
Security Analysis and Exploitation of Arduino
devices in the Internet of Things

Carlos Alberca
∗

MSc in Cybersecurity
Universidad Carlos III de Madrid, Spain

carlos.alberca@alumnos.uc3m.es

Sergio Pastrana
COSEC Research group

Universidad Carlos III de Madrid, Spain
spastran@inf.uc3m.es

Guillermo Suarez-Tangil
†

COSEC Research group
Universidad Carlos III de Madrid, Spain
guillermo.suarez.tangil@uc3m.es

Paolo Palmieri
Department of Computing and Informatics

Bournemouth University, UK
ppalmieri@bournemouth.ac.uk

ABSTRACT
The pervasive presence of interconnected objects enables
new communication paradigms where devices can easily reach
each other while interacting within their environment. The
so-called Internet of Things (IoT) represents the integration
of several computing and communications systems aiming at
facilitating the interaction between these devices. Arduino
is one of the most popular platforms used to prototype new
IoT devices due to its open, flexible and easy-to-use archi-
tecture. Ardunio Yun is a dual board microcontroller that
supports a Linux distribution and it is currently one of the
most versatile and powerful Arduino systems. This feature
positions Arduino Yun as a popular platform for developers,
but it also introduces unique infection vectors from the secu-
rity viewpoint. In this work, we present a security analysis
of Arduino Yun. We show that Arduino Yun is vulnerable
to a number of attacks and we implement a proof of concept
capable of exploiting some of them.

1. INTRODUCTION
The Internet of Things (IoT) is a fundamental paradigm

of modern computing. Originally, the Internet was designed
as a network interconnecting computers. But as objects –
devices, appliances, vehicles, buildings. . . – become increas-
ingly smart (that is, capable of computational tasks), the
Internet is being populated by “things”, rather than actual
computers [7]. From home automation systems (such as
smart alarms or smart home appliances) to medical devices

∗This work was done as part of the MSc project of the Mas-
ter in Cybersecurity at Universidad Carlos III de Madrid.
†Currently at Royal Holloway University of London,
guillermo.suarez-tangil@rhul.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

(such as pacemakers or insulin pumps), smart objects are
now able to interact with each other in an autonomous man-
ner. Networks of sensors, for instance, can independently
collect and exchange data, and trigger actions based on an
analysis of the information. For example, weather sensors
can collect data on rain in real time, and automatically acti-
vate appropriate road signals in case of a storm, all without
human intervention [6].

While a great number of different platforms designed for
the Internet of Things are currently available, Arduino is
arguably one of the most popular [4]. Arduino is a flexible
micro-controller and development environment, that can be
used to control devices and read data from all kinds of sen-
sors, and is easily embedded into existing applications. Due
to its open source nature, inexpensiveness and versatility,
Arduino provides an easy implementation framework [4].
Early adopters contributed by writing documentation and
distributing the software they developed under open source
licenses or under public domain. This resulted in a large
open community, which makes it easier for new users to learn
the platform and start developing and creating applications.

However, while the Arduino business model made it a pop-
ular choice among the non experienced users, the security of
the platform has not attracted sufficient scrutiny. In fact,
compared to other common IoT components (such as pop-
ular RFID tags), the security of systems based on Arduino
has never been thoroughly analyzed. Indeed, it is not clear
to what extent and adversary can profit from common ex-
ploitation techniques such as buffer overflows or code reuse
attacks [5,8] in Arduino devices with connection capabilities.

In this paper, we focus on one of the most common Ar-
duino devices, the Arduino Yun. One of the distinguishing
characteristic of Yun is that it is composed by a two-tier
architecture. In a lower level, it contains a classical Atmel
AVR chip (shared by other Arduino devices). At a higher
level, instead, the board includes an a Atheros processor
supporting Linino, which is a Linux distribution based on
OpenWrt. The two components are connected by a bridge.

