
1 

 

Comparison of small-footprint discrete return and full waveform airborne lidar data for 1 

estimating multiple forest variables 2 

 3 

Matthew J. Sumnalla,b, Ross A. Hillb, Shelley A. Hinsleyc 4 

 5 

a 
Virginia Polytechnic Institute and State University, Department of Forest Resources and 6 

Environmental Conservation, Blacksburg, VA 24061, USA. 7 

b
 Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, UK. 8 

c 
Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK. 9 

 10 

Abstract: 11 

The quantification of forest ecosystems is important for a variety of purposes, including the 12 

assessment of wildlife habitat, nutrient cycles, timber yield and fire propagation. This research 13 

assesses the estimation of forest structure, composition and deadwood variables from small-14 

footprint airborne lidar data, both discrete return (DR) and full waveform (FW), acquired 15 

under leaf-on and leaf-off conditions. The field site, in the New Forest, UK, includes managed 16 

plantation and ancient, semi-natural, coniferous and deciduous woodland. Point clouds were 17 

rendered from the FW data through Gaussian decomposition. An area-based regression 18 

approach (using Akaike Information Criterion analysis) was employed, separately for the DR 19 

and FW data, to model 23 field-measured forest variables. A combination of plot-level height, 20 

intensity/amplitude and echo-width variables (the latter for FW lidar only) generated from 21 

both leaf-on and leaf-off point cloud data were utilised, together with individual tree crown 22 

(ITC) metrics from rasterised leaf-on height data. Statistically significant predictive models (p 23 

< 0.05) were generated for all 23 forest metrics using both the DR and FW lidar datasets, with 24 

R2 values for the best fit models in the range R2 = 0.43 - 0.94 for the DR data and R2 = 0.28 - 25 

0.97 for the FW data (with normalised RMSE values being 18% - 66% and 16% - 48% 26 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42142969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

respectively). For all but two forest metrics the difference between the NRMSE of the best 27 

performing DR and FW models was ≤ 7%, and there was an even split (11:12) as to which 28 

lidar dataset (DR or FW) generated the best model per forest metric. Overall, the DR data 29 

performed better at modelling structure variables, whilst the FW data performed better at 30 

modelling composition and deadwood variables. Neither showed a clear advantage at 31 

modelling variables from a particular vegetation layer (canopy, shrub or ground). Height, 32 

intensity/amplitude, and ITC-derived crown variables were shown to be important inputs 33 

across the best performing models (DR or FW), but the additional echo-width variables 34 

available from FW point data were relatively unimportant. Of perhaps greater significance to 35 

the choice between lidar data type (i.e. DR or FW) in determining the predictive power of the 36 

best performing models was the selection of leaf-on and/or leaf-off data. Of the 23 best 37 

models, 10 contained both leaf-on and leaf-off lidar variables, whilst 11 contained only leaf-on 38 

and two only leaf-off data. We therefore conclude that although FW lidar has greater vertical 39 

profile information than DR lidar, the greater complimentary information about the entire 40 

forest canopy profile that is available from both leaf-on and leaf-off data is of more benefit to 41 

forest inventory, in general, than the selection between DR or FW lidar.   42 

Keywords: remote sensing; forest inventory, airborne laser scanning; area-based regression 43 

 44 

1. Introduction 45 

A forest ecosystem can be described in terms of its structural, compositional and functional 46 

properties, which can be strongly influenced by any management strategies applied to a site. 47 

The quantification of forest structure is important for a range of disciplines, as vegetation 48 

structure is related to a wide variety of ecosystem processes. However, a comprehensive 49 

understanding of the overall spatial patterns of structural variation in large forested landscapes 50 

is still largely incomplete (Anderson et al., 2008).  51 
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 52 

The management of an area is often assisted by landscape-scale monitoring (Newton et al., 53 

2009), with a requirement of measuring both vertical and horizontal metrics. For example, the 54 

assessment of timber yields requires information on the density of trees, together with their 55 

species and size (Matthews & Mackie, 2006). Such data allow the quantification of timber 56 

yield and its associated economic value, and in addition risk assessment for fire, wind or pest 57 

damage, which are also partially dependent on canopy structure. Vertical structure is of 58 

importance in determining the species composition of ground flora (Ferris et al., 2000), in the 59 

assessment of habitat quality for many forest-dwelling species (Hinsley et al., 2009), and as an 60 

indicator of biodiversity (Ferris & Humphrey, 1999). Traditionally forest inventory data are 61 

collected through manual field observations in sample plots. The benefit of this approach can 62 

be high accuracy, but it is time consuming and expensive (Aplin, 2005).  63 

 64 

Airborne remote sensing technologies such as lidar can characterise both horizontal and 65 

vertical structures in forested environments. The use of lidar has rapidly come to prominence 66 

in estimating forest biophysical characteristics, such as canopy height and basal area (Evans et 67 

al, 2009). Most commercial airborne lidar systems are small-footprint (i.e. < 1m) and deliver 68 

discrete return (DR) point data. The point data correspond to high intensities in the back-69 

scattered light of the laser pulse interacting with a surface, allowing some systems to record 70 

multiple returns per laser pulse (typically 1 - 5). Due to limitations in the design of most multi-71 

return airborne lidar systems, there is a sizable ‘blind spot’ (or dead zone) following each 72 

detected return (typically 1.2 m to 5.0 m) in which no other surfaces can be detected 73 

(Reitberger et al., 2008). Range resolution is determined by the length of the transmitted pulse 74 

and the maximum number of returns recorded by the sensor. The signal processing algorithms 75 
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which are used to detect returns are often proprietary and differ between DR lidar sensors 76 

(Disney et al., 2010; Næsset, 2009). 77 

 78 

Recent developments in scanning lidar technology resolve the issue of a blind spot. Small-79 

footprint, full waveform (FW) lidar systems have become available commercially. FW lidar 80 

sensors digitize the total amount of laser energy returned to the sensor in fixed time intervals 81 

(typically 1 ns to 5 ns), providing a near continuous distribution of back-scattered laser 82 

intensity for each recorded pulse (Wagner et al., 2008). Instead of clouds of individual three-83 

dimensional points, such as with DR lidar, small-footprint FW lidar devices provide connected 84 

profiles of the three dimensional scene, which contain more detailed information about the 85 

structure of the illuminated surfaces (Alexander et al., 2010). Each waveform consists of a 86 

series of temporal modes (or echoes), where each corresponds to an individual reflection event 87 

from an object or set of close but separated objects. Each laser pulse waveform represents 88 

complex data, which requires sophisticated processing before metrics can be generated 89 

(Chauve et al., 2009). One potential approach to derive information from the waveform is to 90 

identify proximal peaks, or returns, to present the waveform as a series of Gaussian curves; 91 

fitted by a non-linear least squares approach (Miura & Jones, 2010; Wagner et al., 2006). The 92 

replacement of Gaussian functions with stochastic functions based on marked point processes 93 

(Mallet et al., 2010) has also been suggested as a method of processing small-footprint FW 94 

lidar data. Extracting individual returns from FW data can have the effect of removing the 95 

blind spot present in DR data that have been processed by proprietary software. 96 

