
Efficient Evaluation of
Functionally Represented

Volumetric Objects

Tuomo Rinne

A thesis submitted in partial fulfilment of the requirements

of Bournemouth University for the degree of Masters by

Research

September, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42142538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright statement

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with its

author and due acknowledgement must always be made of the use of any

material contained in, or derived from, this thesis.

i

Contents

Table of contents . ii

List of figures . iv

List of tables . vii

List of Acronyms . viii

Abstract . ix

Acknowledgements . x

1 Introduction 1

1.1 Hardware for high-performance computing 2

1.2 Problem statement . 4

1.3 Contributions . 5

2 Related work 6

2.1 Function representation 6

2.1.1 Tree traversal . 7

2.2 Parallel hardware . 8

2.2.1 SIMD . 10

2.2.2 Development frameworks 13

2.3 Fast Rendering of FRep shapes 15

2.3.1 Auxiliary data-structures for rendering 15

2.3.2 Direct rendering 18

2.4 Survey on efficient FRep function evaluation 19

2.4.1 Hardware methods 20

2.4.2 Algorithmic methods 22

2.5 Conclusion . 23

3 Efficient function evaluation 24

ii

3.1 A multikernel approach to distributed function evaluation 24

3.1.1 The multikernel method 25

3.2 FRep function classifications 27

3.2.1 Geometric objects 27

3.2.2 Geometric operations 29

3.3 Conclusion . 34

4 Applications 35

4.1 Test settings for node evaluations 35

4.1.1 Case study: sweeping by a moving solid 40

4.1.2 Case study: Offset Along a Normal 41

4.1.3 Case study: convolution surface using lines 42

4.1.4 Case study: HyperFun fractal 43

4.2 Complex tree structure generation 44

4.3 Conclusion . 44

5 Results 46

5.1 Tree traversal results . 47

5.2 Individual node results 51

5.2.1 Case study: Inside-outside segmentation of polyg-

onal mesh . 53

5.2.2 Case study: Offset along a normal 54

5.2.3 Case study: Sweeping by a moving solid 55

5.2.4 Case study: Projection 56

5.2.5 Case Study: Inverse free-form deformation . . . 57

5.2.6 Memory . 57

5.3 Conclusion . 58

6 Conclusion and future work 60

6.1 Future work . 63

References 63

Appendices 69

.1 Sweeping by a moving solid 69

iii

List of Figures

2.1 The first phase of function evaluation. The image is a

reproduction from (Kravtsov 2011) 8

2.2 The second phase of function evaluation. Image from

(Kravtsov 2011) . 9

2.3 On left a scalar ADD instruction executed on two 32-bit

registers containing values A[0] and B[0]. To execute four

float additions, a scalar instruction is executed for each

pair of operands in a sequence. On right, a vector VADD

operation executed on two 128-bit registers, each contain-

ing a vector of four 32-bit values. To add two vectors

together only one instruction is required. Both scalar and

vector addition requires one clock cycle per instruction. 11

2.4 Most modern GPUs have a two-level scheduling: user de-

fined thread blocks are first scheduled to streaming proces-

sors, whose thread schedulers make sure all the processors

are kept busy. 12

2.5 Scheduling of threads of SIMD instructions. SIMD in-

structions are scheduled to a group of processors. By defi-

nition the instructions can be independently, therefore the

scheduler fetches an instruction that is ready for evalua-

tion (Hennessy and Patterson 2011). 13

2.6 Bottom-up build process of 2-dimensional HP, adding the

values of four texels repeatedly. The last level contains

the total number of triangles in the pyramid. The figure

is a reproduction as seen in (Dyken et al. 2008). 16

iv

2.7 A pyramid is accessed by using a key k. A pointer p, a

current level l, and a local key kl are maintained during

traversal. Given k = 5, the level below ranges equal to

A = [0, 3), B = [3, 6), C = [6, 7), D = [7, 9). In the first

step the kl falls to range B. The p now points to B. In

second step A = [0, 0), B = [0, 1), C = [1, 1), D = [1, 3)

