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1.0 Introduction 

In cases involving the analysis of skeletal remains biological anthropologists can often 

provide unique contributions to assist the pathologist and law enforcement agencies. One 

such area is in the recognition of injuries to bone where investigations of past conflict 

through analysis of archaeological burials have brought particular focus to injuries caused 

through violence. Such work generally relies on comparisons with documented injuries. 

In the case of more obscure or unusual mechanisms of injury, or when looking at past 

populations a known comparator may not be available, for example in the case of archaic 

weapons that are no longer in use. The best option to resolve uncertainty in such cases is 

through actualistic experiments.     

 

Experimentation in controlled circumstances is attractive, but raises questions regarding 

suitable test samples. In simulating skeletal trauma human cadaveric samples will 

obviously produce results that are very close to those that would be expected in a living 

individual but are not necessarily the most desirable option. Human cadavers are often 

difficult to obtain, carry infection risks and have issues of variability between samples. 

Aside from these points using human remains for such work is fraught with ethical 

concerns and often legal complications that rule them out for many researchers. Bone 

from non-human animals is a promising alternative, but is complicated in respect of 

anatomical differences between humans and other species. With regard to some parts of 

the skeleton such as ribs or flat bones such as the scapula, the overall form of some 

mammalian bones may be sufficiently similar to humans to make these a reasonable 

proxy. However, the unique size and form of the human cranium remains an intractable 

problem as non-human crania are so different in size, shape and thickness that results 

obtained from them are of limited value. This point has particular relevance to trauma as 

the head is a common target in assaults and is also the part of the skeleton where patterns 

of injury are most easily recognized.  

 

A potential alternative is presented by the commercial availability of synthetic bone 

substitutes formed from polyurethane. These products offer several immediate 

advantages over human cadavers or non-human animal bone. They can be obtained 

quickly in variable quantities, each specimen is identical and they avoid complications of 

legality, ethics and infection. It would therefore seem that such material would be an 

obvious choice, however, this point hinges on the extent to which these replicas respond 

to dynamic impacts in ways that are analogous to real bone. In a series of papers Thali et 

al. [1, 2, 3,4] claimed that similar replicas produced results that were highly accurate with 

regard to ballistic and blunt-force trauma, although these studies concentrated largely on 

simulated soft tissue at bullet entrance and exit points and the general appearance of 

fracture patterns at a gross scale. Thali et al. [1,2,3,4] focused on a small range of modern 

firearms and a mechanism of blunt trauma, if such samples are viable substitutes for 

human crania they should hold equal potential for investigations of other mechanisms of 

injury. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42142579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The current paper presents a pilot study designed to test this issue using a range of 

projectiles and mechanisms of launching them. Polyurethane bone substitute (PBS) 

samples were impacted with high, medium and low velocity projectiles shot using three 

different classes of modern and archaic weapons. The resultant defects in the samples 

were examined both grossly and in detail in order to assess the extent to which they 

resembled those produced in experimental animal bone samples and published examples 

of bony trauma in humans.  

 

2.0 Materials and Methods 

2.1 Polyurethane Bone Substitute (PBS) 

The synthetic bone samples tested in the current study were obtained from Synbone AG 

(Malans, Switzerland) [5]. These products are marketed primarily as anatomical models 

for surgical training. The manufacturers do not give specific details about the 

composition of these products but describe them as being made of “specially formulated 

polyurethane foam” which have “in some instances the mechanical properties of natural 

bone” [5]. In addition to replicas of individual bones and particular portions of the 

skeleton for practicing surgical techniques, the suppliers also offer generic geometric 

forms for ballistic tests. These latter are supplied as flat plates, and hollow cylinders and 

spheres, representing flat bones, generalized long bones and crania respectively. The 

samples used in the current study were purchased by the first author’s institution at the 

standard commercial rate. 

 

2.2 Testing low, medium and high velocity impacts 

The responses to impact of both flat plates and spheres of PBS were tested by firing shots 

at them using three different weapon types, modern rifles, a black powder musket and a 

crossbow. These weapons deliver differently constructed projectiles with stark 

differences in velocity and discharge energy (Table 1). The modern rifles were firstly a 

7.62mm Parker Hale T4 target rifle discharging a 7.62 x 51 mm NATO Full Metal Jacket 

(FMJ) bullet, a military round common internationally (Pretoria Metal Pressings, South 

Africa). The second was a Tikka model 550 rifle firing a .243’’ 100 grain Winchester 

Soft Point bullet, generally used for sport and hunting (Prvi Partizan, Serbia). The black 

powder musket was a replica 1861 model .58 calibre carbine discharging solid lead minié 

balls measuring (13.5mm diameter). The crossbow was a Jaguar 175lb recurve crossbow 

loaded with 17 ¼ inch long Perfectline alloy bolts fitted with conical target heads (8.0mm 

diameter). 

