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Abstract 

The effect of electrolytic chemical concentration on wear-resistance, corrosion-

resistance, adhesion and wettability properties of pure nickel and nickel-alumina composite 

coatings has been investigated in this paper. Coatings were electroplated over steel substrates 

under constant pulse conditions using pulse electrodeposition technique. Corrosion-resistance 

results show that the anti-corrosion properties are increasing with medium concentration both 

for pure nickel and nickel-alumina composite coating. For anti-wear properties the medium 

concentration showed increasing trend in case of pure nickel coatings but decreased in nickel-

alumina composite coatings. In composite coating the higher and low concentrations of 

electrolyte showed the higher wear resistance properties. Furthermore, the influence of 

electrolyte concentration on changing surface morphologies, mechanical, wettability and 

adhesion properties have been investigated and reported here. Surface morphologies of the 

synthesized coatings were studied with scanning electron microscopy and energy-dispersive 

spectroscopy. Coatings surface mapping and wear analyses were examined by using 3D 

white light interferometry. 
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1. Introduction  

Electrodeposited composite coatings incorporating hard nanoparticle oxides as Al2O3 

[1, 2], ZrO [3, 4], TiO [5], Fe2O3 [6],CeO2 [7] and carbides as SiC [8, 9] or WC [10] 

demonstrated excellent tribological and mechanical properties with wide ranging industrial 

applications in engineering.  

Manuscript brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42142785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
2 

The electrodeposition techniques provide a freedom of controlling a variety of coating 

parameters with enhanced mechanical and tribological properties. This freedom allows 

significant contribution for the design of nanocomposite coatings in terms of surface 

engineering. Due to wide range of experimental parameters in pulse electrodeposition 

technique many experimental results presented in the literature are contradictory or difficult 

to compare [11, 12, 13]. There are two main types of electrodeposition conditions 1): pulse 

parameters which include current density, pulse-on time/pulse-off time, duty cycle and 

frequency and 2): bath conditions; these include bath composition, additives, pH, temperature 

and composite micro/nano sized particles. Extensive studies have been conducted with 

improved mechanical and tribological properties of electrodeposited coatings by properly 

controlling these parameters [14, 15, 16, 17, 18, 19]. However, the effect of ionic strength of 

electrolyte solution on wear-resistance and corrosion-resistance properties left obscure and 

needs to be explore due to their utmost important in wide range of industrial applications as a 

wear and corrosion resistance protective coatings.      

This work is the continuation of research within our group [20, 21, 22, 23, 24]. The 

purpose of this investigation is to demonstrate an optimised bath concentration for 

electrodeposited coatings in terms of improved tribological and mechanical properties for 

water-lubricated tribological systems/components. Previously, Lehman and co-workers have 

conducted experimental investigations to understand the influence of electrolyte composition 

on the electrodeposited coatings [25]. They presented that lower ionic concentration 

contribute to better deposition with respect to microstructure and better dispersion of particles 

in matrix of pure nickel and Ni-Al2O3 composite coatings. The effect of bath volume for 

electrodeposition was explored by Daniel and co-workers [26]. Their findings were that the 

high volume of bath solution progressively increased the deposition rate of nickel coating 

through electrodeposition process. They investigated the microstructure and mechanical 

properties analysis of the coatings without tribological performance measures. 

During the current work electrolytes were prepared with three varying strengths (high, 

medium and low concentrations) in total six baths (every two baths with same strength) for 

electrodeposition of Ni-Al2O3 composite and pure nickel coatings. 

The tribological properties of these coatings investigated using High Speed 

Microprocessor Rotary Tribometer (HSMRT) to simulate industrial applications in terms of 

rolling contacts. Pure nickel coatings were manufactured as a reference coating and 

investigated under the same chemical and tribo test conditions.                     
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2. Experimental methods  

2.1. Preparation and characterization of coatings 

All coatings, the pure nickel and the  composites incorporating  nano-Al2O3, were 

deposited under  constant pulse parameters as; current density 3A/dm2, pulse on/off time 

20/80ms respectively and with a duty cycle of 20% with expected thickness of ~10µm.  

The Watt’s-type bath prepared with different ionic strength of bath solution as high 

concentration (HC), medium concentration (MC) and low concentration (LC) for both pure 

nickel and composite coatings. 20 g/L of nano-alumina (~50nm) supplied by Io-Li-Tec 

(Germany), was added to bath for developing composite coatings. The solutions had been 

magnetically stirred overnight to yield better suspension prior to the start of the deposition 

process. In addition these nanoparticles were ultrasonically dispersed in the electrolyte during 

the deposition process. The composition of chemical within the bath included nickel sulphate, 

nickel chloride, boric acid and nanoparticles which are provided in Table 1.   

