g 4
\\ L) My
oA Y

N _
150005758 7

March, 1946.

COLLZEGE g 3 AERONAUTIC S

+
=
I

e

CRANFIZE L

On a Theory of Sandwich Construction
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The theory of sandwich construction developed in
this paper proceeds from the simple assumption that the filling
has only transverse direct and sheer stiffnesses, corresponding
te its functional requirements (gl). This supposition permitse
integration of the equilibrium equations for the filling (82).
The resulting integrals are used to study the compression
buckling of a flat sandwich plate (§5J. The formulae obtgined
are complex, but may be simplified in practical cases (gé}. A
second approach to sandwich problems is made in §5, where a
theory of "bending" of plates is outlined. This generalises the
usual theory, making allowance for flexibility in sheer., This
approach is applied to overell compression buckling of a plate
in §6, and agreement with the previous cealculations is found.
This suggests the possibility of calculating buckling loads for
curved sandwich shells. A4 simple example, the symmetrical
buckling of a circuler cylinder in compression is worked out in
87. The theory developed would seem applicable to all cases of
buckling of not too short a wave length (88).

NOTHE: This paper will be read at the VII Internationsl
Congress of Applied Mechanics (1948).
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1l ‘/Assumptions

The construction of o plate built cccording to the
principles of Sendwich Construction is shown in Fig.l.
Metal or plywood foces zre glued to the surfcce of o low
density filling. The faces cre the principsl load ccrrying
agent. The function of the filling is to stoblilise the fzces
cgoinst leterel buckling and to provide o shear connection
between the foces without which the plate could not transmit
bending cctions. The filling mey contribute to the lood
carrying capecity of the plate, but it is not eseentiecl that
it should do so. The adventcge of Sandwich Construction lies
in the grect flexursl and torsiougl rigidity of plates con-
structed by this method. This rigidity arises from thé
stiffness of the frces in their planes combined with their
relatively large separction,
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Fig.l

The theory of Sandwich Construction developed in this
paper proceeds from on ideal model in which the component
perts fulfil their essential functions but pley no other part
at all The faces are ideclised as thin platee with o thickness
t of isgotropic material having Young's Modulus E ond
Poisson‘v rotio © . The filling is cssumed to extend between
the middle surfoces of the focee with thickness 2h  large
compared with t. It will be assumed homogeneous, but
enistropic, with direct stiffness at right ongles to the feces
cnd shecr stiffness in plones ot right sagles to the faces,

Other kinds of stiffness of the filling will be teken as zero.
If Cartecian oxes cre tcken with Ox and Oy in the middle
surfoce of the filling aond z ot right angles to the foces,
the stress-strain relctions for the filling con be written:-

O, Yy = U, QZ = Cezz, ]

il

Xy :
TR T

YZ = Leyz, ZX = Lezx, Xy = 0O )

The notation for stress and strain components ig that of

Love's Treatise (Ref. 1). C is Young's Modulus in the

Oz direction while 1. is the shear modulus in the Oyz and

Ozx planes.

52. The Displacement

The dieplacement in the filling can be calculated
from equations (1) and the stress equations of equilibrium
which can be written remembering (1) as:-

& 7% S Yy BZx AYz <Az
f—— = — . =
oz ¥ 85 % Jx VT ay T am e .o (2)



It follows that Zy and Y, are functions of x and ¥ alone,
and that

. alx  ¥Y, :
Ly = "Z(ax i éyJ + Zz0 e .. (3)

where Z2,, 1is (Zz)z—o’ a function of x =and ,y. Using the

formulae expressing the strain components in terms of the

displecement (u, v, w),

aw _ )
>z - Czz )
) o [4)
ow v _ eu ew _ )
Ay 3z ¥z * 3z T ax - “zX )

we obtein by substitution from (1) and simple integration
the formulse: -

3 Z 2 o )
u = & jL (Q_E + EEE) = 8770 7 (24X _ BWo) 4 ug)
(& axX ax 3y 2C ax i X )
)
3 a 7 - 2 )
- B . af Z° A%z T W
e = i~ Z a5 (4] Z 0 .
) 6C gy Caax i ay) Pl 5,5} % Z(—"L 35 = ¥o % (9)
2 )
_ 2 & 7 a2Y
W= -2 (X4 Z ) 2%50 )

where (ug, Vg, Wo) is the displacement of the plane 3z = o.
Equetion (5) expresses the displacement in terms of six
arbitrgry functions of x and y, namely Zy, Y,, Z,5, Yo,
Vo &nd Wq.

