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Abstract

Source based heterogeneous modelling is a powerful way of defining gradient materials within a volume. The cur-
rent solutions do not take into account the topology of the object and can provide counter intuitive results for complex
objects. This paper presents a method to interpolate material properties and attributes based on the accessibility of
the points in respect to the material features defined by the user. Our method requires the non overlapping source
features with constant material to interpolate gradient materials, by using Voronoi diagrams on interior distances. It
leads to intuitive material properties across the shape regardless of its topology or complexity. We show how the shape
conformal field is defined inside the volume and can be extended outside the volume to create a valid operator for a
heterogeneous modelling system dealing with scalar fields.The presented method is computationally e cient and has
several applications, such as material property interpolation and shape aware procedural micro structures.

Keywords: Heterogeneous modelling, material interpolation, shape conformal, interior distance, procedural
texturing
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Figure 1: Material interpolation: a) Model with material features de-
noted, b) global transfinite interpolation, c) our method.

1. Introduction

Recent developments in the representation of real-life
objects shows a paradigm shift from surface modelling
where the interior of the object is homogeneous to a het-
erogeneous volume modelling approach. This allows us
to take into account the complex internal structure of
the object which can contain diverse materials and pos-
sess various physical properties. Heterogeneous mod-
elling has found its applications in a wide range of di-
verse areas from biological and medical research and
bio-engineering to multi-material design for fabrication
and digital entertainment applications.

There exist several ways to define the interior struc-
ture of the object. The simplest one is explicit defini-

tion, e.g. for a large number of points that belong to the
interior of the object we can specify the values of the
attributes such as material, density etc. Alternatively
if the geometry of the object is represented by a voxel
set, the attributes can be defined per voxel. However in
practice explicit definition is very ine cient because the
more precise the materials are defined the more points
or voxels should be set and the amount of data can be
unbearable in this case. Therefore procedural methods
becomes are more suitable for the purposes of the mate-
rial definition. A convenient way to do this is to specify
the attributes only in a finite number of points or closed
areas and interpolate the values elsewhere. Most of the
interpolation methods, such as transfinite interpolation
[1] however, do not take into account the shape of the
object itself but rather providing a general interpolation
within the whole space.

In this work we present a method that allows to define
the interior structure of the object by using simple inter-
polation techniques yet taking the shape of the object
into an account. We are working with the object de-
fined by continuous scalar fields that allows us to work
with arbitrary accuracy without increasing the complex-
ity. As a result, we allow the user to set up the materials
in a convenient way and e ciently evaluate the material
in arbitrary point in space inside as well as outside the
volume object. In this paper we present formulations for
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shape-aware material distribution for the volume object
represented by a scalar field, discuss the practical ap-
proach for interior distance fields and present some ap-
plications of our method for heterogeneous modelling.

2. Background and Related Work

2.1. Procedural material distribution

Di erent approaches exist to define the material dis-
tribution inside a volume object using limited informa-
tion. Some methods use the attributes at the surface to
extrapolate the attributes inside the volume by propaga-
tion. Thus, in [2] the texture coordinates for the point
inside a source shape are obtained by finding the corre-
sponding point on the support surface by letting parti-
cles flow through the gradient vector field. In general,
this method can lead to discontinuities and is very lim-
ited in modifying attributes inside the volume. Source-
based methods allows users to specify more informa-
tion regarding attributes inside the shape by defining the
sources for the material distribution and procedures to
find the values of the attributes in the ambiguous areas
where no source has been set up. Heterogeneous mod-
elling using source features was introduced in [3] where
the standard set-theoretic operations were used in the
context of material properties. The gaps in the material
distribution were filled by using a weighted sum of the
materials defined by the neighbouring source features.
In [4] the material distribution is defined by using op-
timisation techniques with parametric distances. In [5]
is shown how the particular attributes of the model can
be interpolated by using mass transport. However the
generalisation for arbitrary attributes is not straighfor-
ward and the solution requires solving PDE systems for
querying the attribute value in a point in space which
makes it impractical for interactive applications. In [1]
transfinite interpolation is used to define the material
properties in space including the interior of the object.
The simple formulation is used to find the attributes in
the areas between the sources, however the method is
global and does not take the shape of the object into ac-
count. The shape of the object can was taken into an
account for a limited types of input data. Thus, in [6]
the medial axis is used to define shape-aware internal
structure, which makes it uneasy to use for the geome-
try where the medial axis is hard to find, e.g. implicitly
defined.

