
The Case for Research in Game Engine Architecture

Eike Falk Anderson∗

Interactive Worlds ARG

Coventry University, UK

Steffen Engel† Leigh McLoughlin‡ Peter Comninos§

The National Centre for Computer Animation

Bournemouth University, UK

Abstract

This paper is a call for research in the field of game engine
architecture and design, a more comprehensive and thorough
understanding of which we consider to be essential for its
development. We present a number of key aspects that may
help to define the problem space and provide a catalogue of
questions that we believe identify areas of interest for future
investigation.

1 Introduction

Starting with Spacewar in 1961 [Fleming 2007], computer
games have been around for just over four and a half
decades. Until about two decades ago, most games were
developed by a small team of programmers, if not by
individuals, usually written from scratch with very few
reusable components. In a young industry that is very
much project-based, this does not come as a great surprise;
however, as the industry has grown, so has the size of
individual projects. This change has necessitated a number
of advancements in production techniques, and Garlan
and Shaw [Garlan and Shaw 1994] recognised that “one
characterization of progress in programming languages and
tools has been regular increases in abstraction level – or
the conceptual size of software designers building blocks”.
A similar increase in abstraction level occurred within
computer game development towards the end of the 1980s,
when the first systems with reusable components appeared.
These components are what we would now call game engines.

There appears to be general agreement that game
engines are not only useful, but due to the complexity of
modern computer games, are actually required for game
development. Given this, there exists a surprisingly small
body of literature on game engine design. The available
research has mainly focussed on game engine subsystems,
such as rendering, AI (artificial intelligence) or networking.
However, issues regarding the overall architecture of engines,
which connects these subsystems, have merely been brushed
over.

This lack of literature and research regarding game
engine architectures is perplexing. Books on the subject,
such as that by Eberly [Eberly 2000], tend to only briefly
describe the high-level architecture before plunging straight
down to the lowest level and describing how the individual
components of the engine are implemented. Often authors
present their own architecture as a de facto solution to
their specific problem set, without necessarily justifying
the decision-making processes that led to their designs,
and merely indicating the authors’ personal preferences.
Such literature offers an excellent source of information

∗e-mail: eikea@siggraph.org
†e-mail: sengel@bournemouth.ac.uk
‡e-mail: lmcloughlin@bournemouth.ac.uk
§e-mail: peterc@bournemouth.ac.uk

for writing an engine, but provides little assistance for
designing one when the requirements are different from the
solution described.

We believe that there are a number of points that
should be investigated, with regard to the game engine
development process. In this paper, we are not trying to
answer the questions that need answers, but we would like
to invite the academic community as well as the game
industry to participate in the discovery of these answers.
The aim of this position paper is therefore to present these
questions in order to provide a starting point for debate,
and to encourage discussion of game engine development
and architecture.

2 Research Questions

In this section we present a number of questions, focussed on
a range of potential research topics within game and game
engine development. The questions that we pose can roughly
be categorised into questions of terminology and questions
of game engine architecture and design. This is in no way
intended to provide an exhaustive list, or even to examine
the points in all their detail. Instead it is our hope that
we can spark discussions on these and similar topics, and to
trigger a more rigorous examination of their effects.

2.1 Terminology: The lack of a ‘game development’

language.

The games industry is relatively young, and as such it is
still lacking a common terminology. This is true within
the games industry itself, and between the industry and
the emerging games-related academia. However, in order
to facilitate the rigorous study of any subject, from both a
purely academic and a practical point of view, the ability
to communicate effectively is of the utmost importance.

The absence of a formal terminology results in communi-
cation at cross purposes, as lamented by Stephens [Stephens
2001], who points out the confusion between ‘game engines’
and ‘rendering engines’, clearly demonstrating the need to
establish a game development language.

We believe that such a language should encompass a defi-
nition of game engines and those engines’ components as well
as other aspects relating to game development, such as game
genre, a now outdated classification of which was presented
by Sawyer [Sawyer 1996]. Regarding the technical aspects
of game engine architecture, Folmer’s attempt to establish
a reference architecture [Folmer 2007] can be viewed as a
step in the right direction. However, these two topics repre-
sent only a small subset of the subject area and, in addition
to further investigation of these areas, additional research is
required to define the scope of the game development lan-
guage.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42143542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2.2 What is a Game Engine: Where is the

boundary between game and game engine?

As mentioned above, there is disagreement about exactly
what a game engine is, with sometimes fundamental
differences between definitions. Simpson [Simpson 2002]
reports on the confusion between game engines and games
themselves, as well as the erroneous description of game
engines as the game’s component for displaying graphics.

