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ABSTRACT

Currently, we are experiencing a rapid growth of the number of social–based online systems. The availability of the vast amounts of
data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics
is the prediction of social connections between users. Although a lot of effort has been made to develop new prediction approaches
that could provide a better prediction accuracy in social networked structures extracted from large–scale data about people and their
activities and interactions, the existing methods are not comprehensively analysed. Presented in this paper, research focuses on the
link prediction problem in which in a systematic way, we investigate the correlation between network metrics and accuracy of different
prediction methods. For this study we selected six time–stamped real world social networks and ten most widely used link prediction
methods. The results of our experiments show that the performance of some methods have a strong correlation with certain network
metrics. We managed to distinguish ’prediction friendly’ networks, for which most of the prediction methods give good performance,
as well as ’prediction unfriendly’ networks, for which most of the methods result in high prediction error. The results of the study
are a valuable input for development of a new prediction approach which may be for example based on combination of several
existing methods. Correlation analysis between network metrics and prediction accuracy of different methods may form the basis of
a metalearning system where based on network characteristics and prior knowledge will be able to recommend the right prediction
method for a given network at hand.
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1. Introduction

Network structures have been studied for many years. First re-
search in this area can be traced back to 1736 when Euler de-
fined and solved the Seven Bridges problem of Königsberg [5].
Since then, for a long time, networks have been mainly stud-
ied by mathematicians and this resulted in a very prominent
research field known today as the graph theory. There was not
much ground breaking development in the complex network re-
search area until 1960s, when the Erdos-Renyi random graph
model (ER–model) was introduced [15, 16]. This is the simplest
model of complex network. Due to the fact that there was a lack
of large real world data, most of the work had been done on the-
oretical analysis of phenomena existing in networked structures
(e.g. phase transition).

Over the years data collection techniques have significantly
improved our ability to store massive and heterogenous network
data. During the time when ER–model was introduced, progress
has also been made by sociologists in researching real world hu-
man relationships [51, 36]. A new wave of research was set off
by Watts and Strogatz who published a paper about the small–
world effect in 1998 [54] and introduction of the scale–free net-
work model by Barabasi and Albert one year later [4].

As the accessibility of database systems and Internet is grow-
ing, more and more real world network datasets are available.
The available information about people and their activities is
much richer and more complex than ever before. The complex
network concept is an abstract form of various real–world net-
works, e.g. biological networks such as protein-protein interac-

tion networks, metabolic networks [22, 26], human networks and
disease spread [47, 53, 9, 11], scientific collaboration networks
[21, 41] and online social networks [1, 13, 17, 23].

Link prediction in complex network is one of the popular
research topics. Most of the researchers focus on the link predic-
tion problem [31] which is very valuable for solving real world
problems. Generally, the prediction problem is mainly studied
from two angles: (i) network structure and (ii) attributes of nodes
and connections. Structure refers to the way in which nodes
that compose the network are interconnected. It reflects the in-
formation about network topology. Majority of the progress in
the area of structure based prediction has been made by math-
ematicians and physicists. Some of the well–known structure
based prediction methods are Common Neighbour, Jaccard’s In-
dex, Adamic/Adar Index, Katz, etc. (for a review of the methods
please see [34]).

The link prediction problem also has been studied from the
angle of the network attribute information. The attribute infor-
mation refers to description of the features of nodes. Such infor-
mation is difficult to show directly in the network graph. It can
be for example done by labelling nodes, e.g. 1 depicts node that
represents woman and 2 means that node represents man. The
majority of attribute-based prediction methods follow a machine
learning approach, i.e. they use classification–based methods to
make predictions. Widely used methods include Decision Tree,
Support Vector Machine(SVM), Naïve Bayes, etc. [45, 33]. In
[32, 55, 20], authors report that the performance of link pre-
diction improves when machine learning approaches are used.
However, this is done using additional network information that
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is not always available. We would like to emphasize that in our
work, we are interested in the methods that only require the ba-
sic network structure information and thus we do not include
machine learning methods in our study.

However, although much effort has been made, there is still
no prominent prediction method that could provide a satisfactory
performance. Thus, there is still a huge research gap that needs
to be addressed.

1.1. Research Motivation

In the realm of network prediction, many efforts have been done
on exploring new prediction methods that could provide better
performance. However, the methods presented in most of the
studies only improve the prediction result significantly for the
network used in the study. There is a lack of systematically re-
search that would enable to reveal the reason why the methods
are good predictors when it comes to some of the networks but
very bad when other networks are considered.

This paper addresses this problem, by exploring the correla-
tion between network metrics and prediction accuracy of dif-
ferent methods. We expect that such approach will enable to
find the reasons why methods performance vary on different net-
works. Apart from having a further understanding of the pre-
diction methods, the study is also important as a theoretical base
for developing new prediction methods. This could be relevant to
many subjects. The prediction methods could help to find the re-
lationships between proteins which might not be easily observed
directly due to the interaction complexity . For example, new in-
teractions can be inferred from the existing known interaction
networks [10, 2] which shows a much better performance than
prediction purely by chance. Online market targeting might also
benefit from the network prediction which has already been ap-
plied in real world industries. For example, Google and Amazon
recommend customers the potential goods and services that they
might be interested in which is a kind of link prediction that pre-
dict the link between customers and products.

