained in detail in
prior work [164,165]. Therefore in Appendix A.1, the necessary steps are described
for instructive purposes and also include the actual demodulation of the desired phase
signal ¢(t) not performed in prior work. This is in preparation for the derivation of
the extended equations in Appendix A.2, which incorporate multiple signal sources,
the influence of the anti-aliasing filter and the decoding function for code-division
multiplexing (CDM).

A.1. Derivation of Single Sideband Equations in Prior
Work

Starting by restating Eq. (5.1):
Upa(t) = R(Pog + Pegt - cos[ip(t) + s0(1)]) (A.1)
Rewriting the cosine using complex exponentials and splitting the phase terms:

Upa(t) = RPog + 0.5RPag( explj - o(t)] - expli - s0(t)]

vowl- o) ewl-j-sie) O

Now expanding the phase-modulated exponential terms with sHN(t) that are periodic
with modulation period Ty, = f..! by a complex Fourier series expansion [281] with
integer harmonic index n:

Upa(t) = RPog + 0.5RPr ((expli - o(t)] - ( i Cn explj - 270 fint])

=% (A.3)
+expl—3 - ¢(0)] - (3 ewexplj-2mnfut]) )
with .
Cp = 7} /é explj - s0(t)] - exp|—j - 2mn fut]dt (A.4)
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Tm

¢ = 7} /J[T exp[—j - s0(t)] - exp[—j - 2mn funt]dt (A.5)

Noting that:
Cp=c", (A.6)

Using this to rewrite the last sum term in Eq. (A.3) as:

S twexpli 2mnfut] = 3 (conexpl—j- 2mnfut])
n=—o00 n:ogoo ) (A?)
= Z (cn explj - 27mfmtD

Here the last operation is just a resorting of the sum terms. Using this allows
Eq. (A.3) to be rewritten as:

o0

Upa(t) = RPog + 0.5RPg- > (cn -explj - o(t)] - exp[j - 2mn fut]
n=—oo (A.8)

+ (e expli- 9(t)] - exp - 27 fut])")

This can be expressed as the real part using the formula Re{z} = 0.5z + 0.5z* for
any complex number z, where ¢, is still given by Eq. (A.4), as:

o0

Upda(t) = RPog + RPe - Y Re{cn - exp [j : ((p(t) + 27mfmt>” (A.9)

n=—0oo

Eq. (A.9) is the analogous version of the SSB equations given in prior work [165].
In this work, however, the demodulation of the phase signal ¢(t) is included in the
derivation, which is best carried out using the signal of the previous version of the
SSB equation of Eq. (A.8). The complex demodulation carrier function C,(t) at the
chosen carrier harmonic of integer harmonic index n is given by:

Cy(t) = exp|—j - 2mn fmt] (A.10)

For demodulation, the signal Uyq(t) of Eq. (A.8) is digitally multiplied with the
carrier Cy,(t) of Eq. (A.10) and the resultant signal is then low-pass filtered at cut-off
frequency fqeo < 0.5fm (see also Sec. 3.1.4). The low-pass filter (LP), in effect,
removes the sum sign in Eq. (A.8) and only two exponential terms remain. When the
single-sided quadrature bandwidth Bgq s of the phase signal ¢(t) is within permitted
limits, i.e. Bqess < fQ,co, Only terms at +n and —n, for the first and second complex
exponential terms in Eq. (A.8) respectively, fall within the output bandwidth of
the low-pass filter. Demodulation at n = 0 serves no purpose and therefore, for
demodulation with a carrier of harmonic index n # 0, the resultant low-pass filtered
complex quadrature signal Uq, (), with ¢, from Eq. (A.4), is given by:

Ugn(t) =LP{Cu(t) - Upl(t)}

= 0.5RP.q - (cn cexpli - @(t)] + ¢t - exp[—] - w(t)]) (A.11)
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A.2. Derivation of Extended Single Sideband
Equations for Stationary Phase Signals

Starting by inserting U,q(t) of Eq. (5.8) into Eq. (5.10) results in:

Udec(ta Td) = d(t — Td) : (hcomb(t) * (Rpoff)> + kX::ld(t - Td). (Al?)

(hcomb(t) * (RPeffJC - cos[px(t + 1) + sg(t + Tk)]))

Rewriting the cosine in exponential terms analogous to Eq. (A.2) yields:

kmax

Usee(t, 7a) = d(t = 7a) - (Peomn(t) * (RPo)) + > d(t — 7a) - (hcomb(t)*
(05R P - (expli- u(t + 7)) - exply - 50t + 7))+ (A.13)

ool el el it TM)))

Ideally, in the derivation of the extended SSB equations, the effects of the combined
anti-aliasing filter impulse response hcomp () and the CDM decoding function d(t —74)
would also be included in the Fourier coefficients along with the phase modulation
function sg(t + 7). However, this is not possible because the convolution with
respect to time of heomp(t) also acts on the time-variable exponential phase terms
with @r(t + 7%), preventing straightforward disassociation of these terms. If, on
the other hand, a stationary phase @i (t + 7) := ¢ is assumed then the scalar
associativity property [282] of the convolution can be used to let hcomp(t) act only
on the exponential terms with sg(t + 71) and all these effects can then be described
solely by the Fourier coefficients of the expansion.

This assumption of stationary phase signal is used in the following and appears
to hold well in the experiments, apparently because the occurring phase signals
or(t + 7,) change over time scales much slower than the length T}, of Acomb(t).
Using this assumption allows the Fourier expansion of Eq. (A.13) to be carried out
analogous to Eq. (A.3) to Eq. (A.8). This is possible because both d(t — 74) and
heomp(t) are real functions that do not interfere with the complex conjugations and
both R and P.g ) are assumed stationary. Note that the common periodic frequency

of all terms is NOoW feode = Tioie @S given by Eq. (5.7), resulting in:

kmax n=00

Useet, 7a) = d(t = 7a) - (Peomn(t) * (RPo)) + > > 05RPugy-

k=1n=—o0

cn,k(Td) . eXp[j : ‘sz] . exp[j . 271-nfcodet)]

+(CN,k(Td) . exp[j : gpk] : exp[j : 27Tnfcodet)])*)

(A.14)

N\
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with the Fourier coefficients ¢, x(74) given by:

1 +Tcode
2
nilm) = 7 [, (=7
code Y ——5
(hcomb(t) % explj - sg(t + Tk)]) - exp[—j - 27mfcodet]>dt
1 +Tcode
2
_ —_ ). A.15
Teoae /Tcgf“ (d(t ma) (A 19)

HtTcode

(/_i Peomb (') - explj - sO(t — t/ +Tk)]dt/)-
2
xp|—j - 27 feusel] )

Here, the inner integral is the circular convolution [282] with heomb (%), which unlike the
regular convolution is periodic in Ti.,q.. The transition between regular and circular
convolution is possible because g(t + 71) is a periodic function and straightforward
because T}, < Tyoge 1S assumed.