Game engine definitions that are not limited to individual
engine components are often very broad and vague, such as
“a framework comprised of a collection of different tools,
utilities, and interfaces that hide the low-level details of the
various tasks that make up a video game” [Sherrod 2007].
The main issue appears to be the question of where the
boundary lies between the game engine and the game itself.

There are signs that a common consensus may be
emerging for the definition of a game engine, however. More
concrete descriptions have been offered, such as that by
Lewis and Jacobson [Lewis and Jacobson 2002] that game
engines are the “collection of modules of simulation code
that do not directly specify the game’s behaviour (game
logic) or game’s environment (level data)”. While this
undoubtedly brings us closer to an understanding of the
boundary between game engine and game logic, this divide
is still not clearly defined and many overlaps remain.

As a precursor to an investigation of game engines and
their components, research in this area will have to examine
computer games to identify the software components which
are common and unique among different types of games.
This should then lead to the discovery of a clear distinc-
tion between game engine code and game code, helping to
establish this boundary.

2.2.1 Toolsets: Is the toolset part of the game engine?

An issue which is becoming increasingly relevant is that of
the toolset that must accompany a modern engine. Cur-
rently, artists employed to generate game content use mostly
off-the-shelf 3D modelling and animation packages, such as
Maya or 3D Studio Max. These content creation packages
were not, for the most part, designed for the task of creat-
ing game assets [Blow 2004], and must be augmented by ex-
porters, world-editors and script-editors that are tailor-made
for the game engine. Such tools fill the gap between the as-
set generation software and the game engine, and often pro-
vide an interface between artist and programmer. Without
these tools there would be no game. However, an important
question that needs to be answered is if such tools should
therefore be considered within the scope of the definition of
a game engine?

2.3 Game Genre: How do different genres affect the

design of a game engine?

The design and definition of a game engine is, currently,
intrinsically linked to that of the game that uses the
engine. The broad subject of computer games can generally
be subdivided into a number of game genres, such as
real-time-strategy (RTS) games or first-person-shooters
(FPS). Commercially available game engines tend to be
more specialised towards the demands faced by games of a
particular genre. This allows them to provide genre-specific
optimisations, but usually at the expense of flexibility.
While such distinctions across genres often highlight the
differences between approaches, by focusing on the com-

monality we should start to gain a perspective and a clearer
definition of what a game engine is, and what components
it should be comprised of.

We believe that a formal study of engine design with re-
spect to genre could lead to the definition of a game engine
that is independent of genre.

2.3.1 Überengine: Is it possible to define a game engine
independently of genre?

Currently, game engines are mostly written for specific
game genres. Certain optimisations are required for each,
and overheads are introduced when trying to come up with
a more generic solution. The ability to use a single game
engine for any genre of game instead of using a number of
genre-specific engines, however, could potentially offer large
benefits for the development of games. Apart from financial
savings due to the use of only a single system that would
have to be maintained, such an ‘überengine’ would facil-
itate the transfer of programmers and artists across projects.

There is as yet no taxonomy of game engines that could
provide an insight into the commonalities between differ-
ent engines. While superficially many engines appear to
have similar functionality, the question that needs asking
is if there is something that could be called a game engine
that caters for games of any genre. In other words, if pre-
sented with two completely different games from different
genres, would a developer recognise the ‘engine’ in each, es-
pecially considering the wide range of games that include the
so-called ‘serious games’ which are often simulations of real-
world scenarios? We are convinced that it may be possible
to solve this problem, eventually.

2.4 Design Dependencies: How do low-level issues

affect top-level design?

Reference architectures, such as those by Doherty [Doherty
2003] or Folmer [Folmer 2007] provide descriptions of
top-level design, but rarely investigate the effect of low-level
issues on the system architecture as such. It is our belief
that the manner in which low-level issues influence architec-
tural design is intrinsically linked to the fact that technology
changes at a very fast rate. Such technological changes
take place at the low-level, in terms of hardware or soft-
ware interfaces and capabilities, and can directly affect the
evolution of individual or multiple game engine components.

For example, a few years ago rendering was achieved
using a fixed-function pipeline, whereas today we use
programmable shaders. Initially, one might assume that
such changes would be limited to within a single game
engine module or component. In the case of shaders, this
would obviously be rendering related. However, it is also
possible that functionality can be relocated from one part
of an engine to another, for example part of an engine’s
physics calculations could be performed by using shaders.