Beyond that, analysis of the link prediction problem in a time
series approach could help researchers gain a better understand-
ing of the evolution of the networks. Many works have been
done to study the dynamic of complex network [6, 7, 8]. The
achievement of network prediction analysis could help explain
the mechanism of the network evolution.

1.2. Contributions

The main contribution of our study is that we look at the link
prediction as a time series problem and systematically analysed
the correlation between network metrics and methods accuracy.
In addition, in our experiments, we also find that for some
networks, most of the prediction methods could provide a good
performance while for some other networks, most methods
are relatively powerless. We name them ’prediction friendly’
networks and ’prediction unfriendly’ networks respectively.

The paper is structured as follows: Section 2 presents the
prediction methods and performance metrics used our experi-
ments. Section 3 presents how the dataset were selected and pro-
cessed. In section 4 and 5 we introduce the experimental design
and present obtained results. We conclude the paper in Section 6.

(a) Adding Links

(b) Removing Links

(c) Adding & Removing Links

Fig. 1. Link Prediction Problems

2. Link Prediction Problem

Link prediction problem has been extensively studied by mem-
bers of the complex network community. David Liben-Nowell
and Jon Kleinberg have formalised the link prediction problem
in [31] in the following way:

Let G(V, L) be a network within the time period of G[t, t1]
where V represents the set of nodes and L represents the set
of links. For the next time period G(t1, t2], the network might
change. The link prediction focuses on how to predict the evolu-
tion of links, i.e. how L[t,t1] will differ from L(t1,t2].

Researchers with background in physics and mathematics
usually deal with the problem by focusing on the topology infor-
mation of the networks. Researchers with machine learning and
data mining background favour to solve the problem with con-
sidering the nodes’ attribute information. There are three types
of link prediction problems as shown in Fig 1: we can consider
(i) only adding links to the existing network, (ii) only removing
links from the existing structure, and (iii) both, adding and re-
moving links at the same time.
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Adding Links
Adding links (Fig 1a) means that in the next time window a new
link will be created between existing nodes. There can be one or
more newly created links.

Removing Links
Removing links (Fig 1b) means that the link will disappear in
the next time window. Similar to the situation when new links
are added, one or more more link can be removed in one time
step.

Adding and Removing Links
This problem is the combination of two previously described
problems. It means that from one time window to another both
appearance and disappearance of links can be predicted (Fig 1c).

In this research, we will only focus on the first type of link
prediction problem which only aims at predicting the appearance
of links. The main reason for this is that the vast majority of
existing methods for real–world data focus on this problem, so
it means that we have big enough base to perform correlation
analysis.

2.1. Prediction Methods

We select and present a brief description of ten commonly
used prediction methods that use topology information about
networks in the prediction process. Throughout this section
the symbols x, y denote nodes, N denotes number of nodes in
the network, and k is the average degree. Γ(x) and Γ(y) denote
the neighbour sets of these nodes, kx and ky denote the degree
number of node x and y respectively.

Common Neighbours
This method is based on the assumption that two nodes with
many common neighbours will be connected in the future. The
more common neighbours two users have, the higher the prob-
ability that a relationship between them will emerge. As a basic
and intuitive method, Common Neighbours approach is usually
used as a baseline to judge the performance of other methods
[34, 31, 14, 13]. The complexity of this method, as introduced in
[35], is O(Nk2).

|Γ(x) ∩ Γ(y)| (1)

Jaccard’s Coefficient
The Jaccard’s Coefficient, also known as Jaccard index or Jac-
card similarity coefficient, is a statistic measure used for com-
paring similarity of sample sets. It is usually denoted as J(x, y)
where x and y represent two different nodes in a network. In link
prediction, all the neighbours of a node are treated as a set and
the prediction is done by computing and ranking the similarity
of the neighbour set of each node pair. This method is based on
Common Neighbours method and its complexity is also O(Nk2).
The mathematical expression of this method is as follows [31]:∣∣∣∣∣Γ(x)

⋂
Γ(y)

Γ(x)
⋃

Γ(y)

∣∣∣∣∣ (2)

Preferential Attachment
Due to the assumption that the node with high degree is more
likely to get new links [42], preferential attachment was intro-
duced as a prediction method. The degree of both nodes in a pair
needs to be considered for the prediction. Same as common

neighbours, this is also a basic prediction method which is usu-
ally used as a baseline to measure the performance of other pre-
diction methods. This method will calculate similarity score for
each pair of nodes within the network rather than only the neigh-
bour of nodes thus the complexity of Preferential Attachement is
O(N2k2). This method can be expressed as:

|Γ(x)| ∗ |Γ(y)| (3)

Adamic/Adar Index
It was initially designed to measure the relation between per-
sonal home pages. As shown in equation 4, the more friends z
has, the lower score it will be assigned to. Thus, the common
neighbour of a pair of nodes with few neighbours contributes
more to the Adamic/Adar score (AA) value than this with large
number of relationships. In real world social network, it can be
interpreted as: if a common acquaintance of two people has more
friends, then it is less likely that he will introduce the two people
to each other than in the case when he has only few friends. It
shows good results in predicting the friendship according to per-
sonal homepage and Wikipedia Collaboration Graph, but in the
experiment of predicting author collaboration, it shows a poor
accuracy prediction [1]. It is another method that is based on
common neighbour, the complexity is also the O(Nk2). It is cal-
culated as:∑
z∈Γ(x)

⋂
Γ(y)

1
log |Γ(z)|

(4)

Where z is a common neighbour of node x and node y.
Katzβ
This method takes lengths of all paths between each pair of
nodes into consideration [24]. According to equation 5, the num-
ber of paths between node x and node y with length l (written
as |paths〈l〉xy |) are calculated and then multiplied by a factor βl.
By summing up all the results for a given two nodes with path
length from 1 to∞, a prediction score for the pair of nodes (x, y)
is obtained. Katz is a prediction method based on the topology
of whole network and thus its calculation is more complex than
other methods in this section. The complexity is mainly deter-
mined by the matrix inversion operator, which is O(N3) [35, 18].