 

2.3 Experimental conditions and samples 

To comply with local police health and safety requirements the samples were shot in a 

prepared pit 1.5 m deep. The bottom 0.8m of fill consisted of sieved sand to reduce risk 

of ricochet. The weapons were fired from a very close range of approximately 2m, 

secured in a fixed cradle to facilitate aiming and repeatability, at an angle of 65° (Figure 

1.). Shots were fired into flat PBS plates (5mm thick) and also PBS spheres of both 5mm 

and 7 mm thickness. The latter are formed of two hemispheres held together with 

adhesive, with the consequent junction between the halves mimicking cranial sutures in a 

simplified form. The spheres also have an opening at the base which broadly simulates 

the openings in the cranium, particularly the foramen magnum. The work detailed in the 



current paper is part of a wider suite of ballistic experiments with relevance to Forensic 

Anthropology. One of these parallel projects [6] utilized cattle (Bos taurus) scapulae as 

proxies for human cranial bone in considering microscopic effects of gunshot trauma. 

Here fresh scapulae obtained from an abattoir from animals that had been slaughtered for 

food, were shot with minimal soft tissue (<5mm thick) adhering. The soft tissue was then 

removed using enzymatic detergent to allow examination of damage to the bone. These 

bovine samples also offered a useful comparison with aspects of the PBS samples in the 

current study as they were shot at the same time using the same weapons. Other studies 

have shown that areas of flat bone in large mammals respond in a uniform manner to 

ballistic trauma and so can be taken as a reasonable proxy for cranial and other flat bones 

in humans [7,8] -although they do not exhibit the kind of additional fractures that derive 

from the enclosed form of the cranial vault (see below).    

 

2.4 Simulating brain and associated soft tissue 

Initial tests were conducted firing the modern rifles into flat PBS plates and empty 

spheres to assess whether the different shapes would affect the way the material 

responded to impacts. In fact there were no gross differences between the two. Both 

exhibited simple ‘ internally bevelled’ defects resembling those seen in gunshot injuries 

to areas of flat bone -i.e. where the internal/endocranial dimensions of the defect are 

larger than its external/ ectocranial dimensions [9, 10, 11, 12, 13, 14, 15]. However, the 

damage produced in the PBS spheres differed from gunshot wounds in real crania as 

there were no secondary or tertiary fractures of the kind frequently seen in cases of such 

trauma (see below). It was hypothesized that the lack of such fractures was related to the 

absence of soft tissue (brain, dura, etc.) inside these artificial ‘crania’. Such soft tissues 

inside the cranium present a soft, semi fluid medium through which a hydraulic 

shockwave will form transmitting the kinetic energy of an impact to the cranial walls 

producing characteristic fractures [16]. In subsequent tests the spheres were therefore 

filled with ballistic gelatin (constituted at 10% by weight at 4°C). This medium is widely 

used in ballistic tests as it approximates the density of human soft tissue [17, 18, 19].  

 

2.5 Assessing outcomes 

The results were examined grossly to observe the size and morphology of entrance and 

exit wounds and the overall form of any additional (secondary and tertiary) fractures. 

These defects were then examined in greater detail using light microscopy in order to 

observe the extent to which any similarity to ballistic trauma in bone was consistent at a 

finer level. Lastly, the form of the bevelled entrance/exit defects produced by the firearm 

impacts was quantified mathematically by photographing them at 90° and then tracing a 

digital path around the perimeter of the bevelled area using a vector drawing package 

(Adobe Illustrator). To facilitate comparison of overall form each photograph was then 

rotated and scaled to the same size on screen along the longest axis of the defect and 

radial lines were drawn from the centre to the outer margin of the beveled area at 10° 

intervals. The length of each radial path was then measured using the same software in 

order to allow for statistical comparison. Other variables measured for comparison were 

the maximum diameter of the beveled area (in mm) and the total area (measured in 

pixels) of beveling when standardized along the longest axis.  