2.2. Interior distance fields

Interior (inner) distance measures the path between
two points inside the object where all the points of the
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Figure 2: Algorithm details: a) Source model with the material feature
defined, 3 point features (denoted by red, blue and green) and1 solid
(denoted by purple); b) Voronoi diagram applied for interior distance
fields defined by the material features; c) Bu er zones based onthe
Voronoi diagrams; d) Result of the interpolation

path belong to the interior or the surface of the object.
Various ways to define and calculate the inner distance
between two points belonging to a closed object exist,
including barycentric coordinates of a polygonal mesh
[7] and a visibility graph for the volumetric object [8].
Also, the inner distance can be defined by using other
ways, for example, in terms of Eikonal equation [9]
and heat flow [10]. In general, as noted in [7], the
interior distance can be expressed in a continuous set-
ting, however in practical applications usually approxi-
mations are used.

3. Shape-aware interpolation

In our method we see the material distribution as a
function fm : 3 n wheren denotes the number
of real numbers to describe the attributes in the mate-
rial distribution. In the simplest case the material is de-
fined by a real-valued function, i.e.n 1, the exam-
ples of this material can be value of the material density
or the contrast of the colour defining the material (K
component). In this paper for visualisation purposes for
most of the examples we define the material by its RGB
colour,n 3.
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We are working with the geometry defined in an im-
plicit form, that means the volume object can be repre-
sented by its boundary (e.g. polygonal mesh), but we
convert this boundary to a function for which the sign
of the value in the given point denotes whether the point
in question lies inside, outside or on the surface of the
volume. Given the volume objectS, the shape of the
volume object is defined as a scalar field with a defining
function fs(x). The sign of the defining function distin-
guishes the interior and the exterior of the volume, i.e.
fs(x) 0 for the exterior,fs(x) 0 for the interior and
fs(x) 0 for the boundary of the volume object.

Inside the volumetric object, we define a number of
material features, i.e. closed regions where the geome-
try and the material are known. The geometry of each
material feature is also represented as a scalar field with
the defining functionfmi (x), wherei 1 n is the index
of the given material feature andn features are defined
overall.

The steps of the method are shown on the figure 2. In
brief, to make the interpolation, we use material source
features (figure 2a) to propagate the interior distance
field with respect to the input shape. Next, we construct
a Voronoi diagram based on these distance fields (fig-
ure 2b) to build attribute cells for each material source
and interpolation zones (figure 2c). Finally we use an
interpolation between the scalar fields of the resulting
Voronoi cells(figure 2d). Below we describe our method
in detail.

3.1. Interior distance field for material features

In our work we use an approximate Euclidean short-
est path [11] to define the interior distance field. The
choice of this method over other existing in current state
of the art (see section 2.2) is that it is easiest in terms of
implementation and as e cient as some others (e.g.[9]).

Given the material featurei with the defining function
fmi (x), the value of the field for this material feature is
defined as following:

di(x) min
x j : fmi (x j ) 0

(x xj ) (1)

Here (x xj ) denotes Euclidean shortest path between
pointsx andxj inside the volume objectS and de-
notes length of this path.

In practice the exact calculation of Euclidean shortest
path is an NP-hard task and given the additional com-
plexity of the global minimum operator, we only calcu-
late the approximate Euclidean shortest path and hence
approximate interior distance. We discuss the details of
the process of construction and querying the value of
the interior distance field in section 4.

3.2. Interior distance Voronoi diagram

An important concept we use in our material interpo-
lation is the Voronoi diagram which we apply to scalar
fields.