∞∑
l=1

βl · |paths〈l〉xy | (5)

The parameter β, as shown in equation 5, is used to adjust the
weight of path with different length. When an extremely small β
is chosen, the longer paths will contribute less to the score in
comparison to shorter ones so that the result will be close to the
common neighbours.

It is one of the prediction methods that, as it will be shown
in further sections, achieves high prediction accuracy in many
experiments.
Cosine Similarity
The idea of this method is based on the dot product of two vec-
tors. It is often used to compare documents in text mining [34].
In network prediction problem, this method is expressed as:

|Γ(x)||Γ(y)|
‖Γ(x)‖ ∗ ‖Γ(y)‖

(6)

For each pair of nodes with common neighbours, this methods
will perform a vector multiplication and thus the complexity is
O(Nk3).
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Sørensen Index
This index [50] is designed for comparing the similarity of two
samples and originally used to analysis plant sociology. The
complexity of this method is O(Nk2). It is defined as:

2|Γ(x)
⋂

Γ(y)|
kx + ky

(7)

Hub Promoted Index
HPI is proposed for analysing metabolic networks as shown in
[48]. The property of this index is that the links adjacent to hubs
are likely to obtain a higher similarity score. The complexity of
the method is O(Nk2). It is expressed as:

|Γ(x)
⋂

Γ(y)|
min{kx, ky}

(8)

Hub Depressed Index
Approach that uses the idea of hub in totally different manner
than HPI is Hub Depressed Index (HDI). It gives links adjacent
to hub a lower score. Its complexity is same as Hub Promoted
Index, O(Nk2). It is defined as

|Γ(x)
⋂

Γ(y)|
max{kx, ky}

(9)

Leicht-Holme-Newman Index
LHNI [30] was proposed to quantify the similarity of nodes in
networks. It is based on the concept that two nodes are similar if
their immediate neighbours in the network are themselves simi-
lar. As another common neighbour based method, its complexity
is O(Nk2).It is defined as:

|Γ(x)
⋂

Γ(y)|
kx ∗ ky

(10)

All of the methods presented in this section are following
similar approach. The required input for each method is the ad-
jacency matrix that represents a network in which there are only
0 and 1 (0 – when there is no link between two given nodes, 1
– when the links between two given nodes exists). The output of
each method is a similarity matrix in which each element repre-
sents the similarity score of a pair of nodes within the network
and it is calculated according to the equation used in a given
method.

2.2. Prediction Performance Metrics

In order to measure the performance of a prediction method, we
need to use historical network data. Link prediction is a time
related activity, therefore, we should use time–stamped dataset
and according to the time stamp, separate the data into two sets,
Gt,t1 (V, L1) as training set for prediction methods and Gt1,t2 (V, L2)
as unknown future network for testing where t < t1 < t2 . Those
two networks must consist of the same set of nodes V . The num-
ber of possible links that is denoted by U is |V | ∗ (|V | − 1)/2. The
link prediction method, in principle, provides a similarity score
for each non existing links (U − L1) and for most methods, a
higher score means higher likelihood that the link will appear in
the future. Final prediction is done by ordering this score list and
selecting top N links with the highest score.

In our work, AUC is used for quantifying the accuracy of pre-
diction method. It is the area under the receiver operating char-
acteristic curve [19]. In the context of network link prediction,
AUC can be interpreted as the probability that a randomly cho-
sen missing links (L1∪L2−L1) is given a higher similarity score

than a randomly chosen pair of unconnected links (U−(L1∪L2))
[12]. The algorithmic implementation of AUC follows the ap-
proach in [34]. It is calculated as

n′ + 0.5n′′

n
(11)

Where n is the number of times that we randomly pick a pair
of links from missing links set and unconnected links set; n′ is
the number of times that the missing link got a higher score than
unconnected link while n′′ is the number of times when they are
equal. The AUC value will be 0.5 if the score are generated from
and independent and identical distribution. Thus, the degree to
which the AUC exceeds 0.5 indicates how much better the pre-
dictions when compared to predict by chance.

3. Data Preparation

All six datasets used in experiments are real world social net-
works, five of them come from Koblenz Network Collection
(KONECT [28]) and another from the Wrocław University of
Technology. (see Table 1)

3.1. Dataset Selection

Datasets for the experiments have to meet certain requirements:
(i) they have to represent data about users’ interactions or any
other type of activity that enables to define connections between
users, and (ii) those activities have to be time stamped. As de-
scribed in section 2, the link prediction problem is a time se-
ries problem that looks into the evolution of networks in time.
Time-stamp is thus necessary. Table 1 shows the original dataset
information that were selected based on these two criteria.