 97 

Airborne DR lidar systems have been utilised for the estimation and retrieval of various forest 98 

related variables, which are important to management and ecological monitoring. This is due 99 

to an inherent ability to provide both geo-referenced horizontal and vertical information on the 100 
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structure of forest canopies, with sampling dependent on the type of lidar system used and 101 

flight configuration (Evans et al., 2009; Næsset, 2009). The most obvious vegetation measure 102 

extracted from lidar is that of canopy height. Plot- or stand-level regression analysis or non-103 

parametric model estimates of canopy density, mean tree height, basal area and volume have 104 

been applied (Bouvier et al. 2015; Hyyppä et al., 2008; Næsset, 2007). Other studies have 105 

been able to characterise understorey vegetation cover and detect suppressed trees (Estornell  106 

et al., 2011; Maltamo et al., 2005), assess regeneration patterns and floristic composition 107 

(Bollandsås et al., 2008; Leutner et al., 2012), and estimate deadwood volume (Kim et al., 108 

2009b; Pesonen et al., 2008). Lidar sensors, typically DR, can collect data at point densities 109 

sufficient to identify individual tree crowns in forest canopies and delineate crown horizontal 110 

extent and vertical depth (Kaartinen et al., 2012). Such individual tree crown (ITC) metrics 111 

have been identified as important inputs into predicative models of forest variables (e.g. 112 

Hyyppä et al., 2001; Persson et al., 2002; Popescu et al., 2004). 113 

 114 

With an increasing accessibility of small-footprint FW lidar, there is a small but growing 115 

number of published studies which evaluate FW and DR lidar for the estimation of forest 116 

structural and compositional parameters. For example, Cao et al. (2014) compared statistical 117 

predictions of total living biomass obtained from DR lidar metrics (i.e. height and height 118 

variance measures, canopy return density measures, and canopy cover measures) and from FW 119 

lidar metrics (i.e. height of median energy, waveform distance, height/median ratio, number of 120 

peaks, roughness of outermost canopy, front slope angle, return waveform energy and vertical 121 

distribution ratio). They extracted the DR data by Gaussian decomposition of the FW data, and 122 

therefore the two datasets shared the same sampling rate characteristics but supplied different 123 

sets of metrics due to the way the full waveform information was processed. They found that 124 

lidar metrics related to canopy height (either DR or FW derived) were the strongest predictors 125 
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of total biomass, but that there were benefits from the synergistic use of DR and FW lidar 126 

metrics in estimating the different biomass pools in the forest vertical structure. Lindberg et al. 127 

(2012) outlined a method to analyse both DR and FW lidar data for the estimation of canopy 128 

vegetation volume for coniferous and deciduous forest. Estimates of volume from FW lidar 129 

were predicted more accurately than from DR lidar, especially when corrections were applied 130 

for the shielding effects of higher vegetation layers based on the Beer-Lambert Law. Allouis et 131 

al. (2013) reported similar results where the inclusion of FW metrics improved model 132 

estimates for the prediction of above-ground biomass of individual trees, but gave slightly 133 

inferior estimates of stem volume when compared with DR lidar only. Yu et al. (2014) 134 

compared DR and FW lidar for individual tree crown delineation and boreal forest species 135 

classification, reporting that FW lidar was slightly better for detecting trees, whilst DR metrics 136 

combined with FW metrics improved species classifications. Armston et al. (2013) compared 137 

DR and FW lidar data for the estimation of vertical canopy gap probability for savanna 138 

woodland, showing that models produced using FW lidar data were superior.  139 

 140 

The use of small-footprint DR lidar data for forest inventory using an area-based regression 141 

approach is now well established (Næsset, 2007). As small-footprint FW lidar data become 142 

more readily available, early studies suggest possible benefits and potential drawbacks in 143 

moving towards these data. As yet there has been no systematic study to compare small-144 

footprint DR and FW data for the estimation of multiple inventory variables from across a 145 

forest profile. This study addresses this research gap, comparing point cloud data and derived 146 

products from DR lidar and from Gaussian decomposition of FW lidar. The work of Cao et al. 147 

(2014) compared standard DR height metrics with newer sets of FW lidar metrics, and 148 

specifically avoided investigating the effects of higher density point clouds provided by FW 149 

lidar decomposition. Here we specifically focus on a comparison between the different 150 
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information content on forest vertical and horizontal structure and recorded return pulse 151 

characteristics in DR and FW-derived point clouds. We assess 23 common forest inventory 152 

variables covering all forest vegetation layers (canopy, shrub and ground layer) and both 153 

living and dead wood. Airborne DR and FW lidar data were acquired simultaneously under 154 

both leaf-on and leaf-off conditions, and variables from both (including point cloud and ITC-155 

derived lidar variables) are used in area-based regression modelling of forest inventory 156 

variables. The wider context of this work was forest condition assessment.  157 

 158 

2. Data and Methods 159 

2.1 Study site 160 

The study site is located within the New Forest National Park, between Southampton and 161 

Bournemouth, in southern England (lat: 50° 50' N, long: 1° 30' W). This National Park has 162 

multiple land covers and land uses, with much of the forested area actively managed (see 163 

Tubbs 2001). This study is focused on a ca. 22 km2 area that sits in a triangle between the 164 

villages of Lyndhurst, Brockenhurst, and Beaulieu. This area is low lying, between 5m and 165 

45m above sea level, with only gently undulating terrain. The forest includes managed 166 

inclosures, in addition to unenclosed areas which are not subject to felling operations and are 167 

permanently open to grazing by large ungulates (mostly ponies, deer and cattle). 168 

 169 

The study area contains several types of semi-natural and plantation coniferous and deciduous 170 

forests in close proximity (Newton et al., 2010).  Deciduous species include: oaks (Quercus 171 

robur and Quercus petrea), beech (Fagus sylvatica), common alder (Alnus glutinosa), silver 172 

birch (Betula pendula), sweet chestnut (Castanea sativa), and holly (Ilex aquifolium). 173 

Coniferous species include: Corsican pine (Pinus nigra var. maritime), Scots pine (Pinus 174 

sylvestris), Douglas fir (Pseudotsuga menziesii) and Norway spruce (Picea abies). This array 175 
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of forest types within close proximity to each other presents a wide range of available 176 

structural and compositional variables of interest, such as canopy gaps and the presence of 177 

deadwood or understorey.  178 

 179 

2.2 Field data collection 180 

Using pre-existing data, the woodland areas of the study site were split into coniferous, 181 

deciduous and mixed woodland compartments and stratified according to their relative 182 

biomass, as derived from Normalised Difference Vegetation Index (NDVI) data. A total of 41 183 

field plots were then randomly located across this stratification to enumerate a range of forest 184 

types and canopy conditions. An initial 21 plots were visited in the summer of 2010 185 

(subsequently used for establishing relationships), with the remaining 20 plots visited in a 186 

further field campaign in the summer of 2012 (used for validating relationships). The field 187 

plots were only enumerated if they were located a minimum of 10 m away from a stand 188 

boundary in order to limit any potential edge effects. 189 

 190 

Field data were collected from north-oriented 30 m × 30 m plots with a 10 m × 10 m subplot 191 

in the south-west corner. Plot positions were located accurately using a combination of a Leica 192 