 



3.0 Results 

3.1 Entrance/ exit beveling -gross observations 

The current project is considered a pilot study to assess the general potential of PBS as a 

proxy for human bone for use in larger studies. The work presented here focused on 12 

PBS samples for each of the three projectile types used, with 12 cattle scapulae shot with 

the modern rifles included for comparison of beveled defects. The different weapon/ 

projectile types each produced distinctive patterns of damage in the PBS test samples that 

were easily distinguished from each other on gross examination. The initial tests 

involving flat plates and empty spheres shot with the modern rifles produced small 

rounded entrance/ exit defects where a cone shaped portion of the surface had been 

forced away from the rest of the sample to produce beveled margins as are frequently 

seen in ballistic trauma to bone (Figure 2). Such features are regarded as typical in 

penetrative injuries to areas of flat bone (most commonly the cranial vault, scapula, 

sternum or ilium) where the direction of bevelling is regarded as a standard feature for 

determining the direction in which a penetrative force has perforated bone [9, 10, 11, 12, 

13, 14, 19, 20, 21].  

 

3.2 Secondary-tertiary fractures 

A further distinguishing feature of cranial gunshot trauma is the presence of additional 

fractures which form, or travel, away from the point of impact. When bone fails in 

response to a high discharge of energy it behaves as a brittle material [22] and such 

fractures generally take the form either of linear fractures travelling outwards from the 

impact point (radiating or secondary fractures) or of concentric (or tertiary) fractures 

which form in a ring around the general area of impact (Figure 3). No secondary or 

tertiary fractures were produced in the flat plates and empty spheres. This conformed to 

expectations as such additional fractures are caused as an effect of releasing large 

amounts of kinetic injury into the soft tissues within the cranium. Such energy release is 

well documented as producing temporary cavitation effects through the action of a 

hydraulic shockwave which passes through the soft tissues adjacent to the primary wound 

track causing further damage through displacement and radial stretching [23, 24, 25]. In 

the enclosed space of the cranium this energy is transferred directly to the walls of the 

cranial vault causing it to fracture with the respective breaks originating at the impact 

point.     

 

In spheres filled with ballistic gelatin the modern firearm impacts produced patterns of 

secondary and tertiary fractures generally consistent with those seen in cranial gunshot 

trauma (Figure 4). The black powder carbine produced similar patterns of fracturing 

although with concentric fractures that formed over a broader area around the impact 

point consistent with the larger calibre of the bullets. The projectiles used in this weapon 

are not only considerably greater in mass than modern bullets (30g as opposed to <10g) 

but also being composed entirely of lead are more prone to deforming on entering the 

body, again contributing to both larger exit defects and greater tissue disruption than a 

modern bullet if it were fired at the same speed [26, 27]. An additional feature seen in the 

PBS spheres was the formation of keyhole shaped defects (Figure 4d) when bullets struck 

the spheres at a tangential angle. Again this is consistent with such impacts in real crania 

[28, 29].   



 

3.3 (Gross) deviations from real bone 

The damage produced in PBS also displayed some features not seen in ballistic trauma to 

real crania. Most notably in the exit defects a pattern of fracturing was repeatedly 

produced that was characterized by ‘stepped’ fractures in which the radius of the defect 

varied by large intervals forming jagged corners around the margins. In this respect the 

damage in the PBS was quite unlike the generally regular and usually rounded/ ovoid 

defects produced by similar trauma to real bone. This effect was particularly pronounced 

for the samples shot with the black powder carbine, presumably due to the greater size of 

the projectile with its higher propensity to deform and impart energy throughout the 

cranium.         

 

3.4 Low velocity (crossbow) impacts 

The crossbow produced well defined, discrete entrance defects corresponding closely to 

the size and form of the projectiles. None of the crossbow impacts produced secondary or 

tertiary fractures at the entry points. The exit defects were all similarly comprised of a 

single point of failure from which a stellate pattern of linear fractures radiated out to a 

concentric fracture 30-40 mm from the centre (Figure 4 e, f.). None of the respective 

impacts produced any fracturing that radiated beyond this initial concentric ring. The 

crossbow therefore produced a pattern of damage quite distinct from those caused by the 

firearms, consistent with the slower velocity of the projectiles and the lower level of 

energy involved (Table 1).  

 

3.5 Defect dimensions 

On close examination the defects produced in the PBS samples differed from those in 

both the experimental animal bone samples and from published examples of cranial 

gunshot trauma in several respects. Firstly, the size of the beveled areas differed between 

the PBS and real bone samples with generally larger defects seen in the PBS (Table 2). 

The two groups also differed in terms of the range of measurements and the variance 

within each sample. These differences were found to be significant using a T-test 

(p=0.004) although it should be noted that whilst the cattle bone values were normally 

distributed the PBS values were not and so the samples were also compared using a two-

sample Kolmogorov-Smirnov test which again found a significant difference (p=0.0008). 