In this paper, we provide an analysis of the internal Ar-
duino Yun architecture and its components from a security
perspective. We reverse both major components of Arduino
Yun, i.e.: the Linux environment and the Arduino environ-
ment. We find that Arduino does not provide any memory

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/42143437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
10.1145/1235


Figure 1: Arduino Yun [1]

failure control or other equivalent security measures, such
as Address Space Layout Randomization (ASLR) or Canary
Stack Protection. Based on that, we show how Arduino is
vulnerable to attacks by providing a proof of concept at-
tack, exploiting a vulnerability of the lower-layer architec-
ture, based on Arduino, to gain privileges in the higher-layer
chip, based on Linux. More precisely, we show how to ex-
filtrate credentials, perform DoS attacks, perform update
attacks, and install a rootkit.

2. THE ARDUINO YUN PLATFORM
Arduino is an open-source platform providing “easy-to-

use hardware and software intended for anyone making in-
teractive projects” [1]. The Arduino platform was originally
aimed at small electronics and micro-controller projects. How-
ever, with the increasing interest in IoT, a new board, the
Arduino Yun, was specifically designed for IoT applications.
The board combines the low-level electronics originally present
in other Arduino devices with higher level architectures run-
ning a Linux based operating system. This section provides
a description of the characteristics and architecture of Ar-
duino Yun, with a focus on the design choices and their
impact on security.

The Arduino Yun is composed of one micro-controller
board based on two separate chips. The first, lower level chip
is the ATmega32u4, while the second, higher-level chip is an
Atheros AR9331 (Figure 1). The Atheros processor runs
a Linux distribution based on OpenWrt named OpenWrt-
Yun. Among others, the board features a built-in Ethernet
and WiFi support (which provides the networking capabili-
ties), a USB-A port, and a micro-SD card slot.

The main difference of Arduino Yun with other Arduino
boards in that it integrates an on-board Linux distribution.
Thus, it provides advanced communication capabilities and
offers a powerful networked computer (Figure 2). In addi-
tion to Linux commands like cURL, developers can write
their own shell and python scripts for robust interactions.
Both parts, the Arduino and Linux environments, can con-
nect to each other through a bridge. The bridge is a logi-
cal component programmed in python that contains differ-
ent modules (including bridge.py, packet.py, mailbox.py,
processes.py). The bridge facilitates communication, giv-
ing Arduino sketches the ability to run shell scripts, com-
municate with network interfaces, and receive information
from the AR9331 processor. Consequently, this is a criti-
cal component from a security perspective: as we show in

Table 1: Specification of the AVR Arduino micro-
controller and the Atheros microprocessor

Chip AVR ATmega32u4 8bits Atheros AR9331
Voltage 5V 3.3V

Flash Memory 32 KB (4 KB bootloader) 16 MB
SRAM 2.5 KB 2.5 KB

EEPROM 1 KB 1 KB
Clock Speed 16 MHz 16 MHz

the following, by exploiting Arduino environment it is pos-
sible to bypass inner security mechanisms, therefore com-
promising the Linux environment. Moreover, as we show
during this work, the bridge requires no authentication in
the Linux environment, and all the commands issued from
the ATmega32u4 chip are executed with root privileges.

Table 1 provides details of the hardware specifications for
both the ATmega32u4 and the Atheros chips. Both chips
are clearly resource constrained, compared to classical com-
puter boards. However, it is noteworthy to observe the dif-
ference in processing capabilities of both chips (for instance,
2.5KB of RAM are available in ATmega32u4, compared to
the 64MB in the Atheros chip). The amount of RAM mem-
ory available in the Atheros chip makes it suitable to run a
lightweight operating system like OpenWrt.

Figure 2: Arduino Yun Diagram [1]

For the purpose of our analysis, we have used the lat-
est stable image OpenWrt-Yun 1.5.3, released on November
13th, 2014.

2.1 Linux Environment
The Linux Environment of Arduino Yun is based on a ded-

icated distribution derived from OpenWrt, which includes
the Linux kernel v3.3.8. The Arduino Yun OpenWrt comes
with some packages installed, including Dropbear sshd v2011.54,
which provides the functionality of an SSH server (required
for remote administration). In the next section, we show
that some of these packages may expose the system to vul-
nerabilities if not properly patched.

