
Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013), Cranfield 
University, UK, 19th – 20th September 2013, pp 405-410 

 
SURROGATE MODELLING FOR RELIABILITY ASSESSMENT OF CUTTING TOOLS 

  
  

Athanasios Kolios 
Department of Offshore, Process and Energy 

Engineering 

Konstantinos Salonitis 
Manufacturing and Materials Department 

Cranfield University Cranfield University 
Cranfield Cranfield 

Bedford, MK43 0AL, UK 
a.kolios@cranfield.ac.uk 

Bedford, MK43 0AL, UK 
k.salonitis@cranfield.ac.uk 

 
 
 

ABSTRACT 

Currently, cutting tool life for machining operations is correlated to process parameters through the 
widely applied Taylor functions. The latter are valuable expressions in established practice however 
their generalised nature does not allow accurate prediction of the tool’s service life or optimization of 
the manufacturing process due to effects of uncertainties in various input variables. These variables 
should be treated in a stochastic way in order to avoid employment of safety factors for quantification 
of uncertainty. This paper documents a procedure that allows derivation of analytical expressions for 
cutting tools performance employing advanced approximation methods and concepts of reliability 
analysis. Due to the complexity of manufacturing processes surrogate modelling (SM) methods are 
applied, starting from a few sample points obtained through lab or soft experiments and extending 
them to models able to predict/estimate the values of control values/indicators as a function of the key 
design variables, often referred to as limit states.  
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1 INTRODUCTION 

Performance degradation of cutting tools is an aspect of major importance towards optimization of 
manufacturing processes. Flank and nose wear, crater formation, and built-up edge are only a few 
unwanted tool wear mechanisms that can have a significant impact on the surface finish of 
manufactured components yielding a need for costly reworks due to waste of raw material or 
classification as un-acceptable. The latter case may lead to production delays due to the additional 
work introduced and hence it has been established as current practice to replace tools even though the 
still retain 20-50% of extra service life (Wiklund 1998). 
 Hard and brittle materials, which perform in a way that a local defect propagates rapidly and 
hence with sever effects are characterized as “difficult to machine” and therefore demand an even 
greater understanding of the conditions of cutting tools which illustrate high wear rates on both the 
flank and the face of the tool.  

Although fabrication of cutting tools follows processes of high quality, their performance (also 
considering the interaction with the cutting surface) is characterized by stochasticity, constituting 
deterministic approaches to prediction as insufficient. To this extend and considering that tooling cost 
in flexible manufacturing accounts for a quarter of the total machining costs (Shakarov et al. 1990); 
more systematic methods should be employed in order to accurately quantify the effect of 
uncertainties. Concepts of structural reliability has widely been applied in cases of critical systems in 
aspects of frequency or consequence of failure; nuclear (Ellingwood 1998), aviation (Liu and Moses 
1994), offshore (Kam 1988), and critical infrastructure (Micic et al. 1990) to name a few. Therefore 
the applicability of such methods in estimating cutting tool reliability is considered in the present 
paper.  

This paper aims to adopt such practices for the probabilistic prediction of the cutting tool fatigue 
life starting from a limited number of experimental data, and following by using surrogate modelling 
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as an approximation methods construct an implicit expression linking flank wear to feed rates and 
cutting speeds over time. The latter can then be combined to existing reliability analysis methods 
expressing the probability of failure (or reliability) of a cutting tool under stochastic inputs. 

2 PERFORMANCE OF CUTTING TOOLS 

Performance degradation of cutting tools is characterized by a number of different wear modes and 
mechanics, such as flank wear and crater development. The various wear mechanisms essentially 
depend on the cutting conditions and on the tool and part materials. A number of different types of 
wear mechanisms can be observed depending on the cutting conditions (figure 1). Typically tool 
failure modes are dictated by the following types of wear mechanisms (El Wardany and Elbestawi 
1997): 

• Gradual wear (flank and nose wear), observed at low feed, speed, and depth of cut 
• For higher values of depth of cut, the dominant failure mechanism is the depth of cut notch on 

the tool rake and flank faces 
• For high cutting speeds and relatively high feed speeds, catastrophic failure due to tool 

breakage occurs. The time and severity of tool breakage depends on the speed. 
• In finishing processes, depth of cut notches and secondary grooves are the causes of tool 

failure since the former causes chipping of the tool and the latter spoils the quality of the 
workpiece surface. 