Analogous to Appendix A.1, demodulation of the phase signal ¢, involves digital
multiplication of Ugec(t, 7q) of Eq. (A.14) with the complex carrier C,(t) and sub-
sequent low-pass (LP) filtering at quadrature signal cut-off frequency fq.co < 0.5 feode-

The complex demodulation carrier function C, () at the chosen carrier of integer
harmonic index n is given by:

On(t) = eXp[—j : 277-77'fc0det] <A16)

The absence of any influence from the first term involving RP.g in Eq. (A.14) can
only be guaranteed when the anti-aliasing filter has zero DC transmission on top of
the assumption that R and P,y are stationary because d(t — 74) itself is also time-
variable. Thus there is an additional requirement for the anti-aliasing filter impulse
response heomp(t) to adhere to a band-pass characteristic with zero transmission at
DC, which can easily be implemented digitally. For the relevant cases with n # 0,
where, analogous to App. A.1, the LP-filter selects only two exponential terms for
each of the k., constituent interferometers and the resultant complex quadrature
signal Uq ,,(t, 7a), with ¢, x(74) as stated in Eq. (A.15), can then be given by:

Ugn(t,ma) = LP{C0(t) - Uneclt, 7a) }

max

= Z 0.0RPes ; - (C+n,k(7d) -explj - wr] + ¢, 1 (Ta) - exp[—j - @k])
k=1
(A.17)

Summary of the mathematical assumptions used in this derivation:
o Stationary phase signals ¢y,

« An anti-aliasing filter impulse response heomy(t) that has zero transmission at
DC and a length Tj, shorter than the repetition period of the code T,yqc

« Stationary power levels Pg ) and Pog as well as stationary responsivity R
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B. Laser Diode Characterisation

Throughout this work an Eblana laser diode (EP1550-NLW-B01-200-FA; Serial Nr:
YE1363) was used. This diode is packaged in a 14-pin butterfly package, with an
optical isolator, a thermo-electric cooler and a thermistor included, and with the
laser light leaving the diode through a polarisation-maintaining fibre lead. The
laser was connected to a Profile LDC200 current controller and a Profile TED200
temperature controller. The working principle of this diode is known as a discrete
mode laser [283] and is based on a regular ridge-waveguide Fabry-Perot cavity.
Normally, a Fabry-Perot laser would yield multiple lasing modes, however in the
discrete mode technique, the spatial index profile of the ridge is manipulated at
several places in such a way that positive gain exits only for a single mode and
all other modes are suppressed. In general, the linewidth of a laser is an accepted
measure of the expected laser frequency noise and thus of the laser phase noise, with
low linewidth corresponding to low frequency noise. Discrete mode laser diodes can
reach low linewidths down to 100 kHz, which contrasts with other internal-cavity
single-mode laser diode concepts, such as distributed feedback (DFB) lasers that
typically reach linewidths between 1 and 5 MHz [283]. The Eblana laser diode used in
this work has a specified linewidth of 200 kHz, however, it was found by the linewidth
measurement shown in App. B.2 that in practice linewidths on the order of 0.6 MHz
can be expected, presumably limited by the injection current noise of the laser driver.

In this Appendix, the laser diode current and temperature characteristics for static
operation are first determined in App. B.1, followed by a laser linewidth measurement
in App. B.2. Finally, the dynamic laser diode injection current modulation parameters
for the SFM technique proposed in Chap. 6 are determined in App. B.3.

B.1. Current and Temperature Characteristics

The static current and temperature tuning characteristics of the output power of
the Eblana laser diode are plotted in Fig. B.1. The power was measured using an
Ando AQ-2015 power meter, that was, however, not specifically calibrated. The
results are shown as a function of laser injection bias current Iy p in Fig. B.1(a) at a
fixed laser diode temperature Ty,p = 25°C, where a linear least square fit according
to Eq. (5.22) of the data points above the laser threshold at Ip &~ 31 mA is also
shown. Fig. B.1(b) then shows the dependence of the output power on Tip for a
fixed value of Ip = 100 mA, along with a quadratic least square fit according to
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Figure B.1.: The output power of the laser diode is shown in (a) as a function of injection bias
current I,p at constant temperature, along with a linear fit above the laser threshold, and in (b),
along with a quadratic fit, as a function of the laser diode temperature Tr,p at constant current.

Eq. (5.22). Both fits show very good agreement with the measured data points,
confirming a linear dependence of the output power on the injection current above
the laser threshold and a quadratic dependence on the laser diode temperature.

The current and temperature tuning characteristics of the emission wavelength of
the laser diode are then plotted in Fig. B.2. Here, the laser wavelength was measured
using an Ando AQ-6310B spectrum analyser, that was, however, not specifically
calibrated. The results are shown as a function of injection bias current Iyp in
Fig. B.2(a) at a fixed diode temperature Ty,p = 25°C, where a quadratic least square
fit of the data points above the laser threshold is also drawn. Fig. B.2(b) then shows
the dependence of the output wavelength on T1p at a fixed value of I;,p = 100 mA,
along with a linear least square fit. Both fits show very good agreement with the
measured data points, confirming a quadratic dependence of the emission wavelength
on the injection current and a linear dependence of the emission wavelength on the
laser diode temperature. The quadratic dependence of the emission wavelength on
the injection current is the reason for the observed non-linearities for sinusoidal laser
diode injection current modulation that were discussed in Chap. 6 and that are
further characterised, as a function of modulation frequency, in App. B.3.
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Figure B.2.: The emission wavelength of the Eblana laser diode is shown in (a) as a function of
injection bias current Iyp at constant temperature, along with a quadratic fit, and in (b), along
with a linear fit, as a function of the laser diode temperature Typ at a constant bias current.
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B.2. Linewidth Measurement

The delayed self-heterodyne/self-homodyne method [284,285] is widely used in the
determination of laser frequency noise of highly coherent lasers, directly measuring
the laser linewidth. Here, a self-homodyne approach adapted from Ludvigsen et
al. [285] is used, with the setup illustrated in Fig. B.3 employing mostly the same
equipment as the setup for the CDM technique of Fig. 5.11. In Fig. B.3, a sinusoidal
phase modulation waveform of 30 MHz is introduced and the spectrum around this
frequency, which is then free from electronic 1/f noise, is evaluated. In this setup,
the light leaving the laser diode has to be attenuated using an in-fibre attenuator
in order not to saturate the photo detector. Part of the light is then guided via
a polarisation controller, which optimises the polarisation modulation efficiency
of the phase modulator that introduces the 30 MHz carrier. In order to remove
any remaining dependence on the interferometric phase [285], the phase of the
interferometer is then scrambled by a PZT modulator, driven using a randomised
signal with phase excursions = 2. In the other arm of the interferometer, a long fibre
reel of regular SMF-28e+ fibre introduces a delay that is assumed to be much larger
than the coherence time of the laser diode. After the two arms of the interferometer
are recombined, the FPGA records the raw ADC data, which is then transferred
to a PC, where the Fourier transforms are calculated and averaged. The length of
the fibre reel was determined as 1.86 + 0.02km using 6 repeats of a separate delay
measurement. For this delay measurement, the phase of the sinusoidal intensity
modulation waveform of the laser was determined using an oscilloscope with and
without the fibre reel directly connected between the laser and photo detector.