and kl = 5−3, hence p ends up pointing to a texel D. The

figure is a partial reproduction of a figure seen in (Dyken

et al. 2008). 17

2.8 In ray marching, a ray progresses through the scene until

sampling at either of the intervals end points returns a

zero or the values have different signs. The boundary will

be within the interval if the values have opposite signs. . 19

2.9 An instance of the whole FRep tree is given to each ex-

ecution unit. An execution unit in case of a GPU is a

streaming processor, and in case of a multiprocessor sys-

tem: a CPU or a core. 21

3.1 When evaluating nodes individually, a node is distributed

amongst the execution units and results stored for sub-

sequent nodes that require the results. The first step is

to turn the tree into a queue of tasks; In this example

Post-order tree traversal is used. An execution unit in

case of a GPU is a streaming processor, and in case of a

multiprocessor system: a CPU or a core. 26

3.2 The host side instructions for a simple tree. In the evalu-

ation post-order traversal is used to evaluate the tree; on

each node, memory is managed and kernels initiated.The

keep track of allocated GPU memory the host uses refer-

ence counted handles. 27

5.1 Execution of a random tree with 112 nodes on a GPU;

When a GPU can not fit all the samples into memory, the

average execution time rises. 47

v

5.2 Execution of a random tree with 112 nodes on a multipro-

cessor system. 48

5.3 Execution of a random tree with 112 nodes on multipro-

cessor system ; High number of memory queries results in

high cache-miss ratio. 49

5.4 A compilation step in comparison to the evaluation in a

single kernel method, is a major cause for execution over-

head. 50

5.5 The execution speed calculations made on existing FRep

function classifications for geometric objects. 51

5.6 The execution speed calculations made on existing FRep

function classifications for geometric operations. 52

5.7 Evaluation times of Mesh on the left-hand side graph. . . 53

5.8 Evaluation times of OffsetAlongNormalNode on the left-

hand side graph. A rendered image of operation applied

to union of two spheres and a cube on right-hand side. . 54

5.9 Evaluation times of SolidSweepNode on the left-hand side

graph. A rendered image of solid sweep operation applied

to union of two spheres and a cube on right-hand side. . 55

5.10 Evaluation times of Projection on the left-hand side graph.

A rendered image of projection operation applied to twisted

cube on right-hand side. The faraway plane is the result

of the projection. 56

5.11 Evaluation times of InverseFFD on the left hand side

graph. A rendered image of InverseFFD operation ap-

plied on torus on right hand side. 57

5.12 A division of Hyperfun fractal evaluation into a memory

transfer from host to device, evaluation of the code, and

transfer of the results back to host. The timings are done

with OpenCL timing events. 58

vi

List of Tables

4.1 A simplification of node classifications in form of a graph.

L1 and L2 are classes for geometric objects: L1 classifies

functions according to their defining function, L2 classifies

the functions according to their requirements for external

data. N1, N2, and N3 are classes for geometric operations:

N1 classifies operations according to their tree traversal

method, N2 classifies the operations according to the com-

plexity of function evaluation, N3 classifies the operations

according to their requirements for external data. 36

5.1 The GPU and CPU device info. 46

vii

List of Acronyms

BRep Boundary representation

FRep Function representation

GPU Graphics programming unit

GPGPU General purpose processing on graphics programming units

ISA Instruction set architecture

SIMD Single-Instruction, Multiple-Data

SIMT Single-Instruction, Multiple-Thread

SM Streaming multiprocessor

viii

Abstract

There are several approaches to representing shapes in computer graph-

ics. One of the ways to describe objects and operations is Function

Representation (FRep). In FRep, a geometric object is defined by a

single continuous real-valued function of point coordinates.

Generally geometric modelling is conducted in order to achieve vi-

sual outcome. In FRep the transformation of a function into a visual

representation relies on extensive sampling of the function. The compu-

tational cost of the sampling can cause adverse effects during applications

runtime.

In this thesis the problem of efficient evaluation of the defining func-

tion is discussed. An observation is made on wide range of operations and

primitives within FRep and their suitability for parallelization. Further-

more, a new novel method is proposed to distribute FReps computational

workloads on parallel hardware devices such as graphics programming

units and multi-core processors.

Keywords: Scalar fields, heterogeneous computing, Function Repre-

sentation, High-Performance computing

ix

Acknowledgements

I would like to thank my supervisory team: Prof. Alexander Pasko, Dr.

Valery Adzhiev and Dr. Oleg Fryazinov for their advice and guidance

during this project. I would also like to thank Dr. Leigh McLoughlin

and Mathieu Sanchez for their advice and support.