Nickel sheet (99.99% purity) was used as anode and a steel substrate (80mm diameter 

and 8.20mm thick) was used as a cathode. The chemical composition of steel substrate is 

given in Table 2. The substrate disc with a surface area (0.70 dm2) to be deposited was 

mechanically polished to achieve naked substrate constant roughness (Ra) of 0.05µm for all 

samples. The surface area which was not required to be electroplated was sealed with 

polyvinyl chloride PVC. Prior to each coating deposition the substrate surface conditioning 

performed using deionized water and acetone under ultrasonic treatment. The pH of the bath 

was adjusted between 4.0-4.5 by sodium hydroxide or diluted sulphuric acid and recorded 

using Tecpel pH meter. The surface roughness measurements were performed by using three-

dimensional scanning interferometry (ZYGO). The roughness parameters Ra and Rz, defined 

as the arithmetic mean of roughness profile and sum of maximum values of profile peak 

height and depth respectively over the entire sampling length.    

Scanning Electron Microscopy (JSM-6010, JEOL) was used to analyse the surface 

morphology of the coatings. For cross-section view of coating-substrate interface adhesion 

the samples were imbedded by ATM OPAL 460 equipment keeping coatings cross-sectional 

areas on top. Mechanical properties including hardness and elastic modulus of coatings were 

calculated by using CSM Micro Indentation Tester (MHT) at a loading force of 300mN. At 

least 12 indentations were made on each sample and average value is report with error bars.                   
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2.2. Tribological and anti-corrosion properties testing 

The wear resistance tests conducted using a ball-on-plate machine assembled to a High Speed 

Microprocessor Rotary Tribometer (HSMRT) and described in [27]. The unidirectional ball-

on-disc tribometer consists of upper coated disc and lower three steel balls (100Cr6) equally 

spaced at 120o. Previously, such ball-on-plate rig have been used to study rolling contact 

fatigue response when ball is in rolling contact with a flat surface [28, 29]. The hardness and 

elastic modulus of ball was 740+140 HV10 and 210 GPa, respectively. All tests performed in 

distilled water at a rolling speed of 1 m/s and normal load of 45N under boundary/mixed 

lubrication regimes condition. The corresponding Hertzian contact pressure [30] can be 

estimated to 1.75 GPa, assuming contact between steel ball (210GPa, Poisson’s ratio 0.30) 

and coated flat disc (230GPa, Poisson’s ratio 0.28 [31]).  

The cross-sectional area of worn surface was measured by using a three-dimensional surface 

profiler (ZYGO) to calculate the amount of wear of the coating. The wear volume is defined 

as V=AL, where A is the cross-sectional area of wear track (mm2) and L is the length of the 

wear track (mm). A specific wear rate was determined as: Specific wear rate (mm3/Nm) = 

Wear volume (mm3)/[Load (N) x rolling distance (m)] [32]. To ensure repeatability and to 

minimize uncertainty each test was perform at least two times under the same testing 

conditions. 

The potentiodynamic anodic polarization measurements were carried out using three-

electrode system with a platinum wire as counter electrode and Ag+/AgCl electrode as 

reference electrode. The coated samples were used as working electrode. The coated 

specimens were immersed in 3.5 wt. % NaCl electrolyte at a temperature of 20Co till the OCP 

was stable before staring the test at scanning rate 0.001 V/s. The corrosion resistance 

properties of the coatings were studied from potentiodynamic anodic polarization curves. 

2.3. Adhesion and wettability testing  

The scratch testing method was used to study the adhesion of coating according to DIN EN 

1071-3 standard method (Determination of adhesion and other mechanical failure modes by a 

scratch test). The scratch tests were conducted using a CSM REVETEST machine with 

Rockwell C diamond with a tip radius of 200µm. The scratch length of 10 mm was made 

with sliding speed of 10mm/min. The load was increased from 0 N to 100 N/min. The 

smallest load at which first failure mode was observed defined critical load value. 
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The wettability behaviour of coatings studied using Owens and Wendt (OWRK) 

method [33]. To ensure the statistical validity of the results, two to three droplets were made 

for contact angle measurements using water and diiodomethane as reference liquids of known 

surface energies. The determination of the surface energies of the solid coatings based on 

contact angle measurements methodology is explained in detail elsewhere [34].   