The fact that the PBS values didn’t conform to a normal distribution, whereas the bone 

samples did, further suggests that this material behaves differently to bone in response to 

impact.  

 

3.6 Defect shape 

Further differences were apparent in the shape of the beveled defects. The beveled areas 

in the bone samples were generally round or oval shaped with relatively gentle variations 

in diameter at different points around the circumference. The beveled areas in the PBS 

samples commonly had ‘stepped’ margins which varied in diameter repeatedly around 

the circumference. The boundaries between these angular steps were defined by thin 

radiating fractures not immediately obvious macroscopically. The defects in the PBS 

were consequently jagged and irregular in their overall form as opposed to being broadly 

sub-circular with generally smoother contours as seen in the real bone (Figure 5). These 



differences were also tested statistically using a two tailed T-test and a Kolmogorov-

Smirnov two sample test (Table 2), the latter applied as the data were close to but not 

quite normally distributed. On comparing the radial measurements taken from the 

photographs there was a significant difference between the two groups (T-test: p = 

0.0015; KS test: p = 0.004). Further, it was suspected that the raw radial measurements 

might actually be masking greater quantitative differences in that whilst the means of the 

two samples were actually fairly close (42.44 and 44.12) the real source of variation lay 

in the ‘stepped’ margins seen in the PBS samples meaning that any individual 

measurement might considerably differ from its nearest neighbour. When the 

measurements were each subtracted from that of the next radial and the consequent 

values were re-tested, the result was even more significant (T test: p = <0.0001; KS test: 

p = 0.002).               

 

4.0 Discussion 

4.1 The bigger picture 

Whilst the simple bevelled defects produced by shooting both modern and obsolete forms 

of ammunition through flat PBS plates and empty spheres display general similarities to 

those seen in areas of flat bone, these lack the more complex patterns of breakage seen in 

real crania. However, the results of shooting PBS spheres filled with ballistic gelatin were 

more encouraging. On a gross level the latter are generally consistent with results 

obtained by Thali et al. [1,2,3]. The spheres shot with modern rifles in the current study 

compare favourably with published examples of modern cranial gunshot trauma [20, 21, 

25, 30, 31, 32, 33, 34]. The black powder carbine produced patterns of damage consistent 

with archaeological examples interpreted as archaic firearms trauma including an 

example from the Netherlands dating from 1571 [35] two examples from Zürich from 

1799 [36] and several recovered from the site of the Battle of the Little Bighorn, 1876 

[37, 38]. 

 

4.2 The devil in the detail 

The observed differences between the results in PBS and real bone ultimately derive from 

the differing microstructures of the two materials. Bone possesses complex mechanical 

properties resulting from its constituent materials and their arrangement in space [39]. All 

bone has a composite microstructure comprising crystals of the calcium compound 

hydroxyapatite (Ca10(PO4)6(OH)2) set in an organic (protein) matrix of type 1 collagen 

fibrils (C2H5NOC5H9NOC5H10NO2). Whilst the former conveys rigidity the latter confers 

a degree of flexibility and resistance to failure by making the bone less brittle. Cortical 

bone is formed in lamellar layers organized in a concentric, annular pattern in alternating 

directions around a central canal (Haversian systems). These Haversian structures run in 

a uniform local orientation making bone directionally ‘grained’. The course taken by 

fractures is then influenced by this local orientation of bone fibres [32, 40]. Further, the 

microstructure of bone has been shown to influence its response to ballistic trauma in 

complex ways at a microscopic level, including delamination, directional cortical bending 

and lateral deflection of portions of cortex. It has been demonstrated that such changes 

are recognizable to the extent that they can be used to differentiate between different 

types of ammunition microscopically [6]. In contrast to this organized complexity, 

polyurethane has an essentially uniform microstructure devoid of regular organization 



above the molecular level. These differences would explain the discrepancies noted in the 

response of the two materials to trauma both grossly and on close examination. With 

regard to these differences it is argued that polyurethane is not a useful proxy for studies 

investigating trauma to bone at anything below a very broad, superficial level. Further 

support is given to this point by Quenneville et al. [41] who found that stress and strain 

tests conducted on polyurethane long bone models demonstrated that these have 

tolerances that differ from real bone by significant amounts and therefore recommended 

that such are not used as proxies for human bone in experiments aimed at simulating road 

traffic collisions.  