For code contributions I would like to thank: Dr. Pierre-Alain Fay-

olle for the genetic algorithms to create random tree structures, Dr. Oleg

Fryazinov for the numerous individual node implementations, Dr. Leigh

McLoughlin for the initial tree structure implementation, and Mathieu

Sanchez for the meshing, inside-outside segmentation, and shading algo-

rithms.

I would also like to thank my reviewers Dr.Ian Stephenson and Dr.

Irina Voiculescu for their feedback and suggestions.

Finally, I would like to thank my family and friends for their support.

x

Chapter 1

Introduction

Geometry of the real-life objects can be represented in a computer sys-

tems by a wide range of different ways. Fundamentally, the representa-

tion of the geometry of the objects can be distinguished into parametric

form, where the geometry of the surface can be obtained explicitly and

into implicit form where a predicate is given to distinguish the points

which belong to the object and not.

One of the main examples of a parametric form is a polygonal mesh

which is widely used for various applications because of its direct support

by a computer hardware for visualisation purposes. Recent advances in

the hardware and software allows to use wider range of representations

in the interactive modelling and visualisation systems. Many methods

are using graphical hardware (GPU) for general purposes computations

in order to accelerate the processing of the geometry.

Function Representation(FRep) is a way to describe geometric shapes

implicitly as a single function of point coordinates or with a scalar field.

The shape is constructed from functions that describe geometric objects

and operations. The constructed function returns a scalar value that

represents the points relation to a surface of the shape.

The defining function can be constructed using wide range of simple

functions such as trigonometric and algebraic functions. Very often the

model defined with Function Representation is expressed as a tree struc-

1

ture of geometric operations as internal nodes and geometric primitives

as leaves. In such cases modelling of the shape can be done through

modifying a tree structure either by adding and removing nodes from it

or changing parameters of the existing ones.

In order to object expressed as a function, it has to be sampled in a

number of points to derive enough information to determine where the

boundary of the shape is. The sampling can be also used to derive other

information about object such as material properties. The density of the

sampling is directly connected to the quality of approximation that can

be derived from the samples. For example, sparse sampling can miss

some sharp features. Denser sampling gives better approximations while

increasing the computational cost of the sampling process.

Interactive modelling of geometry is one application where quick visual

feedback and good quality of surface approximation are crucial for the

user. These applications require good sampling performance.

One of the main approaches to efficiently evaluate the function in

a number of points is to use specialised hardware where the same op-

eration can be calculated simultaneously by using the resources of the

hardware. In the current state of the art specialised hardware usually

means graphical hardware (GPU) applied for general purposes compu-

tations. However apart from benefits the graphics hardware has its own

limitations which should be taken into an account.

1.1 Hardware for high-performance com-

puting

Performance has always been an important factor in computing and its

is actively improved by hardware and new parallel algorithms. For many

years increasing the clock-speed of a processor was the main method to

increase the performance of a computer. However, complex multimedia

applications have raised the bar and a uniprocessor struggles to keep

up the demands. Increasing the frequency of a processor produces more

2

heat and consumes more power. Therefore, the feasibility of increasing

clock-speed in consumer level hardware is questionable.

In order to improve the performance semiconductor designers have

added more processors so the workload can be shared. A multiprocessor

design adds more responsibility on the software developer who has to

implement parallel algorithms to facilitate to all the processing power.

Programming for a parallel system like multiprocessor system requires

mental paradigm change from a serial execution model to a parallel exe-

cution model. In practice, a re-organization of algorithms is required to

utilize the parallel features of the computer.

Computer graphics is a field where the applications are well known

for their computational requirements. Dedicated graphics programming

units are manufactured to deal with graphical workloads. The compu-

tational profile in graphical applications often includes a lot of same

computation done on multiple elements. These tasks are generally fairly

trivial and deal with vertices and pixels. In many cases the tasks can

be executed in parallel. As a consequence, a GPU has evolved to sup-

port high-level of parallelism by using a large number of independent

processors.

Historically GPUs were mainly designed to speed up the computa-

tion of graphics in gaming. However, there are a number of problems

unrelated to graphics that can benefit from parallelization, for example

complex simulations. The GPUs have beed adopted to these purposes

and specialized frameworks are developed to help developers (Luebke

et al. 2004). This form of computing is often referred as general purpose

processing on graphics programming units (GPGPU).