GPS 500 (Leica Geosystems) and Sokkia 6F total station (SOKKIA TOPCON Co. Ltd.). Post-193 

processing of the coordinates was performed in Leica Geo-office software (version 8.2). Total 194 

horizontal positional error was calculated as ≤ 0.08 m. 195 

 196 

Plot-level totals and averages were calculated for each field recorded metric. Within each plot, 197 

diameter at breast height (DBH) was recorded at 1.3 m above the ground for every stem, and 198 

for those with DBH > 10 cm, a 3D position (via total station) was recorded to estimate stem 199 

spacing. In addition, canopy top height (m), height to the living crown (HTLC) (m), crown 200 
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horizontal dimensions in the east-west and north-south directions, and species type were 201 

recorded. Vertical height measurements were calculated via trigonometry, using a measured 202 

horizontal distance from the tree stem and an angular measurement, from a clinometer, to the 203 

required vertical feature. Plot-level basal area was calculated by summing the area of a circle 204 

calculation applied to each tree DBH measurement within the plot extent. The number of 205 

stems of native tree species was recorded. Native tree species within the study site were 206 

considered to include Scots pine, common alder, oak, beech, silver birch, holly and sweet 207 

chestnut.  208 

 209 

The species compositional indices of the Shannon-Wiener index (SH) (Shannon, 1948) and the 210 

Simpson index (SI) (Simpson, 1949) were utilised in this study. The Shannon-Wiener 211 

diversity index for all tree species was calculated as: 212 

�� =	���	�	
�	��
�

�
�
 [1] 

where pi = the proportion of individuals (plot stem number) in the ith species, and n is the 213 

number of species. The Simpson index was calculated for tree species in each plot as: 214 

�� = 1 −	��(1 − ��)��
�

�
�
� [2] 

where pi = the proportion of individuals (plot stem number) in the ith species, and n is the 215 

number of species.  216 

 217 

Each of the standing deadwood items, or snags, within a field plot was recorded. Snags were 218 

defined as standing deadwood > 10 cm DBH (Spies et al., 1988). Snag volume was calculated 219 

using the formula for determining cylindrical volume using height and girth measurements. 220 

Downed deadwood (DDW) was defined as deadwood logs or branches of at least 10 cm 221 

diameter lying on the ground (Spies et al., 1988).  Measurements for DDW were made in the 222 
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10 m × 10 m sub-plot only. Length and girth around the maximum and minimum diameters of 223 

the log were recorded. Estimates of DDW volume were determined using the equation for a 224 

frustum of a cone. To assess deadwood decay class, snags and DDW were divided into three 225 

decay classes according to the following criteria, as defined in Cantarello & Newton (2008): 226 

(i) logs with a low decay state, no surface breakdown, bark still intact, wood structure firm; (ii) 227 

logs with a moderate decay state, with some surface breakdown, wood structure weaker but 228 

bole mostly sound; and (iii) logs with high decay state, extensive surface breakdown, bark 229 

mostly absent, bole with no sound wood present and colonised with vegetation. A size-230 

weighted average decay class score was then calculated at the plot level. 231 

 232 

The number of saplings and their species types (including the number of saplings of a native 233 

species) were recorded within each field plot. Saplings were defined as tree stems > 1.3 m in 234 

height with DBH < 10 cm. The total number of seedlings, their species type, and number of 235 

seedling stems of native species within the sub-plot extent were also recorded. Seedlings were 236 

defined as tree stems < 1.3 m in height. The number of vascular plant species and the 237 

percentage of bare ground within each 30 m × 30 m plot were also recorded. 238 

 239 

In total, 23 forest variables were recorded in the field and subsequently investigated using 240 

airborne lidar data. Summary information of field data across the 21 plots surveyed in 2010 241 

and 20 plots surveyed in 2012 is given in Table 1. 242 

 243 

[insert Table 1 here] 244 

 245 

2.3 Airborne lidar data collection 246 
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Small-footprint lidar data were acquired for the study area under leaf-off (April 8) and leaf-on 247 

(July 6) conditions in 2010. The lidar instrument used was the Leica ALS50-II airborne laser 248 

scanner with an upgrade to allow the simultaneous recording of DR and FW data. On both 249 

dates the lidar data were acquired at a flying altitude of ca. 1600 m, with a pulse repetition 250 

frequency (PRF) of 147 kHz, a beam divergence of 0.22 mr, and a scan half angle of 10o. The 251 

geometric accuracy for the scanner is stated by the manufacturer (Leica Geosytems) as a 252 

nominal vertical accuracy of 0.05 m to 0.10 m, and horizontal accuracy of 0.13 m to 0.61 m. 253 

With the chosen flight and sensor configuration, the average sampling rate for the leaf-on and 254 

leaf-off data was 5.0 and 5.2 pulses m-2 respectively (including areas of flight-line overlap). 255 

The DR and FW data were recorded from the same set of emitted pulses, but the ALS50-II 256 

scanner could only digitise the full waveform of every other pulse at the PRF used for these 257 

acquisitions. In actuality, the sampling rate for the FW lidar data was slightly less than half 258 

that of the DR data quoted above (49% and 48% for the leaf-on and leaf-off data respectively) 259 

due to minor recording errors. The DR data had up to four discrete returns per laser pulse, with 260 

x-, y- and z-coordinates, intensity, and return number supplied for the first, intermediate, and 261 

last significant returns per pulse. For the FW data, 256 return signal amplitude values 262 

(sampled every two nanoseconds for the April data and every one nanosecond for the July 263 

data) were supplied for each laser pulse. 264 

 265 

2.4 Airborne lidar data processing 266 

The DR lidar data were supplied as LAS 1.0 format files, with a basic classification 267 

identifying noise returns already applied using Terrascan software (http://www.terrasolid.fi). 268 

A number of pre-processing steps were required before metrics could be derived from the lidar 269 

data for subsequent analysis. All of these steps were performed using the RSC LAS Tools 270 

software (version 1.9.3) (http://code.google.com/p/rsclastools). The DR point cloud data 271 
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required filtering to separate the ground and vegetation hits so that ground elevation could be 272 

determined and used to normalise vegetation hits to above-ground height. RSC LAS Tools 273 

software employs a progressive morphological filter, as outlined in Zhang et al. (2003), to 274 

filter out ground returns, which were then interpolated into a surface at 1m resolution using the 275 

nearest neighbour method. Ground elevation values were then removed from the DR lidar 276 

dataset to yield vegetation height. All points which intersected within field plot locations were 277 

clipped from the dataset and used to create plot-level lidar variables, as in Falkowski et al. 278 

(2009) and Hudak et al. (2008). These included eight variables (mean, median, maximum, 279 

standard deviation, variance, absolute deviation, skewness and kurtosis) which were calculated 280 

from the height data (separately for all and non-ground returns) and from the intensity data 281 

(separately for all, non-ground and ground returns) for both leaf-on and leaf-off lidar 282 

acquisitions. This totalled 80 variables. In addition, percentiles at 5% intervals between 5% 283 

and 95% were created for both height and intensity data using all returns, separately for both 284 

leaf-on and leaf-off acquisitions. This totalled an additional 72 variables (as the maximum and 285 

median values were already calculated above). 286 

 287 

In addition, canopy cover was calculated as: 288 

�� = 	�ℎ��ℎ���� [3] 

where hng and hall denote the sum total of non-ground returns and the sum of all returns, 289 

respectively. A vertical profile was generated by stratifying the frequency of all returns at the 290 

plot-level vertically for every metre. The number of vertical layers was estimated by 291 

iteratively fitting Weibull functions to the vertical profile (fit to the frequency of return height 292 

bins), where local maxima or ‘peaks’ were taken to represent vertical layers and troughs were 293 

taken to be layer divisions (Coops et al., 2007). The number of local maxima was considered 294 

to identify the number of vertical layers. The largest vertical separation between layers, or 295 
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between a layer and ground, was then calculated for each plot to derive the largest vertical gap 296 

within the canopy profile. These three metrics (canopy cover, number of canopy layers, and 297 

the size of largest vertical canopy gap) were calculated separately for the leaf-on and leaf-off 298 

