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Title: Fantastic Plastic? Experimental evaluation of polyurethane bone
substitutes as proxies for human bone in trauma simulations

1.0 Introduction

In cases involving the analysis of skeletal remains biological anthropologists can often
provide unique contributions to assist the pathologist and law enforcement agencies. One
such area is in the recognition of injuries to bone where investigations of past conflict
through analysis of archaeological burials have brought particular focus to injuries caused
through violence. Such work generally relies on comparisons with documented injuries.
In the case of more obscure or unusual mechanisms of injury, or when looking at past
populations a known comparator may not be available, for example in the case of archaic
weapons that are no longer in use. The best option to resolve uncertainty in such cases is
through actualistic experiments.

Experimentation in controlled circumstances is attractive, but raises questions regarding
suitable test samples. In simulating skeletal trauma human cadaveric samples will
obviously produce results that are very close to those that would be expected in a living
individual but are not necessarily the most desirable option. Human cadavers are often
difficult to obtain, carry infection risks and have issues of variability between samples.
Aside from these points using human remains for such work is fraught with ethical
concerns and often legal complications that rule them out for many researchers. Bone
from non-human animals is a promising alternative, but is complicated in respect of
anatomical differences between humans and other species. With regard to some parts of
the skeleton such as ribs or flat bones such as the scapula, the overall form of some
mammalian bones may be sufficiently similar to humans to make these a reasonable
proxy. However, the unique size and form of the human cranium remains an intractable
problem as non-human crania are so different in size, shape and thickness that results
obtained from them are of limited value. This point has particular relevance to trauma as
the head is a common target in assaults and is also the part of the skeleton where patterns
of injury are most easily recognized.

A potential alternative is presented by the commercial availability of synthetic bone
substitutes formed from polyurethane. These products offer several immediate
advantages over human cadavers or non-human animal bone. They can be obtained
quickly in variable quantities, each specimen is identical and they avoid complications of
legality, ethics and infection. It would therefore seem that such material would be an
obvious choice, however, this point hinges on the extent to which these replicas respond
to dynamic impacts in ways that are analogous to real bone. In a series of papers Thali et
al. [1, 2, 3,4] claimed that similar replicas produced results that were highly accurate with
regard to ballistic and blunt-force trauma, although these studies concentrated largely on
simulated soft tissue at bullet entrance and exit points and the general appearance of
fracture patterns at a gross scale. Thali et al. [1,2,3,4] focused on a small range of modern
firearms and a mechanism of blunt trauma, if such samples are viable substitutes for
human crania they should hold equal potential for investigations of other mechanisms of
injury.
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The current paper presents a pilot study designed to test this issue using a range of
projectiles and mechanisms of launching them. Polyurethane bone substitute (PBS)
samples were impacted with high, medium and low velocity projectiles shot using three
different classes of modern and archaic weapons. The resultant defects in the samples
were examined both grossly and in detail in order to assess the extent to which they
resembled those produced in experimental animal bone samples and published examples
of bony trauma in humans.

2.0 Materials and Methods

2.1 Polyurethane Bone Substitute (PBS)

The synthetic bone samples tested in the current study were obtained from Synbone AG
(Malans, Switzerland) [5]. These products are marketed primarily as anatomical models
for surgical training. The manufacturers do not give specific details about the
composition of these products but describe them as being made of “specially formulated
polyurethane foam” which have “in some instances the mechanical properties of natural
bone” [5]. In addition to replicas of individual bones and particular portions of the
skeleton for practicing surgical techniques, the suppliers also offer generic geometric
forms for ballistic tests. These latter are supplied as flat plates, and hollow cylinders and
spheres, representing flat bones, generalized long bones and crania respectively. The
samples used in the current study were purchased by the first author’s institution at the
standard commercial rate.

2.2 Testing low, medium and high velocity impacts

The responses to impact of both flat plates and spheres of PBS were tested by firing shots
at them using three different weapon types, modern rifles, a black powder musket and a
crossbow. These weapons deliver differently constructed projectiles with stark
differences in velocity and discharge energy (Table 1). The modern rifles were firstly a
7.62mm Parker Hale T4 target rifle discharging a 7.62 x 51 mm NATO Full Metal Jacket
(FMJ) bullet, a military round common internationally (Pretoria Metal Pressings, South
Africa). The second was a Tikka model 550 rifle firing a .243°” 100 grain Winchester
Soft Point bullet, generally used for sport and hunting (Prvi Partizan, Serbia). The black
powder musket was a replica 1861 model .58 calibre carbine discharging solid lead minié
balls measuring (13.5mm diameter). The crosshow was a Jaguar 175Ib recurve crossbow
loaded with 17 ¥4 inch long Perfectline alloy bolts fitted with conical target heads (8.0mm
diameter).