The resultant laser linewidth measurements, with the spectral region around the
carrier evaluated, are then shown in Fig. B.4 for three laser diode bias current
settings of Iyp = [50,100,150] mA. Because the signal powers for each current
setting are different, the number of averages was varied, with [20000, 5000, 2000]
averages used for the three current settings, respectively. Here, Fig. B.4(a) shows the
spectra for the three laser current settings over a frequency range of +10 MHz, while
Fig. B.4(b) shows an enlarged version over a frequency range of +2 MHz. In both
graphs, the spectra for I;p = 100 mA and 150 mA lie practically on top of each other
while the spectrum for 50 mA is broader. A straightforward interpretation is that

30 MHz Signal Generation Random Signal Generation
FPGA |> DAC [>| Filter {> AP - | AP~ <! Filter </ DAC |<| FPGA
lifier | lifier

Y

Phase S .

Polarisation Modulator 'gna’ rocessing
Laser (- Attn, Controler - Reel ot || Filter > ADC f>fFPGA

1.86 km

O

Figure B.3.: MZ interferometer setup for the homodyne linewidth measurement incorporating a
1.86 km long fibre reel, a phase modulator and PZT. Here, the FPGA generates both a 30 MHz carrier
signal for the phase modulator and a signal that drives the PZT to randomise the interferometric
phase, with the FPGA then also used to record the photo detector signal.
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Figure B.4.: The results of the linewidth measurements for three laser diode bias current settings
are shown over £10 MHz in (a) and over £2MHz in (b) around the 30 MHz carrier. Guide lines for
the determination of the linewidth values at a power level of —3 dB are also shown in (b).

the spectrum at Irp = 50 mA is still broadened by the inverse power dependence
of semiconductor laser diodes [283,286], with any such linewidth narrowing then
saturated for I1p = 100mA and 150 mA. It can also be seen in Fig. B.4(a) that the
previous assumption of a delay well beyond the coherence time of the laser is justified,
because there are no side lobes visible in the spectra [285]. In order to determine the
laser linewidth, dashed guide lines are drawn in Fig. B.4(b), marking the full-width
half maximum (FWHM) of the spectral peaks, where the FWHM values equal half
the linewidth of the laser [285]. The linewidths determined from Fig. B.4(b) are
0.98 MHz for I1p = 50mA and 0.57 MHz for I;p = 100 mA and 150 mA, where in
this work the laser is mainly operated at currents exceeding I;,p = 100 mA. These
measured laser linewidth values are well above the manufacturer specification of
200kHz for Iyp > 150mA. However, it is thought that this could be due to laser
injection current noise induced by the laser driver and does not necessarily originate
from the laser diode. The injection current noise RMS value of the Profile LDC200
laser driver that is used is specified as up to 1.5 uA for noise frequencies between
10Hz and 10 MHz. From Fig. B.2(a), an approximate optical frequency change
coefficient of 0.5 GHz per mA static injection current modulation can be obtained,
where a rough approximation of the linewidth due to current noise of 0.75 MHz results
from the multiplication of the two values. Therefore, linewidth values on the order
of magnitude of the measured values could result from the injection current noise
alone. This conjecture would also explain the observed saturation in the linewidth
narrowing with laser power. Therefore higher laser driver current noise requirements
are likely to be needed in order to improve the laser linewidth and thus reduce laser
phase noise in future implementations.

B.3. Frequency Modulation Characteristics

The characterisation of the sinusoidal frequency modulation parameters, in particular
the intensity modulation and non-linear optical frequency parameters, is very im-
portant for the SFM technique presented in Chap. 6. In this Appendix, all necessary
modulation parameters are determined and, additionally, the influence of changes in
the diode bias current or temperature conditions investigated.
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B.3.1. Characterisation Methods

The single-sideband processing (SSB) technique used in Chap. 5, employing an
external electro-optic phase modulator, is used here to resolve the phase modulation
waveform introduced by the sinusoidal optical frequency modulation of the laser
diode at the modulation parameters of interest. In order to capture this phase
waveform, a very fast signal processing implementation is required. This is achieved
by using the same SSB waveform template Oy¢(t;) described by Eq. (5.18) and
visible in Fig. 5.3(a), however, without any CDM encoding, i.e. x =y = 1, on a
single interferometer. The resulting quadrature bandwidth can then be as high as
fQ.comax = O.5-Tv;f1 = 9.38 MHz as discussed in Sec. 5.4.2 and Table 5.1, where in this
measurement the actual quadrature signal bandwidth is limited to fqc, = 4.69 MHz
to reduce noise.

The optical setup used for this measurement, shown in Fig. B.5, is very similar to
the previous setup for the linewidth measurement in Fig. B.3. However, in Fig. B.5,
the OPD of the MZ interferometer is nearly balanced, with an OPD of only 3.8 cm
remaining, as determined using a Luna OBR 4400 Reflectometer. Here, the small
OPD of the interferometer ensures that the induced sinusoidal phase waveform can
be entirely resolved by the quadrature bandwidth available from the SSB signal
processing. Additionally, the PZT introduces a randomised phase signal with phase
excursions /~ 27 in order to suppress, after sufficient averaging, any remaining cyclic
errors introduced by the signal processing, easing the requirements for the tuning
of the input polarisation of the phase modulator (see also Sec. 5.4.1). After SSB
demodulation, the resulting unwrapped phase signal is proportional to the sinusoidal
optical frequency modulation waveform, allowing its amplitude A fo; to be quantified
together with the measured OPD value, as well as the non-linearity parameters [,
and 0, (see also Sec. 6.2.5). In this implementation, because final processing was
carried out on a PC, the raw ADC data had to be transferred from the FPGA. Due
to the low transmission data rate, the effective averaging time was only 27 ms for
each point in the modulation parameter space. The resulting measurement quality
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Figure B.5.: MZ interferometer setup for the measurement of the sinusoidal optical frequency
modulation parameters, mostly similar to the setup of Fig. B.3, except for the near OPD balance
of the interferometer. Here, the FPGA generates the sinusoidal laser injection current modulation
waveform, the single-sideband waveform for the phase modulator and a signal that drives the PZT
to randomise the interferometric phase, with the photo detector signal then recorded by the FPGA.
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is sufficient in most cases, but could be improved in future implementations.

In addition to the determination of the optical frequency modulation parameters
discussed above, the intensity modulation parameters £ and 77 (see also Sec. 6.2.5),
resulting from sinusoidal injection current modulation also need to be found. The
relative amplitude £ of the intensity modulation can be directly measured using
a DC-capable photo detector (New Focus 1817) and an oscilloscope. Here, the
laser diode, via an attenuator, is directly connected to the photo detector and the
resultant intensity modulation signal displayed on the oscilloscope. £ can then
straightforwardly be determined by dividing the amplitude of the sinusoidal signal
by the mean DC power.