DR lidar data. Thus, a total of 158 metrics were derived from the DR point cloud data for each 299 

30 m x 30 m field plot area. 300 

 301 

The FW lidar data were provided in LAS 1.3 file format, containing GPS, IMU, and laser 302 

pulse return waveform data. The FW lidar pre-processing tasks were performed using the 303 

Sorted Pulse Software Library (SPDlib) (version 1.0.0) (Bunting et al., 2013a, 2013b). In order 304 

to derive 3D point information from the recorded waveforms, it was necessary to apply a 305 

process of Gaussian decomposition to each (as described in Wagner et al., 2006), identifying 306 

peaks in the return signal above a background threshold level representing noise. A 307 

combination of angular measurements, bearing, positional information of the aircraft and first 308 

peak coordinates, trigonometry and the relevant pulse timings (2 ns or 1 ns) allowed the 309 

estimation of the 3D locations for each of the fitted Gaussian peaks, in addition to peak 310 

attributes such as amplitude and width. This yielded between 1 and 11 returns per pulse, 311 

supplying x-, y- and z- coordinates, amplitude and width per return. The majority of pulses 312 

generated at least two returns in the leaf-on data and at least three returns in the leaf-off data, 313 

which compared with the majority of pulses generating only single returns in both the leaf-on 314 

and leaf-off DR lidar data. The sampling rates of the DR and FW point clouds are summarised 315 

in Table 2. Overall, the FW lidar provided more returns for each pulse than the DR lidar (and 316 

more information per return), supplying a higher vertical sampling rate (Figure 1). However, 317 

the total sampling rate was lower in the FW data, and in particular the horizontal sampling rate 318 

at the canopy surface was considerably higher in the DR data. This contrast in sample 319 
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distribution between DR and FW lidar across the 3D volume of a forest landscape is the focus 320 

of the data comparison being made here. 321 

 322 

[insert Table 2 & Fig 1 here]  323 

 324 

The SPDlib software also provided tools for noise filtering, vegetation classification and 325 

height normalisation on the extracted point data. As with the DR data processing, this used the 326 

progressive morphological filter, as outlined in Zhang et al. (2003), to identify ground returns. 327 

The above-ground heights were then calculated by subtracting the ground elevation surface (as 328 

interpolated by a natural neighbour algorithm from the classified ground returns) from all 329 

returns. Subsequently, all returns which intersected within field plot locations were clipped 330 

from the dataset, and eight variables (mean, median, maximum, standard deviation, variance, 331 

absolute deviation, skewness and kurtosis) were calculated from the height data (separately for 332 

all and non-ground returns) and from both the amplitude and echo-width data (separately for 333 

all, non-ground and ground returns), all for both leaf-on and leaf-off lidar acquisitions. This 334 

totalled 128 variables. In addition, percentiles at 5% intervals between 5% and 95% were 335 

created for height, amplitude and echo-width data using all returns, separately for leaf-on and 336 

leaf-off acquisitions. This totalled an additional 108 variables. The metrics derived from 337 

analysis of the canopy horizontal and vertical profile (i.e. canopy cover, largest vertical gap, 338 

and number of vertical layers) were also calculated from leaf-on and leaf-off FW data in the 339 

same way as for the DR metrics. A total of 242 metrics were derived from the FW-derived 340 

point cloud data for each 30 x 30 m field plot area. 341 

 342 

Individual tree crown (ITC) delineation techniques were implemented on the DR and FW lidar 343 

data (leaf-on only) using the Toolbox for Lidar Data Filtering and Forest Studies (TIFFS) 344 
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software (version 5.0) (http://www.globalidar.com). A 1 × 1 m resolution raster Canopy 345 

Height Model (CHM) was created using the maximum above-ground height in each cell. Tree 346 

crowns were isolated using a marker-controlled watershed segmentation method, as used in 347 

Chen et al. (2006), where tree top positions were located and regions ‘grown’ into areas of 348 

decreasing height. The identification of individual tree crowns was performed separately using 349 

leaf-on DR and FW lidar data, resulting in a GIS database of individual tree locations and 350 

crown attributes. Note that ITC objects with a crown horizontal radius < 1.5 m or a height 351 

≤ 1.3 m were removed from this database as non-tree features. All remaining ITC objects with 352 

a centroid within the field plot extent were extracted and this was used to generate eight plot-353 

level ITC variables for both the DR and FW data: mean tree height, mean and total crown 354 

area, mean and total canopy volume, mean and standard deviation of distance between trees, 355 

and the number of trees per plot. These were extracted using R software (version 2.15.2) 356 

(http://www.r-project.org/).  357 

 358 

2.5 Statistical analysis 359 

A modification to the approach outlined in Langton et al. (2010) was used to conduct a ‘data 360 

mining’ exercise to identify important predictor variables for subsequent regression analyses. 361 

This was necessary due to the high number of lidar predictor variables and their potential high 362 

colinearity with one another, (up to r = 0.9 in many cases). Therefore, the ‘MuMin’ (Multi-363 

Model Inference) package for R software (version 1.9.5) (http://CRAN.R-364 

project.org/package=MuMIn) was used to run Akaike Information Criterion (AIC) analysis to 365 

regress the field data from the 21 plots visited in 2010 against the corresponding lidar metrics. 366 

In this case, due to the small number of field plots available, a second order information 367 

criterion (AICc) was implemented. AICc incorporates a greater relative penalty for extra 368 

parameters, therefore decreasing the probability of selecting models that have too many 369 
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parameters and might over-fit the data (Burnham & Anderson, 2002). Analyses were 370 

performed separately for the DR and FW lidar data. To determine which lidar variables had 371 

the most potential for the prediction of forest attributes, an automatic stepwise AICc selection 372 

was used on the dataset for 500,000 iterations, where each iteration functioned on a subset of 373 

six randomly selected predictor variables. Significant predictors were recorded for each 374 

iteration and the variables with the most counts across all iterations identified. For each of the 375 

23 field metrics assessed, a subset of the lidar predictor variables determined to be the most 376 

significant (i.e. those with the highest counts) were input into a further stepwise AICc process 377 

to derive a final regression equation. Twenty predictor variables determined to be the most 378 

significant for each field metric were entered into the stepwise approach. Note that zero values 379 

in the field plot data were included in the regression analyses. 380 

 381 

The stepwise procedure thus produced a regression model using a subset of the input lidar 382 

variables for each field metric. Several criteria were used to examine potential models, 383 

including R2 and adjusted R2; individual covariate significance (Type III error t tests, p ≤ 384 

0.05); absence of multi-colinearity (i.e. variance inflation factor ≤ 1, see Bowerman & 385 

