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ABSTRACT
Background: Scrummaging is unique to rugby union
and involves 2 ‘packs’ of 8 players competing to regain
ball possession. Intending to serve as a quick and safe
method to restart the game, injury prevalence during
scrummaging necessitates further evaluation of this
environment.
Aims: The aim of this study was to determine the effect
of scrummage engagement sequences on spinal
kinematics of the hooker. The conditions investigated
were: (1) live competitive scrummaging using the new
‘crouch, bind, set’ sequence; (2) live competitive
scrummaging using the old ‘crouch touch pause
engage’ sequence and (3) training scrummaging using
a scrum machine.
Methods: Inertial sensors provided three-dimensional
kinematic data across 5 spinal regions. Participants
(n=29) were adult, male community club and university-
level hookers.
Results: Engagement sequence had no effect on
resultant kinematics of any spinal region. Machine
scrummaging resulted in lesser magnitudes of motion
in the upper spinal regions. Around two-thirds of the
total available cervical motion was utilised during live
scrummaging.
Conclusions: This study indicates that the most recent
laws do not influence the spinal kinematics of the
hooker during live scrummaging; however, there may be
other benefits from these law changes that fall outside
the scope of this investigation.

INTRODUCTION
Rugby union players are consistently exposed
to a relatively high risk of injury across all
playing levels.1–12 While the high level of par-
ticipation suggests that players accept this risk
of injury, specific elements within the game
remain the target for reduction strategies. The
scrummage (hereafter termed the ‘scrum’),
involves eight players from each team attempt-
ing, en masse, to push their opponents back-
wards and regain ball possession. This
represents the contact event with the highest
risk of injury within the sport.13 World Rugby,

the game’s governing body, has recently
evolved the laws in an attempt to reduce this
risk of injury; hence, as of the 2013/2014
playing season, the scrum followed the referee’s
command ‘crouch-bind-set’ (CBS), as opposed
to ‘crouch-touch-pause-engage’ (CTPE).14

Scrum injuries can be either acute, chronic
or degenerative in nature,15–17 with longer
term exposure to this demanding biomechan-
ical environment associated with disc narrow-
ing (35–71% incidence), osteophyte
formation (83%), apophyseal joint degener-
ation (74%), and degeneration of the verte-
bral endplates (77%).18 19 Given the time
spent scrummaging compared with other
contact events during a game, it is associated
with a disproportionately high percentage
(6–13%) of all spinal injuries within the
sport.20–25 These spinal injuries predomin-
antly happen to players of the front row.
Front-row players (ie, the three players from
each team, who directly oppose each other)
are at particular risk of both chronic and
acute injuries, accounting for 78% of all
scrum-based acute cervical spine injuries.21 26

While it is acknowledged that risk of injury is
multifactorial, the biomechanical demands of
the scrum are unique and are likely to signifi-
cantly contribute to the risk of injury. The

What are the new findings?

▪ There are no spinal kinematic differences
between the two competitive scrummaging scen-
arios indicating neither a positive nor negative
effect of the law change.

▪ Large magnitudes of thoracic and lumbar spine
motion may put these spinal regions at an
increased risk of injury.

▪ Machine scrummaging is a much more con-
strained kinematic environment.

▪ Modest amount of cervical flexion may be owing
to a large amount of ‘stabilising’ muscle forces
in order to minimise head displacement.
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scrum consists primarily of the ‘hit/impact’, followed by a
sustained attempt to ‘shove’. The ‘hit’ is where the two
packs initially engage, immediately after the referee’s
instruction. Both packs then produce a sustained shove,
aiming to push the opposition away from the ball. As the
packs engage, the shoulders of the front-row players of
each team collide, their heads become interlocked and
are forced underneath the chest of their opposing player.
The impact force of this interaction has previously been
reported, varying from 4.4–16.5 kN,27–31 measured by
instrumenting either the scrum machine or shoulder
pads (point of impact) of front-row players, during live
scrummaging.31

Recent kinematic studies have additionally focused on
investigating neuromuscular activation patterns during
simulated, live and machine-based scrummaging.31 32