3.2. Data Processing

To make the data suitable for the experiments, first the prepro-
cessing of datasets has been performed. It consists of the follow-
ing three steps:

1. Select data samples. For each dataset, we first randomly
select 6000 - 8000 user records (8000 samples is selected
due to the calculation capacity. As for some dense networks,
8000 nodes is also too big, so we choose 6000) from the
original dataset as the sample user data. As UC Irvine
Messages only contains 1899 users, so we leave it as it is.
The specific sample numbers are shown in Table 2.

2. Split the data into training and testing sets. Prediction in
a time series problem means the dataset should be divided
into train and test sets based on time stamps available. As
the dataset of Flickr and YouTube are collected by taking
snapshot of the network which is different from other four
datasets, we take the first day snapshot as the training set and
the remaining data as the test set. The other four networks
are split according to the time scale with a ratio approximate
training time : test time = 80% : 20% as shown in Table 2.

3. Extract connected network. Dividing data into training
and testing sets can cause the isolation of some nodes or
cliques. This, in turn, generates noise for measuring the
accuracy of prediction methods as the methods we selected
can not predict unconnected nodes. To eliminate the impact
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Table 1. Original Dataset Information

Dataset Name Time Range Vertices Edges

Enron E-mail Communicationa 1998/11 - 2002/07 87,273 1,148,072

Facebook Wall Postsb 2008/01 - 2009/01 63,731 1,269,502

Flickr Friendishipc 2006/11 - 2007/05 2,302,925 33,140,018

PWr E-mail Communicationd 2008/11 - 2009/05 14,316 49,950

UC Irvine Messagese 2004/03 - 2004/10 1,899 59,835

YouTube Friendshipf 2006/12 - 2007/07 3,223,589 12,223,774

Notes. This table shows the original information about the datasets used in the experiments.
(a) The Email network among employees of Enron. Nodes in the network are individual employees and edges are individual emails [27].
(b) The wall posts from the Facebook New Orleans networks [52].
(c) The social network of Flickr users and their friendship connections. It is collected by taking a snapshot of the network on November 2nd, 2006
and record it daily until December 3rd, 2006, and then again daily between February 3rd, 2007 and May 18th, 2007[39, 40].
(d) The Email communication of Wrocław Univerisity of Technology [25].
(e) The network contains messages send between the users of an online community of students from the University of California, Irvine. A node
represents a user. An edge represents sent message. Multiple edges denote multiple messages [46].
(f) The social network of YouTube users and their friendship connections between December 10th, 2006 and January 15th, 2007, and again daily
between February 8th, 2007 and July 23rd, 2007[37, 38].

Table 2. Dataset Details

Dataset Name Train Time Range Test Time Range Sample Nodes Final Nodes

Enron E-mail Communication 1998/11 - 2001/12 2002/01 - 2002/07 8000 5208

Facebook Wall Posts 2008/01 - 2008/11 2008/12 - 2009/01 8000 5784

Flickr Friendiship Snapshot on 2006/11/02 2006/11/03 - 2006/12/03&
2007/02/03 - 2007/05/18 6000 5949

PWr E-mail Communication 2008/11 - 2009/04 2009/04 - 2009/05 8000 5208

UC Irvine Messages 2004/03 - 2004/08 2004/08 - 2004/10 1899 1666

YouTube Friendship Snapshot on 2006/12/10 2006/12/11 - 2007/01/15&
2007/02/08 - 2007/07/23 6000 6000

Notes. The time range of train and test set, the number of sample nodes selected from the original dataset and number of nodes in the giant
component which are used as the final nodes set for the experiment are presented in table.

of this noise, we extract the giant component from training
dataset as our final training set Gt,t1 (V, L1). The final test set
Gt1,t2 (V, L2) is obtained by extracting the network with all
the nodes that exist in Gt,t1 (V, L1) from the original test set
obtained from step 2. For nodes existing in the final training
set but not present in the original test set, we just keep and
leave them isolated in the final test set as it is formed by link
disappearing.

After all, we get the train set Gt,t1 (V, L1) and test set Gt1,t2 (V, L2)
as described in section 2.2 where the both sets have same nodes
V.

4. Experimental Design

In order to be able to apply all selected methods and taking into
account the types of datasets available, the network is repre-
sented as a binary un-weighted network. This enables consistent
and comprehensive review of the existing methods.

First, the prediction methods described in section 2.1 will be
applied to each of the processed training sets to get the similarity
matrix as the prediction result. The prediction results will be then
evaluated using the testing set and the AUC for each method will
be calculated.

For the implementation of those methods, we applied the
toolbox that presented in [34] and all the experiments were im-
plemented in Matlab.

As stated before, the main goal of the research is to explore
the correlations between the accuracy of different prediction
methods and network metrics. For the training set of each
network, the network metrics are calculated with toolboxes
provided by KONECT [28] and MIT Strategic Engineering
research group. The metrics we calculate include:

Global Clustering Coefficient
It is defined in [43] as:

GCC =
3 ∗ number of triangles in the network

Number of connected triples of vertices
(12)
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It shows the transitivity of the network as a whole. The coeffi-
cient range is between 0 and 1.

Average Clustering Coefficient [54]
It is based on local clustering Cl. For each of the vertex l, its local
clustering coefficient can be calculated by:

Cl =
Number of triples connected to vertex l
Number of triples centered on vertex l

(13)

and then the ACC can be calculated as:

ACC =
1
v

∑
l

Cl (14)

where v is the number of nodes in a network.

Network Density
The ratio between existing links and all possible links given the
node numbers.