3. Results and discussion 

3.1. Surface morphology and mechanical properties 

Fig. 1 compares the engineered surfaces through SEM micrographs of which were 

produced by using various bath concentrations (HC, MC and LC). As can be seen from 

Figure 1, in case of HC and MC the surface morphologies of nickel and nickel composite 

coatings were not affected with deposition from different concentration of ionic strength of 

electrolyte. Whilst, for coatings deposited from LC concentration resulted into bigger grain 

structure and agglomeration clusters in pure nickel and Ni-alumina composite coatings 

respectively. This change in morphology subject to lower concentration of bath was also 

evident from surface roughness parameters (Ra and Rz), shown in Fig. 2. Due to the presence 

of agglomerated particles in Ni-Al2O3 (LC) composite exhibits the maximum surface 

roughness (Ra~0.64µm; Rz~4.36µm), followed by pure nickel (LC) coatings with 

Ra~0.08µm and Rz~0.98µm values because of bigger grain structure. Agglomerated particles 

on the surface resulted in larger standard deviation value of roughness parameters of Ni-

Al2O3 (LC) composite coating. It was interesting to note that similar behaviour was observed 

in microhardness results of these coatings with variation in ionic strength of electrolyte. 

Likewise, there were not significant differences in measured hardness (350-450HV), 

deposited from HC and MC strength for both pure and composite coatings except the LC type 

coatings (Fig. 3). The reason for the highest hardness for pure Ni (MC) when compared to 

pure Ni (HC) and pure Ni (LC) can be attributed to relatively much finer, more compact and 

smaller grain size morphology as shown in Figure 1 (a-c). The microhardness of Ni-Al2O3 

(LC) was significantly improved in LC bath with average value of 515HV as compared to 

pure nickel deposited from LC bath with average value of 230HV. The maximum value of 

hardness in Ni-alumina composite deposited LC type bath predicts better anti-wear 

performance of these coatings. However, the higher surface roughness parameters of these 

type of coatings can attribute to surface friction which can be reduced through surface 

polishing prior to real applications. Note that the samples were mechanically polished to 
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achieve relative smoother surface prior to mechanical testing. This is because that the 

roughness peak coming in contact to indenter can result in a greater depth of indent at 

relatively lower load due to increased localized stress at the point of contact.            

In comparison, the typical pyramidal and spherical globular shape microstructure 

morphologies observed in pure nickel and nickel-based composite coatings respectively. 

Similar morphologies in nickel and nickel based composite have been reported previously by 

different researchers [35, 36, 37, 38]. Moreover addition of alumina nanoparticles in nickel 

matrix resulted into the compact morphology as compared to pure nickel coatings. This 

attributed to well-known cathodic polarization phenomenon due to the adsorption of particles 

at substrate surface. All pure nickel and nickel-based coatings were smooth, crack free and 

well adhere to the substrate without an interfacial delamination as shown in Figure 4 (a-f). To 

see the effect of electrolyte concentration on nano-alumina particles distribution in composite 

coatings magnified view of cross-sectional images is presented in Figure 4(d-f). All 

composite coatings exhibit the homogenous nano-alumina particles distribution. However, 

less agglomerated nano-Al2O3 particles were observed in LC type coatings than those 

produced by HC and MC type electrolyte. In addition to homogenous particle distribution the 

less agglomeration behaviour can be the reason for the higher hardness value of Ni-Al2O3 

(LC) coating.               

3.2. Tribological and wettability properties 

Generally, the wear-resistance properties of electroplated coatings improved with 

addition of hard nanoparticles into matrix materials as can be seen from Fig. 5. This is 

attributed to the strengthening effects of loaded hard particles into nickel matrix and in 

agreement with previous findings [3, 39, 40]. The influence of reagent concentration on pure 

nickel coatings demonstrated that the MC type coating has less wear about 30% than HC and 

about half of LC type coatings.  A reason for this can be the higher hardness of MC as 

compared to HC and LC type’s coatings. Also, the higher plasticity index H/E ratio of pure 

Ni (MC) than those pure Ni (HC) and pure Ni (LC) can result in better wear resistance 

properties [41]. A comparison between composite coatings showed that HC and LC type 

composites exhibit the similar wear-resistance behaviour and almost half of the composite 

coating deposited from MC electrolyte. When compared with pure nickel coatings the wear 

resistance of composite coating is improved, almost doubled, except MC type which 

enhanced about 25% of the MC type pure nickel coating. Also, mean-steady friction 
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coefficient values are lower for composite coatings than that of pure nickel coatings, as can 

be seen in Figure 5. The strengthening effect of incorporated nano-alumina particle is the 

reason for the lower friction coefficient of composite coatings. It is known that the friction 

coefficient in composite coatings was reduced with increasing the reinforcement content of 

nanoparticles in the coatings [3, 42]. The higher wear rate in MC type composite coating may 

be due to the lower surface wettability behaviour, resulting into dry contact wear scenario. 