Should an attacker gain unlimited access to the filesystem,
the system could be easily compromised. In particular, we
identify the following paths as main targets:

• /var/run → information about processes and pidfiles.

• /var/run/wpa_supplicant-wlan0.conf → WiFi pa-
rameters stored in cleartext.

• /tmp/resolv.conf.auto → DNS servers addresses.



• /etc/arduino → GPG keys used for verifying pack-
ages.

• /etc/config → general configurations (Arduino, ssh,
firewall, wireless, etc.). In particular, information in-
cludes WiFi keys, the REST API security flag (which
can be set to to ’false’ to disable password checks), ssh
authentication, and so on. The Arduino access pass-
word is stored using SHA256 hash function.

• /etc/dropbear → SSH RSA keys.

• /etc/hosts→ mapping of hostnames to IP addresses.

• /etc/avrdude.conf→ pin mapping and other param-
eters that are used by avrdude for the ATmega32u4.

• /etc/opkg.conf → repo used for package updates.

• /sys/ → modules for crypto, drivers, firmware, etc.

• /rom/→ if files are changed and stored here, the changes
are maintained even after a factory reset.

• /usr/bin/kill-bridge → the script used to kill the
bridge service between the Arduino and Linux environ-
ment. Another script (run-bridge) can be run to start
again the bridge, after changes are made to bridge.py.

• /usr/bin/wifi-reset-and-reboot→ used to reset wifi
parameters and reboot the system.

• /usr/lib/python2.7/bridge/→ python bridge scripts
that define the functionality of the bridge (including
bridge.py, mailbox.py, processes.py).

2.2 Arduino Environment
The Arduino environment contains an ATmega32u4 chip

based on AVR architecture, which is a modified Harvard
Architecture [5]. It has 32 registers and the memory is di-
vided into three types: EEPROM (as a HDD), SRAM (is
dynamic in the execution time) and Flash (where code is
loaded). Figure 3 shows an schematic view of the most rele-
vant memory areas of the SRAM and its base addresses (i.e.,
the registers, heap and stack). We consider these areas as
they are classical targets of software exploitation and other
attacks.

The 32 registers occupy positions from R0 (0x00) to R31
(0x1F). The registers R26 to R31 have some added func-
tionalities that distinguish them from the general-purpose
registers preceding them. These registers are 16-bit ad-
dress pointers used for indirect addressing of the data space.
More precisely, these registers conform 16-bit indirect ad-
dress pointers as follows: X =0x[R27 :R26 ], Y =0x[R29 :R28 ],
and Z =0x[R31 :R30 ].

The data area contains global variables used by the pro-
gram that are not initiated to zero. The BSS segment con-
tains all global variables that are initiated to zero and con-
stant strings. The AVR Stack Pointer (SP) points to top
of the stack (that is, the data SRAM Stack area) where the
Subroutine and Interrupt Stacks are located; it is imple-
mented as two 8-bit registers (SPH :SPL) in the I/O space.
The stack, that grows from higher to lower memory loca-
tions, contains the return addresses for subroutines, saved
registers and local variables, and when it grows, the deal-
location process is automatic. Nevertheless, the heap, that

Figure 3: ATmega32u4 SRAM memory

grows from lower to higher memory locations, is managed by
the functions malloc(), realloc() and free(). It is shared
by all common libraries and dynamically loaded modules in
a process, and must be deallocated manually (using free()).

Arduino Yun offers an open source integrated development
environment, the Arduino IDE. The environment is written
in Java and based on Processing (an open-source library),
and provides the tools to integrate Arduino in alarms, boiler
controllers, home controllers and similar applications.

Arduino Yun also offers a remote administration panel.
By default, the board WiFi adapter is configured in access
point (AP) mode, and advertises a WiFi hotspot (ARDUINO-
YUN90XXXXXX). By connecting to this hotspot, the ad-
ministration website is accessible through a browser at IP
address 192.168.240.1. From the interface it is possible to
configure the Yun to connect to a specific wireless network
in client mode. Arduino reverts to AP mode after losing
connection to the configured host WiFi for one minute.