While no significant differences were observed between
engagement sequences for body kinematics, it does
appear that the ‘crouch-bind-set’ engagement sequence
may prepare the cervical spine by stiffening the joints
prior to impact. Furthermore, it was reported that
machine scrummaging does not accurately replicate live
scrummaging, suggesting the need for future studies to
focus on investigations of live scrummaging.
As the scrum has been identified as being specifically

associated with injury, a greater understanding of spinal
kinematics will further aid in the quest for injury reduc-
tion. To date, while studies have considered machine-
based and simulated live scrummaging,33 34 technical
challenges have prevented studies from acquiring spinal
kinematics during competitive scrummaging. Given the
association between scrummaging and the potential for
spinal injury, it is critical that these challenges are met
to enable data acquisition in the most relevant physical
environment.
This study aimed to determine the resultant spinal

kinematics of the hooker during competitive scrummaging
using two different sequences (CBS and CTPE), and
using CBS when performing machine-based scrumma-
ging. This study focused on the most injury-prone
player, the hooker,21 23–25 generating the first data sets
that allow direct comparison of spinal kinematics
between the new and old scrum sequences. It was
hypothesised that the hooker’s spinal kinematics will be
more constrained during the new (CBS), as opposed to
the older (CTPE), engagement sequence.

MATERIALS AND METHODS
A repeated-measures design was employed to evaluate
the effect of the scrum engagement sequence
(within-group factor) on three-dimensional spinal kine-
matics. The methodology replicated the scrum law evolu-
tion in both training and competitive scenarios.

Participants
Hookers were recruited from a convenience sample of
local community club and university rugby union teams.

Data were collected from all participants during team
versus team interactions (hereafter described as com-
petitive scrummaging), using both the old and new
scrum sequences. Some of these hookers were also ana-
lysed when their eight players (the ‘pack’) were using a
scrum machine within a typical training scenario. All
participants were deemed by their qualified coach to
have the requisite skill and knowledge of playing in this
position, and had been appropriately trained, according
to World Rugby guidelines.14 Potential participants were
excluded if they had inadequate front-row experience, a
history of any major spinal injury, or any indication of
current neuromusculoskeletal neck problems (eg, pain).
The study was approved by the Cardiff School of
Engineering Ethics Committee, with all volunteers pro-
viding written informed consent.

Equipment
Participants were instrumented with a string of inertial
sensors (THETAMetrix, Waterlooville, UK) adhered to
the skin on the forehead and overlying the spinous pro-
cesses of C7, T7, T12, L3 and S1 (figure 1). Each sensor
was comprised of a triaxial accelerometer, gyroscope and
magnetometer, and sampled at 40 Hz/sensor. The

Figure 1 Inertial sensor placements over the spinous

processes of C7, T7, T12, L3 and S1.
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sensors had previously been validated for reliability and
accuracy during factory calibration, with errors typically
<1°. The sensors’ fusion algorithm, incorporating
Kalman filtering, provided drift-free computation of
absolute orientation. Similar sensors have been widely
used for spinal motion analysis,35 36 and such an experi-
mental set has been used previously during rugby scrum-
maging.37 Each sensor was adhered directly to the skin
using double-sided hypoallergenic tape.
This created five spinal ‘segments’ (ie, the spinal

region between these 6 specific locations), which were
defined as the cervical (C), upper thoracic (UTx), lower
thoracic (LTx), upper lumbar (ULx) and lower lumbar
(LLx) regions. A modified scrum cap was used to
reinforce the attachment of the forehead sensor.
Absolute orientations, expressed as Euler angles, were
determined for each sensor and stored on a PC.

Procedures
Data collection was integrated within scheduled training
sessions, such that all players were familiar with the facil-
ities and environment. All participants completed their
club’s standard warm-up routine before being instru-
mented with the inertial sensors and taking part in their
trial. Each trial lasted approximately 15 min. Prior to
scrummaging, each player completed range of motion
(ROM) trials to characterise their normal, active, spinal
ROM. This was performed for the full spine, while add-
itional cervical spine ROM data was collected in a pos-
ition of hip flexion (similar to that of scrummaging).
Each uniplanar motion was performed three times in a
predefined order (flexion/extension, lateral bending
and rotation), with a short pause in between each
motion. The participant always resumed a neutral pos-
ition between movements. For the cervical segment, nor-
malisation was performed from the hip flexion ROM
trial. For all other segments, normalisation was per-
formed from the standing ROM trial. The peak ROM
was calculated for each motion and each spinal
segment. All participants then performed three trials of
the new (CBS) and old (CTPE) sequences, within a
competitive environment, with scrums being performed
on either grass or synthetic (3G) turf, depending on
their training facilities. The sequence of scrums was ran-
domised, with players instructed to replicate their
‘in-game’ scrum performance. Prior to testing, partici-
pants were assigned a value, via a table of randomised
numbers, as to the order they would perform the two
engagement sequences. All trials for one engagement
sequence were completed before moving onto the next
sequence. Players were allowed 2 min for full physio-
logical recovery between each trial,38 39 to minimise the
effect of fatigue.40 41 Additionally, where a scrum
machine was available, the pack also performed the CBS
sequence to replicate a typical training scenario.