83, Buckling in Compression

A sendwich plate, occupying the regilon
~0 & X<+ o, 08 y=b,-h= 2=+ h, is compressed in
the x direction by & uniform loed P per unit lengtn,.
The edges ¥y = o, b <¢re simply supported The plate will
become unstable et a certain criticel value of P. To find
this value, o small displacement (u, v, w) 1is imposed upon
the uniform compression and the exemination of the
possibility of equilibrium in thie buckled form is carried
out in the uvuzl wey. The displacement (u, v, w) 1s given
by (5). Thig satisfies equilibrium conditions in the filling.
The six unknown functiong involved are determined by the
bcundery conditions at the faces.

The calcul.tions ere simplified somewhat by
introducing the arcsl dilatation & of the fsces., This is
related to the applied forces per unit arese 2, and Y,
by the equation

T e 2 7 =
vVia - =T (B, 2% (g
Bt ax -

where in this, as in subsequent equations, the upper sign
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refers to %z = h and the lower to 2z = ~h., TProm (5) it
follows at
‘f
= &4 1152 37x  3Y¥z) he - )
&s = 5§ I\‘io_c 3% " 37) -E-C;ZZ_OJrnWOj
w5 BBy, @, 8 . L
- X ;V' . e =)

Substituting from (7) into (6) and adding and subtractin
resulting equations;-~

(2° 0% b @f (L=T7) ) (8% . avg)
( 6C v ¢ - Bt ) 3z T 7 )
= hv‘g-wo . . (8)
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The remesining condition of equilibrium et the faces

is that of balance of normal forces. Here the effects of
initial compression P must be introduced as well as the
external force Z,. The resulting equations are:
- 2

T“n‘g: .‘.]_. ?’ 3 7 ]

(_._; v + B SEB ) (W"Z':ih 2 (“Z)E=+h = {)) 4 (10)

1 Bt

where D = === = oo wd gem mes Al

12(1«0%)
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Substituting from (3) and (5) into (10) and again adding and

subtracting the resulting equations:-

- 5 & ~
!:ﬁ'g ™ 5 & _5__2‘\;11 {32x+312)_
% A~ XA 4 3 X BT
o) 2
2 e
(D‘C74 + 5 3%2)Wo 2& w3 ~s&  B1ED
no 4 P af 5
(D\( ".—:)'5-%—3 i %} rzo = 3 .. L] . (]5)

Equetions (8), (9), (12) and (13) involve only the fcur
unknowns

@iy B3, 5 du
T , ] /JZ,O s

3 X 27

o

+ @Yo
oy

and Wy

™
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This reletive simplicity is due to the use of A .,
The calculation of criftical loads is unaffected by this
artifice. The equations fsll into two sets, Equations

=
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and (12) involve only 22X , 3¥z and Wo, wWhile equations

oxX 3V
(9) and (13) involve 2,, and %o , 3Vo .,
83X ' 37

There are thus two distinct types of buckling:-

(8) Symmetric. Here 2%x , 2¥z _ Wwo = 0 and so w is
2X s
an odd function of =z. The critical loads follcow

from (13).

oy
1

(b) Anti-symmetric. Here Z =%Y% , 28V0 - 0 an
: 20 JX AV
is an even function of =2z. The critical losds

follow from (8) and (1l2) which yield when

?__Z?S. +2Y7 is eliminated:-
oX 5y

&0 + T6C 3% (b +—%x /
_hP 32 2, (1-9°)P 3% e e .