First, we revise the definition of the Voronoi diagram
for Euclidean distance. Given the set ofn pointsvi

d i 1 n, the Voronoi diagramV is the collection
of subsetsVi where each subset can be defined by the
following [12]:

V Vi ; Vi x d x vi x v j j (2)

Here x vi denotes the magnitude of the di erence
between the vectorsx andvi and hence the Euclidean
distance between them. The pointsvi are called Voronoi
seeds and subsetsVi are Voronoi cells ofvi . Each pair of
Voronoi seedsi and j define a plane that is equidistant
from these seeds:

x x vi x v j (3)

In our work we use generalised Voronoi diagram.
This generalisation has two steps: first, instead of points
that define Voronoi seeds as objects with the same di-
mension asx, i.e. we use volumes not just the points
and secondly, instead of the Euclidean distance between
Voronoi vertex and query point in the equations 2 and 3
we use the value of the interior distance field. There-
fore the plane from the equation 3 becomes a surface in
space that is defined as:

di(x) d j(x) (4)

Heredi and d j represent the absolute value of the in-
terior distance from the query pointx to the volumes
defining material feature. This surface defines a halfs-
pace defined in implicit form as following:

hi j (x) d j(x) di(x) (5)

It can be seen that the shape of each Voronoi cell can
be represented as an intersection of all the halfspaces for
the Voronoi seed of the cell:

vi(x)
j 1 n j i

hi j (x) (6)

Here denotes a set-theoretic operation (R-function)
for intersection. Various functions exist for perform-
ing set-theoretic intersections, however for the purposes
of modelling with scalar fields the following properties
should be held:

The function should have commutative and as-
sociative properties
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The function should preserve the distance property,
i.e. for any three pointsp1 p2 p3 the following
condition is held:

f (p1) f (p2) f (p1) f (p3) f (p2) f (p3)

where f (p) denotes the value of the scalar field at
the pointp.

In practice, only a few R-functions satisfy these cri-
teria:

R1 system [13] also knows as min-max functions

The system
0

[14]

Signed approximate real distance functions [15]
(SARDF)

As the R1 system results inC1-discontinuities and
SARDF functions are expensive to compute, in our im-

plementation we use the
0

system, where the intersec-
tion operation is defined by:

x1 x2

x1x2(xn
1 xn

2)
1
n x1 0 x2 0

x1 x1 0 x2 0
x2 x1 0 x2 0
( 1)n 1(xn

1 xn
2)

1
n x1 0 x2 0

(7)

So the scalar field for each cell in the Voronoi dia-
gram is therefore represented by:

vi(x)
j 1 n j i

d j(x) di(x) (8)

Here the operation is described by equation 7.
The example of the generalised Voronoi diagram is

shown on the figure 2b, where the cells are defined by 4
material source features, including three point features
and one volume feature.

3.3. Material interpolation with Voronoi diagrams and
interior distance fields

While presenting equation 8 we defined Voronoi cells
using interior distances, which means that the boundary
of the Voronoi cells is shape conformal. In the mate-
rial interpolation step we use this boundary to perform
material interpolation.

For material interpolation we distinguish two sub-
spaces (figure 2c):

The interpolation zones where the materials from
di erent cells are actually interpolated; these zones
are defined around the border of each Voronoi cell
for the given material source;

(a) (b) (c) (d)

Figure 3: Various o set valuessi j : a) Small uniform o set value leads
to a large constant blue block at the bottom, b) Large uniformo set
value leads to washed out colours for close source features,c) Using
an adaptive o set value based on distance between sources leads to
intuitive results, d) The adaptive value can be scaled to o set where
the interpolation starts.