O’Connell, 1990); and residual homoscedasticity. Root Mean Square Error (RMSE) of each 386 

model was assessed using the 20 field plots that were not used in establishing the models. The 387 

final models selected were those which exhibited a combination of the lowest changes of R2 to 388 

adjusted R2 and the lowest overall dataset RMSE, whilst still satisfying individual covariate 389 

criteria. Adjusted R2 is considered more conservative than R2, thus models where the two 390 

showed little change were sought when using multiple predictors. The exclusion of redundant 391 

covariates was addressed by the examination of individual standard error and variance 392 

inflation factor values, as model validity in multiple linear regression relies partly on the 393 

number of observations and covariates.  394 
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 395 

3. Results 396 

Statistical models were developed for each of the 23 field metrics using the DR and FW lidar 397 

as separate datasets. Input variables for each model could potentially be drawn from ground, 398 

non-ground or all returns, from leaf-on or leaf-off data, for height, intensity/amplitude or echo-399 

width measures, and could also include ITC-derived metrics. A statistically significant model 400 

(at p < 0.05) was created for all field metrics using the two lidar datasets (DR and FW). Across 401 

the 23 field metrics, the R2 value for the best fit model covered the range R2 = 0.43 - 0.94 for 402 

the DR data and R2 = 0.28 - 0.97 for the FW data (Table 3). The normalised RMSE covered 403 

the range 18% - 66% for the DR models and 16% - 48% for the FW models. The difference in 404 

NRMSE between the best fit DR and FW model was low (≤ 7%) for all but two forest metrics 405 

(number of sapling species and number of vascular plant species). It should be noted that for 406 

11 of the 23 forest metrics, the best fit models (i.e. those with the highest R2) did not generate 407 

the best predictions based on independent field validation data, thus demonstrating over-fitting 408 

of some models to the input data. This was particularly notable for mean crown horizontal 409 

area, standing deadwood decay class, number of sapling species and number of seedling 410 

species. 411 

 412 

[insert Table 3 here] 413 

 414 

Across the 23 best performing models (i.e. those with the lowest NRMSE) the number and 415 

composition of input lidar variables differed (Table 4). Thus, all models had between one and 416 

four input variables; with 11 models having two input variables, six models having three input 417 

variables, and three models each with either one variable (number of tree stems of native 418 

species, downed deadwood decay class, and number of vascular plant species) or four 419 
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variables (number of tree stems, Shannon-Weiner index of diversity, and mean height to the 420 

living crown). In terms of the nature of input variables, six of the best performing models had 421 

input variables of a single type (i.e. intensity/amplitude, height, echo-width, or ITC-derived), 422 

whilst the remaining 17 had input variables of multiple types. In total, 18 of the best 423 

performing models contained intensity/amplitude variables, 14 contained height variables, a 424 

further 11 contained ITC variables, and 2 contained echo-width variables. Focussing on the 425 

timing of lidar input variables; 11 of the best performing models contained only leaf-on data, 426 

10 models contained both leaf-on and leaf-off variables, and 2 models contained only leaf-off 427 

data. 428 

 429 

[Insert Table 4 here] 430 

 431 

Separating the best performing models into those containing DR lidar data (11 models) and 432 

those containing FW lidar data (12 models), there was little difference between the two sets of 433 

models in the proportional composition of intensity/amplitude, height, echo-width, or ITC-434 

derived input variables (Table 5), and between those point cloud variables derived using all, 435 

ground or non-ground lidar returns (Table 6). However, there was a notable difference 436 

between the proportion of input variables from leaf-on and leaf-off data between the best 437 

performing DR and FW lidar models. Thus, 22 of 26 input variables in the best performing 438 

DR models were leaf-on, compared with 18 of 29 input variables in the best performing FW 439 

models. In terms of the type of forest metric, 6 of 9 structure metrics were best modelled in 440 

DR data, whilst 6 of 10 composition and 3 of 4 deadwood metrics were best modelled in FW 441 

data. There was an even division between the two lidar datasets in relation to generating the 442 

best performing models across the vegetation layers; thus DR lidar data were used in 6 of 13 443 

canopy layer models, 2 of 3 shrub layer models, and 3 of 7 ground layer models. 444 
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 445 

[Insert Tables 5 & 6 here] 446 

 447 

4. Discussion 448 

As outlined in Matthews & Mackie (2006) there is a requirement for knowledge within a 449 

defined area of how many trees exist, what species they are and their relative sizes, in order to 450 

make predictions for management purposes. Both structural and compositional information 451 

from remote sensing sources have been used in a number of studies to estimate forest 452 

inventory metrics, and assess habitat and species presence (Lesak et al., 2011; Martinuzzi et 453 

al., 2009). This study has demonstrated the ability of both DR and FW lidar data to estimate 454 

multiple forest metrics across a study area.  455 

 456 

For the 23 forest metrics investigated here, one was determined with high accuracy (i.e. 457 

NRMSE < 20%), 17 with moderate accuracy (NRMSE 20% - 35%), and two with low 458 

accuracy (NRMSE > 35%) in the best performing models. Some of this error may have been 459 

the result of a 2 year time lag between the collection of both the airborne lidar data and the 460 

field plot data used to establish the models (2010) and the field plot data used to validate these 461 

models (2012). Also, for many forest variables, the range of data from the field plots surveyed 462 

in 2012 was outside that from the field plots surveyed in 2010, which would also have had a 463 

likely impact on the estimated prediction accuracy of models established using the 2010 data.  464 

 465 

There is extensive surrounding literature on the estimation of forest structural and 466 

compositional metrics using airborne lidar data and an area-based regression approach. 467 

However, many only predict a relatively limited number of forest metrics (e.g. Hudak et al., 468 

2009; Hyyppä et al., 2008; Li et al., 2014; Lim et al., 2003; Næsset 2004; Richardson & 469 
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Moskal, 2011). Thus, no single study has covered such an extensive range of forest metrics as 470 

that presented here, especially relating to all vegetation layers in a forest. For those metrics for 471 

which direct comparison can be made with other published studies; e.g. number of tree stems 472 

(Lee & Lucas, 2007; Næsset, 2002), mean height to the living crown (Andersen et al., 2005; 473 

Muss et al., 2011), DBH and basal area (Næsset, 2002; 2004), and downed deadwood volume 474 

(Mücke et al., 2013), the prediction accuracy in the current study is of a similar magnitude. 475 

Standing deadwood volume was predicted with the highest NRMSE (16%), with three FW 476 

lidar variables contributing to the best performing model: skewness of amplitude in non-477 

ground returns (leaf-off), the 25th percentile of echo-width in all returns (leaf-on) and the 478 

standard deviation of ITC centroid spacing (leaf on). Thus, standing deadwood is detectable 479 

where the return signal strength is low and skewed in relation to surrounding living biomass, 480 

and where there is variation in tree spacing. By contrast, the percentage of bare ground cover 481 

and number of sapling species were the least well modelled forest measures (with NMRSE of 482 

42% and 48% respectively). Whilst the input lidar variables for the best performing models for 483 

these two forest metrics are readily understandable (relating to low order height percentiles, 484 

canopy vertical structure, and variation in either amplitude or crown size), these are 485 

nonetheless indicators of below canopy conditions in which saplings and ground flora may 486 

exist rather than direct measures of the features themselves. The implication here is that 487 

variance in overstorey canopy structure indicates structural and compositional diversity in the 488 

lower portions of the forest. 489 

 490 

In general, the DR and FW lidar datasets performed similarly in terms of the predictive power 491 

of the models generated for each forest metric. In total, 12 of the best performing models 492 

included FW lidar data whilst the remaining 11 included DR lidar data. There was a slight bias 493 

in these models of the DR data towards forest structure variables and the FW data towards 494 
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compositional and deadwood variables. Nonetheless, in all but two cases (the number of 495 

sapling and vascular plant species), the difference in the NRMSE between the best performing 496 