The critical values of P follow from (13) and’
(14) by assuming that w end hence Zzo and wo, vary as
sin fx sin Wy , where A is the, as yet unknown,
A b
half-wave length. The formulae are:-

Type (a) P =200 b A2 208 A2

- b@ E) & ﬁzh 15 .0 .- (]‘5) |
— + - ~ T R e o
p = 2IFEER® B | A2 Y aene Trnpe \YaZ)tacpE (1+5R)
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NEth b2 méEtnd 55 = 3
L IpE(1e7) (e aepa(1aR) ()T )
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§4. Discussion of the Buckling Formulae

The value of the smallest critical load follows
from (15) and (16) by chosing A %o make P & minimum,
This is easy in the case of symmetrical buckling and yields

£

4
b//\ = (l+bc/:ﬁ'4hn) S A i o 29

4C
In practice 9 /pép > 1 end so

/\ = ?.T‘(hD/C)% L L) L L] {18)



which shows that symmetric buckling occurs in shor} wave-
lengths of the order of the sandwich thickness 2h™". The
corresponding critical load is given by:-
, CD\+
o) g 2
Porit = 4(§°)

b man em e aa o KIS

The formula (16) for anti-symmetrical buckling is much more
difficult to interpret. If the filling is so rigid that the
effects of C and L can be disregerded, the problem reduces
to thet of en ordinery plete &nd so for minimum P, which will

be written Pp, the condition is A = b. This gives
B B

I\E ='-'8-',"_8££l?}-” . 8 .. .. .. (20)
(1-g= b=

Now =o long sas A is of the same order as b, inspection of
(16) showe that of the various terms of the correcting fraction
only the unities and the term involving L in the denominator
need be retained. Under these conditions equation (16) can be
written

8 b.oA2/ Py b=

. o= e A 1 B 2.
/PL 4(,\ ,b) // & --—4}_)8(1 H) . (81)
where, P, = 2hL i BE mwm  mm ome ke

The minimum value of ¥ occurs when
N

v oL
2

- TB
Ay = [ 2 425 1 v ww s L0
j
g ¥ “/4P§/

and this yields for DP,pit the formuls

1
P l‘—" “P']': 03; = =
erit + 1 o 15988

v .. (24)

The formule (24) governs the overall buckling of a sandwich
panel, as opposed to the short wave wrinkling which is
governed by (19). Ite range of accuracy is revealed by (£3),
which shows that 1t is certainly velid for Pp < 3P4,
Comparison mey be mede with the formuls for & strut with

low shear stiffness which is

1 s

o = o 7
Eotiddt i

Fofp
-
Ay
(@]

s}

where Pp 1is now the Luler losd per unit length,

B

A/h is proportional to (EtS/CPS)? which in practice

is of the order of unity.



The relation (16) gives a further minimum value of
P when A/b £<. 1, Expsnsion in powers of A/y, up to
N/pR gives a formule with e minimum et

rb;r—'

A= T

(ﬂlb‘
Qo
22\

The corresponding critical value of P is:-~

P

D)%

4"—“ TR . .. . . .0
VB (= (27)

“erit

Comparison with equation (19) shows that the criticel loed
for gnti-symmetrical wrinkling is larger then that for the
symmetrical veriety.

§5. Bending

The problem of the overell buckling of a sandwich
panel meay be spproached via a theory of bending of sandwich
plates. This may be developed from the displacement formulae
(5) by teking that part of the displacement which is anti-
symmetric about gz = 0. The displacement at the face 2z = h,
written (u', v', w'), is then given by

3 )
h 3 b- A DY 7
ui o i —— X 2 (JX - ;‘}WO )
e ox (3%t gyo) v hE 5%
)
nd a3 8% 3Y :
v ! = —_— = P Z Z 2 &Wo ) (28)
56 o7 ‘3% T 37 *E 35 )
)
‘2 ar7 )
W] _ —.L’1 x.Jx aYZ
2C (ax + NG )+ W ;