3. SECURITY ANALYSIS
In this section we provide a security analysis of the Ar-

duino Yun platform. We describe how an adversary can
compromise the device by exploiting vulnerabilities found
in its design, both at the Arduino and Linux level.

3.1 Linux Environment
We first analyze the Linux environment from an external

attacker point of view, using two popular open-source tools,
Nmap1 and Nessus2, from a remote host. The following vul-
nerabilities have been found in the default software packages
(with the respective CVE identifier):

• Dropbear sshd v2011.54: the remote SSH service is
affected by multiple vulnerabilities that allows an at-
tacker to perform three different attacks. First, it is
possible to run a Denial of Service (DoS) against the

1www.nmap.org/
2www.tenable.com/products/nessus-vulnerability-scanner

www.nmap.org/
www.tenable.com/products/nessus-vulnerability-scanner


server, provoked by the way the buf_decompress()

function handles compressed files (CVE-2013-4421).
Second, it is possible to perform a User-enumeration
due to a timing error when authenticating users (CVE-
2013-4434). Finally, and most critically, adversaries
can execute remote code (CVE-2012-0920) when the
so-called use-after-free condition runs on concur-
rency channels.

• BusyBox v1.19.4. The DHCP client implementation
(udhcpc) allows malicious remote servers to execute
arbitrary commands via shell script meta-characters
(CVE-2011-2716).

• Dnsmasq v2.62. The DNS server may respond from
some prohibited interfaces, allowing an attacker to run
a DoS attack (CVE-2013-0198 and CVE-2012-3411).

• Linux Kernel v3.3.8. The kernel version shipped with
the device is outdated, and affected by a number known
vulnerabilities. In particular, a firewall (netfilter)
bug allows an attacker to crash the system by per-
forming a DoS attack (CVE-2014-2523). A local user
privilege escalation vulnerability is also present (CVE-
2013-1763). However, we note that available exploits
for these vulnerabilities would need to be adapted to
the Arduino Yun platform, as the kernel has been com-
piled specifically to run on embedded devices.

While all these vulnerabilities have related patches and
updates, the official Arduino repository3 has not been up-
dated at the time of writing. Users would therefore need to
apply the patches manually.

We continue the security analysis by analyzing the bridge
interface. In particular, we note that there are no integrity
checks on critical files, including python scripts (such as
bridge.py) or binaries. It is therefore possible for an at-
tacker to replace or tamper with the files. While the original
files can be recovered by performing a factory reset, this can
be circumvented by storing a copy of modified files in the
/rom/ directory (as explained in Section 2.1). Moreover, per-
mission on the scripts kill-bridge and wifi-reset-and-

reboot allow a local Denial of Service attack to be performed
on the bridge, thus breaking the connection between the Ar-
duino and Linux environments.

An analysis of the network configuration reveals further
vulnerabilities. The Arduino administration interface can be
accessed via port number 80 (HTTP), without being redi-
rected to port 443 (HTTPS). Therefore, a normal connection
can be sniffed from a node within the same local network.
The default behavior of reverting to an open access point
mode after the wireless interface is unable to connect to the
configured hotspot for one minute also opens the way to
deauthentication attacks, that can force the Yun into a ma-
licious network. By sending disassociate packets to the Yun,
we can also recover a hidden ESSID, or capture WPA/WPA2
handshakes by forcing clients to reauthenticate.

3.2 Arduino Environment
The analysis of vulnerabilities for the Arduino environ-

ment is not as straightforward as in the case of Linux, and
no automated tools are available for vulnerability scanning.
Therefore, we have conducted the vulnerability search by

3http://downloads.arduino.cc/openwrtyun/1/packages/

performing a static analysis of the memory address map,
following a “trial-and-error” approach. Additionally, unlike
other architectures such as Intel x86 or ARM, the Atmel32u4
lacks debugging tools.

The Arduino IDE compiler (i.e. avr-gcc version 4.8.1)
does not perform any security checks during compilation.
Therefore, when a sketch (program) runs out of memory, no
warning nor segment violation error is issued. We therefore
try to exploit out-of-memory errors. We check errors in two
different parts of the SRAM memory: the heap and the
stack.