Network Density =
Number of Existing Links

Number of all possible links
(15)

where

Number of all possible links =
v ∗ (v − 1)

2
(16)

Where v is the number of nodes in the network.

Gini Coefficient [29]
In network study is defined as:

G =
2
∑n

i−1 idi

n
∑n

i−1 di
−

n + 1
n

(17)

where d1 ≤ d2 ≤ d3 ≤ · · · ≤ dn is the sorted list of degrees in
the network and n is the number of nodes in a network. Its value
is between 0 and 1, where 0 denotes total equality between
degrees and 1 denotes dominance of single node.

Diameter
The longest of the shortest paths in the network.

Diameter = maxi, jd(i, j) (18)

Where d(i, j) is the shortest path between node i and j.

Average Shortest Path
The average number of the shortest paths between each pair of
vertices.

AS P =
1

v · (v − 1)
·
∑
i!= j

d(i, j) (19)

Once the accuracy of prediction for each method and the met-
rics for each network are calculated, the correlation between
them will be analysed. The Pearson’s Coefficient [49] is used to
measure the correlation between accuracy of network prediction
method and selected network metrics. It is a widely used statistic

Table 3. Theoretical GCC & ASP of Random, Real and Regular Net-
work

Random Network YouTube Regular Network

Nodes 6,000 6,000 6,000
Links 54,596 54,596 54,596
GCC 0.0030 0.0286 0.7064
ASP 2.9983 3.0709 164.8500

UC Irvine

Nodes 1,666 1,666 1,666
Links 11,582 11,582 11,582
GCC 0.00835 0.0197 0.6919
ASP 2.8186 3.0463 59.9108

PWr

Nodes 6,335 6,335 6,335
Links 15,334 15,334 15,334
GCC 0.0008 0.0048 0.5547
ASP 5.5499 4.0162 654.3060

Flickr

Nodes 5,949 5,949 5,949
Links 387,719 387,719 387,719
GCC 0.0219 0.0658 0.7442
ASP 1.7845 2.3447 22.8198

Facebook

Nodes 5,784 5,784 5,784
Links 14,507 14,507 14,507
GCC 0.0009 0.0341 0.5633
ASP 5.3717 5.7235 576.5205

Enron

Nodes 5208 5208 5208
Links 23977 23977 23977
GCC 0.0018 0.0290 0.6586
ASP 3.8548 3.6818 282.8037

method to measure linear correlation between two variables, say
W and Z. It is calculated as:

∑n
i=1(W − W̄)(Z − Z̄)√∑n

i=1(Wi − W̄)2
√∑n

i=1(Z − Z̄)2
(20)

The coefficient value is between −1 and 1 where −1 means
that two variables are negatively linearly correlated and 1 means
that they are positively linearly correlated.

5. Experiment Result

5.1. Network Profiles

The values of network metrics for each of the extracted social
network are presented in Table 5. As it is much easier to set up
relationship between people in online social network than in real
world network, the average shortest path in our experiments are
all smaller than six, the number suggested by the six degrees
of separation theory [44]. The average shortest path of the six
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Table 4. Analytical formulas for GCC & ASP in random and regular
networks

Random Network Regular Network

GCC
k
v

3(k − 2)
4(k − 1)

ASP
log v
log k

v
2k

Notes. k is the average degree and v is the number of nodes in the net-
work

selected networks is 3.65. This reflects the small–world property
of the networks. People are closer to each other in online social
networks than in face–to–face networks. This phenomenon was
also pointed out in [3] where authors established that the average
shortest path of Twitter is 3.43.

The degree distributions of the six networks, shown in Fig 3,
indicates that they are scale-free networks as the distributions
follow the power law.

We also compared the GCC and ASP metrics of the real net-
work with the theoretical metrics of random network and regular
network that have same number of nodes and links. The analyti-
cal formulas for GCC and ASP in random and regular networks
with a given number of nodes and links are given in Table 4. The
results of calculations for each analysed network are presented
in Table 3.

Fig 2 plots the metrics of six analysed networks and related
theoretical networks respectively. It shows that the clustering co-
efficient of the analysed networks are all between random and
regular networks. Meanwhile, the average shortest path of real-
world networks are all very close to the random networks. This
two phenomena indicate the small–world property of analysed
structures. Taking into account both metrics and node degree dis-
tribution, it can be concluded that those networks are a combina-
tion of small–world and scale–free networks.

5.2. Prediction Results

The prediction results are summarised in Table 6. Katz method
achieved the best average performance and the overall perfor-
mance is ranked as: Katz > Preferential Attachment > Adamic-
Adar > Common Neighbours > Cosine Similarity > Jaccard In-
dex > Hub Depressed Index > Hub Promoted Index > Sørensen
> Leicht–Holme–Newman Index. By comparing the variance of
each method, we find that the Katz also provides the most stable
prediction performance among those methods while Common
Neighbours is the worst performing approach. Overall, we find
that Katz and Preferential Attachment provide good prediction
accuracy together with a relatively stability.

To study the prediction results from the perspective of each
network please see Figure 4. The prediction results of different
methods align on the vertical lines for each network respectively.
From this figure, we find that for some networks, most of the
prediction methods could provide a good prediction result. Such
networks include Flickr, Enron and YouTube. We call this type
of networks the ’prediction friendly’ network. Apart from this
type of network, there are also some networks for which most
of the prediction approaches provide fairly low accuracy, such
as Facebook, UC Irvine and PWr. Similarly, we call those net-
work ’prediction unfriendly’ networks. Please note that in the ex-
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Fig. 4. The AUC Prediction Results for Each Network

periments, for both prediction friendly and unfriendly networks,
Katzβ always provide a good performance level.