The effect of changing bath concentration on coatings surface wettability behaviour plotted in 

Fig. 6.  In all coatings the higher dispersive part than polar part of surface free energy reveals 

that coatings exhibit mainly covalent bonds. However, MC type nickel alumina composite 

showed the minimum value of polar component, consequently the maximum contact angle of 

water was observed. This can be the one reason for higher wear rate than other composite 

coatings due to decreased wettability. These results indicate that in order to achieve better 

anti-wear properties MC composition is suitable in pure nickel coatings. On the other hand, 

HC and LC electrolytes can produce better wear resistance properties in nickel based 

composite coatings reinforced with nano-alumina particles.    

3.3. Electrochemical corrosion-resistance properties 

To evaluate the optimized bath concentration for pure nickel and nickel composite 

coatings the electrochemical corrosion measurements deployed and resulting 

potentiodynamic polarization curves are plotted in Fig. 7. As can be seen from Fig. 7 under 

the same conditions the composite coatings showed better anti-corrosion property than pure 

nickel coatings and validates the previous finding in the literature [43]. It is interesting to 

observe that the coatings deposited from MC type electrolyte exhibits the maximum 

corrosion resistance potential both in pure nickel and nickel based nano-alumina composites. 

Note that in pure nickel coatings deposited from MC bath also performed better in term of 

wear resistance. Therefore medium concentration is suitable solution to get better wear and 

corrosion resistance properties for pure nickel coatings. For Ni-Al2O3 composite coatings the 

MC better candidate to corrosion resistance but not suitable for wear resistance in comparison 

to HC and LC solutions. However, the corrosion performance of LC type composite coatings 

can be improved by surface polishing to reduce surface roughness which can be the main 

reason for poor corrosion resistance behaviour. This is well-known that the roughness valleys 

in the surface can provide weak point for the penetration of aggressive corrosive solution 

towards substrate and can result into poor corrosion resistance performance.  
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3.4. Adhesion strength properties 

The coating-substrate interface adhesion strength is one of the important factors of the 

coating in industrial applications. Therefore adhesion strength was evaluated through scratch 

test for these coatings and compared with minimum critical load value required in industrial 

applications.  The effects of different bath conditions on adhesion critical load values (Lc) for 

electrodeposited coatings are compared and presented in Fig. 8. As can be seen all the 

coatings showed good adhesion strength except in case of pure nickel deposited from HC 

electrolyte. In pure nickel coatings the maximum critical load value of 44N observed in MC 

type bath and followed by LC and HC with values 50N and 44N respectively. For nickel 

composite coatings, the critical load values ranges between 60 to 80N which is significantly 

higher than pure nickel coatings. Note that these coatings were deposited on mild steel 

substrate without any intermediate coating which can further improve adhesion strength.                     

4. Conclusions 

Tribological and adhesion properties of electrodeposited pure nickel and nickel 

composite coatings with incorporated nano-alumina particles coatings have been studied. The 

effects of different ionic strength of electrolyte on these properties investigated to evaluate 

optimized concentration of bath. The following conclusions can be drawn from experimental 

results.      

 In general the influence of bath concentration on surface morphology and mechanical 

properties of all coatings was much significant. However, MC and LC type baths 

showed better hardness values in pure nickel and nickel-alumina composites 

respectively. 

 Wear-resistance properties increase with HC and LC type bath in nickel-alumina 

composite coatings. Whereas, wear-resistance properties decreased in HC and LC 

type and increased in MC type bath.   

 The electrochemical corrosion results show that the MC type bath is suitable 

candidate to achieve increased corrosion resistance properties both in pure nickel 

and nickel composite coatings.  

 The scratch tests show that independent from bath type, the adhesion significantly 

increase with incorporation of nanoparticles into nickel matrix. The minimum 

adhesion strength observed in LC type pure nickel coatings.   
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Table 1 Chemical and nanoparticles composition for varying bath concentration. 