Another example is the introduction of multiple pro-
cessors, providing resources which a modern game engine
should take advantage of. The restrictions and requirements
of these would result in fundamental changes to a game
engine’s architecture (at some level or other) to transform
it into a multi-threaded engine architecture [Tulip et al.
2006].

It is clear that technology changes affect high-level archi-



tecture, but it has not yet been established to what extent.
Furthermore, the question must be asked if there are any
engine design methods that could be employed to minimise
the impact of the future introduction of new developments
in computer game technology.

2.5 Best Practice: Are there specific design

methods or architectural models that are used,

or should be used, for the creation of a game

engine?

Common sense suggests that top-down design, and bottom-
up implementation would provide a solution suitable to
the development of game engines. However, this is not
necessarily how game engines come into being. Empirical
observation suggests that many engines grow and evolve
over time. The danger with organically grown projects
is that features can spiral out of control, a phenomenon
known as ‘feature creep’, usually because the original goals
were poorly defined at the beginning of a project. This
has the unfortunate effect that when the implementation
finally meets the original requirements, the goals may have
changed. The architecture, however, may not be capable
of supporting these new requirements, and workarounds,
affectionately called ‘hacks’, must be added. As briefly
mentioned above, a large section of the available literature
appears to overlook this issue altogether by concentrat-
ing solely on the implementation of individual engine
components, approaching the subject in terms of micro
architecture as opposed to macro architecture.

The question that we ask is whether there is a ‘best prac-
tice’ for the development of game engines that can help elim-
inate, or at least reduce, these problems?

3 Summary of Research Questions

While it is usually simple to attack specific problems, a
scholarly approach would be to pull back to see the bigger
picture and to identify trends. This abstraction can then
be used to identify gaps in the knowledge of the field and
to explore ideas that others may have overlooked. Our
task, as academics, should be to look at designs and find
commonality, to allow us to try to piece together a ‘better
design’.

The aim of this call for research is to raise academic inter-
est in the field of game engine architecture and design. Our
research agenda could therefore be defined as:

• The establishment of a unified language of game devel-
opment;

• The identification of software components that are com-
mon to all types of computer games;

• The establishment of clear boundaries between game
engine (code) and game code;

• The definition of the role of content creation tools in the
game development process and as part of game engines;

• The identification of links between game genres and
game engine architecture;

• The identification of components that are common to
all types of game engine, allowing the definition of a
genre-independent reference architecture;

• The investigation of the effects of low-level issues on
top-level game engine architecture;

• The identification of a ‘best practice’ for the develop-
ment of game engines.

In this paper we have identified several key aspects that
may help to define the problem space of game engine archi-
tecture and design. We have posed a number of questions
that we believe may provide directions for future initiatives
to address. A possible next step would be to set up an ex-
ploratory meeting of interested parties from industry and
academia. This could be followed by the setting up of a
committee or working group to coordinate research on this
topic, a possible end result being the definition of an open
standard for use by all.

References

Blow, J. 2004. Game development harder than you think.
ACM Queue 1, 10, 28–37.

Doherty, M. 2003. A software architecture for games.
University of the Pacific Department of Computer Science
Research and Project Journal 1, 1.

Eberly, D. H. 2000. 3D Game Engine Design. Morgan
Kaufmann.

Fleming, J., 2007. Down the hyper-spatial tube: Spacewar
and the birth of digital game culture. Available from:
http://www.gamasutra.com.

Folmer, E. 2007. Component based game development.
In Component-Based Software Engineering, vol. 4608 of
LNCS, 66–73.

Garlan, D., and Shaw, M. 1994. An introduction to
software architecture. Tech. Rep. CMU/SEI-94-TR-21,
ESC-TR-94-21, Carnegie Mellon University, Pittsburgh,
PA. CMU Software Engineering Institute.

Lewis, M., and Jacobson, J. 2002. Game engines in
scientific research. Communications of the ACM 45, 1,
27–31.

Sawyer, B. 1996. The Ultimate Game Developer’s Source-
book. Coriolis.

Sherrod, A. 2007. Ultimate 3D Game Engine Design &
Architecture. Charles River Media.

Simpson, J., 2002. Game engine anatomy 101. Available
from: http://www.extremetech.com.

Stephens, N., 2001. “game engine” versus “rendering en-
gine”. Letters to the Editor, http://www.gamasutra.com.

Tulip, J., Bekkema, J., and Nesbitt, K. 2006. Multi-
threaded game engine design. In Proceedings of the 3rd
Australasian Conference on Interactive Entertainment, 9–
14.