• In the case of the heap, we were able to produce a Heap
Buffer Overflow (see Figure 4), by allocating consecu-
tive memory buffers in the heap (whose corresponding
variables are named cmd and arg) using the malloc()

function. The overflow occurs when overwriting the
first set of data (i.e. cmd) with data from the second
set (i.e. arg). In Section 4 we provide further details
of this exploitation technique.

Figure 4: ATmega32u4 Heap Buffer Overflow

• In case of the stack, it is also possible to perform a
Stack Buffer Overflow attack. The lack of debugging
tools hardens us achieving control of the program flow.
Moreover, due to the physical separation of SRAM
(which is non executable) and Flash memory (where
the code resides), it is impossible for an adversary to
execute shellcode. Thus, only attacks based on code
reuse attacks such as Return Oriented Programming
are feasible, as showed first by Francillon and Castel-
lucia [5] and recently by Habibi et al. [8]. Additionally,
due to the low size of the internal memories, we note
that the heap and the stack can collide when a big
amount of subroutine calls with many local variables
are performed (see Figure 3).

4. PROOF OF CONCEPT ATTACK
In this section, we present two practical attacks that can

be performed on the Arduino Yun IoT platform. The at-
tacks demonstrate the vulnerabilities found in the security

http://downloads.arduino.cc/openwrtyun/1/packages/


analysis presented in the previous section. One of the at-
tacks has been fully implemented, and the code of a proof
of concept vulnerable program that can be used as attack
vector is publicly available4.

In the attacks, we exploit the two-layer nature of Arduino
Yun: we target the lower-level Arduino environment, which
our analysis revealed to be the most vulnerable component,
in order to obtain results at the higher-level Linux envi-
ronment. We achieve this by exploiting the lack of memory
security checks in place in Arduino, and we utilize the bridge
component linking the two layers to execute code on Linux.
The purpose of the bridge component is in fact to allow
Arduino-based software to run Linux commands: we will
therefore need a vulnerable software utilizing the bridge to
use as attack vector.

4.1 ATmega32u4 Heap Buffer Overflow
For the purpose of demonstrating the attack, we developed

(with Arduino IDE) a sample program that uses the bridge
functionality of the board. The functionality of the specific
program is not important for the success of the attack, as
long as it includes Linux commands to be executed through
the bridge interface, therefore allowing us to use it as attack
vector. The source code of the program is provided and
available for download from our web site4.

The sample program we developed can be used to con-
figure the network interfaces of Arduino Yun via bluetooth
(this could be helpful, for instance, in cases when direct con-
nections to those interfaces are impossible due to firewall
configuration or other reasons). Bluetooth is used to ask
and receive data from users, and the collected data is stored
in a variable (named arg). The data would normally corre-
spond to the arguments required to configure the network
interfaces. The program calls a static command (ifconfig,
hardcoded into the source code) in order to configure the
network interfaces, executing it through the bridge. We also
implement a security check that prevents the user from ex-
ecuting more than one command, by checking the presence
of & or ` characters in the arg buffer. The two data buffers
(10 Bytes for arg and 20 Bytes for cmd) are assigned on the
heap with malloc(). arg is used to store input supplied by
the user by bluetooth, copied with strcpy().

Given the vulnerable program described, we can perform
a buffer overflow attack on the heap. The goal of the at-
tack is to overwrite the ifconfig command with a different
command. This attack is particularly effective due to the
Arduino Yun architecture: as the cmd variable is executed
in the Linux environment through the python-based bridge,
it is executed with root privileges by default. In order to per-
form the attack, the following malicious data has be stored
as arg, causing the buffer of cmd to be overwritten (see
Figure 4):

• 10 bytes of data (overwriting arg) +

• 2 additional bytes (overwriting the heap metadata) +

• the command we wish to execute maliciously.

We successfully tested the following malicious payloads:

• 12 blank data + cp /etc/shadow /www/proof.txt

Credential exfiltration: copies the content of the file

4www.seg.inf.uc3m.es/˜spastran/mal-iot-sample

shadow in the folder www, so it can be retrieved by an
HTTP request.

