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DUCTILITY, ITS MEASUREMENT AND RELEVANCE TO 
SHEET METAL FORMING OPERATIONS 

by 

Roger Pearce 

In sheet metal forming operations failure is identified 
by the onset of instability, which manifests itself as either 
splitting or buckling. 	An approximate analysis of the sheet 
metal forming process, and a study of formed industrial components 
suggests that the deformation which produces these complex parts 
is compounded from two 'pure' stress components, namely, plane 
stress and biaxial stress, predominantly, and thus the material 
parameters which are relevant to these modes must be determined 
and measured. 	The plane strain produced by the former is often 
of the form where circumferential strain is zero (Figure 1) and 
so the material properties in the through-thickness direction are 
important. 	For best performance here the flow strength in this 
direction must be high relative to the load required to draw in 
more metal and it is here that the strain ratio r, the ratio of 
width strain to thickness strain, measured at a prescribed 
elongation in the tensile test, is of great importance. 

In the latter (deformationunder p.biaxial stress state) 
the position is not so clear. It is reasonable to assume that, 
in an operation exemplified by stretch-forming or bulging, 
(Figure 2) an elongation parameter would relate to the 
performance of the material, but unfortunately correlation 
between elongation parameters and these modes is poor(1), 
compared with that between r and ldr( 2 ). 	The reason for 
this is twofold. Firstly, thatfailure by plane strain has 
a fairly precise meaning, and secondly, that r, by definition 
is measured in a stable part of the stress-strain curve. In 
the case of failure by biaxial stress, firstly, the stress 
ratio can vary from x = 1 to x = 1, and secondly measurement 
of a parameter at instability is being attempted. Both these 
factors will tend to make correlations more diffuse. 

Ideally, what seems to be required is a measurement of the 
ductility at instability under the stress system obtaining in 
the critical region of the component, but as the range of 
conditions is so wide, and the tensile test so popular, it has 
been the custom to measure ductility in uniaxial tension and 
from this attempt to predict compleN. stretching behaviour(35 4) . 
Is this an incorrect procedure for the true strain at instability 
changes with x? 
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One of the empirical equations for the stress-strain curve 
of a ductile metal is : 

a = K(B + i)n 	 (1) 

suggested by Swift(5) 	K, a and e and n have the usual 
meanings while B indicates the initial state of the material. 
This is shown in Figure 3. 	Differentiating this equation 
gives 

d5 	a 

de 	
z 

where B+i z = n 

The true instability stress and strain are defined as the 
stress and strain where 

d5 
	

a 

di 
	

z 

and so can be found by drawing a tanc.ent to the stress-strain 
curve such that the length of the sub-tangent is z. This is 
also shown in Figure 3. 

What is the relationship between these various parameters? 
The variation of critical subtangent with stress ratio is shown 
in FiT-ure 14 and the relationship between critical subtangent 
and e at instability is shown in Figure 15 for n = 0.2 and 
critical subtangent values of 1, 1.155, 1.8 and 2. 	The 
relationship is linear and must be so for all values of n. Bearing 
in mind the assumptions which have to be made, it is not un-
reasonable to use f at instability in uniaxial tension as a 
measure of the behaviour of material in certain other more 
complex strain situations. 

Now take the example of a circular diaphragm under internal 
pressure. Here, e at instability is: 

0.727n 1- 0.364 	Obviously this will also give 
a linear relationship with e at instability in uniaxial tension. 
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The problem then, with materials possessing a, e curves 
which can be closely approximated to equation (1), is the 
practical one of measuring E at instability. 

The construction shown in Figure 3 is theoretically sound, 
but in practice difficult, for the a, e curve tends to linearity 
after instability and so the tangential point becomes diffuse. 
The most popular approach at present is as follows: using a 
different empirical relationship: 

If 	 a = Ken  

then, a plot of logo vs. loge 	is linear, of slope n. 

As 	n = e at instability, 

Then 	the slope of the curve = e  

There are various ways of producing a ecurves already 
reported, am_l it is unnecessary to enumerate them again. 

However, E is related to the engineering strain e as 
follows: 

e = ln(1 + e) 

and so it is possible to measure e in a tensile test and calculate 
n. 	However, there seems little point in calculating n, when e 
at instability will do as well, as long as measurement is possible. 
Many people measuring elongation for control purposes use uniform 
elongation as the ductility parameter. 

Direct measurement of eu  need not he used for materials 

exhibiting a = Ken  - type stress strain curves. Nelson and 
Winlock showed that if logo vs. loge curve was linear 
then: 

log au  - log a2  

n  = cu = log eu - log E2  

when 0
2 
and e2 are 

the stress and strain at an arbitrary point below maximum 
load. 	This reduces to: 

au 
= 
, u,J eu 02 	e2 



and substituting 

Pu(1+eu) 

A  

sectional area of the testpiece, for au, and similarly for 
a2' and ln(l+eu

) for E, etc., then 

	

Pu 	re2 ln(l+eu
)1 ln(l+eu) 

P2 1+eu ln(1+e2)J 

From this equation curves of the type shown in Figure 4 can be 
plotted, and eu  read off for a given Pu/ 	and e2. 	It can 

P2 
readily be seen that this, when standardised will give rapid 
results; subsequent work on deep drawing steels has shown that 
this method agrees well with the log-log plot, the former 
giving higher results by about 0.002. 	However, this accuracy 
is dependant on the fit of the (5,E curve to a = Ken. 