DR and FW model was slight (≤ 7%). A disparity existed between sample densities of DR and 497 

FW lidar data in this study resulting from fewer FW pulses being recorded. However, small-498 

footprint full waveform lidar data offer a much higher potential for detecting returns beneath 499 

the canopy (Wagner et al., 2006). Thus, with the detection of a greater number of return points 500 

through Gaussian fitting for the FW lidar data, which provided information along the vector of 501 

the laser pulse penetrating the canopy, the distribution of points and total sampled forest 502 

elements were different between the DR and FW lidar data in this study. The DR data had a 503 

higher horizontal sampling rate at the canopy surface, whilst the FW data had a higher 504 

sampling rate through the canopy vertical profile. It was notable that neither DR nor FW data 505 

showed a clear advantage at modelling forest metrics at the canopy, shrub or ground level. 506 

Thus the perceived advantages of a higher canopy surface sampling rate in the DR data and a 507 

higher vertical sampling rate in the FW data for modelling different elements of a forest were 508 

not demonstrated as particularly significant in the results of this study. It should be noted, that 509 

the reduced sampling rate of the FW data (compared with the DR data) in this study was 510 

specific to the lidar system and PRF used for data acquisition. No attempt was made in this 511 

study to thin the DR data to the same horizontal sampling rate as the FW data, as the 512 

difference between the horizontal and vertical sampling rate of the two datasets and the effect 513 

of this when using the data in area-based modelling of forest inventory was the core 514 

comparison being made here. Processing techniques to derive usable metrics from FW lidar 515 

data for input into forest modelling are still in development, and may provide more metrics 516 

beneficial to future analyses, such as the backscatter cross-section or coefficient for each 517 

waveform (Alexander et al., 2010; Wagner et al., 2010).  518 

 519 
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The majority of the best performing statistical models for field metric estimation (i.e. 18 out of 520 

23) involved the use of lidar intensity/amplitude variables from either DR or FW lidar. Moffiet 521 

et al. (2005) and Kim et al. (2009a) indicated that the distribution of lidar intensity values in a 522 

forest is related to the presence or absence of foliage and its spatial arrangement within the 523 

vertical profile, which is dependent on stem density, canopy openness and species types. 524 

Hence deadwood biomass volume in a forest context exhibits different lidar intensity values 525 

when compared with living biomass (Kim et al., 2009b). Furthermore, Reitberger et al. (2008) 526 

showed that lidar return intensity can be used to distinguish between tree bark and coniferous 527 

needles, and that the distribution of intensity values could be indicative of broad species types 528 

(e.g. coniferous and deciduous), especially under leaf-off conditions. Lidar intensity from the 529 

mid-canopy has been shown to be indicative of species number (Brandtberg et al., 2003), 530 

whilst intensity metrics from the higher portion of the canopy (in combination with height 531 

data) have been shown to make significant contributions to the prediction of forest biomass (Li 532 

et al., 2014). The usage of intensity information from small-footprint DR lidar systems 533 

remains a somewhat contested issue, however, due to the proprietary methods that commercial 534 

systems use to report return intensity which can change in flight, making it impossible to 535 

directly compare two returns (Disney et al., 2010). Nonetheless, Kaasalainen et al. (2009) 536 

showed the potential to calibrate DR lidar intensity data using reference targets of known 537 

backscatter properties from laboratory testing.  538 

 539 

FW lidar echo-width metrics were utilised in just two best performing models; standing 540 

deadwood volume, and the number of seedling species. FW return echo-width relates to small 541 

height variations of scattering elements within the footprint of the laser beam, and is 542 

considered a means of inferring surface roughness (Wagner 2010). Mücke et al. (2013) 543 

considered the forest ground-level and fallen stems to have smooth surfaces, whereas other 544 
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vegetated elements, such as shrub vegetation, were considered to be rougher. It should be 545 

noted that echo-width metrics were the predictor variables with the smallest contribution in the 546 

regression models in this study, and therefore this additional variable only available in FW 547 

data may be considered relatively unimportant for forest inventory purposes. 548 

 549 

It was notable that almost as many of the best performing models contained ITC-derived 550 

variables (11) as contained point cloud height variables (14). All but one of the field metrics 551 

relating to tree structure and density (i.e. number of tree stems, their mean spacing, mean 552 

DBH, basal area, HTLC, and mean crown horizontal area) utilised plot-level ITC-derived 553 

variables within the predictive model equation. Of these, variables related to the horizontal 554 

areas of ITC delineated crowns and the spacing between ITC objects were most used in the 555 

modelling of tree structural properties. A number of other studies have reported the benefits of 556 

using ITC estimates of crown area in addition to variables related to the distribution of height 557 

values in the prediction of forest structural characteristics, such as mean DBH and basal area 558 

(e.g. Hyyppä et al., 2001; Maltamo et al., 2004). It should be noted that image-based ITC 559 

delineation methods, such as those used in this study, have a number of challenges relating to 560 

how well both the vertical and horizontal components of a forest can be quantified (Kaartinen 561 

et al., 2012), which can constitute a source of error as non-dominant trees are often obscured 562 

or incorrectly identified in structurally complex forests. 563 

 564 

Almost half of the best performing models (i.e. 10 of 23) utilised a combination of variables 565 

produced from both leaf-on and leaf-off datasets. These datasets will capture different 566 

properties of the forest when acquired at peak and lowest leaf area, due to the different 567 

penetration of the laser pulses through the canopy for both coniferous and deciduous species 568 

(where deciduous leaf-loss is typically more obvious) (Næsset, 2005). Lidar data flown under 569 
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leaf-off conditions are optimal for surface feature mapping, as features close to the ground are 570 

less likely to be obscured; likewise this has applications for understorey mapping when data 571 

acquisition is appropriately timed (Hill & Broughton, 2009). Kim et al. (2009a) reported that a 572 

combination of both leaf-on and leaf-off intensity values gives additional explanatory power 573 

when combined in a single model for species differentiation, which goes some way to 574 

capturing the variability in multiple forest structural types.  575 

 576 

Only relatively basic lidar metrics were used within the context of this study, of which many 577 

have also been used within the surrounding literature. There exists a number of alternative 578 

methods which could be implemented in future research, such as the detection of vertical 579 

layers by examining the return frequencies at different binned heights (or voxels) above 580 

ground (e.g. Popescu & Zhao 2008; Wang et al., 2008). In addition, the computation of indices 581 

relating to the overall vertical density of vegetative features, e.g. the vertical distribution ratio 582 

or height-scaled crown openness index (Lee & Lucas, 2007) may improve model estimates. 583 