2.3 Experimental conditions and samples

To comply with local police health and safety requirements the samples were shot in a
prepared pit 1.5 m deep. The bottom 0.8m of fill consisted of sieved sand to reduce risk
of ricochet. The weapons were fired from a very close range of approximately 2m,
secured in a fixed cradle to facilitate aiming and repeatability, at an angle of 65° (Figure
1.). Shots were fired into flat PBS plates (5mm thick) and also PBS spheres of both 5mm
and 7 mm thickness. The latter are formed of two hemispheres held together with
adhesive, with the consequent junction between the halves mimicking cranial sutures in a
simplified form. The spheres also have an opening at the base which broadly simulates
the openings in the cranium, particularly the foramen magnum. The work detailed in the



current paper is part of a wider suite of ballistic experiments with relevance to Forensic
Anthropology. One of these parallel projects [6] utilized cattle (Bos taurus) scapulae as
proxies for human cranial bone in considering microscopic effects of gunshot trauma.
Here fresh scapulae obtained from an abattoir from animals that had been slaughtered for
food, were shot with minimal soft tissue (<5mm thick) adhering. The soft tissue was then
removed using enzymatic detergent to allow examination of damage to the bone. These
bovine samples also offered a useful comparison with aspects of the PBS samples in the
current study as they were shot at the same time using the same weapons. Other studies
have shown that areas of flat bone in large mammals respond in a uniform manner to
ballistic trauma and so can be taken as a reasonable proxy for cranial and other flat bones
in humans [7,8] -although they do not exhibit the kind of additional fractures that derive
from the enclosed form of the cranial vault (see below).

2.4 Simulating brain and associated soft tissue

Initial tests were conducted firing the modern rifles into flat PBS plates and empty
spheres to assess whether the different shapes would affect the way the material
responded to impacts. In fact there were no gross differences between the two. Both
exhibited simple ° internally bevelled’ defects resembling those seen in gunshot injuries
to areas of flat bone -i.e. where the internal/endocranial dimensions of the defect are
larger than its external/ ectocranial dimensions [9, 10, 11, 12, 13, 14, 15]. However, the
damage produced in the PBS spheres differed from gunshot wounds in real crania as
there were no secondary or tertiary fractures of the kind frequently seen in cases of such
trauma (see below). It was hypothesized that the lack of such fractures was related to the
absence of soft tissue (brain, dura, etc.) inside these artificial ‘crania’. Such soft tissues
inside the cranium present a soft, semi fluid medium through which a hydraulic
shockwave will form transmitting the Kinetic energy of an impact to the cranial walls
producing characteristic fractures [16]. In subsequent tests the spheres were therefore
filled with ballistic gelatin (constituted at 10% by weight at 4°C). This medium is widely
used in ballistic tests as it approximates the density of human soft tissue [17, 18, 19].

2.5 Assessing outcomes

The results were examined grossly to observe the size and morphology of entrance and
exit wounds and the overall form of any additional (secondary and tertiary) fractures.
These defects were then examined in greater detail using light microscopy in order to
observe the extent to which any similarity to ballistic trauma in bone was consistent at a
finer level. Lastly, the form of the bevelled entrance/exit defects produced by the firearm
impacts was quantified mathematically by photographing them at 90° and then tracing a
digital path around the perimeter of the bevelled area using a vector drawing package
(Adobe Illustrator). To facilitate comparison of overall form each photograph was then
rotated and scaled to the same size on screen along the longest axis of the defect and
radial lines were drawn from the centre to the outer margin of the beveled area at 10°
intervals. The length of each radial path was then measured using the same software in
order to allow for statistical comparison. Other variables measured for comparison were
the maximum diameter of the beveled area (in mm) and the total area (measured in
pixels) of beveling when standardized along the longest axis.