The slope of the plastic curve is indicated by other 
parameters, for instance the ratio of yield load to ultimate 
load taken directly from the tensile testing machine. This 
can be a useful parameter for a known material; 	the 
relationship betwen Ys,

/Us 
 and eu for a number of edd steels 

is shown in Figure 5. 	Again assuming a = KEn and defining 
yield stress as a proof stress, i.e., stress at 	e = 0.002, 
then: 

	

o 	k n 
Y0/us  = (7i) 

arid 

I In (YS/us) = In k 	In n 

The relationship for the same steels is shown in Figure 6. 
However, Ys,, 	could be a dangerous parameter, for obviously 

/jS 
it is possible to have materials with the same YS/us  but 

widely differing elongations, as shown diagrammatically in 
Figure 7. 	To define the curve uniquely a knowledge of the 
elongation is required, and so this exercise is not entirely 
useful. 
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where Ao is the original cross 
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A further advantage in measuring uniform elongation is 
its generality - no assumptions are necessary regarding the 
shape of the a, ccurve, the elongation to maximum load is 
sufficient definition. 	Unfortunately, instability shows in 
different ways in different materials, and this is demonstrated 
in Figure 8 which shcws load-elongation curves for a number of 
different materials, with uniform and total elongations 
indicated by the horizontal lines. 	In the case of steel, 
copper, aluminium and magnesium, the uniform elongation would 
seem to be a not too difficult parameter to measure and use. 
Zinc shoule not really be included here, for it is effectively 
hot-working at the strain rate used, but is put in for interest. 
In the case of zirconium, the'unstable'elongation is so 'stable' 
that it seems certain that in a sheet metal forming operation 
it would contribute substantially to the production of the part. 
With stainless steel in uniaxial tension fracture occurs under 
increasing load and so unifone elongation is total elongation. 

The practical problems involved in the measurement of uniform 
elongation directly from scribed or gridded test pieces must not 
be forgotten. 	Figure 9 shows the variation in uniform elonga- 
tion in test pieces of varying length produced from annealed 
commercial-purity aluminium by conventional milling techniques. 
giving an accuracy in cross-sectional area of ± 0.0005". 	The 
variation in 'uniform' elongation within one test piece and the 
variation from test piece to test piece for specimens cut 
adjacently from a sheet is clear. Figure 10 shows a similar 
experiment, where after milling the test pieces have been 
electropolished before gridding and testing. A slight improve- 
ment can be observed. 	Figure 11 shows the effect of test 
piece width (specimens again electropolished) on uniform elongation. 

All measurements were made over 0.2" gauge lenths at 0.1" 
intervals as indicated in Figure 12. 

It seems clear that for really accurate elongation measure-
ments a test piece accuracy far in excess of that normally demanded 
is essential. 

To sum up at this stage. 	Real materials do not always 
conform to empirical stress-strain relations and so the use 
of the strain hardening exponent r is not entirely satisfactory. 
The measurement of uniforie elongation presents difficulties if 
a range of metals is being studied, and the effect of small 
variations in test piece dimensions is startling. 

Is it then possible to devise a satisfactory method of 
determining the ductility of a material at instability? 
A suggestion for further investigation is as follows: 
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If P and A are the current load and cross sectional area 
of a test piece, 1 the gauge length, and nand c the instan-
taneous stress and strain : 

= A  

des 	dPdA 
a - 	- A 

of = -7 

= - dA T, for, Al = constant 

dodP = 	r9 
C 	P 	

E 
 

dP at instability 	= 0 

do _ 
de - ° 

Figure 9 can therefore be plotted, showing the intersection 
of the stress strain curve with its derivative which is the 
condition obtaining at instability. 	This method does not 
depend upon any empirical assumptions, and the relationship 
between the true strain at instability derived in this way 
and the behaviour of the material in other deformation modes 
will be as valid as before, but more general in its application. 

If necessary the 0, e , curve can be plotted by one of the 
current methods, while the derivative can be obtained most 
easily from a simple computer program. Ideally, the value of 
E at instability can be obtained from values of load and 
elongation, again from the appropriate program. 	This is 
exemplified in Appendix 1. 

Finally, the reason for the lack of correlation between 
stretch forming and bulging, and uniaxial elongation parameter 
must be clarified. 	Firstly, the fracture behaviour is quite 
different in the two cases and so the cup height will vary in 
an, at present, unknown way, based on the fracture strain 
developed. It is also reasonable to think that fracture strain 
will be more variable with punch- rather than with fluid - 
stretching. 	The fracture strain developed will naturally be 

• a 0 • 



z = 1+x 
2(1-x+x2) 
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related to the way in which necking occurs and this varies 
considerably with stress ratio. 	Keeler and Backofen ( 5)  
in their punch-stretching experiments postulate two types of 
necking, firstly diffuse necking, in which flow occurs broadly 
and symmetrically about the loading direction, and is 
encountered when: 

4(1-x+x2)312  
-(1+x)(4-7x+4x2) 

The other, described as local necking, is a thin band of 
material inclined at a given angle a determined by x, with the 
critical subtangent: 

Additionally, it is generally a height measurement which is 
made for correlation purposes, and this will be related in a 
complex fashion to the strain distribution, especially as most 
stretch forming tests are, finally, non-hemispherical. 

It is most important that the effect of anisotropy on the 
work hardening behaviour in bia);ial situations be resolved. It 
is not difficult to demonstratek6) the disagreement between 
anisotropic plasticity theory and crystallography in the 
extreme case of sheet single crystals, but the most urgent 
requirement at the present time is more information than we 
possess( 7) showing where these two approaches are complementary 
or in agreement. 
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FIG. 2 A SIMPLE STRETCH-FORMING OPERATION 

FIG. 1. 	ILLUSTRATION SHOWING d c = 0 FOR CUPDRAWING 
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FIU. 8 LOAD EXTENSION CURVES FOR DIFFERENT METALS 
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