5.3. Correlation between Prediction Accuracy and Network
Metrics

Table 7 shows the Pearson’s linear correlation coefficient of pre-
diction accuracy and network metrics. The closer the absolute
value to 1, the higher the correlation between analysed factors is.
Figure 5 presents a heat–map plot to show the degree of linear
relation between the two factors where we use the absolute value
of Pearson’s Coefficient. The brighter the colour in the heat–map
is, the stronger a given network metric and the accuracy of pre-
diction method are correlated.

In Figure 5, we can see that the Preferential Attachment
and Gini Coefficient provides the highest correlation coefficient
(0.94) which indicates that they generally follow a linear rela-
tionship. This is not a surprise. For a network with a high Gini
Coefficient, there exist some nodes with dominant high degrees.
It just reflects the phenomenon of "rich get richer" which is also
the assumption of Preferential Attachment method. So we can
say that preferential attachment could lead to a high Gini Coeffi-
cient and thus Preferential Attachment, on the other hand, could
also describe how a network with high Gini Coefficient evolves
by giving a better prediction result.

Cosine–GCC and Sor–GCC also provide a correlation coef-
ficient above 0.8. We can draw the conclusion that Cosine Sim-
ilarity and Sorensen Index method perform better in a network
with higher GCC than it does in smaller GCC.

The Diameter and Average Shortest Path shows a negative
linear relation to almost all of the prediction methods (excluding
Katz and LHN where the negative correlation is weak). Both the
Average Shortest Path and the Network Diameter reflect how
easy it is to get from one node in a network to another one.
Shorter path as well as smaller diameter means a higher prob-
ability that a pair of randomly picked nodes will be connected.
Negative correlation between those two metrics and prediction
accuracies of different methods means that most of the meth-
ods work well in the situations where networks feature short
ASP and in consequence small Diameter. This is additionally
supported by the fact that Global Clustering Coefficient is pos-
itively correlated with those of the prediction methods meaning
that these methods work well with networks with high clustering
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Table 5. Network Metrics Results

Datasets GCC ACC Network Density Gini Coefficient Diameter Ave Shortest Path

Facebook 0.0341 0.1176 0.0008674 0.473 16 5.7235

Flickr 0.0658 0.3294 0.0219 0.5931 6 2.3447

UC Irvine 0.0197 0.1075 0.0084 0.6394 7 3.0463

PWr 0.0048 0.2666 0.00076 0.6407 16 4.0162

Enron 0.029 0.1946 0.0018 0.7172 10 3.6818

YouTube 0.0286 0.2838 0.003 0.7222 5 3.0709

coefficient. Based on the above we can say that prediction meth-
ods positively correlated with GCC and negatively with ASP and
Daimeter will work well in the situation where analysed network
is of small–world type. In the same time they will work neither
in random networks where GCC is very low nor in regular net-
works where ASP is very long.

It should be clear that the Pearson’s coefficient does not in-
dicate the accuracy of the method. For example, although the
prediction method Katz does not show strong correlation to any
of the network metrics, it still provides best result in our exper-
iments. The reason can be found in Table 6, where it is shown
that Katz always provides a high prediction accuracy regardless
the tested network metrics.

The most important value of our correlation study lies in the
variety of prediction methods used in the experiments. The pre-
diction with methods combination could be a way to improve
accuracy and this will be investigated in the future. The corre-
lation between methods and network metrics could be used to
determine the weight of different prediction methods in the com-
bination process.

5.4. Prediction Friendly and Unfriendly Networks

Table 7 also shows the average correlation of network metrics
and prediction accuracy. As we know the closer the absolute
value of correlation to 1, the stronger the linear relation. Here
we take 0.5 as a threshold for strong correlation. According to
this, we find that there are four metrics strongly correlated with
the prediction accuracy which includes GCC, ACC, Diameter
and ASP. So it is reasonable to assume that these metrics could
be used to classify the prediction friendly and unfriendly net-
works. We ranked each of the analysed networks according to
the metrics that have strong correlation with prediction accu-
racy and based on this for each network we calculate the average
ranking (Table 8). Top three ranked networks (with the small av-
erage ranks) are the prediction friendly networks and the other
three are prediction unfriendly networks. It can be seen that the
prediction friendly networks usually have large global and lo-
cal clustering coefficient, a short average shortest path as well
as small diameter. It suggests that networks with the structural
profile similar to small–world network are easier to predict than
networks similar to random structures.
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Fig. 3. The Degree Distributions

Notes. The degree distributions are all follow the power law with exponent of :
(a) Enron, r = 1.85; (b) Facebook, r = 1.82; (c) Flickr, r = 1.25; (d) PWr, r = 2.19; (e) UC Irvine, r = 1.56; (f) YouTube, r = 1.56;

6. Conclusions

In this research, we look into the correlation between ten predic-
tion methods and different network metrics in six time–stamped
social networks. The study of network metrics confirmed that the
node degree distribution of real world social networks follows a
power law distribution. We also found that the average short-
est path of online social network is much smaller than six. This
might be due to the fact that online relationships are much eas-

ier to setup. The results of the prediction accuracy show that the
best method among the tested ones is Katzβ. It is also the most
stable technique from all tested ones. Preferential Attachment
is the second best method that also provides a good prediction
accuracy. In addition, for some ’prediction friendly’ networks,
most of prediction methods could provide a good performance
while for some others, called in here as ’prediction unfriendly’
networks, most prediction methods are lack of power.
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Table 6. Prediction Methods Accuracy Result (AUC)