The stress resultants T,', To' and S' in the face 3z = h
are given by

)
= Et au’ ov! \
Tt =

= 1-c2) (72 "7 35y) ;
)

m = Et a‘vl aut ) L ] L] (29)
To! = = + — {
£ (]_Ho'cs)('alf X ;
T )
oy o v! > ut )
ar = )

Neglecting the contribution from the bending of the faces,
the formulee for the normal stre.s rcocultants N, end Ny
and the stress couples G;, G and H for the sandwich
plate as & whole can be writte%:-

N, = 2nz, N, = 2uY, PR



G, = 2hT,', Gy = 2hT,'

The sign convention for the quantities B!, To', S', Ny, Ns,
?? and H 1s given in Fig.Z2.

Gy, G
H
i [\TB ' \\L{ G f.\ }I?
O i O St ....ff‘:::;“_ia_ G 2 ""+£, ’
o ’ | A il -
} i ] = 5 &
%,i ]--- "}T‘T é‘é—'é i . H '\;" ) o = ‘i‘/‘__
35[ s 3,:]\ —>> 7 [‘*'j:--r---J/}-*i "
g - f f N fm:_""“;l,%-—..,l/ b
Pace g2 = 1 Sandwich ag & whole
Fig, 2

The quantities 7y and Y, may be eliminated using (3C).
Relations between Gy, Gy, and K &nd the normal displacement
of the middle surfsce wg can be obtained by substituting
from (28) into (29) and thence into (31). The result may be
written:

~ = = e F-I"J - l Eal\-{r aII"“] 3 h {a p 3o BC’E)
o DT{ S Zhi(3x *7 F¥) lﬂ33x5'+oayﬁ¥

e e e e e et
P
€5
=
&
—

H=D/(1 <)} --%?4§§§-+al3] . ;iEP
4hLl g % % 12C X3y
2Eth®
Where :D' = (1 _G-E:) LI - (I} (55}
* 2 L
- W . ; ~ =
X = 2“_% » XKoo= BBWE ; P = S0 (34)
S X Sy~ dXdY

and p is the transverse load per unit esrea of the plate,
which is given by equation (35) below. Equations (32)
generalise the ususl bending moment ~ curveture relations 1o
allow for flexibility of the filling in chear and transverse
tension and compression. In practice the terme in p are
usually emsll and mey therefore be omitted.

The theory of the bending of sandwich pletes is
completed by the usual equilibrium equations:-

oll, eN, )
r— o = W= )
o X ay - )
3¢, 3H ) .
.--—._'-. - _: - N—‘ = O } . - L] . . < (5U)
2% 37 )
)
-3 H 2Ge _ )
ax "3y~ f2 =0



86. Alternative (Uslculetion of Oversll Compression Buckling

A calculetion of the buckling load for coumpression
buckling with half.wave length A of the order of b can be
based upon the JEHGng theory of 85. Allowance for the initial
compression p 1s made by writing

BEWO ze )
p = _‘!'J e -':!_ .o . ® " s - . e (tﬁ6}
DX
The equations (32) and (35) are solved by writing
)
- f T 5
Wg = W 511’1’135 si E J
- ” A b )
= 21 ; : , 5 T
N, = n,cos —=sin =L Ny = ng sin WX cos S )
A b A )
. _ ) (e
> P ] Ty
G, = g,81hIL£51n ﬂ¥ G? = 85 gin LS sin =L )
4 b 5 A B %
) nx 7T
H=h cos == COS{é- %
1 A ¢]
vihere J,, ny, nNg, g 3 ; and h, &re constants,

|
) afdd the elimiunation of these constants
formule for F:-

o/
i

/

Substitution frofm (27
yields the following

{JEDI

12+
P = A

o>

2
“‘a o e 38
{l % Efgl (38)

PhLo* }

It is to be remerked that the terms in p in (32) Lhave been
omitted. Inspection of (33) end (20) shows that equation (38)
iz identical with gquation (21). The approsch vie the
bending theory of 85 yields the same result for oversll
buckling as the more exact calculutions of 83, This suggests
the possible application of the formulese (32) to more
difficult problems, <wchas those of the buckling of curved
cshells.