Additionally, inserting a widely unbalanced MZ interferometer between the laser
attenuator and the photo detector then allows the determination of the intensity
modulation delay 7. The principle behind this measurement is explained by the
oscilloscope trace shown in Fig. B.6. Here, due to the large OPD of &~ 25 m, when
sinusoidal optical frequency modulation is applied, the bulk of the interference fringes
change so fast that they are low-pass filtered by the photo detector bandwidth of
80 MHz. This allows the clean determination of the zero-crossing of the intensity
modulation waveform. However, the slow fringes near the peaks of the optical
frequency modulation waveform, as seen in Fig. B.6, remain visible in the photo
detector signal and their symmetry centre marks this peak. This allows the direct
measurement of the delay between the intensity modulation zero-crossing and the
peak of the frequency modulation waveform. For instructive purposes, the assumed
frequency modulation waveform is also drawn in Fig. B.6 using a dotted line. The
desired delay 71 between the intensity modulation and frequency modulation waveform
is also shown and is given by the measured delay plus the equivalent of the 90°
phase shift between peak and zero-crossing. The reason for not selecting the possible
solution due to the other symmetry centre is in line with the treatment of Li et
al. [250], where the phase shift is always assumed to be 180°.
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Figure B.6.: Determination of the delay 71 between intensity modulation and frequency modulation.
Here, the time span between the intensity modulation zero-crossing and the peak of the optical
frequency modulation waveform, marked by symmetry centre of the interferometric signal, is
evaluated. To illustrate the working principle, the desired delay 77 is also marked and the assumed
frequency modulation waveform is drawn using dotted lines.
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B.3.2. Characterisation Results

Using the experimental methods described in the previous section, the relevant
modulation parameters were determined as a function of the modulation frequency
fm. Because the measurement campaign shown below was conducted before the
final FPGA implementation of the SFM technique was programmed, the selected
frequencies do not match the chosen modulation frequency of f;, = 98 kHz used in
the experiments in Chap. 6, however, it is straightforward to linearly interpolate the
data to find the applicable parameters. The results are shown in Fig. B.7 for three
values of the injection current modulation amplitude Al p, where in Chap. 6 a value
of Al p = 45mA was used throughout. All measurements were recorded for a fixed
laser diode bias current I;p = 125 mA and diode temperature of T1p = 25°C.

Fig. B.7(a) shows that the optical frequency modulation efficiency reduces for
increasing modulation frequency, where the interpolated value at f,,, = 98 kHz for
Alp = 45mA that is applicable to Chap. 6 is Af,,x = 8.4GHz. In general, the
optical frequency modulation efficiency in injection current modulation is a complex
interplay of thermal effects in various parts of the laser diode and refractive index
changes due to variations in carrier density [123]. Here, thermal effects are generally
slower than refractive index effects, however, in some cases thermal effects can still
be observed even at frequencies on the order of 10 MHz [123]. Fig. B.7(b) then
shows that the relative intensity modulation parameter £ stays practically constant
with f,,, with the relevant value for £ at Alp = 45 mA extracted as £ = 0.45. In
Fig. B.7(c), the equivalent phase shift between intensity modulation and optical
frequency modulation is shown, from which the intensity modulation delay 77 can be
determined for each value of the modulation frequency f,,. Here, at f,, = 98 kHz,
a phase shift value of 208° can be determined, corresponding to 71 = 5.92 us. In
general, the measurements in Fig. B.7(c) correspond well to literature values, where
phase shift values were found to rise from near 180° at low modulation frequencies to
225° at a modulation frequency of 100 kHz for the diode laser used by Li et al. [250].
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Figure B.7.: Measurement of the optical frequency modulation amplitude A fop¢, the relative
intensity modulation amplitude & and of the equivalent phase shift corresponding to the intensity
modulation delay 71, in (a), (b) and (c), respectively, as a function of the modulation frequency f,
and for three values of the injection current modulation amplitude Alyp. All measurements were
taken at a laser diode bias current of I;,p = 125mA and for a diode temperature of T1,p = 25°C.

190



Appendix B Laser Diode Characterisation Section B.3.2

[ I —No Modulation

5 0.6 [ —Modulation AL =45 mA |
& : I

= 0.4} I 4
)

= ! [

~ 0.2F l |

0 - _//JI—_\/

1551.2 1551.3 1551.4
Wavelength [nm]

Figure B.8.: Measurement of the output spectrum of the laser diode using an optical spectrum
analyser, with and without laser injection current modulation at the modulation parameters relevant
to Chap. 6 applied, and with the peak values marked using dashed guide lines.

A quick measurement of the optical frequency modulation amplitude A f,,; can also
be obtained using an optical spectrum analyser. The results for the modulation of
the laser diode with the exact parameters used in Chap. 6, i.e. Aljp = 45mA at
fu = 98kHz for Ip = 125mA and Typ = 25°C, are shown in Fig. B.8. Here, the
laser diode output is directly connected, via an attenuator, to a Yokogawa AQ6370
spectrum analyser that was, however, not specifically calibrated. A wavelength
excursion of £67 pm can be extracted from Fig. B.8, corresponding to an optical
frequency modulation amplitude of Af,, = 8.4 GHz, independently confirming the
values determined from Fig. B.7(a). The broad peak for the case without modulation
is due to the 20 pm resolution of the spectrum analyser and it can furthermore be
seen that the application of injection current modulation also shifts the optical centre
wavelength fope c by 14 pm compared to the case without modulation.

The results of the investigation into the optical frequency modulation non-
linearities are then shown in Fig. B.9. Here, Figs. B.9(a) and (b) plot the fractional
harmonic amplitude 5 and the corresponding phase angle d5 of the first harmonic of
the sinusoidal optical frequency modulation waveform (see also Sec. 6.2.5). It can be
seen in Fig. B.9(a) that 3 shows a small reduction with increasing modulation fre-
quency fp, and, in Fig. B.9(b), that do shows a slight increase with increasing fi,,. The
parameters extracted from Figs. B.9(a) and (b) at f, = 98kHz and Al p = 45mA
that are used in the corrections in this work are Sy = 4.1% and 0, = 12°. Figs. B.9(c)
and (d) then plot the corresponding values 3 and d3 for the second harmonic, where
it was also confirmed that all higher harmonics are negligible. In Figs. B.9(c) and
(d), for some values, especially at low modulation injection current modulation
amplitudes Al;p, the measured values appear to be strongly influenced by noise
and these values should be disregarded. However, it is thought that the values for
Alp = 45mA are sufficiently reliable to deduce that the fractional amplitude of the
second harmonic non-linearity fs is &~ 0.3% at the relevant frequency f,, = 98 kHz.
Therefore, due to its small value the second harmonic and all higher harmonics are
neglected in this work and the corrections of Sec. 6.2.5 were only carried out for the
first harmonic using parameters 5, and ds.

While the previous measurements in this section have been obtained at fixed
values of the laser diode bias current of I;p = 125 mA and the diode temperature
of Trp = 25°C, which are the values that were used throughout Chap. 6, the
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Figure B.9.: Measurement of the harmonic content of the optical frequency modulation as a
function of the modulation frequency f,, and for three values of the injection current modulation
amplitude Al p. Here, (a) and (b) plot the fractional harmonic amplitude 2 and the corresponding
phase angle 0 for the first harmonic, while (¢) and (d) plot 83 and d3 for the second harmonic,
with all measurements taken at Itp = 125mA and Trp = 25°C.