Datasets AUC

CN JI PA AA Katzβa Cosin Sor HPI HDI LHN

Facebook 0.6688 0.6758 0.6803 0.6753 0.8369 0.6738 0.6715 0.6708 0.6694 0.6694

Flickr 0.89 0.8702 0.841 0.8922 0.8839 0.8812 0.865 0.844 0.8511 0.6944

UC Irvine 0.6625 0.6421 0.8412 0.6738 0.8048 0.6414 0.6359 0.6303 0.6427 0.6322

PWr 0.6815 0.6466 0.7924 0.6913 0.7979 0.651 0.6514 0.6422 0.6491 0.6382

Enron 0.8157 0.7937 0.9015 0.8196 0.9312 0.7921 0.7995 0.794 0.7977 0.7881

YouTube 0.8525 0.7957 0.9109 0.8571 0.9157 0.7938 0.7503 0.8017 0.7984 0.7587

Average 0.7618 0.7374 0.8279 0.7682 0.8617 0.7389 0.7289 0.7305 0.7374 0.6968

Variance 0.0105 0.0091 0.0071 0.0099 0.0032 0.0095 0.0084 0.0087 0.0083 0.0041

Notes. The accuracy of selected prediction methods measured by AUC. The average performance and the variance for each methods are also
listed.
(a) In our experiment, we choose β = 0.0005

Table 7. Pearson Correlation of Prediction Methods Accuracy and Network Metrics

CN JI PA AA Katzβ Cosine Sor HPI HDI LHN AVERAGE

GCC 0.68 0.79 0.05 0.68 0.47 0.80 0.81 0.73 0.74 0.27 0.60

ACC 0.75 0.68 0.43 0.76 0.39 0.70 0.65 0.67 0.68 0.30 0.60

Network Density 0.52 0.58 0.18 0.52 0.09 0.61 0.61 0.48 0.52 -0.12 0.40

Gini 0.45 0.30 0.94 0.46 0.49 0.29 0.25 0.36 0.37 0.57 0.45

Diameter -0.67 -0.61 -0.77 -0.68 -0.51 -0.61 -0.52 -0.61 -0.63 -0.39 -0.60

ASP -0.63 -0.55 -0.79 -0.65 -0.29 -0.57 -0.52 -0.52 -0.56 -0.18 -0.53

Notes. This table shows the correlation between prediction methods accuracy and network metrics calculated with Pearson’s linear correlation
coefficient. The number within the range of [-1,1] where 1 is completely positive correlation, 0 is no correlation, and -1 is completely negative
correlation.

Table 8. Metrics Rank of Networks

Dataset GCC ACC Diameter ASP Ave Rank

PWr 6 3 5 5 4.75

Facebook 2 5 5 6 4.5

UC Irvine 5 6 3 2 4

Enron 3 4 4 4 3.75

YouTube 4 2 1 3 2.5

Flickr 1 1 2 1 1.25

The Pearson correlation coefficient enabled to investigate
the relationship between network metrics and prediction accu-
racy. Our research showed that some methods are highly corre-
lated with certain network metrics (e.g. PA–Gini, Sor–GCC and
Cosine–Gcc).

There are several further directions of the presented study. As
discovered, for some networks, most prediction methods could
provide a good performance which we name them as ’predic-
tion friendly networks’. Similarly, we also find the existence of
’prediction unfriendly’ networks. Section 5.4 explores the pre-
diction friendly and unfriendly network classification according
to the metrics ranking. The problem is that it does not provide
an exact threshold that could be used to classify networks. It is
out of scope of this research but is a very interesting topic for
another study that we plan to conduct.

Based on the results of correlation between network met-
rics and the prediction accuracy, another possible work is to de-
velop a new prediction approach which combine several, exist-
ing methods. We can also extend this research to many other
networks, not only social ones, which might be good for finding
some more general relations.
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Fig. 5. Heat-map of Network Metrics and Prediction Methods Correlation

Notes. As for the Pearson Coefficient, both 1 and -1 stands for linear relationship (positive and negative), we use the absolute value of correlation
coefficient in this figure to indicate whether the two factors are linearly correlated.
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[16] P. Erdős and A Rényi. On the evolution of random graphs. In PUBLI-
CATION OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN
ACADEMY OF SCIENCES, pages 17–61, 1960.

[17] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici.
Link prediction in social networks using computationally efficient topolog-
ical features. In Privacy, security, risk and trust (passat), 2011 ieee third
international conference on and 2011 ieee third international conference on
social computing (socialcom), pages 73–80, Oct.

[18] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.).
Johns Hopkins University Press, Baltimore, MD, USA, 1996.

[19] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a
receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, April
1982.

[20] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki.
Link prediction using supervised learning. In In Proc. of SDM 06 workshop
on Link Analysis, Counterterrorism and Security, 2006.

[21] Zan Huang, Xin Li, and Hsinchun Chen. Link prediction approach to col-
laborative filtering. In Proceedings of the 5th ACM/IEEE-CS joint conference
on Digital libraries, JCDL ’05, pages 141–142, New York, NY, USA, 2005.
ACM.