3.0 Results

3.1 Entrance/ exit beveling -gross observations

The current project is considered a pilot study to assess the general potential of PBS as a
proxy for human bone for use in larger studies. The work presented here focused on 12
PBS samples for each of the three projectile types used, with 12 cattle scapulae shot with
the modern rifles included for comparison of beveled defects. The different weapon/
projectile types each produced distinctive patterns of damage in the PBS test samples that
were easily distinguished from each other on gross examination. The initial tests
involving flat plates and empty spheres shot with the modern rifles produced small
rounded entrance/ exit defects where a cone shaped portion of the surface had been
forced away from the rest of the sample to produce beveled margins as are frequently
seen in ballistic trauma to bone (Figure 2). Such features are regarded as typical in
penetrative injuries to areas of flat bone (most commonly the cranial vault, scapula,
sternum or ilium) where the direction of bevelling is regarded as a standard feature for
determining the direction in which a penetrative force has perforated bone [9, 10, 11, 12,
13, 14, 19, 20, 21].

3.2 Secondary-tertiary fractures

A further distinguishing feature of cranial gunshot trauma is the presence of additional
fractures which form, or travel, away from the point of impact. When bone fails in
response to a high discharge of energy it behaves as a brittle material [22] and such
fractures generally take the form either of linear fractures travelling outwards from the
impact point (radiating or secondary fractures) or of concentric (or tertiary) fractures
which form in a ring around the general area of impact (Figure 3). No secondary or
tertiary fractures were produced in the flat plates and empty spheres. This conformed to
expectations as such additional fractures are caused as an effect of releasing large
amounts of kinetic injury into the soft tissues within the cranium. Such energy release is
well documented as producing temporary cavitation effects through the action of a
hydraulic shockwave which passes through the soft tissues adjacent to the primary wound
track causing further damage through displacement and radial stretching [23, 24, 25]. In
the enclosed space of the cranium this energy is transferred directly to the walls of the
cranial vault causing it to fracture with the respective breaks originating at the impact
point.

In spheres filled with ballistic gelatin the modern firearm impacts produced patterns of
secondary and tertiary fractures generally consistent with those seen in cranial gunshot
trauma (Figure 4). The black powder carbine produced similar patterns of fracturing
although with concentric fractures that formed over a broader area around the impact
point consistent with the larger calibre of the bullets. The projectiles used in this weapon
are not only considerably greater in mass than modern bullets (30g as opposed to <10g)
but also being composed entirely of lead are more prone to deforming on entering the
body, again contributing to both larger exit defects and greater tissue disruption than a
modern bullet if it were fired at the same speed [26, 27]. An additional feature seen in the
PBS spheres was the formation of keyhole shaped defects (Figure 4d) when bullets struck
the spheres at a tangential angle. Again this is consistent with such impacts in real crania
[28, 29].



3.3 (Gross) deviations from real bone

The damage produced in PBS also displayed some features not seen in ballistic trauma to
real crania. Most notably in the exit defects a pattern of fracturing was repeatedly
produced that was characterized by ‘stepped’ fractures in which the radius of the defect
varied by large intervals forming jagged corners around the margins. In this respect the
damage in the PBS was quite unlike the generally regular and usually rounded/ ovoid
defects produced by similar trauma to real bone. This effect was particularly pronounced
for the samples shot with the black powder carbine, presumably due to the greater size of
the projectile with its higher propensity to deform and impart energy throughout the
cranium.

3.4 Low velocity (crossbow) impacts

The crossbow produced well defined, discrete entrance defects corresponding closely to
the size and form of the projectiles. None of the crossbow impacts produced secondary or
tertiary fractures at the entry points. The exit defects were all similarly comprised of a
single point of failure from which a stellate pattern of linear fractures radiated out to a
concentric fracture 30-40 mm from the centre (Figure 4 e, f.). None of the respective
impacts produced any fracturing that radiated beyond this initial concentric ring. The
crossbow therefore produced a pattern of damage quite distinct from those caused by the
firearms, consistent with the slower velocity of the projectiles and the lower level of
energy involved (Table 1).