&
37. Symmetrical Buckling of a Circular Cylinager in
Compression

roblems of
of the

The applicetion of the formulee (32) D
ge
dg., The
g.
T

to
curved shells may be exemplified by the simple ca
buckling of a circular cylinder in a symmetric mo
sssumed crosg-sectional deformation is shown in Fi 3,

"w"  the radial displacement is a function of x he distance
elong the exis of the cylinder. The hoop tensile strsin £ <

# ! is w/p . Assuming no change
. in direct stress parallel to the
. e axis, it follows thet the
b i'ra}\}\W x-wise strain &, has the

Vo g value ~T w .
: \mb,«*’ y v



The hoop tension T, is then given by

r"?t oma W i d
'-D s '_'—_4-']:}-_-’"“ E + U‘E ) = G.L‘JTJ— " e . . .o (!39 )

The equations of equilibrium sre:-

oI, T2 )
Bx " T P=0 i
EG ) LA 4 LA LA L e @ (40)
ek e W =0 )
& : - )

where N, and G, are the shear and bending moment. The
pressure p &rises from the initisl compression T and is
given by:-

3 oy

= —P '—a—'ﬁ . . o P i . s . (41)
FPirelly the vending moment - curvature relstion follows from
(32):~ o

( a“g 1 BN}E "
G‘] = -DT (axz 2 2hl —é—}-{. _r .. . s P (47':3)'

Elimination of T

s : N,, p end G, from (39), (40), (41) and
4 yields: -

n
na

3

o
L

A -
S 2w I 4
- ——— i T —— Ay W -
(: 2nL 3x~ (; ax2 T TR W) D, == = @ s (28]

o

The critical load is obtained from (43) by assuming w
proportional to sin flx/A . This yields the result:-

4

T w.a 2 P
l/ - AR A 1 o
By = (*—“} + | ) + 7 == :
Fs
< L )
o = . 2
where, Pp =T (2EtD;) )
2 5 g v . .0 . (45)
Dhr™ =
=y = n’ -—--‘——— N
Ag ZEe) )
P. and l-? are the buckling loaed snd helf-weve length for
the cease where shear flexibility of the filling is small,
Po is given by (22). The minimum value of P in equstion
(Z4) occurs when
2 ‘%;}'\_‘!
(‘A—) :l_l:-"_ﬂ"" . . e — e w . e 46

This gives for P,yi4 the formula:-

Pcrit = PE (l = Z‘:{)‘ ) L . . .. * & LI (4?)



Equetion (47) ie valid so long &s (46) yields & wave length

sufficiently Jlong to justify the use of the bending theory

of 85, For prqcthul application Py «£ 3 Pg would seem
quite a reasonadle limitation. 2

£8. The Field of Applicetion of the Tieory

The type of construction to which the theory of
this paper is directly applicsble is that class of sandwich
in which the filling consists of resin impregnated paper
honeycomb. In this case the stiffnesses of the filling
conform alwost exactly to the equetions (1). The formulaze for
the buckliing loads (19), (24) and (47) would =seem then to be
eppropriate to this type of construction.

The formuls (19) which covers the case of wrinkling
will certeainly not epply to cther kinds of filling, whose
comprehensive elastic properties induce & dying eway of surface
weves at points distant from the surface and so lesd to =
buckling forr“lf which is gpproximetely independent of th
filling thickness ¥, On the o%lLer b-nd the formulse (24) and
(47) whlc; appry to overall buckling in wave lengths lerge
ccmpared with tie plate thickness may reessonably be expscted fo
eprly to =ll practicel fillings.

l. "The Methematical Tucory of Elasticity". Love.
Z. "Theory of Zlastic Stability", Timoghenko.
Jd. "Instability of Sandwich Struts end Beams". H.L. Cox.
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“%  See Reference 3.
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