general dependency of the correction parameters on I1,p and Tip is also of interest.
Measurement results for variations in Itp and Typ are shown in Fig. B.10. These
measurements were recorded at a fixed modulation frequency of f,, = 110 kHz, which
is thought to be sufficiently close to the used value of f,, = 98 kHz that similar
conclusions can be reached. Here, Figs. B.10(a),(b),(c) and (d) plot the changes of
parameters Afon, £, 71 and B2 as a result of a variation of the bias current Irp for
various values of the modulation amplitude Alrp. It can be seen in Fig. B.10(a) that
the frequency modulation efficiency increases with increasing bias current, a fact
that could be used beneficially in future work. The change in the relative intensity
modulation ¢ visible in Fig. B.10(b) can straightforwardly be explained using the
static intensity modulation characteristic shown in Fig. B.1(a). It can furthermore be
seen in Figs. B.10(c) and (d) that the equivalent phase for the intensity modulation
delay 71 is independent on the bias current and that the harmonic content By shows
a small reduction with increasing bias current. In contrast to changes in the bias
current, changes in the laser diode temperature do not appear to significantly affect
the parameters A f,p¢, &, 71 and (s, as can be seen in Figs. B.10(e),(f),(g) and (h). This
is an important result as it shows that the laser emission wavelength can be tuned by
changing the laser diode temperature without significantly affecting the modulation
parameters, which may become relevant for future use of the SFM technique in
applications where the laser emission centre wavelength has to be controlled through
temperature tuning, such as precision displacement measurements.
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Figure B.10.: Dependency of the optical frequency modulation amplitude A fop¢, the relative intensity modulation &, the phase shift corresponding to the
intensity modulation to frequency modulation delay 71 and the fractional harmonic amplitude 82 on the laser diode bias current I1p in (a),(b),(c) and (d),
respectively, and on the laser diode temperature Typ in (e), (), (g) and (h), respectively. These measurements were taken at a fixed modulation frequency of
fm = 110kHz and for three values of the injection current modulation amplitude Alp.

UODSILIPIDIDYL) IPOYT LISDT q xipuaddy

2'€'d uo1odg



C. FPGA Based Processing

Field programmable gate arrays (FPGA) [288,289] are widely used across digital
signal processing and also more generally for real-time processing. The reason for
this is that FPGAs inherently allow complete parallelisation of tasks, permitting
multiple jobs to be carried out with complete independence. This is in contrast to
central processing unit (CPU) architectures, such as those used in regular personal
computers (PC), where multiple tasks can share the same processing unit and are
processed sequentially. Whereas CPU-type architectures employ high-complexity
logic that implements a set of highly specialised instructions, FPGAs consist of
a large number of identical low-complexity logic blocks that each perform a basic
set of logic functions, as also illustrated in Fig. C.1. In FPGAs, programmable
interconnects link these logic blocks, implementing the desired functionality. This is
also complemented by a range of speciality function blocks, such as input-output
gates or further proprietary logic blocks. Therefore, in essence, an FPGA can be
seen as a programmable set of logic gates that can be customised to the desired task
and where multiple function blocks can work with complete autonomy.

The inherent parallelisation of FPGAs also requires a completely different style of
programming than for regular CPU-based processors, where FPGAs are generally
programmed using hardware description languages such as VHDL. Whereas in CPU-
based processing, instructions are kept in the working memory, can be changed if
required and are executed sequentially, in FPGAs, interconnects are fixed at the time
of programming and implement the desired logic permanently until reset. Therefore,
in FPGA programming, there is no overall time line and all events can happen at
every clock cycle, requiring the use of special programme state registers to implement
sequential functionality. A further point to note is that in FPGAs, concurrent
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Figure C.1.: Illustration (adapted from [287]) of the key building blocks of an FPGA. Here, a
matrix of identical logic blocks (LB) that perform a limited set of basic logic functions are linked
by programmable interconnects that define the FPGA program. Additionally, a range of speciality
functions, such as input-output (IO) gates, complement the basic functionality of the LBs.
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execution of multiple function blocks does not decrease the processing speed as it
would in CPU-based processing, but rather increases the number of logic blocks used.
As an example relevant to this thesis, implementing the demodulation of 16 range
channels rather than 8 range channels would not lead to lower execution speed but
would use double the amount of FPGA logic blocks. Therefore the number of range
channels is ultimately limited by the number of available logic blocks and FPGA
capacity is generally measured by the percentage of logic blocks or chip area used.

In the context of this thesis, FPGA-based processing allowed the complete and
reliable synchronisation of the modulation and demodulation functions of the im-
plementations at a clock frequency of 150 MHz. This is an absolute necessity for
the real-time implementation of both the techniques presented in this thesis and
FPGA-based processing is also used by other groups in the area of range-resolved
interferometric signal processing [203,204]. However, because FPGA programming
is more generally complex then programming regular CPU-based processors, in this
thesis, the use of FPGA-based processing was minimised and post-processing was
preferably carried out on a PC to reduce programming effort and permit higher flex-
ibility during development. Nevertheless, if desired, most post-processing functions in
this thesis could eventually be carried out on the FPGA if the necessary programming
effort is invested. The FPGA development system that is used in this work is shown
in Fig. C.2, where the total cost of the complete system is well below £1k. The
system consists of a Terasic DE-115 development board in conjunction with a data
acquisition daughter board that carries the analogue/digital data converters. In most
cases, because of the high data rates of the quadrature signals, the bottleneck in the
processing implementations in this thesis was the data transfer to the PC. Initially a
low-overhead serial interface was used, however, at a later stage, to improve data
transfer rates, a more sophisticated USB-based solution using a separate FPGA
communication board was implemented.

Fast USB Serial
Communjcatiogyes wwm Communication,
Boggd.. R ‘ .

- DE-115
Development
Board L Secm =

Board

Figure C.2.: Picture of the FPGA system used in this work, which is based on a Terasic DE-115
development board that uses an Altera Cyclone IV FPGA. A data acquisition daughter board,
accommodating the ADC and the DAC, is connected to this board. Data can be transferred from
the FPGA to a PC using a slow, low overhead serial connection or a fast USB interface that uses a
separate FPGA communication board, affixed on top of the main FPGA board.
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D. Noise and Crosstalk in the
Complex Quadrature Signals

D.1. Quadrature Noise

In this appendix, a phasor-based model, developed in this thesis, of how quadrature
noise can cause both amplitude noise and excess phase noise is presented. This
allows, under certain conditions, the inference of the standard deviation of the
excess phase 1n0ise Ophageex from the normalised amplitude noise standard deviation
Oamp,norm, Which is a quantity that can be directly measured. In general, quadrature
noise can be caused by any noise source that affects both the real and imaginary
parts of the quadrature signal independently. Here, a simplified model of quadrature
noise represented by the quadrature noise phasor n with a random complex phase
is developed. In this model, the quadrature noise phasor n is then added to the
ideal signal phasor i, whose tip is situated on the quadrature circle/ellipse (see
also Sec. 3.1.4). This is illustrated in Fig. D.1(a) with example quadrature noise
phasors n; to ny of equal amplitude |n|. Typical noise sources that can cause
quadrature noise include shot noise, laser intensity noise in the stationary offset
power term Pyg in Eq. 3.3, electronic noise as well as aliased high-frequency laser
phase noise [212,244]. In contrast, intensity noise in the effective power term Pug
only affects the amplitude of the ideal signal phasor i, while direct laser phase noise
that is caused by laser frequency noise is indistinguishable from the desired phase
signals and is thus effectively incorporated into the phase of i.