There is a inherent difference between a GPU and a CPU. There-

fore, some algorithms may not translate from CPU to GPU. Problems

are often caused by restrictions in the model GPUs are developed. The

device memory is handled differently in GPUs and CPUs. Hence some

algorithms and data structures do not directly translate from CPU to

GPU. For example, modern GPU development frameworks do not allow

some programming constructs available in popular programming lan-

3

guages such as function pointers and recursive functions.

An important difference between the devices is the memory manage-

ment model. A GPU is controlled by a host program that initiates tasks

and manages the memory. A host is responsible for allocating a block

of memory that will store the results of computation. This model can

be difficult for some algorithms. For example in the context of FRep,

transforming an object from function to a auxiliary data-structure such

as polygonal mesh requires some memory which is not known a priori

of computation.A CPU in the other hand has access to computers main

memory and can dynamically allocate some memory if needed.

1.2 Problem statement

Several FRep applications, especially interactive modelling, are prob-

lematic because of simultaneous need for fast and high-quality visual

feedback. Using FRep for a visual application implies two processing

stages: sampling of the defining function and the rendering of the shape.

A slow execution of either stage can result in interruptions or slowdowns.

In geometric modelling, the slowdowns are disturbing and in the worst

case, some geometrical features can be missed if an user or application

proceeds to next iteration without waiting for the previous results.

From perspective of parallelism FRep function evaluation is simple

as generally sampling at a point does not rely on the results at other

points. Therefore, each evaluation of the tree can run independently and

therefore in parallel. However, one has to keep in mind the limitations

of graphics programming units and their development frameworks. For

example, some complex models are difficult to implement because of the

restrictions.

The goal of this research is to investigate how to achieve efficient

function evaluation by using the computing resources present in a mod-

ern computer. The focus is on how to efficiently distribute workloads to

processors seen in consumer-level hardware. A wide range of FRep prim-

4

itives and operations are observed in order to determine the feasibility

of the used methods.

The initial state of the research consists of:

• The existing FRep function classifications.

• A survey of techniques to improve the efficiency of function evalu-

ation.

A set of operations to achieve the research goal includes:

• Understanding of available computing hardware and their comput-

ing capabilities for the purpose of efficient function evaluation.

• A study on how to effectively control the hardware how to dis-

tribute work loads on them.

1.3 Contributions

This thesis presents a discussion on the problem of efficient evaluation

of the defining function for the model represented with Function Rep-

resentation. An observations is made on wide range of the nodes and

primitives within Function Representation along their suitability for par-

allelization.

A novel approach to distribute workloads on parallel hardware is pre-

sented in order to efficiently evaluate the defining function for a large set

of points. The presented method circumvents some problems present in

the current methods.

Finally, in this thesis we present empirical studies on application of

graphics hardware for a wide range of models defined with Function

Representation. The extend of these studies are not seen in previous work

where the focus is generally only on a small subset functions. From the

empirical result it is possible to observe the suitability of FRep primitive

and operation evaluation on parallel devices.

5

Chapter 2

Related work

This chapter is split into three distinct parts, the first part a defines

of function representation along with the tree structure and its traver-

sal. The second part gives a brief description on modern consumer-level

hardware and their parallel features.

In the third part, a survey is provided on existing methods of effi-

cient FRep function evaluation. An analysis is made on the strengths

and weaknesses of methods. The part also contains brief description on

available rendering methods that partly determine how the sampling is

conducted. A study on marching cubes polygonization algorithm also

provides an insight into some of the problems in the GPU development

models.

2.1 Function representation

Function representation (FRep) can be presented as an algebraic system

(Pasko and Adzhiev 2004):

(M,Φ,W) (2.1)

Where M is a set of geometric objects, Φ is a set of geometric opera-

tions and W is a set of relations for the set of objects.

6

A geometric object in Euclidean spaceEn is defined as f(p1, x2, · · · , xn)

≥ 0, where f is a defining function and the inequality is called a function

representation of a geometric object. The requirements for the function

is to have at least C0 continuity. The inequality defines a closed n-

dimensional object in En space with the following characteristics:

• f(p) > 0, for points inside the object,

• f(p) = 0, for points on the object’s boundary,

• f(p) < 0, for points outside the object,

where p = (p1, x2, · · · , xn) is a point in En. In the context of FRep, the

boundary of the object is also known as the zero-set.

In practice an object constructed from geometric operations and geo-

metric objects results to a tree-structure of nodes. Internal nodes of the

tree are geometric operations and leaves of the tree are geometric objects.