 

A further factor influencing the way fractures propagate in bone is the gross geometric 

form of individual bones. With regard to the skull, the various cranial bones exhibit 

complex shapes and variations in thickness throughout. Whilst some areas of the cranium 

can measure <3mm thickness [42], other areas are much thicker functioning as  

‘buttresses’ (Figure 6) to strengthen particular areas [32]. These variations influence the 

course of fractures which will follow the line of least resistance and so deviate toward 

areas where the bone is thinner. Again, PBS differs in this regard in that it has a uniform 

thickness throughout.  

  

4.3 “We Prohibit that Murderous Art of Crossbowmen” (Pope Innocent II, AD1139) 

The crossbow was included to deliver impacts at lower velocity. Despite being a 

powerful example, the crossbow failed to induce secondary or tertiary fractures even 

though the bolts travelled through the full thickness of the gel-filled spheres to produce 

consequent ‘exit wounds’. Again, this lack of complex fractures gives support to the idea 

that such patterns of damage are produced as the result of the shockwave effect produced 

by high velocity projectiles with sufficient energy to travel at hundreds of metres per 

second as opposed to the relatively slow velocities produced by the ‘spring’ mechanism 

of a bow (Table 1). This observation contradicts the supposition by Guiffra et al. [43] that 

crossbows would produce “extensive radiating fractures” because they are “high velocity 

weapons” (which they are not). Secondly, the area of ‘cranium’ punched outwards at the 

exit point of the bolt was sufficiently large that it might well not be recognized as a 

projectile wound if seen in a skeletonized individual. Such a defect might well be 

interpreted as blunt force trauma, rather than a projectile exit wound. As regards how to 

tell the difference (other than by noting the defect was opposite a small puncture on the 

opposite side of the cranium), this would involve attention to the direction of beveling at 

the wound margin. Bone is stronger in compression than in tension [39] and consequently 

when forces are sufficient to cause failure the resultant fractures will initiate from the side 

of the bone under tension (Figure 6 b., c.). In blunt force head injuries the forces acting 

on the cranium are delivered from the outside and so produce depressed defects that are 

beveled internally. Where concentric fractures are produced by forces from within the 

cranium –in this case the exiting crossbow bolt –the resultant defect (known as ‘heaving 

fractures’) will be externally beveled. These issues have been explored by Hart [16] in 

relation to gunshot wounds who supported this conclusion with forensic examples of 

such. Accordingly, such external beveling was present in the crossbow exit defects in the 

PBS spheres. Lastly, a salient point regarding the crossbow bolts used in the current study 

is that these had conical tips for target shooting (not dissimilar to bullets). This choice 



was made so that any differences in the results could be attributed to velocity/energy 

rather than variations in projectile form. It is intended to repeat this work to investigate 

the effects of different types of bolt head, as used variously in the Medieval period, such 

as triangular hunting heads or armour piercing heads. 

 

5.0 Conclusions 

Synthetic ‘bones’ of the kind tested in this study respond to ballistic impacts in ways that 

are superficially similar to the forms of damage that would be expected in human cranial 

bone. However, important differences were noted that render this material less useful for 

studies conducted at a more detailed level. In spite of this criticism a case remains for 

using simple synthetic models of this kind in ballistic experimentation. Despite the clear 

dissimilarities with the way real bone behaves at both a microscopic and macroscopic 

level, these spheres still exhibit patterns of damage that are a fair general approximation 

of those seen in bone. Whilst animal crania are too dissimilar to our own to be useful 

proxies and using human cadaveric material is ethically undesirable in many people’s 

opinions (including our own) the latter is also problematic as discrepancies in the results 

of experiments simulating traumatic injury cannot easily be excluded from variation 

caused by differences in the strength and thickness of cranial bones both within and 

between individuals. In this regard synthetic bone substitutes actually possess a distinct 

advantage as they are uniform in size, shape and thickness and in this respect are 

arguably a better medium for simulating skeletal trauma than actual bone as any 

variations seen between samples must relate to differences in the mechanism of injury 

rather than confounding variables of differing thicknesses and irregular geometry in real 

crania. In the current study the damage patterns caused by the three different projectile/ 

weapon types used are clearly distinguishable from each other and as long as the above 

caveats are borne in mind such synthetic proxies offer a useful, relatively cheap and 

repeatable means of answering questions regarding the likely signatures of any other 

trauma mechanism researchers might wish to investigate.    
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Figure Captions 

 

1. Views of experimental arrangement and ammunition used. a. The adjustable 

cradle with Parker Hale rifle in place ready to fire through a chronograph into the 

test pit, b. 7.62 x 51 mm NATO Full Metal Jacket ammunition -longitudinal 

section reveals jacket over bullet tip, c. .243” Winchester jacketed soft-point -

longitudinal section reveals lead core visible at the projectile tip, d. Lead Minié 

balls –developed in the mid 19
th

 century with a conical profile and concave base 

designed to cause the bullet to expand and grip the barrel rifling to improve 

stability, e. Crossbow bolt tip with conical target point.  