The interior of the cell where only material defined
for this cell is applied; this zone can be obtained by
subtracting the point belonging to the interpolation
zone from the point set for the Voronoi cell for the
given material feature;

The interpolation zone can be defined by applying an
o setting operation to the halfspacehi j (the same as we
use in the equation 6) separating cellsi and j. The field
for the interpolation zone between cellsi and j can be
defined as follows:

bi j (x) hi j (x) si j d j(x) di(x) si j (9)

Heresi j defines the o set value and hence the width
of the interpolation zone between two feature materialsi
and j. Di erent values for the o set can be chosen. The
first simplest option is to choose the value of the o set
uniformly, i.e. such thatsi j s i j, however it might
lead to undesirable e ects. For example, in figure 3a, a
small value for the o set was used so that the interpola-
tion would keep the material features denoted by green
and by red intact. As a result, the transition between
the material features denoted by green and by blue is so
short and the feature denoted by blue seems to expand
more than it should. On the other hand increasing the
uniform o set value causes the blur e ect between two
materials whose sources are close (figure 3b). Another
option to choose the value for the o set is to make it de-
pendent on the relative position of two material sources,
such as the Euclidean or interior distance between these
sources. The figure 3c shows o set valuessi j adjusted
to fit interior distances between features. In figure 3d,
the transition distances were scaled to give more room
for constant material.

Finally, to find the final value for the interpolated ma-
terial, we use a weighted summation of the materials
participating for the given point:

c(x)
n
k 1wk(x)c̃k

n
k 1wk(x)

(10)
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Heren represents the number of material sources,c̃k

is the value of thekth material properties andwk is the
weight:

wk(x)

n

j 1; j i

bk j(x)

n

j 1

n

k 1;k j

bk j(x)

(11)

This equation corresponds to the interpolation ofn
features in [1], usingbk j(x) instead of the distance fields.
Note that the denominator cannot be zero as Voronoi
cells are not overlapping .

Note that the material parameters can be represented
as a multidimensional vector and here we assume that
simple linear interpolation can be used to for such vec-
tors. In some cases, however, additional interpolation
constraints should be applied, for example, to interpo-
late between two colours that are defined in RGB colour
space in a di erent colour space. In this case, equa-
tion 10 should be adjusted according to the interpola-
tion scheme for the given attributes. In our examples all
the attributes can be interpolated linearly and therefore
other interpolation schemes are out of the scope of this
paper.

4. E cient approximate interior distance field for
material sources

As we noted above, the calculation of the interior dis-
tance field is a fundamental part of our method. In this
section we discuss a simple solution to create such field
and query its values given any point in space, includ-
ing outside the bounds of the object. We separate the
procedure into two steps. First, we calculate the interior
distance for the cells inside the object. In the second
step we provide voxel values for the cells outside the
shape. The values outside the shape are also estimated
outside the bounds of the grid based on the grid bound-
ary values.

In order to get a continuous field, we use tri cubic in-
terpolation. Since the values outside the bounds of the
grid are extrapolated on the fly, the continuity is main-
tained throughout space.

4.1. Interior Distance Propagation

The use of a 3-dimensional regular grid is one of the
most common ways to approximate the Euclidean short-
est path inside a volume object by using the regular grid
defined for the interior of the object. In [11] such a grid

(a) (b)

Figure 4: The interior distance field inside and outside the shape: a)
The interior distance field for the shape, b) its corresponding extension
to the exterior of the shape.

is called a cuboidal world. The representation of the ob-
ject using distance fields gives us a fast and simple way
to build such a structure.

For cells that were found to be inside the given shape,
we find the setCi of the cells that belong to the boundary
of the material featurei by using the same approach: we
process the cells that contain the zero-level set of the
function fmi by checking the value of this function in
the corners of the given cell.

Unlike methods to calculate the Euclidean shortest
path between two points, we need to be able to calcu-
late the shortest path between a point and the material
feature. To achieve that, we use a propagation of the
distance in the given regular grid. The grid is repre-
sented as a graph where cells are vertices of the graph
and the adjacency information forms the edges of the
graph. Then we use a modifiedA search algorithm
which we present in Algorithm 1.

If only the 6 direct neighbours are used, the distances
will be Manhattan distances. By using 26 neighbours,
the results are better although some patterns still appear.
The results can be improved by finding the root of the
straight segment leading to a sample, and checking for
visibility. The details are in algorithm 1.