The geometric object expressed as a tree-structure can be modified by

adding nodes or removing nodes from the tree.

2.1.1 Tree traversal

An evaluation of the tree consists of initiating an traversal algorithm that

visits each node of the tree. The evaluation is divided into two separate

phases.

In the first phase the tree is recursively traversed from the root to the

leaves; Space mappings, if present, are applied to the input coordinate

in which the function is to be evaluated, the space mapping modifies the

point coordinates. The succeeding nodes in the branch are evaluated

with the modified point coordinates, until either a leaf is reached, or

another space mapping node occurs. See Figure 2.1 As a result of the

first pass, each node in the tree is associated with point coordinates that

the node is to be evaluated in.

After the first pass, the second phase is initiated. The second phase

evaluation starts from the leaves and ends at the root node. Each leaf

7

P

Coordinate: P

FRep 1

FRep 2

. . .

FRep L

FRep N

. . . FRep K

. . .

FRep M

FRep P

P

P1 P1 P1

P2

PL

PK

PM

P
h
ase

1

Figure 2.1: The first phase of function evaluation. The image is a
reproduction from (Kravtsov 2011)

node is evaluated in its associated space, resulting in a scalar value, and

the result is passed to the higher level, until root node is reached. A

tree may contain function mapping operations that modify the values

received from the evaluation of its operands. For example a set-theoretic

operation such as union receives scalar values from both its operands and

operates the values accordingly and returns a scalar. The procedure is

recursed until the root is reached which will yield the result of the tree.

2.2 Parallel hardware

Modern hardware is capable of several types of parallelism, these are

Instruction-level parallelism(ILP), Data-level parallelism(DLP), and Task-

level parallelism(TLP) (Hennessy and Patterson 2011). From the three

8

VP

FRep 1

FRep 2

. . .

FRep L

FRep N

. . . FRep K

. . .

FRep M

FRep P

Value: VCoordinate: P

P1 P1 P1

P2

PL

PK

PM

VK

VP

VK

VM

VN

VL

V2

P
h
ase

2

Figure 2.2: The second phase of function evaluation. Image from
(Kravtsov 2011)

types of parallelism DLP and TLP are most relevant to FRep and these

are discussed in the following sections; ILP is mainly a hardware detail

which a developer can not actively influence. Some devices are specif-

ically built for certain task. For example, graphics processors heavily

uses data-parallelism in order to provide performance benefits.

There are differences between on how different devices execute parallel

task and how the devices are controlled. Graphics processors require

a host program that manages the device. This includes the memory

and program executions on the device. In the context of GPUs the

programs executed on the devices are called kernels or shaders. A shader

is generally used for a programs that deal with graphical tasks. Kernel

is a used in general purpose computing. General purpose computing on

graphics processors (GPGPU) is a fairly new approach on facilitating the

9

devices. This model of using mixed processors types for computation is

heterogeneous computing.

In contrary to a GPU, a program execution on a CPU executes a

program by following a thread of instructions. From the main thread it is

possible to instruct the operating system to start execution of secondary

threads. The operating system will generally make the decisions on how

to run the threads, it can migrate threads to idle processor if present or

schedule a single processor. The synchronization between the threads is

done via specialized structures and functions. A modern multiprocessor

system contains several processors, where each processor is capable of

running its own thread in parallel with other processors. Each processor

has an access to the main memory, and therefore is capable of allocating

and freeing memory from the main memory without intervention from

the main thread. This memory model can be difficult as generally the

developer has to explicitly make sure threads access certain memory in

desired order to avoid unexpected behaviour.

2.2.1 SIMD

Single-Instruction, Multiple-Data (SIMD) is a class of computer archi-

tecture in Flynn’s taxonomy (Flynn 1972). These architectures provide

is a form of data-parallelism. All computational devices are operated

by specific instructions, and the instruction sets are generally device

specific. However, some more generic instruction sets exists that can

operate multiple devices such as Intel’s popular x86-instruction set. In a

classic instruction set architecture (ISA) an instruction operates singu-

lar scalar values. A SIMD instruction on the contrary operates multiple

scalar elements simultaneously.

In a simplified view, a processor is capable of executing a single in-

struction per a clock-tick. A scalar processor processes a single scalar

instruction per a clock-tick. A SIMD processor can process multiple ele-

ments with a single instruction per a clock tick. Therefore, effective the

usage SIMD processors can improve the execution times by reducing the

10

...