3.5 Defect dimensions

On close examination the defects produced in the PBS samples differed from those in
both the experimental animal bone samples and from published examples of cranial
gunshot trauma in several respects. Firstly, the size of the beveled areas differed between
the PBS and real bone samples with generally larger defects seen in the PBS (Table 2).
The two groups also differed in terms of the range of measurements and the variance
within each sample. These differences were found to be significant using a T-test
(p=0.004) although it should be noted that whilst the cattle bone values were normally
distributed the PBS values were not and so the samples were also compared using a two-
sample Kolmogorov-Smirnov test which again found a significant difference (p=0.0008).
The fact that the PBS values didn’t conform to a normal distribution, whereas the bone
samples did, further suggests that this material behaves differently to bone in response to
impact.

3.6 Defect shape

Further differences were apparent in the shape of the beveled defects. The beveled areas
in the bone samples were generally round or oval shaped with relatively gentle variations
in diameter at different points around the circumference. The beveled areas in the PBS
samples commonly had ‘stepped’ margins which varied in diameter repeatedly around
the circumference. The boundaries between these angular steps were defined by thin
radiating fractures not immediately obvious macroscopically. The defects in the PBS
were consequently jagged and irregular in their overall form as opposed to being broadly
sub-circular with generally smoother contours as seen in the real bone (Figure 5). These



differences were also tested statistically using a two tailed T-test and a Kolmogorov-
Smirnov two sample test (Table 2), the latter applied as the data were close to but not
quite normally distributed. On comparing the radial measurements taken from the
photographs there was a significant difference between the two groups (T-test: p =
0.0015; KS test: p = 0.004). Further, it was suspected that the raw radial measurements
might actually be masking greater quantitative differences in that whilst the means of the
two samples were actually fairly close (42.44 and 44.12) the real source of variation lay
in the ‘stepped’ margins seen in the PBS samples meaning that any individual
measurement might considerably differ from its nearest neighbour. When the
measurements were each subtracted from that of the next radial and the consequent
values were re-tested, the result was even more significant (T test: p = <0.0001; KS test:
p = 0.002).

4.0 Discussion

4.1 The bigger picture

Whilst the simple bevelled defects produced by shooting both modern and obsolete forms
of ammunition through flat PBS plates and empty spheres display general similarities to
those seen in areas of flat bone, these lack the more complex patterns of breakage seen in
real crania. However, the results of shooting PBS spheres filled with ballistic gelatin were
more encouraging. On a gross level the latter are generally consistent with results
obtained by Thali et al. [1,2,3]. The spheres shot with modern rifles in the current study
compare favourably with published examples of modern cranial gunshot trauma [20, 21,
25, 30, 31, 32, 33, 34]. The black powder carbine produced patterns of damage consistent
with archaeological examples interpreted as archaic firearms trauma including an
example from the Netherlands dating from 1571 [35] two examples from Zirich from
1799 [36] and several recovered from the site of the Battle of the Little Bighorn, 1876
[37, 38].

4.2 The devil in the detail

The observed differences between the results in PBS and real bone ultimately derive from
the differing microstructures of the two materials. Bone possesses complex mechanical
properties resulting from its constituent materials and their arrangement in space [39]. All
bone has a composite microstructure comprising crystals of the calcium compound
hydroxyapatite (Caio(PO4)s(OH),) set in an organic (protein) matrix of type 1 collagen
fibrils (C,HsNOCsHgNOCsH1oNO,). Whilst the former conveys rigidity the latter confers
a degree of flexibility and resistance to failure by making the bone less brittle. Cortical
bone is formed in lamellar layers organized in a concentric, annular pattern in alternating
directions around a central canal (Haversian systems). These Haversian structures run in
a uniform local orientation making bone directionally ‘grained’. The course taken by
fractures is then influenced by this local orientation of bone fibres [32, 40]. Further, the
microstructure of bone has been shown to influence its response to ballistic trauma in
complex ways at a microscopic level, including delamination, directional cortical bending
and lateral deflection of portions of cortex. It has been demonstrated that such changes
are recognizable to the extent that they can be used to differentiate between different
types of ammunition microscopically [6]. In contrast to this organized complexity,
polyurethane has an essentially uniform microstructure devoid of regular organization



above the molecular level. These differences would explain the discrepancies noted in the
response of the two materials to trauma both grossly and on close examination. With
regard to these differences it is argued that polyurethane is not a useful proxy for studies
investigating trauma to bone at anything below a very broad, superficial level. Further
support is given to this point by Quenneville et al. [41] who found that stress and strain
tests conducted on polyurethane long bone models demonstrated that these have
tolerances that differ from real bone by significant amounts and therefore recommended
that such are not used as proxies for human bone in experiments aimed at simulating road
traffic collisions.