4.2. Exterior propagation

To construct the interior distance field in section 3, we
use the Euclidean shortest path between the query point
and the material feature shape. However this restricts
the topology of the volume object and the positioning
of the material sources. For example, if the object has
two disjointed components, the shortest path between
the point which lies inside the first component and the
material feature which lies inside the second component
is ill-defined. The similar situation occurs where the
material feature is defined outside the volume object.
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Input : seeds: Initial seeds
G: A grid
S: Shape which defines the boundaries
Output : Seeds for exterior propagationO
F: Priority queue of cell coordinates ;
foreach p in seedsdo

insertp to F;
end
while F not emptydo

cell coordinatescurrentretrieved fromf ront;
currentvalue value atcurrent in G;
currentroot value atcurrent in G;
rootvalue value atcurrentrootin G;
foreachNeighbour coordinate neighbourdo

if neighbour outside Sthen
f rontdistance
distance(neighbour current);
recordeddistance value at
neighbourin G;
if f rontdistance recordeddistance
then

value atneighbourin G
f rontdistance;

end
insert uniqueneighbourin O;

else
if isVisible(neighbour,currentroot)
then

f rontdistance
distance(neighbour currentroot)
rootvalue;
neighbourroot currentroot;

else
f rontdistance
distance(neighbour current)
currentvalue;
neighbourroot current;

end
recordeddistance value at
neighbourin G;
if recordeddistance f rontdistance
then

continue;
end
value atneighbourin G

f rontdistance;
root atneighbourin G

neighbourroot;
insertneighbourto F;

end
end

end
Algorithm 1: Interior propagation

To resolve this, our method to calculate the interior dis-
tance can be extended to query values outside the shape.
The value at the given point outside the volume object
can be found in either of two ways:

1. If the point lies inside the bounds of the grid, we
use the same procedure as for interior distances,
however we apply it twice - first, to calculate
the shortest path to the material source within the
shape and second, the shortest path to the shape;

2. If the point lies outside the grid, we extrapolate the
cell data to preserve the rate of change.

First, we evaluate grid samples within the bounds of
the grid. The value of the sample can be found by us-
ing a similar procedure to algorithm 1, where the seeds
are provided by the first propagation (O in 1). The only
di erence is that the algorithm does not check if it is
crossing the field, but cannot overwrite values written
by algorithm 1 (interior distances). The seeds are ini-
tialized to zero instead of carrying over the value of the
interior distance. This is because we try to keep the dis-
continuity far from the surface. Once the cells have been
computed, we add back the interior distance o set to all
the cells calculated from this second step. This means
that the boundary cells on the outside of the shape have
close values to the ones on the inside. This is neces-
sary to avoid our cubic interpolation to make the object
surface values noisy.

Finally, we run several iterations of a local blur on
all the cells outside the shape. We use a simple uni-
form blur, but better kernels exist. This additional step
is made to reduce the high variations in the field.

To sample any point in space, we also need to extrap-
olate our samples outside the bounds of our grid. For
simplicity, we extrapolate the discrete data on the fly
from the boundary values of the grid. The extrapolation
needs to maintain the rate of change the boundary cells
have and carry over their value. We propose this simple
formula which provides intuitive results:

V(x y z) V(xb yb zb)

V(xd yb zb) d(x xb)

V(xb yd zb) d(y yb)

V(xb yb zd) d(z zb)

(12)

Herex, y, zare the integer sample coordinates and are
not bounded by the grid,xb, yb, zb are the bounded coor-
dinates ofx, y, z within the grid,xd, yd, zd are bounded
coordinates o set by one within the grid. This means
that if x is lower thanxb, thenxd xb 1, otherwise ifx
is greater thanxb thenxd xb 1. The functiond simply
returns the distance between the two coordinates.
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(a)

Figure 5: Material properties are easily set up using our method.