ADD A[3] B[3]

ADD A[2] B[2]

ADD A[1] B[1]

Instruction R0 R1

ADD A[0] B[0]

+

C[0]

Store to value at R0

...

Instruction R0 R1

VADD A[3] A[2] A[1] A[0] B[3] B[2] B[1] B[0]

+

C[3] C[2] C[1] C[0]

Store to value at R0

q
u
eu

e

Figure 2.3: On left a scalar ADD instruction executed on two 32-bit
registers containing values A[0] and B[0]. To execute four float additions,
a scalar instruction is executed for each pair of operands in a sequence.
On right, a vector VADD operation executed on two 128-bit registers,
each containing a vector of four 32-bit values. To add two vectors to-
gether only one instruction is required. Both scalar and vector addition
requires one clock cycle per instruction.

number of instructions.

SIMD in CPU Generally a CPU operates on scalar values, however

especially multimedia applications apply same task to multiple floating

point values. Therefore, computations of such profile can benefit from

SIMD instructions.

A modern CPU contains multimedia extensions that gives SIMD sup-

port. In practice, the scalar instructions are extended with SIMD in-

structions, and the hardware is extended with special arithmetic units

and registers to support the multi-element operations (Stokes 2006). A

CPU implements SIMD computation as operations on multi-element vec-

tors. See Figure 2.3 for a visual demonstration, in which an add operation

is visualised as a scalar and a vector operation.

SIMD in GPU A GPU is a device specifically built for data-parallel

problems. The SIMD approach of a GPU and a multiprocessor system

11

Thread
Block 1

Thread
Block 2

Thread
Block 3

Streaming
multipro-
cessor 1

Thread
Scheduler

Streaming
multipro-
cessor 2

Thread
Scheduler

User space

GPU driver

Figure 2.4: Most modern GPUs have a two-level scheduling: user
defined thread blocks are first scheduled to streaming processors, whose
thread schedulers make sure all the processors are kept busy.

differs fundamentally. A single CPU can execute vector instructions us-

ing specialized instructions and arithmetic units, whereas modern GPUs

have individual streaming processors for each element.

In modern development frameworks such as OpenCL, an user gener-

ally develops a program considering only a single element. When de-

ploying the program for execution, the user targets program to process

a number data elements. Each element requires the thread and the in-

put data to be processed. Before the deployment of execution, an user

effectively forms a collection of threads, where each thread is associated

with some data. This collections is called a thread block. The units

are deployed to a device, which will schedule the tasks to the available

processors. See Figure 2.4.

A streaming multiprocessor(SM) is a collection of streaming processors

and has a thread scheduler which is responsible for keeping all the pro-

cessors busy. In program execution, a streaming multiprocessor receives

a thread block and divides it to threads of SIMD instructions. For exam-

ple, a collection of 32 elements and their threads forms a single thread of

32-wide SIMD instructions. The thread scheduler picks individual SIMD

instructions and gives them to the collection of processors the SM over-

looks. Therefore, a SM is capable of executing multiple SIMD threads

at a time by picking instructions from different threads whenever they

12

Thread
Scheduler

SIMD thread 1 instruction 7

SIMD thread 3 instruction 3

SIMD thread 6 instruction 5

SIMD thread 1 instruction 8

Time

Figure 2.5: Scheduling of threads of SIMD instructions. SIMD instruc-
tions are scheduled to a group of processors. By definition the instruc-
tions can be independently, therefore the scheduler fetches an instruction
that is ready for evaluation (Hennessy and Patterson 2011).

are ready for execution. See Figure 2.5.

The number of processors a SM overlooks is dependant on the ar-

chitecture, for example NVidias Fermi architechture has 16 Streaming

multiprocessors each having 32 cores (Nvidia). Because of the differ-

ence between traditional vector based SIMD approach and the GPU

approach, NVidia refers this type of execution model Single-Instruction,

Multiple-Thread (SIMT).

2.2.2 Development frameworks

Often parallel devices are developed using specialized frameworks. OpenCL

is a framework for writing programs that execute on highly-parallel de-

vices. From OpenCL framework it is possible to deploy programs to

different types of devices and it is used extensively in the work presented.