A further factor influencing the way fractures propagate in bone is the gross geometric
form of individual bones. With regard to the skull, the various cranial bones exhibit
complex shapes and variations in thickness throughout. Whilst some areas of the cranium
can measure <3mm thickness [42], other areas are much thicker functioning as
‘buttresses’ (Figure 6) to strengthen particular areas [32]. These variations influence the
course of fractures which will follow the line of least resistance and so deviate toward
areas where the bone is thinner. Again, PBS differs in this regard in that it has a uniform
thickness throughout.

4.3 “We Prohibit that Murderous Art of Crossbowmen” (Pope Innocent II, AD1139)

The crossbow was included to deliver impacts at lower velocity. Despite being a
powerful example, the crossbow failed to induce secondary or tertiary fractures even
though the bolts travelled through the full thickness of the gel-filled spheres to produce
consequent ‘exit wounds’. Again, this lack of complex fractures gives support to the idea
that such patterns of damage are produced as the result of the shockwave effect produced
by high velocity projectiles with sufficient energy to travel at hundreds of metres per
second as opposed to the relatively slow velocities produced by the ‘spring’ mechanism
of a bow (Table 1). This observation contradicts the supposition by Guiffra et al. [43] that
crossbows would produce “extensive radiating fractures” because they are “high velocity
weapons” (which they are not). Secondly, the area of ‘cranium’ punched outwards at the
exit point of the bolt was sufficiently large that it might well not be recognized as a
projectile wound if seen in a skeletonized individual. Such a defect might well be
interpreted as blunt force trauma, rather than a projectile exit wound. As regards how to
tell the difference (other than by noting the defect was opposite a small puncture on the
opposite side of the cranium), this would involve attention to the direction of beveling at
the wound margin. Bone is stronger in compression than in tension [39] and consequently
when forces are sufficient to cause failure the resultant fractures will initiate from the side
of the bone under tension (Figure 6 b., c.). In blunt force head injuries the forces acting
on the cranium are delivered from the outside and so produce depressed defects that are
beveled internally. Where concentric fractures are produced by forces from within the
cranium —in this case the exiting crossbow bolt —the resultant defect (known as ‘heaving
fractures’) will be externally beveled. These issues have been explored by Hart [16] in
relation to gunshot wounds who supported this conclusion with forensic examples of
such. Accordingly, such external beveling was present in the crossbow exit defects in the
PBS spheres. Lastly, a salient point regarding the crossbow bolts used in the current study
is that these had conical tips for target shooting (not dissimilar to bullets). This choice



was made so that any differences in the results could be attributed to velocity/energy
rather than variations in projectile form. It is intended to repeat this work to investigate
the effects of different types of bolt head, as used variously in the Medieval period, such
as triangular hunting heads or armour piercing heads.

5.0 Conclusions

Synthetic ‘bones’ of the kind tested in this study respond to ballistic impacts in ways that
are superficially similar to the forms of damage that would be expected in human cranial
bone. However, important differences were noted that render this material less useful for
studies conducted at a more detailed level. In spite of this criticism a case remains for
using simple synthetic models of this kind in ballistic experimentation. Despite the clear
dissimilarities with the way real bone behaves at both a microscopic and macroscopic
level, these spheres still exhibit patterns of damage that are a fair general approximation
of those seen in bone. Whilst animal crania are too dissimilar to our own to be useful
proxies and using human cadaveric material is ethically undesirable in many people’s
opinions (including our own) the latter is also problematic as discrepancies in the results
of experiments simulating traumatic injury cannot easily be excluded from variation
caused by differences in the strength and thickness of cranial bones both within and
between individuals. In this regard synthetic bone substitutes actually possess a distinct
advantage as they are uniform in size, shape and thickness and in this respect are
arguably a better medium for simulating skeletal trauma than actual bone as any
variations seen between samples must relate to differences in the mechanism of injury
rather than confounding variables of differing thicknesses and irregular geometry in real
crania. In the current study the damage patterns caused by the three different projectile/
weapon types used are clearly distinguishable from each other and as long as the above
caveats are borne in mind such synthetic proxies offer a useful, relatively cheap and
repeatable means of answering questions regarding the likely signatures of any other
trauma mechanism researchers might wish to investigate.
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Figure Captions

1.