Data processing
Absolute orientations of the sensors, described as Euler
angles, were converted to rotation matrices, and result-
ant angles between two adjacent sensors were calculated
through matrix multiplication. This process is common-
place in three-dimensional kinematic analysis, with the
resultant angles describing the ROM of each spinal
segment. ROM computation was completed using
custom Matlab (Mathworks, 2012a) scripts.35 37 42 The
rotation order corresponded to motion describing
flexion-extension, lateral bending and rotation. This
resulted in six motions for each spinal segment
described as flexion, extension, left and right lateral
bending, and left and right rotation.
ROM values were used to determine the spinal ROM

relative to each participant’s maximal ROM, defined in
the earlier ROM trials, as it is increasingly acknowledged
that end-range postures have the potential to increase
risk of injury.43–46 Data were time-normalised according
to event duration. All kinematic data were filtered using
a zero lag 4th order low-pass Butterworth filter, with a
6 Hz cut-off frequency.47 Sensor-skin adhesion was con-
firmed before and after each trial, with data discounted
in cases where there appeared to have been sensor
displacement.

Participants and environment
Table 1 describes the 29 hookers analysed during the
competitive scrum scenarios. Fourteen of these hookers
were also analysed within a training scenario, with their
pack scrummaging against a machine on a grass surface.

Statistical analysis
Normality and sphericity were checked using
Shapiro-Wilk and Mauchly’s test, respectively. A one-way
repeated measures ANOVA, with scrum condition as the
within-group factor (ie, competitive (CBS), competitive
(CTPE), training), was applied to test for differences
across the variables, with post-hoc Bonferroni compari-
sons where appropriate. Significance was set at p<0.05.
All tests were performed with SPSS V.22 (SPSS Inc,
Chicago, USA).

RESULTS
Kinematic analysis
There were no significant differences in kinematics for
any spinal region between the two engagement

Table 1 Data describing the 29 hookers analysed within

a competitive scrum

Descriptor Mean (SD)

Age 23.4 (4.2) years

Height 1.76 (0.04) m

Mass 101.1 (12.8) kg

Body mass index 32.6 (4.0) kg/m2
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sequences during competitive scrummaging (p>0.05).
Table 2 presents the mean peak motion data for the two
scrum engagement sequences.
Significantly greater ROM was identified in the upper

three spinal segments in both competitive sequences,
versus the training (machine scrummaging) scenario.
No significant differences (ie, p>0.05) were evident in
the two lowest spinal regions.
Data presented in figures 2A–C provides dynamic cer-

vical ROM across the competitive CBS scrum scenarios,
describing the flexion-extension, lateral bending and
rotation left to right, respectively. Figures 2D–F describe
equivalent data from the older CTPE engagement
sequence. In each case, data has been time normalised
and combined to yield a confidence corridor for ROM
during scrummaging. The solid line represents the
cohort mean and the dotted lines represent the upper
and lower 95% CIs.
ROM relative to maximal ROM (figure 3) demon-

strated no significant difference between scrummaging
sequences (p>0.05). It did, however, identify that almost
all available ROM was used for a number of spinal
regions.

DISCUSSION
This study set out to determine whether the evolution of
rugby laws relating to the scrum had any effect on
hooker spinal kinematics during competitive scrums.
The results presented here indicate that the changes in
laws do not have any significant effect on hooker spinal
kinematics when comparing between the CBS (new)
and CTPE (old) scrummaging sequences. There were
some kinematic differences between training and com-
petitive scrummaging trials but only for the upper spinal
regions. This study performed the first multiregional
spinal analysis, generating data that enhances our under-
standing of spinal kinematics within both a training and
competitive environment, and using the new and old
scrummaging sequences.
Previous studies have demonstrated that CBS engage-

ment has significantly influenced the biomechanics of
scrummaging.31 48 Indeed, growing evidence exists that
the impact of engagement is reduced using CBS, as mea-
sured by the impact to the shoulder girdle in both
machine,49 and live48 50 scrummaging. This was attribu-
ted to a reduced distance between front-row players
prior to the impact phase. The current study did not