More complex analysis of the FW waveform could also be performed to derive variables 584 

relating to the waveform shape, such as height of median energy, waveform distance, and front 585 

slope angle, as used in Cao et al. (2014). There are also a number of alternative approaches 586 

available for the estimation of plot-level field metrics, for example the random forest 587 

algorithm (Breiman, 2001), whilst more fieldwork samples from the same year as lidar data 588 

acquisition would potentially improve the precision and validity of model estimates (Strunk et 589 

al., 2012).  590 

 591 

5. Conclusions 592 

The approaches used in the current study demonstrate that it is possible to estimate a range of 593 

structural, compositional and deadwood forest metrics from airborne lidar data throughout the 594 
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vertical profile and across a landscape. For 23 metrics examined, statistically significant 595 

predictive models were generated for each using both DR and FW lidar datasets in an area-596 

based approach. There was an even division between the best performing models that 597 

incorporated DR and FW data, and in all but two cases the difference between the NRMSE of 598 

the best performing DR and FW models was slight (i.e. ≤ 7%). The prediction accuracy for the 599 

best performing models ranged from an NRMSE of 16% for standing deadwood volume to 600 

48% for the number of sapling species. 601 

 602 

Lidar intensity or amplitude variables (DR or FW respectively) were the most numerous 603 

selected in the best performing models. However, only two of the best performing models 604 

contained the extra intensity-related variable (echo-width) available only from FW lidar data. 605 

Although these intensity variables were not calibrated in this study, they were indicative of the 606 

presence and distribution of foliar and woody features within the vertical profile. ITC-derived 607 

variables were of almost equal importance as plot-level height variables derived from the point 608 

cloud in contributing to the best performing models.  609 

 610 

Perhaps of greater significance to the choice between lidar data type (i.e. DR or FW) in 611 

determining the predictive power of the best performing models was the selection of both leaf-612 

on and leaf-off data. Thus, of the 23 best performing area-based regression models, 10 613 

contained both leaf-on and leaf-off data, whilst 11 contained only leaf-on data. We can 614 

therefore conclude that the complimentary information about the entire forest canopy profile 615 

that is available from both leaf-on and leaf-off data is of greater benefit to forest inventory in 616 

general than the selection between DR or FW lidar data (if used as point clouds). However, 617 

this can be forest metric specific. 618 

 619 
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The area-based method of developing models for the characterisation of forest composition 620 

and structure of the selected New Forest field site has direct applications in forest management 621 

and for wider objectives (such as forestry and habitat modelling) in other forested regions. 622 

Although the models which incorporate lidar intensity are inherently non-transferable because 623 

of the lack of calibration, the approach is transferable and could be applied in many 624 

environmental contexts and to estimate other forest attributes (e.g. above-ground biomass) or 625 

combined into estimates of forest condition. 626 

 627 
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Tables 

 

Table 1. Summary of field data enumerated across the 21 plots surveyed in 2010 (used to establish regression-based relationships with airborne lidar data) 
and the 20 plots surveyed in 2012 (used to validate the regression-based relationships with airborne lidar data). 
 
 

Field metric name Forest  

layer 

Metric  

type 

2010 field plots 2012 field plots 

Min Max Mean St. Dev. Min Max Mean St. Dev. 

Number of tree stems Canopy Structure 7 52 24.86 11.12 16 90 32.20 18.86 

Mean tree stem spacing (m) Canopy Structure 2.65 8.45 4.09 1.33 1.84 5.17 3.20 1.05 

Number of tree species Canopy Composition 1 7 3.52 1.40 1 5 3.45 1.28 

Number of  tree stems of native species Canopy Composition 2 34 15.67 9.46 0 52 19.85 12.66 

Shannon-Wiener index of diversity Canopy Composition 0.00 1.47 0.86 0.39 0.00 1.43 0.86 0.41 

Simpson index of diversity Canopy Composition 0.00 1.00 0.50 0.27 0.00 1.29 0.73 0.36 

Mean height to the living crown (m) Canopy Structure 3.30 13.94 8.00 3.20 2.83 13.46 7.78 3.10 

Mean crown horizontal area (m2) Canopy Structure 23.61 119.91 57.52 28.96 13.03 100.11 49.67 23.55 

Total crown horizontal area (m2) Canopy Structure 590.17 2198.75 1219.05 402.72 658.59 2102.26 2136.94 382.30 

Mean DBH (cm) Canopy Structure 27.45 61.84 40.06 9.41 18.72 47.86 33.71 29.14 

Plot level basal area (m2) Canopy Structure 2.10 5.24 3.28 0.83 2.06 5.27 3.26 0.86 

Standing deadwood volume (m3) Canopy Deadwood 0.00 10.12 1.93 3.22 0.00 8.27 0.87 1.97 

Standing deadwood decay class (1-3) Canopy Deadwood 0.00 2.88 2.19 0.42 0.00 3.00 0.74 0.18 

Downed deadwood volume (m3) Ground Deadwood 0.09 14.62 3.54 4.58 0.22 38.42 4.44 8.29 

Downed Deadwood decay class (1-3) Ground Deadwood 1.56 2.85 2.34 0.39 0.48 2.85 0.68 0.11 

Number of sapling stems Shrub Structure 0 42 4.33 9.31 0 108 9.85 24.74 

Number of sapling species Shrub Composition 0 4 1.00 1.22 0 3 1.00 0.97 

Number of  sapling stems of native species Shrub Composition 0 34 3.86 7.72 0 38 2.90 8.45 

Number of seedling stems Ground Structure 9 864 145.29 206.44 0 936 339.70 297.62 

Number of seedling species Ground Composition 1 7 2.05 1.40 0 13 4.40 2.89 

Number of seedling stems of native species Ground Composition 9 405 109.29 123.94 0 936 230.60 278.95 

Number of vascular plant species Ground Composition 2 6 3.86 1.35 2 8 4.56 1.82 

Percentage bare ground cover (%) Ground Composition 0 90 21.69 26.45 0 95 43.50 38.01 
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Table 2. Summary of the sampling rate for DR and FW lidar data under leaf-on and leaf-off conditions, and the number of returns generated from the 
resulting point clouds. These values include data for overlapping flight-lines and are average values across the entire field site (i.e. including forest and non-
forest areas). 

 

Lidar  

data  
Leaf-on  Leaf-off  

No. of pulses per 

m
2
 

No. of derived 

points per m
2
 

1
st
 returns as a % of the 

point cloud 

No. of pulses per 

m
2
 

No. of derived 

points per m
2
 

1
st
 returns as a % of the 

point cloud 

DR  4.97 6.02 82.5% 5.25 7.57 69.4% 
FW  2.43 5.09 47.7% 2.51 6.50 38.6% 
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Table 3. Summary of R2, RMSE and NRMSE for the best performing regression model produced from the DR and FW lidar data. All models shown are 
significant at p < 0.05. The values underlined show the best performing model per field metric. 
 