• 12 blank data + /usr/bin/kill-bridge

DoS attack : kills the bridge between the two chips,
causing a service interruption.

• 12 blank data + echo 0 >/proc/sys/kernel/random-

ize_va_space

Downgrade attacks: disables address space randomiza-
tion in the Linux environment.

• 12 blank data + opkg sslstrip

Payload injection: installs a malicious package to per-
form attacks on SSL.

• 12 blank data + wget http://myserver.com/rootkit.sh

&& ./rootkit.sh

Persistence attacks: downloads and executes a script,
which could be for example a rootkit.

• 12 blank data + cd /etc/ &&

wget http://myserver.com/opkg.conf

Update attacks: replaces the configuration file where
the package repositories are downloaded.

4.2 ATmega32u4 Stack Buffer Overflow
Using a similar strategy to that of the attack above, we

performed a stack buffer overflow in the Arduino environ-
ment. In order to do so, we developed a program that first
reads an input from the serial interface in main(), and then
passes this input to another buffer in the function f1(). The
original input can have a maximum length of 30 bytes, but
we set the buffer in f1() to be only 10 bytes long. Because
strcpy() does not check memory boundaries, a buffer over-
flow will occur. If the program is using the bridge to send
data from the Arduino environment to the Linux one, we can
cause the Linux level to crash on inputs from the Arduino
level, thus achieving a denial of service. While the lack of
debugging tools for Arduino, prevented us from gaining the
understanding of the memory management, we noted that
the program crashes when specific payloads where sent.

In particular, we used a black block approach based on
trial and error. More precisely, after running the buffer over-
flow attack, we observed that the return address of the stack
was overwritten. We further observed that the compiler in-
tegrated in Arduino IDE (avr-gcc version 4.8.1) does not
provide countermeasures against memory corruption vul-
nerabilities. Address Space Layout Randomization,
ASLR [3] and Stack Canaries [2] are two common coun-
termeasures that obfuscate the memory layout of the tar-
geted code and prevent stack overflows respectively. Thus,
and adversary can carefully send specific payloads to gain
the control flow of the program and reuse code from the
program memory [5,8].

5. DISCUSSION
Our results expose a general lack of security in the design

of the main Arduino Yun components, and highlight the
urgent need to enhance security at both layers: the Atmel
chip and the Linux OpenWrt distribution. The Atmel AT-
mega32u4 running the Arduino environment proved to be
vulnerable to memory attacks. Due to the limited resources
of the technology, full-fledged memory checks may not be im-
plementable: however, we believe that lightweight memory

www.seg.inf.uc3m.es/~spastran/mal-iot-sample


controls in the Atmel chip should be a requirement for any
future board of the Arduino family. For example, recently
Habibi et al. have proposed an memory address obfuscation
technique on Unmanned Aerial Vehicles (UAVs) [8], using
additional hardware. Since this solution seems promising, it
is not clear to what extent the costs of adding new hardware
are affordable in real settings, where the physical space and
resources available are limited.

In absence of this, security cautions must be taken by
the Arduino developers, which we believe that currently are
not aware of the security breaches they might inadvertently
leave in their programs. In order to help developers design
robust and secure programs, it would be desirable to have
a set of guidelines from the Arduino community, similar to
the “Best practices for Security and Privacy” published for
Android5. Such guidelines would help to develop secure pro-
grams, and could include buffer handling, free memory func-
tions and stack and heap collisions, input/output control on
serial port, pin layout, etc. Further warnings and errors
could also be implemented in the Arduino IDE compiler,
with a particular focus on memory protection.

Given that many Arduino devices may have direct connec-
tion to the Internet, thus exposing them to remote attacks,
the Linux OpenWrt distribution should be updated more
often, in order to include all the latest security patches and
updates. This is currently not the case, as shown in Section
3.1. Using specialized vulnerability search engines such as
Google Hacking and Shodan.io, that crawl the web looking
for vulnerable devices exposed to the Internet, we found a
significant number of vulnerable Arduino Yun boards acces-
sible remotely.