Table 2 Mean (SD) data describing the ROM for each sequence

Competitive (n=29)

Spinal region ROM (degrees) CTPE CBS Training (n=14)

Cervical Flexion 16.6 (10.6) 18.1 (9.3) 11.1 (8.2)

Extension 16.9 (11.2) 17.8 (9.9) 18.2 (5.5)

Right side flexion 20.8 (11.3) 18.5 (9.8) 16.1 (8.7)

Left side flexion* 19.1 (13.3)* 19.5 (12.3)* 9.9 (5.3)*

Right rotation* 24.9 (10.0)* 20.9 (9.1) 14.3 (9.7)*

Left rotation 14.8 (10.6) 12.8 (7.8) 17.4 (9.1)

Upper thoracic Flexion 10.6 (5.4) 8.9 (7.3) 9.0 (5.4)

Extension 25.1 (13.5) 22.1 (10.0) 13.6 (5.3)

Right side flexion 11.4 (6.8) 10.6 (6.2) 8.3 (5.0)

Left side flexion 15.8 (9.9) 15.3 (11.8) 9.2 (6.1)

Right rotation 10.7 (7.3) 14.7 (12.5) 10.6 (5.7)

Left rotation* 21.7 (10.8)* 16.0 (9.6) 12.0 (11.1)*

Lower thoracic Flexion 5.1 (5.4) 4.7 (6.6) 4.0 (4.9)

Extension 17.4 (10.3) 16.0 (9.0) 16.1 (6.3)

Right side flexion 7.6 (4.7) 6.7 (4.0) 8.5 (6.4)

Left side flexion* 16.6 (5.5)* 15.3 (7.4)* 8.0 (3.8)*

Right rotation 9.9 (7.2) 14.0 (11.6) 6.8 (3.7)

Left rotation 13.2 (6.8) 12.0 (5.8) 9.4 (6.5)

Upper lumbar Flexion 43.1 (12.3) 42.3 (11.0) 42.4 (10.3)

Extension 0.8 (3.0) 0.4 (0.8) 0.8 (1.6)

Right side flexion 7.9 (6.0) 7.2 (4.8) 6.9 (6.1)

Left side flexion 10.9 (6.3) 10.6 (6.3) 7.6 (4.3)

Right rotation 13.5 (5.9) 12.9 (7.9) 9.7 (9.9)

Left rotation 7.7 (7.4) 8.0 (6.8) 6.4 (4.6)

Lower lumbar Flexion 14.2 (12.5) 16.1 (17.1) 11.3 (12.0)

Extension 9.8 (7.4) 11.6 (9.1) 9.9 (5.6)

Right side flexion 7.5 (5.1) 9.4 (6.7) 7.2 (6.3)

Left side flexion 8.3 (6.4) 10.1 (9.0) 7.9 (6.7)

Right rotation 12.6 (10.1) 10.0 (10.9) 10.1 (8.6)

Left rotation 11.9 (10.3) 15.9 (12.0) 10.0 (8.7)

*Statistically significant difference (p<0.05).
CBS, Crouch-bind-set; CTPE, Crouch-touch-pause-engage; ROM, range of motion.
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measure the impact phase specifically, nor impact at the
shoulders. Instead, we sought further understanding of
the law change on other biomechanical measures. To
this end, the findings of the current study do not
support or refute the recommendations to move to the
new laws, though synthesising all available data would
suggest that the new laws result in reduced shoulder

impact, and do not negatively influence spinal
kinematics.
The data presented in this study demonstrated no dif-

ference in spinal ROM across the scrummaging
sequences. The extent of spinal motion varied across the
population, and appeared to be dependent on both the
participant and the nature of the scrum. The

Figure 2 Dynamic cervical spine ROM during competitive (CBS and CTPE) training scrums. Solid line=mean; dashed lines=

upper and lower 95% CI limits. CBS figures—(a: flexion/extension, b: lateral bending, c: rotation); CTPE figures—(d: flexion/

extension, e: lateral bending, f: rotation). CBS, Crouch-bind-set; CTPE, Crouch-touch-pause-engage; ROM, range of motion.