[22] Mason S. P. Barabasi A.-L. Oltvai Z. N. Jeong, H. Lethality and centrality
in protein networks. Nature, 411:41–42, 2001.

[23] K. Juszczyszyn, K. Musial, and M. Budka. Link prediction based on sub-
graph evolution in dynamic social networks. In Privacy, security, risk and
trust (passat), 2011 ieee third international conference on and 2011 ieee
third international conference on social computing (socialcom), pages 27–
34, 2011.

[24] Leo Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18:39–43, 1953.

[25] Przemyslaw Kazienko, Katarzyna Musial, and Aleksander Zgrzywa. Eval-
uation of node position based on email communication. Control and Cyber-
netics, 38(1):67–86, 2009.

[26] A. D. King, N. Pržulj, and I. Jurisica. Protein complex prediction via cost-
based clustering. Bioinformatics, 20(17):3013–3020, November 2004.

[27] Bryan Klimt and Yiming Yang. The Enron corpus: A new dataset for email
classification research. In Proc. European Conf. on Machine Learning, pages
217–226, 2004.

[28] Jérôme Kunegis. Konect: the koblenz network collection. In WWW (Com-
panion Volume), pages 1343–1350. International World Wide Web Confer-
ences Steering Committee / ACM, 2013.

[29] Jérôme Kunegis and Julia Preusse. Fairness on the web: Alternatives to the
power law. In Proc. Web Science Conf., 2012.

[30] E. A. Leicht, Petter Holme, and M. E. J. Newman. Vertex similarity in
networks. Phys. Rev. E, 73:026120, Feb 2006.

[31] David Liben-Nowell and Jon Kleinberg. The link prediction problem for
social networks. In Proceedings of the twelfth international conference on
Information and knowledge management, CIKM ’03, pages 556–559, New
York, NY, USA, 2003. ACM.

[32] Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New per-
spectives and methods in link prediction. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’10, pages 243–252, New York, NY, USA, 2010. ACM.

[33] Zhen Liu, Qian-Ming Zhang, Linyuan Lü, and Tao Zhou. Link prediction
in complex networks: A local naïve bayes model. EPL (Europhysics Letters),
96(4):48007, 2011.

Article number, page 11 of 12



[34] L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica
A Statistical Mechanics and its Applications, 390:1150–1170, March 2011.

[35] Linyuan Lv, Ci H. Jin, and Tao Zhou. Effective and Efficient Simi-
larity Index for Link Prediction of Complex Networks. Technical Report
arXiv:0905.3558, May 2009.

[36] Stanley Milgram. The Small World Problem. Psychology Today, 2:60–67,
1967.

[37] Alan Mislove. Online Social Networks: Measurement, Analysis, and Ap-
plications to Distributed Information Systems. PhD thesis, Rice University,
2009.

[38] Alan Mislove. Online Social Networks: Measurement, Analysis, and Ap-
plications to Distributed Information Systems. PhD thesis, Rice University,
Department of Computer Science, May 2009.

[39] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Growth of the Flickr social network. In
Proc. Workshop on Online Social Networks, pages 25–30, 2008.

[40] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Growth of the flickr social network.
In Proceedings of the 1st ACM SIGCOMM Workshop on Social Networks
(WOSN’08), August 2008.

[41] Ferenc Molnar. Link Prediction Analysis in the Wikipedia Collaboration
Graph, 2011.

[42] M. E. J. Newman. Clustering and preferential attachment in growing net-
works. Phys. Rev. E, 64:025102, Jul 2001.

[43] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM
Review, 45(2):167–256, 2003.

[44] Mark E. J. Newman, Albert L. Barabási, and Duncan J. Watts, editors. The
Structure and Dynamics of Networks. Princeton University Press, 2006.

[45] Andrew Chen-Brian Tran Ole J. Mengshoel, Raj Desai. Will we connect
again? machine learning for link prediction in mobile social networks. 2013.

[46] Tore Opsahl and Pietro Panzarasa. Triadic closure in two-mode networks:
Redefining the global and local clustering coefficients. Social Networks, 34,
2011.

[47] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spread-
ing in scale-free networks. Phys. Rev. Lett., 86(14):3200–3203, 2001.

[48] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, and A.L. Barabási.
Hierarchical organization of modularity in metabolic networks. Science,
297(5586):1551, 2002.

[49] Joseph L. Rodgers and Alan W. Nicewander. Thirteen Ways to Look at the
Correlation Coefficient. The American Statistician, 42(1):59–66, 1988.

[50] T. Sørensen. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of the
vegetation on Danish commons. Biol. Skr., 5:1–34, 1948.

[51] Jeffrey Travers, Stanley Milgram, Jeffrey Travers, and Stanley Milgram.
An experimental study of the small world problem. Sociometry, 32:425–443,
1969.

[52] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi.
On the evolution of user interaction in Facebook. In Proc. Workshop on On-
line Social Networks, pages 37–42, 2009.

[53] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos.
Epidemic spreading in real networks: An eigenvalue viewpoint. In In SRDS,
pages 25–34, 2003.

[54] D. J. Watts and S. H. Strogatz. Collective dynamics of’small-
world’networks. Nature, 393(6684):409–10, 1998.

[55] Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. Stochastic
relational models for discriminative link prediction. In Advances in Neural
Information Processing Systems, pages 333–340. MIT Press, 2007.

Article number, page 12 of 12