 
 DR lidar  FW lidar  

Field metric R
2
 RMSE NRMSE R

2
 RMSE NRMSE 

Number of tree stems  0.67 18.04 24% 0.67 15.97 22% 
Mean tree stem spacing (m) 0.91 1.71 40% 0.91 1.32 33% 
Number of tree species  0.43 1.50 25% 0.32 1.66 28% 
Number of  tree stems of native species 0.55 15.05 29% 0.61 13.93 27% 
Shannon-Wiener index of diversity  0.57 0.53 37% 0.67 0.58 40% 
Simpson index of diversity 0.59 0.31 24% 0.55 0.29 22% 
Mean height to the living crown (m) 0.88 2.68 25% 0.88 2.54 24% 
Mean crown horizontal area (m2) 0.63 23.53 27% 0.86 24.39 28% 
Total crown horizontal area (m2) 0.75 561.55 39% 0.69 645.64 45% 
Mean DBH (cm) 0.80 9.71 33% 0.80 10.11 35% 
Plot level basal area (m2) 0.66 0.83 26% 0.69 0.91 28% 

Standing deadwood volume (m3) 0.91 1.50 18% 0.92 1.36 16% 

Standing deadwood decay class (1-3) 0.88 0.72 36% 0.59 0.57 29% 

Downed deadwood volume (m3) 0.51 2.74 30% 0.45 2.49 27% 
Downed Deadwood decay class (1-3) 0.79 0.51 36% 0.75 0.60 43% 
Number of sapling stems  0.92 24.41 23% 0.97 26.46 25% 
Number of sapling species  0.94 1.99 66% 0.70 1.42 48% 
Number of  sapling stems of native species 0.90 10.40 27% 0.97 11.47 30% 
Number of seedling stems  0.82 295.24 32% 0.28 331.96 36% 
Number of seedling species  0.74 3.16 24% 0.45 3.10 24% 
Number of  seedling stems of native species 0.63 239.08 33% 0.68 245.15 34% 
Number of vascular plant species 0.75 2.36 39% 0.77 1.70 28% 
Percentage bare ground cover (%) 0.76 44.04 46% 0.86 39.82 42% 
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Table 4. The input predictor variables used in the 23 best performing regression models (i.e. those which produced estimates with the smallest RMSE) 
 

Estimated field metric name Field metric type Data set used 

in the model 

Model input variables 

Number of tree stems  
 

Structure FW lidar (1) mean ITC horizontal area (leaf-on);  
(2) 20th height percentile [all returns] (leaf-on); 
(3) kurtosis of amplitude [non-ground returns] (leaf-off);  
(4) skewness of height [non-ground returns] (leaf-off). 

Mean tree stem spacing (m)  Structure  FW lidar (1) mean spacing of ITC centroids (leaf on);   
(2) 20th amplitude percentile [all returns] (leaf-off). 

Number of tree species  Composition DR lidar (1) 50th height percentile [all returns] (leaf-off);  
(2) variance of intensity [non-ground returns] (leaf-on). 

Number of  tree stems of native 
species   

Composition FW lidar  (1) kurtosis of height [all returns] (leaf-on). 
 

Shannon-Wiener index of diversity  Composition DR lidar  (1) median height [non-ground returns] (leaf-off); 
(2) skewness of intensity [non-ground returns] (leaf-on);  
(3) total ITC horizontal area (leaf-on); 
(4) total ITC volume (leaf-on). 

Simpson index of diversity  Composition FW lidar (1) skewness of amplitude [non-ground returns] (leaf-on);  
(2) total ITC horizontal area (leaf-on); 
(3) variance of height [all returns] (leaf-on). 

Mean height to the living crown (m)  Structure FW lidar (1) maximum vertical gap identified in the vertical height profile (leaf-off); 
(2) mean spacing of ITC centroids (leaf-on);  
(3) ITC mean canopy geometric volume (leaf-on),  
(4) variance of amplitude [non-ground returns] (leaf-on). 

Mean crown horizontal area (m2)  Structure DR lidar (1) kurtosis of intensity [non-ground return] (leaf-off);  
(2) mean spacing of ITC centroids (leaf-on);  
(3) total ITC horizontal area (leaf-on). 

Total crown horizontal area (m2)  Structure DR lidar  (1) mean height [all returns] (leaf-on); 
(2) standard deviation of height [all returns] (leaf-on); 
(3) variance of intensity [all returns] (leaf-on). 
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Mean DBH (cm)  Structure DR lidar (1) mean spacing of the ITC centroids (leaf-on);  
(2) ITC mean canopy geometric volume (leaf-on). 

Plot level basal area (m2)  Structure DR lidar (1) 55th intensity percentile [all returns] (leaf-on);  
(2) mean spacing of ITC centroids (leaf-on). 

Standing deadwood volume (m3)  Deadwood FW lidar (1) skewness of amplitude [non-ground returns] (leaf-off);  
(2) standard deviation of the ITC centroids spacing (leaf-on);  
(3) 25th percentile echo-width [all returns] (leaf-on). 

Standing deadwood decay class (1-3)  Deadwood FW lidar (1) 35th amplitude percentile [all returns]  (leaf-on); 
(2) 20th height percentile [all returns] (leaf-on). 

Downed deadwood volume (m3)  Deadwood FW lidar (1) skewness of amplitude [non-ground return] (leaf-off);  
(2) absolute deviation of heights [all returns] (leaf-off). 

Downed Deadwood decay class (1-3)  Deadwood DR lidar (1) mean intensity [non-ground returns] (leaf-on). 
 

Number of sapling stems  Structure DR lidar (1) 60th percentile for intensity [all returns] (leaf-on), 
(2) 60thheight percentile [all returns]  (leaf-on),  
(3) mean intensity [all returns] (leaf-on). 

Number of sapling species  
 

Composition FW lidar (1) 35th height percentile [all returns] (leaf-on); 
(2) variance of amplitude [all returns] (leaf-off). 

Number of  sapling stems of native 
species 

Composition DR lidar  (1) 60th intensity percentile [all returns] (leaf-on); 
(2) median height [non-ground returns] (leaf-on); 

Number of seedling stems  
 

Structure DR lidar (1) mean absolute deviation of intensity [ground returns] (leaf-off); 
(2) mean of intensity [ground returns] (leaf-on). 

Number of seedling species  
 

Composition FW lidar  (1) mean amplitude [ground returns] (leaf-off);  
(2) standard deviation of echo-width [ground returns] (leaf-off). 

Number of seedling stems of native 
species 

Composition DR lidar (1) standard deviation of ITC spacing (leaf-on); 
(2) mean ITC canopy geometric volume (leaf-on). 

Number of vascular plant species  Composition FW lidar (1) variance of heights [non-ground returns] (leaf-on) 

Percentage bare ground cover (%) Composition FW lidar (1) 20th height percentile [all returns] (leaf-on); 
(2) height of largest vertical gap in return height profile (leaf-off); 
(3) standard deviation of ITC area (leaf-on conditions). 
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Table 5. The number of input variables used in the 23 best performing models by variable category. Percentage contribution is shown in parentheses. 

 

Data set used in 

the model 
ITC variables 

(from raster) 

Height variables  

(from point cloud) 

Intensity/amplitude 

variables  

(from point cloud) 

Echo-width 

variables  

(from point cloud) 

Total 

DR  9 
(35%) 

6 
(23%) 

11 
(42%) 

- 26 

FW  7 
(24%) 

11 
(38%) 

9 
(31%) 

2 
(7%) 

29 

 

 

 

Table 6. The number of variables using ground, non-ground and all returns used as inputs to the 23 best performing models. Percentage contribution is shown in 
parentheses. 

 

Data set used in 

the model 
Ground Non-ground All Total 

DR  2 
(12%) 

6 
(35%) 

9 
(53%) 

17 

FW  2 
(9%) 

7 
(32%) 

13 
(59%) 

22 
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Figure 1 

Sample cross section (100 m x 20 m) of a point cloud from leaf-on DR lidar data (top) and FW lidar data (bottom). Points classified as ground or non-ground 
are indicated. 

 

 

 

 

 

 