Figure 3 The relative proportion of active ROM used during competitive scrummaging per spinal region, averaged across the

cohort. Black columns = CTPE; Hatched columns = CBS. Error bars represent SE. CBS, Crouch-bind-set; CTPE,

Crouch-touch-pause-engage; ROM, range of motion.
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particularly large variability observed in the cervical
ROM (figure 2) would indicate that intrinsic control of
ROM is the main determinant of kinematics during
scrummaging; hence, it could be extrapolated that
spinal kinematics may not be readily influenced solely
by evolving scrum laws. It is also noted that approxi-
mately 60% of total sagittal ROM was utilised during
scrummaging, suggesting that both sequences (CBS and
CTPE) represent a relatively low risk of hyperflexion for
most participants, a mechanism believed to be linked to
catastrophic injury.51 It may be that catastrophic hyper-
flexion injuries are the sole domain of the collapsed
scrum; however, a more substantive claim can only be
levied on observing a greater number of scrums.
Our data also indicated that machine scrummaging

utilised significantly less ROM for the upper spinal
regions, which is consistent with reports of less cervical
muscle demand of machine versus live scrummaging.32

Combining this data seems to suggest that machine
scrummaging requires significantly less cervical and
upper thoracic ROM, and less cervical muscle activity;
hence, this appears to be an environment which poorly
reflects the true cervical demands of live scrummaging.
Indeed, knowledge of this less-intense environment may
prove a useful addition to the rehabilitation pathway fol-
lowing cervical injury, while also highlighting the import-
ance of additional conditioning prior to competitive
scrummaging.
Reducing chronic injury from the scrum environment

is complex. Greater or excessive spinal motion is asso-
ciated with chronic degeneration in all regions of the
spine,52 53 thereby leading to conclusions regarding
reduced ROM being beneficial for chronic injury poten-
tial. Indeed, we observed only a modest range of cervical
motion (63% of total available range), suggesting that
excessive motion may not be the main source of degen-
erative change in the cervical spines of front-row players.
For a front-row player to constrain motion in an oppres-
sing environment requires significant muscle activity.
Such muscle activity would, of course, result in a cost of
compressive load, also known to be linked to chronic
degeneration.54 The relatively modest cervical ROM
observed in this study may be the result of a large
amount of ‘stabilising’ muscle forces, where the
demands of the dynamic competitive scrum see the
hooker attempt to minimise head displacement. To this
end, the greater muscle activity noted in previous CBS
studies32 would indicate relatively high compressive
loads on the cervical spine.54 This may provide some
explanation as to the relationship between scrummaging
and long-term degenerative changes in the cervical
spine.
Scrummaging utilises a greater proportion of thoracic

and lumbar spine ROM, versus cervical spine ROM.
Indeed, over 90% of the available range was used during
extension and lateral bending in the thoracic spine,
flexion for the upper lumbar spine, and side bending
and rotation for the lower lumbar spine. This is

significant, as end-range spinal positions may result in
reduced muscle activity,55 altered muscle function,56

increased load on the passive osteoligamentous spine,57

and increased risk of tissue damage.46 Indeed, reduced
tissue compliance and bony opposition associated with
end-range, negatively influences the available motion in
other planes;58 59 hence, the use of such large propor-
tions of the available range may expose the thoracic and
lumbar spine to greater risk of injury.60

In performing the first multiregional spinal kinematics
evaluation of the hooker within the rugby union scrum,
this study is unique in presenting the greatest detail of
spinal kinematic data. This analysis revealed that, when
considering the relative motion of the five spinal
regions, there was statistically insignificant kinematic
variation between the new (CBS) and old (CTPE)
sequences. This study adds to the debate surrounding
scrummaging, by using novel methods to report the first
spinal kinematics from within a competitive environ-
ment. Our data does not, however, support the notion
that the new scrum laws will succeed in reducing
chronic spinal injury.
Limitations of the current study include that it was

conducted during training, which is unlikely to repre-
sent an identical biomechanical loading pattern to the
more aggressive and physical nature of a competitive
match. No detail regarding the specific phases of scrum-
maging were captured; therefore, it was not possible to
relate specific ROM to specific scrum phases. Owing to
the sampling frequency of data capture, it was not pos-
sible to report on the impact forces experienced at the
spinal regions, although this was not the primary aim of
our study.

CONCLUSIONS
Our data indicates that the scrum engagement sequence
does not affect spinal kinematics of the hooker during
competitive scrummaging. Machine scrummaging
results in less ROM for the upper spinal regions com-
pared to competitive scrummaging. Approximately 60%
of available flexion ROM of the cervical spine was used
during competitive scrummaging, whereas the lumbar
spine utilised the entire ROM. Our data adds to the
debate that influencing spinal kinematics within the
scrum may require more drastic changes in law, owing to
an individual’s intrinsic control of motion.
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