At the Linux environment level, it is clear that root should
not be the only and default user in the system, especially
when executing programs through the bridge interface. The
set up of a specific user with limited permissions to handle
commands from the non-secure Atmel chip could be a po-
tential solution, with another user to handle remote ssh con-
nections. It would also be beneficial for the security of the
system to implement integrity controls to detect changes on
critical files on the filesystem. Due to the limited resources of
the platform, providing an exception handling control (such
as try/catch sentences), to keep the system running when a
stack buffer overflow occurs would be a challenge on Arduino
and more generally in any IoT environment, but we believe
this could be an interesting research direction to explore in
the future.

6. CONCLUSION
The Internet of Things offers almost unlimited opportu-

nities for smart applications, and is one of the main drivers
of modern computing. However, as the use of IoT enabled
devices increases, so does the attack surface area, causing
new vulnerabilities to be discovered (and in some cases ex-
ploited) routinely. The low-cost, low-power nature of many
IoT platforms also means that security measures that have
been standard in computers for years are often missing in
IoT boards. Given the critical nature of many IoT applica-
tions scenarios, including ubiquitous monitoring and health
services, the security of IoT systems and solutions should be
a major priority for all relevant stakeholders.

5https://developer.android.com/training/best-security.
html

In this paper we provide a security analysis of one of the
most popular devices used in IoT applications, the Arduino
Yun. In particular, we analyzed the two-layer internal archi-
tecture of the device (with a lower layer running an Arduino
environment and a upper layer running Linux), and found
how a lack of security checks in the lower layer can cause
the system to be compromised at all levels. In order to show
this, we presented a proof-of-concept attack over a vulner-
able application, which we have developed for this purpose.
By exploiting the interface that interconnects the two layers,
called bridge, we have been able to perform a series of more
serious post-exploitation attacks, such as rootkit installa-
tion and opening backdoors. The attacks are fully practical,
and can be applied to software developed by the Arduino
community.

Acknowledgment
This work was partially supported by the MINECO Grant
TIN2013-46469-R (SPINY: Security and Privacy in the In-
ternet of You) and by the CAM Grant S2013/ICE- 3095
(CIBERDINE). An extended work of this paper was pre-
sented as a MSc Thesis in Master in Cybersecurity at Uni-
versity Carlos III de Madrid.

7. REFERENCES
[1] M. Banzi, D. Cuartielles, T. Igoe, G. Martino, and

D. Mellis. Arduino official. http://www.arduino.cc.

[2] A. Baratloo, N. Singh, T. K. Tsai, et al. Transparent
run-time defense against stack-smashing attacks. In
USENIX, pages 251–262, 2000.

[3] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a broad
range of memory error exploits. In USENIX Security,
pages 105–120, 2003.

[4] C. Doukas. Building Internet of Things with the
Arduino. CreateSpace Independent Publishing
Platform, USA, 2012.

[5] A. Francillon and C. Castelluccia. Code injection
attacks on harvard-architecture devices. In ACM CCS
2008, pages 15–26. ACM, 2008.

[6] S. Gaitan, L. Calderoni, P. Palmieri, M.-C.
Ten Veldhuis, D. Maio, and M. van Riemsdijk. From
sensing to action: Quick and reliable access to
information in cities vulnerable to heavy rain. Sensors
Journal, IEEE, 14(12):4175–4184, Dec 2014.

[7] N. Gershenfeld, R. Krikorian, and D. Cohen. The
internet of things. Scientific American, 291(4):46–51,
2004.

[8] J. Habibi, A. Gupta, S. Carlsony, A. Panicker, and
E. Bertino. Mavr: Code reuse stealthy attacks and
mitigation on unmanned aerial vehicles. In IEEE
ICDCS 2015, pages 642–652. IEEE, 2015.

https://developer.android.com/training/best-security.html
https://developer.android.com/training/best-security.html

	Introduction
	The Arduino Yun Platform
	Linux Environment
	Arduino Environment

	Security Analysis
	Linux Environment
	Arduino Environment

	Proof of Concept Attack
	ATmega32u4 Heap Buffer Overflow
	ATmega32u4 Stack Buffer Overflow

	Discussion
	Conclusion
	References