For cases where laser intensity noise in P, can be neglected, the projection of
the quadrature noise in the direction of the ideal signal phasor i leads to amplitude
noise of standard deviation o,p, as illustrated in Fig. D.1(b) for quadrature noise

(a) Quadrature Noise (b) Amplitude Noise (c) Excess Phase Noise
............... Im(Uy(1)] A {G()] A ImfT ()
' Re[U(t) | Re[Uy(t) [ Ohaseex | RelUy(1)]
......... ni ~--..°._"@Q
y ot y o

Figure D.1.: (a) illustrates four example quadrature noise phasors n; to ny of common amplitude
In| added to the tip of the ideal signal phasor i that is situated on the quadrature circle/ellipse.
(b) then shows how amplitude noise of standard deviation o, is caused by the projection of the
quadrature noise phasors in the direction of i. Conversely, (c) illustrates that excess phase noise of
standard deviation ophasec,cx is caused by the projection in the direction normal to i.
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phasors n; and njz, where the amplitude |n| of the quadrature noise phasors is taken
to be equal to 0amp. This can be normalised by the amplitude of the ideal signal
phasor [i|, which is taken to be equal to the mean quadrature signal amplitude |Ug],
resulting in the normalised amplitude noise standard deviation oampnorm, given by:

Oamp,norm — —=——— — 7.7 (Dl)

In general, the time series of any measured quadrature signal allows the determination
of the mean quadrature amplitude |Uq| and the quadrature amplitude noise standard
deviation oump, permitting the simple calculation of gamp norm-

Analogously excess phase noise, as illustrated in Fig. D.1(c) for quadrature noise
phasors ny and ny of amplitude |n|, is caused by the projection of the quadrature
noise phasors normal to i, with the excess phase noise standard deviation ophase,ex
given by the tangent of |n| and |i|. Using the first order approximation of the tangent,
i.e. tan(a) & @, Ophaseex can then be approximated by:

n
Ophase,ex = ”1|’ (DQ)
Therefore, from Eq. (D.1) and Eq. (D.2), in the absence of laser intensity noise in Py
and using the aforementioned assumption that the quadrature noise has a random
complex phase, amplitude noise and excess phase noise share the same statistical
properties and Ophaseex €qUalS Tampnorm, allowing straightforward calculation of

771 [
Ophase.ex = Tamp - |[Ug| ~ from the measurable quantities oamp and |Ug|. However, this
conjecture does require the first-order approximation of the tangent and is thus only
valid for small quadrature noise amplitudes, with the error in this approximation

exceeding 1% for oamp -m_l > 0.3. A more detailed model that does not require
the approximations above appears entirely feasible but needs to take into account
differences in statistical distributions resulting from the non-linearity of the tangent
function and therefore requires further work.

The apparent phase noise standard deviation oppase that can be obtained from the
measured phase signal can then be expressed by the quadratic addition of the excess
phase noise standard deviation ophaseex, caused by quadrature noise, and the direct
phase noise standard deviation oppase direct Caused by laser frequency noise.

2 2 2
Uphasc - Uphaso,dircct + Uphasc,ox (DS)
This then allows the relative influence of direct and excess phase noise in the measured
phase signals to be conveniently determined.

D.2. Spurious Unwrappings due to Quadrature Noise

The measured phase signals need to be unwrapped to extend their dynamic range
beyond +m. In general, for successive samples, the unwrapping algorithm [112],
out of the possible phase changes [Agp, Ap — 2], always assumes the one with the
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(a) Quadrature Signals (b) Transition |Ag|<x (c) Transition |Ag|>n
Ut tnfly (1)

Figure D.2.: (a) illustrates that in the presence of the quadrature noise phasor n, the measured
phase ¢ is determined by the apparent phasor a, the phasor addition of n and the ideal signal
phasor i. (b) then illustrates the case for an unproblematic phase unwrapping, where at two
successive samples at times t; and to, the correct phase difference Ay is selected by the phase
unwrapping algorithm, because the line connecting a;, and a;, (black dashes) intersects i or its
half-line extension (blue dashes). In contrast, in (c) the phase difference Ap — 27 is selected
incorrectly, because the line connecting a;, and a;, does not intersect i or its half-line extension.

smaller absolute value to be true and integrates the corresponding phase change over
time. However, the onset of spurious phase unwrappings due to quadrature noise can
put a limit on the achievable quadrature signal bandwidth. A single spurious phase
unwrapping will result in a permanent +27 phase error that cannot be unambiguously
corrected once it has occurred and may require filtering of the quadrature signals to
reduce the likelihood of spurious phase unwrappings occurring. In order to illustrate
the conditions where spurious phase unwrappings due to quadrature noise can occur,
the following phenomenological phasor model was developed during this thesis.
Fig. D.2(a) illustrates a typical phasor diagram for quadrature signals in the presence
of the quadrature noise phasor n. Here, the phase of n is uncorrelated to the phase
of the ideal signal phasor i, whose endpoint lies on the quadrature circle/ellipse (see
also Fig. 3.6), drawn using a dotted blue line. In general, the phase signal ¢ that is
measured by the signal processing is the complex angle of the apparent signal phasor
a, which results from the phasor addition of i with n.

An unproblematic case for the phase unwrapping algorithm in the presence of
quadrature noise is illustrated in Fig. D.2(b) for the simplified case of a stationary
ideal signal phasor i. Here, for two successive samples at times t; and %5, the
quadrature noise phasors n;, and n;, lead to a corresponding change in the apparent
signal phasor a;, and a;,. The conjecture put forward in this model, developed
by observing the conditions in measured quadrature signals where spurious phase
unwrappings have occurred, is that this is unproblematic as long as the line connecting
the tips of a;, and a;,, drawn using black dashes in Fig. D.2(b), intersects i or its
half-line extension, drawn using blue dashes. In this case, the phase unwrapping
algorithm will correctly integrate the phase difference Ay, with its absolute value
smaller than 7. In contrast to this, in Fig. D.2(c), where the only change compared
to Fig. D.2(b) is the doubling of the amplitudes of n;, and ny,, the line connecting
the tips of a;, and a;, does not intersect i or its half-line extension. Therefore the
phase unwrapping algorithm will incorrectly integrate the phase difference Ay — 27,
due to its absolute value being smaller than 7, leading to a spurious unwrapping
with an error of 27 in the resulting phase signal.

A formal proof of this conjecture, as well as its extension to non-stationary ideal
signal vectors i, is beyond the scope of this work. However, the proposed model is
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also backed up by the observation that for phase signals that are free from spurious
phase unwrappings, the corresponding quadrature signal scatter plots in the complex
plane, such as Fig. 5.15(a) and Fig. 5.24(a), generally exhibit a clearly visible hole
in the quadrature circle/ellipse plot. In contrast, for the case where the hole in the
quadrature circle/ellipse plot becomes obscured, the quadrature noise phasors n in
some samples exceeds the ideal signal phasor i in amplitude and therefore spurious
phase unwrappings, as illustrated in Fig. D.2(c), are likely to occur.

D.3. Crosstalk in the Phase Signals

In this section, the non-linear transformation of crosstalk in the quadrature signals
to crosstalk in the desired phase signals is analysed. While, in general, the crosstalk
in the quadrature signals is a measurable quantity, the resulting crosstalk in the
phase signals is highly non-linear and strongly depends on the actual phase signal
and effective powers of the signal sources. Fig. D.3 illustrates how quadrature signal
crosstalk from signal source 1 interacts with the desired phase signal of signal source
2. Here the ideal signal phasor i is scaled by quadrature signal crosstalk suppression
coefficient S, and added to i;. The resulting phase signal ¢, of the desired source
2 is then given by the phase of the apparent signal phasor as, which is modulated
by the crosstalk induced phase signal ¢, that results from the addition of c; and
io. In general, ¢ is dependent on the specific angle between c; and iy, . will
not necessarily resemble the phase signal of source 1. The corresponding Fourier
spectrum of ¢, will be widely dispersed, especially for large phase signal amplitudes
> 2m of the originating phase signal.