 
 

 
Figure 1: Wear characteristics (Kalpakjian and Schmid, 2008) 

 
They can generate different statistical distributions of the operating time to failure such as the 

normal, the log-normal or the Weibull distributions. To evaluate the reliability of cutting tools in both 
variable and constant feed machining process, a mathematical model based on the theory of 
probability is necessary. This stochastic model is related to the random variable associated with the 
operating time to failure of the cutting tool. 

3 CONCEPTS OF STRUCTURAL RELIABILITY 

Reliability is defined as “the ability of a system to fulfil its design functions under designated 
operating and environmental conditions for a specified period of time”. The probability of failure can 
be seen as the probability for which a limit state for a system is exceeded. This can be expressed for a 
multi-variable system  using a Limit State Function as: 

 
    (1) 

 
Where  is the limit and  the actual value of the limited variable. 
 According to the definition of the Limit State Function given above, the probability of failure can 
be mathematically defined as the probability for the limit state condition to be unsatisfied: 

. Hence the probability of failure can be rewritten as: 
 
   (2) 
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The solution of this integral is in most cases very difficult, if not impossible, to be analytically 

derived hence approximation methods are often employed characterised by different computational 
requirements and accuracy. First and Second Order Reliability Methods (FORM/SORM) employ 
second order Taylor expansions formulating easy to model algorithms for computation of  (Choi et 
al., 2007).  

Further to analytical, stochastic methods such as Monte Carlo simulations are widely used due to 
the fact that they do not require much knowledge and statistical understanding of the problem. The 
algorithm is easy to implement and consists of launching several times the deterministic model with 
different inputs and checking each time if one or more thresholds are exceeded or not. Disadvantage 
of the method is that it is not suitable for low probabilities of failure as it becomes computationally 
demanding.  

4 RELIABILITY ANALYSIS OF CUTTING TOOL LIFE USING SURROGATE 
MODELING TECHNIQUES 

4.1 Approximation Methods 

Complexity of engineering problems often demands reduction of system through appropriate 
approximations, formulating expressions that explicitly represent the relationship between inputs and 
outputs. Available techniques distinguish Response Surface (RSM) and Surrogate Modelling methods 
(SM). Both methods start from a limited number of  points, the first category attempting to find 
an interpolating fit through those points (best fit) while the second one, through more numerically 
intensive procedures build models that can accurately reproduce the initial points (passing through). 
In the RSM, polynomial regression techniques (MPR) and generalised linear models (GLM) can be 
identified while in SM techniques such as kriging and radial basis functions (RBF) (Khuri 2001). 
Approximating the system under analysis using such expressions facilitates analysis allowing both 
optimization and reliability analysis since objective and Limit State functions can be approximated 
with such techniques. Response surface methods, in particular SRSM, have already been employed 
successfully both in optimization and reliability analysis (Queipo et al. 2005), as well as kriging  
(Forrester et al., 2006). 

4.2 Surrogate Modelling - Kriging 

Kriging is an evolution of Gaussian radial basis functions using the following basis function to 
approximate the original one: 

   (3) 
 
Which represents the correlation between two sample points. The two parameters that 

differentiate this basis function from the Gaussian radial basis one are the smoothness coefficient  
that represents how fast the function is and how quickly tends to infinite and zero and  which stands 
for the ‘activity or width parameter’ and gives information about how much the output is affected by 
the corresponding input. The prediction at a new point is assumed to follow the same correlation. 
Finding the parameters values is a procedure done maximizing the likelihood of the sample set which 
is partially achieved through analytical differentiation and partially by direct search (e.g. genetic 
algorithms, simulated annealing etc). The predictor is expressed as: 

 
   (4) 
 
Where is the correlation vector between the samples and the prediction point,  is the 

correlation matrix,  the MLE estimate of the mean of the sample responses and  the sample 
responses.  