Views of experimental arrangement and ammunition used. a. The adjustable
cradle with Parker Hale rifle in place ready to fire through a chronograph into the
test pit, b. 7.62 x 51 mm NATO Full Metal Jacket ammunition -longitudinal
section reveals jacket over bullet tip, c. .243” Winchester jacketed soft-point -
longitudinal section reveals lead core visible at the projectile tip, d. Lead Minié
balls —developed in the mid 19" century with a conical profile and concave base
designed to cause the bullet to expand and grip the barrel rifling to improve
stability, e. Crossbow bolt tip with conical target point.

Views of bevelled defects produced in PBS samples by the modern hunting rifles.
a. exit defect in empty sphere, b.‘exit’ defect in flat plate.

a. lllustration of radiating (secondary) and concentric (tertiary) fractures of the
cranial vault in response to high energy impacts. b.-f. Cranial gunshot wounds in
skeletal remains of individuals killed during the Spanish Civil War displaying
‘classic” examples of gunshot entrance and exit defects and additional associated
fractures. These injuries are likely to have been caused by M93 Mauser rifles
which deliver a round at a weight and velocity in between those of the modern
rifles and black powder musket used in the current study (photographs by kind
permission of Luis Rios).

Patterns of damage produced in PBS spheres filled with ballistic gelatine. a., b.
internal and external views of classic stellate and concentric fractures in an
entrance defect produced by a 7.62 NATO round, c. entrance defect produced by
black powder minié ball with stellate and concentric fractures, d. ‘keyhole’ defect
produced by a tangential impact from a minié ball, e. discrete entrance defect
produced by crossbow bolt lacking secondary/ tertiary fractures, f. reconstructed
fragments at crossbow exit defect —stellate fracture centred on a single point of
failure contained within a discrete secondary (concentric) fracture.

Comparison of the form of bevelled exit defects in PBS samples and real bone
(human and animal) shot with modern firearms. The defects were photographed
and the outlines traced to produce vector drawings. These were then standardised
to the same dimensions along their longest axis and radial centroids were added at
10° intervals to facilitate comparison of morphology (actual dimensions and area
were compared separately) a. overlay of outlines of 8 defects in real bone, b.
overlay of outlines of 8 defects in PBS samples, c., d. examples of photographic
overlay in real bone and PBS, e. data values displayed as Gaussian curves to



illustrate the extent of overlap/ separation between the two samples when
comparing them in terms of different variables.

6. a. Frontal view of areas of facial buttressing influencing the course of fractures
within the skull (after Fenton et al., 2005). b, c. schematic representation of the
formation of concentric fractures surrounding significant impacts to the cranial
vault, b. blunt force trauma —here all the mechanical force affecting the cranium is
delivered externally producing a concentric fracture with an internally bevelled
margin, c. high energy ballistic trauma —here the gases and kinetic energy
discharged by the bullet produce counteracting forces from inside the cranium
causing the associated concentric defect to bevel outwards (after Hart, 2005). C=
bone stressed in compression, T= bone stressed under tension.

Tables

Table 1. Characteristics of the weapons and ammunition used in the experiments.
Velocity data derived from: *Manufacturers website; ** Measured by present authors by
chronograph; *** Averaged from published velocities for four black powder weapons of
similar type and date [44].

Weanon AmmunitionW Sht | Weiaht Velocity | Energy
P Type Calibre [grilli%s] (grealr%s) (m/s) J)
Tikka 550 Winchester SP 243" 100 6.5 905* 2660
Parker Hale T4 Nato FMJ 7.62 147 9.5 853** 3456
1861 Carbine Minie Ball 0.58 463 30.0 468*** 3285
Jaguar Crossbow | Perfectline alloy 8.0 363 23.5 75* 66

Table 2. Measurements of beveled areas produced by gunshots fired from the modern
rifles. NN=Nearest Neighbour. *Images scaled to same size along their longest axis so
measurements = relative to overall form rather than absolute units.

Kolmogorov-
Bone PBS Smirnov Test
Mean St.Dev Mean St.Dev P-value
Max. Diameter (mm) 20.62 5.14 14.97 2.37 0.008
Radial Measurements* 42.43 6.31 44.12 6.37 0.004
NN Differences* 2.00 2.04 3.23 4.46 0.002
Comparative area* 11924.38 2304.02 12995.25 1997.81 0.023