In order to illustrate an example of how crosstalk from the quadrature signal enters
the phase signals and also to verify the measured phase signal crosstalk levels in
Sec. 5.5.2, the expected crosstalk in the reflector phase signals of reflectors R1 to R4
in Fig. 5.23 for the experimental conditions and test signals described in Sec. 5.5.2
was simulated using the phasor addition model outlined above. Here, the worst-case

Signal Source 1 |:> Signal Source 2

Crosstalk from bl
Tm|[U(t)] Source 1 to Source 2

O Re[UQ(t)]

i

Figure D.3.: Illustration of how quadrature signal crosstalk from signal source 1 affects the phase
signal of source 2, where reverse crosstalk from source 2 to source 1 is not illustrated. Here, the
ideal signal phasor i; of source 1 is scaled by the quadrature signal crosstalk suppression coeflicient
Ser to yield the crosstalk phasor c; that enters the quadrature signal of source 2. c¢; is then added
to the ideal signal phasor is, which may also differ in amplitude from i;, to yield the apparent
signal phasor a,, with corresponding phase signal ¢s. o will be non-linearly modulated by the
crosstalk phase signal ., which, in general, is dependent on the angle between i; and is.
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quadrature signal crosstalk suppression factor S., = —32 dB that was determined in
Fig. 5.22(c) was used throughout the simulation for the mutual crosstalk between
all four signal sources. Additionally, the actual effective power variations evident in
Fig. 5.25(a) were taken into account. Typical results of this simulation are plotted
in Fig. D.4 and are drawn in analogy to Fig. 5.26. Because the general appearance
of the signals and spectra is highly dependent on the initial phase conditions, several
iterations of the simulation with random initial phases have been used to verify
that the displayed behaviour is indeed representative. Here, in Figs. D.4(a) and
(b), two instances of the simulated crosstalk-induced phase variation ¢, for the
signal of reflector R1 are shown, which only differ in the initial phases of the phase
signals of the reflectors. The highly irregular appearance in both plots illustrates
that crosstalk into phase signals is strongly dependent on the particular initial phase
conditions. The Fourier spectra of the simulated phase signals of the four reflectors
R1 to R4 are then plotted in Fig. D.4(c) on a logarithmic frequency scale. It can
be seen that the spectra resulting from crosstalk under the described conditions are
very broad and irregular, and contain strong high-frequency contributions. When
compared to Fig. 5.26(c), it can be seen that, except for a few isolated peaks, the
calculated crosstalk spectra generally stays well below —40 dB,.4, which is the noise
floor in Fig. 5.26(c). These low crosstalk levels are echoed in the enlarged desired
signal peaks at 370 Hz in Fig. D.4(d) and for 570 Hz in Fig. D.4(e). Taken together
Figs. D.4(c), (d) and (e) confirm that quadrature signal crosstalk suppression levels
of S;; = —32dB can indeed lead to crosstalk in the phase signals of levels that are
several orders of magnitude lower. Also, it has been shown that the actual crosstalk
in the phase signals is highly dependent on the shape of the phase signals itself and
on the particular initial phase conditions.
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Figure D.4.: Results of a simulation of the magnitude of crosstalk in the phase signals for the
measurement arm configuration of Fig. 5.23 and test signals described in Sec. 5.5.2, with results
drawn analogous to the plot of the reflector signals in Fig. 5.26. Here (a) and (b) show typical
instances of crosstalk-induced phase variations ¢, in the signal of reflector R1 for random initial
phase conditions of the phase signals of the other reflectors. (c) shows the spectra of the four phase
signals from reflectors R1 to R4 containing the simulated mutual crosstalk between signal sources,
while (d) and (e) enlarge the desired signal peaks at 370 Hz and 570 Hz, respectively.
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E. Derivation of Equations for
Sinusoidal Optical Frequency
Modulation

This appendix repeats the analysis of sinusoidal optical frequency modulation in
a single interferometer performed by Zheng [121] for the notation used in this
thesis. Additionally, this is derived for a time-variable time-of-flight delay 7(t)
between the two arms of the interferometer. Starting with the optical frequencies
fopt.1(t) and fope 2(f) in the two arms of the interferometer in response to a sinusoidal
optical frequency modulation with modulation frequency f,, and of optical frequency
amplitude A f,,; around optical centre frequency fop c:

Fopt1() = fopte + A fopt 8in |27 funt] (E.1)
Fopt2() = fopte + Afopt sin [27 fin (t — 7(2))] (E.2)

The corresponding phases ®;(t) and ®5(t) in the two interferometer arms (see also
Sec. 3.1.1) are then given by the integrals of 27 times Eq. (E.1) and Eq. (E.2), with
the integration constant ®, equal to the initial phase of the light source:

Afopt

Dy (t) = 27 fopt,ct — 7 cos[27 fint] + Do (E.3)
Bo(t) = 2 fopr et — 7(1)) — Bopt 27 fun (t = (1)) | + Do (E.4)

Inserting this into Eq. (3.1), using the powers P; and P, of the two interfering arms,
the responsivity R and the time-dependent absolute value of the complex degree of
coherence |y(7(t))| defined by Eq. (3.2), then yields the photo detector signal Upq(t):

Una(t) = RPy + RPs + 2Ry (7(1))|v/ P cos [@1@) _ @z(o}

— RPyi+ RPug cos [Cbl(t) - %(t)} (E.5)

m

=RP,g+RP.g cos [A]{c’p‘ < cos {27rfm (t—T(t)ﬂ —cos [27rfmt}> +27 fopt,cT(1)

Similar to Sec. 3.1.1, in Eq. (E.5), P,g = P, + P, is the stationary offset power and
P = 2|y(7(t))|v/P1 P, is the effective interferometric power, and where any time
dependence of |y(7(t))| can subsequently be neglected if a highly coherent source
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Appendix E Derivation of Equations for SFM Section E

is used. Employing the following trigonometric identity [179]: {2sin[a]sin[f] =
cos[a — ] — cos[a + ]}, this results in:

Upd(t) = RP,g+ RPeg cos {%ﬁ’pt sin [27Tfm (t—0.57'(t))} sin [ﬂfmT(t)] +27rfopt7c7'(t)]
= RP,g+ RP.q cos {0(2&) + go(t)} (E.6)

The first line in Eq. (E.6) is the final result of the previous derivation by Zheng [121].
Here, in line with the notation of Eq. (3.3) used throughout this thesis, Eq. (E.6)
was then simplified by separating the phase terms into the desired phase signal ()
and the phase modulation function 6(¢), which are given by:

0(t) = 2Af]:m sin [27rfm (t - 0.57'(15))} sin [meT(t)} (E.7)
O(t) = 27 foptcT(1) (E.8)

Here the time-variant time-of-flight 7(¢) can be represented by 7(t) = Tavg + Tsig(t),
with the average time-of-flight delay 7,,, and the time-variant delay 7yg(t). This
allows Eq. (E.7) and Eq. (E.8) to be restated as:

0(t) = 2Affm sin [27Tfm (t — 0.5Tayg — 0.5Tsig(t))} sin [me (Tavg + Tsig(t))} (E.9)
@(t) = 27Tfopt,c7-avg + 27Tfopt,c7—sig(t) (ElO)

In Eq. (E.10), for standard interferometry applications where fopt . does not change,
Tavg 1 () of Eq. (E.10) can be considered an offset phase value, while the time-
variant phase signals that are caused by 7y.(t) are the quantity of interest. This is
because the optical centre frequency fopt ¢ is very large, typically hundreds of THz,
resulting in significant phase changes even for minute changes in 744 (?).