 

2. Views of bevelled defects produced in PBS samples by the modern hunting rifles. 

a. exit defect in empty sphere, b.‘exit’ defect in flat plate. 

 

3. a. Illustration of radiating (secondary) and concentric (tertiary) fractures of the 

cranial vault in response to high energy impacts. b.-f. Cranial gunshot wounds in 

skeletal remains of individuals killed during the Spanish Civil War displaying 

‘classic’ examples of gunshot entrance and exit defects and additional associated 

fractures. These injuries are likely to have been caused by M93 Mauser rifles 

which deliver a round at a weight and velocity in between those of the modern 

rifles and black powder musket used in the current study (photographs by kind 

permission of Luis Rios).   

 

4. Patterns of damage produced in PBS spheres filled with ballistic gelatine. a., b. 

internal and external views of classic stellate and concentric fractures in an 

entrance defect produced by a 7.62 NATO round, c. entrance defect produced by 

black powder minié ball with stellate and concentric fractures, d. ‘keyhole’ defect 

produced by a tangential impact from a minié ball, e. discrete entrance defect 

produced by crossbow bolt lacking secondary/ tertiary fractures, f. reconstructed 

fragments at crossbow exit defect –stellate fracture centred on a single point of 

failure contained within a discrete secondary (concentric) fracture. 

 

5. Comparison of the form of bevelled exit defects in PBS samples and real bone 

(human and animal) shot with modern firearms. The defects were photographed 

and the outlines traced to produce vector drawings. These were then standardised 

to the same dimensions along their longest axis and radial centroids were added at 

10° intervals to facilitate comparison of morphology (actual dimensions and area 

were compared separately) a. overlay of outlines of 8 defects in real bone, b. 

overlay of outlines of 8 defects in PBS samples, c., d. examples of photographic 

overlay in real bone and PBS, e. data values displayed as Gaussian curves to 



illustrate the extent of overlap/ separation between the two samples when 

comparing them in terms of different variables. 

  

6. a. Frontal view of areas of facial buttressing influencing the course of fractures 

within the skull (after Fenton et al., 2005). b, c. schematic representation of the 

formation of concentric fractures surrounding significant impacts to the cranial 

vault, b. blunt force trauma –here all the mechanical force affecting the cranium is 

delivered externally producing a concentric fracture with an internally bevelled 

margin, c. high energy ballistic trauma –here the gases and kinetic energy 

discharged by the bullet produce counteracting forces from inside the cranium 

causing the associated concentric defect to bevel outwards (after Hart, 2005). C= 

bone stressed in compression, T= bone stressed under tension. 

 

Tables 

 

Table 1. Characteristics of the weapons and ammunition used in the experiments.  

Velocity data derived from: *Manufacturers website; ** Measured by present authors by 

chronograph; *** Averaged from published velocities for four black powder weapons of 

similar type and date [44]. 

 

Weapon 

Ammunition 
Velocity 

(m/s) 
Energy 

(J) Type Calibre 
Weight 
[grains] 

Weight 
(grams) 

Tikka 550 Winchester SP .243" 100 6.5 905* 2660 

Parker Hale T4 Nato FMJ 7.62 147 9.5 853** 3456 

1861 Carbine Minie Ball 0.58 463 30.0 468*** 3285 

Jaguar Crossbow Perfectline alloy 8.0 363 23.5 75* 66 

 

 

 

Table 2. Measurements of beveled areas produced by gunshots fired from the modern 

rifles. NN=Nearest Neighbour. *Images scaled to same size along their longest axis so 

measurements = relative to overall form rather than absolute units.  

 

 

 

Bone PBS 
Kolmogorov-
Smirnov Test 

Mean St.Dev Mean St.Dev P-value 

Max. Diameter (mm) 20.62 5.14 14.97 2.37 0.008 

Radial Measurements* 42.43 6.31 44.12 6.37 0.004 

NN Differences* 2.00 2.04 3.23 4.46 0.002 

Comparative area* 11924.38 2304.02 12995.25 1997.81 0.023 