(a) (b) (c)

Figure 6: Influence of the resolution of the voxel grid on the interpo-
lation: a) Resolution 2563, b) Resolution 643, c) Resolution 323

5. Application and results

We have tested our method on a number of volume
objects where the number of material sources were set
up by the user. The implementation was done as a Maya
plug-in (figure 5) allowing the user to set up the material
sources in an easy and intuitive way. The average tim-
ings for the set up the interior distances for the model is
about 5 seconds (all the measurements were performed
on an Intel Xeon CPU at 3.33GHz, with 8 GB of RAM
and without the use of multi threading) on a dense reso-
lution we have tried (a 2563 grid), however this resolu-
tion can be decreased without significant changes in the
result of the interpolation (see figure 6). As expected,
the number of polygons does not seem to have an impact
on the computation and querying of a value in 16 mil-
lion points takes around 8 seconds. This allows to po-
tentially use our method for interactive applications, es-
pecially if interior distances are pre-defined in advance.

Most of the figures in this paper illustrate interpola-
tion over the material represented as a colour distribu-
tion inside the shape. However many other attributes
can be defined for the interior of the object. Another
way to represent the heterogeneous nature of objects is
to define microstructures (i.e. internal spatial geomet-
ric structures with size of detail orders of magnitude
smaller than the overall size of the object) inside them.
Microstructures can be described procedurally [16] by
a function with several parameters such as orientation
and thickness and therefore its parameters can be inter-
polated using our method.

(a) (b)

(c)

Figure 7: Procedural microstructure created with our method: a)
Porosity structure with interpolation over the pores size,b) Regular
lattice with interpolated parameters, c) Foam structure with several
parameters.

In figure 7a we show how simple parameters of the
microstructure can be interpolated on an example of
porosity parameter. More parameters can be defined for
each material source and interpolated. Thus, in figure 7b
di erent lattice structures are defined for di erent mate-
rial sources: cylindrical lattice with di erent thickness
for two material sources and cubical lattice with di er-
ent thickness for another two material sources. Our in-
terpolation method provides a weighting for each fea-
ture, and therefore we supply blend all the lattices to-
gether using a weighted sum of the function values of
each lattice. Finally, in figure 7c, we use four features
where several values are set. The objective is to con-
trol the attributes of the foam structure which are av-
erage cell size, wall thickness and roundness (blending
amount). Each feature provides a value for each of those
parameters. The large red feature uses a small cell size,
large blending value and thick walls. The green feature
contrasts with narrow walls, practically no blending and
ample cell size. The last two features (yellow and blue)
have high blending, thick walls. The yellow feature has
the same cell size as the red feature while the blue is
slightly larger.
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6. Conclusions and discussion

Volumetric interpolation of object properties is an im-
portant operation for heterogeneous modelling of volu-
metric objects. While users can define some of the ma-
terial sources, in the end one should be able to define
the material distribution with as few material sources as
possible. This is why the shape of the volume object
should be taken into account. In this paper we show
that the use of internal distances is a good way to take
the shape of the volume object into account while in-
terpolating the material attributes in the areas where the
material is not defined. Our method allows for the def-
inition of material sources as geometric objects defined
by continuous scalar fields and therefore by using in-
ternal distances and Voronoi diagrams together achieve
intuitive results to the user. It should be noted how-
ever that for many real-life applications additional con-
straints, such as gradients, profile curves and so on are
often defined for the material distribution. While we
have not discussed these constraints in this paper, we
feel that it should be further researched.

In our experiments we have used small numbers of
material sources. One can observe that if the number
of sources is very large and limits to infinity, inside the
shape the method converges to standard transfinite inter-
polation. As the formulation for transfinite interpolation
is simpler and it is computationally less expensive than
our method it would be interesting to find the point at
which the number of material sources where our method
produces the same or similar results with transfinite in-
terpolation. In any case, our method still allows the user
to make the input as little as possible.

Also in this paper we presented a way to extend the
interior distances to allow the material attributes to be
defined at any point outside the volume object. While
the solution is straightforward, strictly speaking the idea
of interior distances defined externally is mathemati-
cally weak. More research is required to prove that
shape conformal methods are not ill-defined outside the
given volume object.

Finally, we have presented a few applications in this
paper. Heterogeneous modelling of volume objects is a
relatively new topic and more applications are yet to be
found and tested against our method.
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