In Eq. (E.9), for the case of optical frequency modulation of an interferometer
of non-zero OPD, as is the subject of Chap. 6 and of this derivation, the average
time-of-flight delay 7,,, corresponding to the OPD 7 = 7,5 of the interferometer,
is usually much larger than the time-of-flight variations caused by 74(t). Also, in
Eq. (E.9), these terms are multiplied by the modulation frequency fi,, typically kHz
to MHz, which is many orders of magnitude lower than optical frequencies. Therefore
the phase contribution caused by the term 7 fi, 74 (t) in Eq. (E.9) is typically <1
and Eq. (E.9) can be rewritten by neglecting 74, (t), yielding:

0(t) = Asin |27 fun(t — 0.5y | (B.11)
with the phase modulation waveform amplitude A given by:

_ 2B/ opt sin [ﬂfmTavg} _ 28 on sin [ﬂfmn} ~ b for n<<C7O (E.12)
fm fm Co

Furthermore, in many cases of later usage of these equations discussed in Chap. 6,
even the phase change from 7,,, in Eq. (E.11) can be neglected. However, this does
not entail that 7,,, or n can be neglected in Eq. (E.12), as this would result in A = 0.

A

Co T Jm
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F. Power Calibration for Sinusoidal
Optical Frequency Modulation

The measurement of the effective power P.g in the SFM technique is required on
a number of occasions in Chap. 6. As discussed there, the effective power was
determined from signal processing units using a calibrated conversion coefficient.
The measurement of this conversion coefficient in not trivial and is detailed here.
It is furthermore investigated whether this conversion coefficient changes with the
OPD, i.e. with the demodulation amplitude Aq, as well as with the window width
parameter o. In general, according to Eq. (3.3), the determination of the effective
power requires the separate measurement of the powers P, and P, of both arms of the
interferometer as well as the assumption that the polarisation and coherence states
are known and do not change during the experiment. Here, because of the small
OPDs of several meters, the coherence dependence is neglected and full visibility is
assumed. A free-space measurement setup is then used because it allows the OPD
to be straightforwardly varied and because, unlike in fibre-coupled propagation, the
polarisation state can be expected to be stable during free-space propagation [290].

The setup used in this experiment is illustrated in Fig. F.1 and is similar to the
multi-surface vibrometry setup of Fig. 7.1. However, only a single retro-reflector
at a variable distance [ is used as a target, where the use of a retro-reflector eases
alignment and improves stability as all reflected beams are sent back in the incoming
direction by the unique properties of the retro-reflector [269]. In this experiment, it
is assumed that the polarisation state of the light after free-space propagation, retro-
reflection and re-entering the fibre is the same as the polarisation state of the light
reflected from the fibre tip that is used as the interferometric reference. The two light
components then travel together towards the photo detector and any polarisation

gjllcil:ﬁgtegr Variable Distance |
Circulator 2
Laser .
Diode
Sizmal Phot Fibre Tip Reflection Retro-
lgnal 1 Ot L~ Oscilloscope as Interferometric reflector
Proc. Detector Reference

Figure F.1.: The setup used for the power calibration is similar to the multi-surface vibrometry
setup of Fig. 7.1, except for the use of a single retro-reflector, located at a variable distance [. Also
an oscilloscope is used to additionally determine DC power levels at the photo detector.
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Appendix F Power Calibration for SEM Section F

change due to fibre birefringence will not affect the measurement as it acts on both
components simultaneously. In order to perform the calibration, the regular SFM
signal processing, using the implementation detailed in Sec. 6.3.1, is used and the
peak return signal values in original signal processing units are registered, while the
DC voltage values from the photo detector are simultaneously determined using an
oscilloscope. This allows the direct measurement of the mean stationary offset power
P.g = P+ P, of Eq. (3.3), where any influence of the sinusoidal intensity modulation
(see also Sec. 6.2.5) will be averaged by the oscilloscope. Blocking the free-space
beam then only measures the LO power Pj, allowing P, and the effective power P.g
to be calculated. In this experiment, the LO power P; is kept stable at P, = 57 uW
and measurements are taken at three different effective power levels by changing
P; to values of [10,23,40] uW by misaligning the beam using the kinematic mount
of the collimator. This then corresponds to effective powers Py of [48,72,96] uW,
respectively, using Eq. (3.3). This is repeated for six values of the distance I, up to
[ = 1.5m corresponding to a maximum demodulation amplitude Ay = 465rad, and
the resulting signal processing units, also for a variation of o over [0.025,0.05,0.075],
are then recorded for each parameter combination of P.g, [ and o.

The results of these measurement are shown in Figs. F.2(a), (b) and (c) for the
three values of o, respectively. In each plot it can be seen that the effective power
generally increases proportionally with P.g and that the power registered by the signal
processing increases for large values of o, as would be expected because a broader
window function allows more signal power to be incorporated. However, it can also
be seen that the effective power shows an unexpected slope in the dependency on
Aq for large values of 0. The reasons for this slope are unknown and this behaviour
requires further investigation. Nevertheless, in this work, the conversion coefficient
is only required for 0 = 0.025 and here the slope in the signal processing power
can be neglected. Therefore, the mean over all six values of Ay in Fig. F.2(a) is
computed and lines at the mean values are also drawn there. For each of the three
effective power set-points used, the conversion coefficient can be extracted from these
mean values with very good proportionality to the effective power. The conversion
coefficient can then be given as (1.33 £ 0.06) - 10° Units - uW ™" and this value was
used in Chap. 6 to determine the effective powers of the return signals.

5 (a) 0=0.025 (b) 0 =0.05 (c) =0.075
2 5-10 T T T I T T T I T T T
= s ¢ Pu=48 uW ||} ¢ Py=48 uW||}
2 4-10°F oo B Py=72puWHL B Pp=T2pWH e ... i
60 | ® Pyu=96 uW||| ® Pg=96 uW||| ° o
o T ] M I b °..e
§ 5[ SRR N S e O " m g
E 2107 i —---:------------.----.—----_—— —""‘I'J";‘"';'V'"'o""""".'"
5 >—.—.—.—'—'—.— I el =48
= 100——'—'—‘."—‘—".—'—'—".'—‘—'—"I‘—'—‘—'I"—'—'—I-“ O SRR R R A -Pn§::72ﬁw ------------- .
& e ® Py=96 uW
] 0 . 1 . 1 . 1 . 1 n T . 1
@ 0 200 400 0 200 400 O 200 400
A, [rad] A, [rad] A, [rad]

Figure F.2.: Measurement results for the determination of the registered signal processing power
as a function of the demodulation amplitude Aq4 for three values of the effective power P.g and for
three values of the window width parameter ¢ in (a), (b) and (c).
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