Bath number  
Chemical composition (g/L) 

Nickel sulfate  Nickel chloride Boric acid Nano-Al2O3 

  High concentration (HC)   

1 331 60 38 - 

2 331 60 38 20 

  Medium concentration (MC)   

3 265 48 31 - 

4 265 48 31 20 

  Low concentration (LC)   

5 200 48 31 - 

6 200 48 31 20 
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Table 2 Chemical composition of the steel substrate 

C (wt.%) Si (wt.%) Mn (wt.%) S (wt.%) P (wt.%) 

0.14 0.27 0.91 0.25 0.02 

 



Figure1 Surface micrographs of pure nickel (a-c) and Ni-Al2O3 composite (e-g) coatings deposited through various bath concentrations (10kV, WD 11 and x2000).Click here to download Figure Figure1.tif 

http://www.editorialmanager.com/jast/download.aspx?id=58337&guid=6422c49b-8632-43a4-b695-80aff2c5ea9b&scheme=1
http://www.editorialmanager.com/jast/download.aspx?id=58337&guid=6422c49b-8632-43a4-b695-80aff2c5ea9b&scheme=1


Figure2 The variation in surface roughness parameters (Ra and Rz) of electrodeposited coatings with different electrolyte ionic strength. Click here to download Figure Figure2.tif 

http://www.editorialmanager.com/jast/download.aspx?id=58355&guid=d6848cc2-5feb-4271-8042-f959ac5e7a67&scheme=1
http://www.editorialmanager.com/jast/download.aspx?id=58355&guid=d6848cc2-5feb-4271-8042-f959ac5e7a67&scheme=1


Figure3 Hardness and elastic modulus values of all coatings deposited from different bath concentration. Click here to download Figure Figure3.tif 

http://www.editorialmanager.com/jast/download.aspx?id=58339&guid=1cbc5afe-d35c-4db4-a959-53f8886e8940&scheme=1
http://www.editorialmanager.com/jast/download.aspx?id=58339&guid=1cbc5afe-d35c-4db4-a959-53f8886e8940&scheme=1


Figure4 Cross-sectional SEM images of pure nickel and nickel-based composite coatings electrodeposited with different electrolyte ionic strength.Click here to download Figure Figure4.tif 

http://www.editorialmanager.com/jast/download.aspx?id=58340&guid=9c3cb228-b24d-42b9-bc76-7d29f5784194&scheme=1
http://www.editorialmanager.com/jast/download.aspx?id=58340&guid=9c3cb228-b24d-42b9-bc76-7d29f5784194&scheme=1


Figure5 The comparison of wear rates and mean-steady friction coefficient of pure nickel and nickel composite coatings electrodeposited with different electrolyte ionic strength.Click here to download Figure Figure5.tif 
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Figure6 The comparison of the surface energy and changing wettability behaviour of electrodeposited coatings with different electrolyte ionic strength.Click here to download Figure Figure6.tif 
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Figure7 Potentiodynamic polarization curves for electroplated coatings deposited with different electrolytic strength, in 3.5% NaCl solution.Click here to download Figure Figure7.tif 
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Figure8 Critical load values for electroplated coatings deposited with different electrolytic strength according to DIN EN 1071-3. Click here to download Figure Figure8.tif 
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Figure 1 Surface micrographs of pure nickel (a-c) and Ni-Al2O3 composite (e-g) coatings 

deposited through various bath concentrations (10kV, WD 11 and x2000). 

 

Figure 2 The variation in surface roughness parameters (Ra and Rz) of electrodeposited coatings 

with different electrolyte ionic strength.  

 

Figure 3 Hardness and elastic modulus values of all coatings deposited from different bath 

concentration. 

 

Figure 4 Cross-sectional SEM images of pure nickel and nickel-based composite coatings 

electrodeposited with different electrolyte ionic strength. 

 

Figure 5 The comparison of wear rates and mean-steady friction coefficient of pure nickel and 

nickel composite coatings electrodeposited with different electrolyte ionic strength. 

 

Figure 6 The comparison of the surface energy and changing wettability behaviour of 

electrodeposited coatings with different electrolyte ionic strength. 

 

Figure 7 Potentiodynamic polarization curves for electroplated coatings deposited with different 

electrolytic strength, in 3.5% NaCl solution. 

 

Figure 8 Critical load values for electroplated coatings deposited with different electrolytic 

strength according to DIN EN 1071-3. 
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