Having formulated the above expression, FORM is employed to quantify probability of failure 
through reliability index, through a localised search of the optimum design point to the design 
domain. In actual applications the limit state is, mostly represented by a second order polynomial in k 
variables. Kriging parameters obtained though kriging approximations performed on the reference 
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system can be used to directly work out the limit state expressing through the kriging predictor. What 
can be obtained from second term of the predictor is a single value that represents the deviation from 
the mean value . In the expression of this matrix multiplication one part of the formula dependent on 
the new prediction point, which is  and a second part independent from this,  can 
be distinguished.  is a nx1 matrix where each line can be expressed as (Casali et al. 2012): 

 
   (5) 

 
 The multiplication  can also be expressed as 

   
  (6) 

 

Where,  and stands for the expression of the Limit State. The 
relevant algorithm is shown in Figure 2. 

 

 

Figure 2: Analytical Kriging - FORM algorithm. 

5 ILLUSTRATIVE EXAMPLE 

In order to apply and validate the proposed method for tool wear reliability calculation, dry 
cutting tests were carried out on a high speed CNC turning machine tool. Within the present paper, the 
basic wear mechanism considered is the flank wear. It has been experimentally identified as the most 
dominant mode of wear and is a function of cutting conditions (cutting speed Vc, feed rate f and 
cutting time t), workpiece and cutting tool material, kind and type of coolant, etc. 
 

 

Figure 3: Tool flank wear (left) for different feed rates with Vc = 400 m/min and (right) for different 
cutting speeds with f = 0.15 mm/rev. In both cases cutting depth is ae = 0.8 mm) 

The workpiece material was C55 (EN10083-2) high carbon steel, whereas the cutting tool inserts 
used were made of tungsten carbide (ISO TNMG 160408SG). The flank wear VB was measured 
periodically during the machining processes using an optical microscope. For each measurement, five 
sample measurements were taken. The wear flank value reported is the average value of these five 
measurements. For the present study, two process variables were considered, the feed rate and the 
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cutting speed. Feed speed values selected were 0.05, 0.15 and 0.25 mm/rev. Cutting speed values 
selected were 300, 400 and 500 m/min that resemble high speed machining process. In all cases the 
depth of cut was fixed at 0.8 mm. Figure 3 present the measured flank wear for different feed rate and 
cutting tool speed. 

For the estimation of the reliability of the cutting tools, it was assumed that the tool wear 
distribution can be represented using a normal distribution. This is in agreement with Hitomi et al. 
(1979) and Wager and Barash (1971) who have observed that the cutting tool life can be represented 
by the statistical normal distribution. The tool life criterion (limit state definition) was set to be 0.3 
mm. 

Following the analysis outlined in section 4, the reliability and probability of failure for the 
cutting tools were estimated.  In Figure 4, typical analysis results are presented for a specific cutting 
setup. The failure probability curve is the probability that flank wear will exceed the critical value 
subject to the stochastic variables of cutting speed and feed ratio with given statistical parameters at 
each time step. The effect of feed rate on tool wear failure probability is not so significant compared 
to cutting speed. It can be seen that tool wear reliability improves with decreasing of feed rate. With 
regards the cutting speed, as it decreases, the probability of failure falls, which subsequently results in 
cutting tool reliability remaining higher for longer times.  This is in agreement to the authors findings 
using the combination of Response Surface modelling to Mode Carlo simulations and First Order 
Reliability Methods (Salonitis and Kolios, 2013). 

 

 

Figure 4: Probability of failure (left) for different feed rates with Vc = 400 m/min and (right) for 
different cutting speeds with f = 0.15 mm/rev. In both cases cutting depth is ae = 0.8 mm) 

6 CONCLUSIONS 

This paper has documented a methodology for the efficient reliability assessment of cutting tool wear 
based on surrogate modelling (SM) methods, and more specifically kriging, for the estimation of 
reliability indices. Application of the method in a cutting tool wear with indicative statistical values 
has illustrated its efficiency and simplicity in implementation since each step can be executed 
individually.  

The methodology employed herein can be extended to take into account more than two variables 
(cutting speed Vc and feed rate f in the present paper) increasing the number of variables stochastically 
modelled. These, together with consideration of more realistic values for the stochastic modelling of 
key variables, are currently studied by the authors of this paper. 
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