The framework is split into two separate entities, a host and a device,

where the host is responsible for controlling the device. The host initi-

ates task executions and manages the device memory. Communication

between the host and the device is done through a command-queue. The

commands include memory management commands, kernels deployment,

and synchronization commands.

13

The framework has a specialized language for high-performance pro-

gramming: OpenCL C. A program written in OpenCL C can be compiled

and deployed to different types of execution platforms. This is achieved

by having different hardware vendors to provide their own back-end com-

piler for their device.

Each device has its own implementation of the OpenCL specifica-

tion. A platform construct contains a data and services of a specific

OpenCL implementation and provides a compiler to translate OpenCL

C to instructions that comply with platform specific Instruction Set Ar-

chitechture(ISA). Each connected device that implements the same ISA

is recognized as a same platform. As an example, a GPU and CPU

execute code with a different ISAs, hence OpenCL recognizes them as

separate platforms. A platform is currently vendor specific: a GPU from

a vendor is not compatible with a GPU from another vendor.

A device is associated with a context, which manages its program

and memory objects. Complex system can contain several contexts and

several devices per context. Also, a device can be part of several contexts,

which can be of benefit in a case where one context is preparing data,

and another context is processing the data. In a regular consumer setting

the usual case is to have one context to handle a single CPU or GPU

device.

One segregating feature between the supported devices is their mem-

ory model: a regular desktop GPU has its own device memory, a CPU

in the other hand uses the main memory of the computer. The device

specific memory requires memory transfers from the host to the device

memory. A CPU however is capable of accessing the same memory as the

host program. All command initiations contains small overhead costs,

therefore the model OpenCL implies may not be the most optimal way

to control a device.

14

2.3 Fast Rendering of FRep shapes

A boundary of a three-dimensional solid object separates space into inte-

rior and exterior. In order to visualise the solid, sampling of the function

is performed in E3 space. The sampling process is often related to the

rendering method. For example, in direct rendering methods the sam-

ples are generally placed on rays that are cast from a camera overlooking

the scene. Indirect methods often transform the defining function into

an auxiliary data-structure, such as polygons.

2.3.1 Auxiliary data-structures for rendering

A boundary representation (BRep) of a solid object is a way of repre-

senting an object using only the limits of a shape; the boundary between

solid and non-solid. The polygonal representation is the most widespread

form of BRep.

A polygonal representation provides a way to approximate surfaces

and curves with a small set of topological elements: lines, edges and

faces. A shell is a set of connected faces that can be fitted to resemble

the surface of an object. By increasing the density of the faces in the

shell, a better approximation of the surface is achieved.

Polygonal representation has a prominent status in many fields of

computer graphics. Polygons provide relatively easy means for a user

to modify the boundary of an object, and good control over localized

details.

The polygonal mesh is used as an approximation for the shape de-

fined by a function where the quality of the approximation depends on

the density of sampling. Denser sampling results in better approxima-

tion and generally more polygons. However, adding the sample count

also increases the computational costs. If visual appearance is of con-

cern it is possible to achieve seemingly smooth surface using shading

algorithms (Phong 1975). Therefore, adding polygons is may not be the

most efficient way to achieve some visual results.

15

Marching Cubes To extract a boundary from a FRep object, a zero-

set of the function is found by sampling the function in E3 space. A

popular method to extract the boundary is to use spatial partitioning

algorithm: marching cubes (MC) (Lorensen and Cline 1987).

1 1 0 1

0 1 0 2

0 0 0 1

1 0 1 0

Base Level

3 3

1 2

Level 1

9

Level 2

Figure 2.6: Bottom-up build process of 2-dimensional HP, adding the
values of four texels repeatedly. The last level contains the total number of
triangles in the pyramid. The figure is a reproduction as seen in (Dyken
et al. 2008).

Other polygonization algorithms exists (Pasko A. A. 1995). However,

MC has gained attention as an efficient way to polygonize boundaries

of functionally represented objects. Proposed optimization methods to

MC generally use different parallel architectures for better performance

(Shirazian et al. 2012) (Dyken et al. 2008).

The MC algorithm partitions space into axis-aligned n-cubes, referred

as voxels. Overall, the spatial partitioning results in a lattice called a

voxel grid. The corners of the n-cubes are the sampling locations. After

the grid has been sampled, the MC marches from a voxel to voxel and

for all voxels containing the boundary, polygons are created.

The MC algorithm is a parallelizable as each of the voxels can be

analyzed separately. However, the algorithm does not know the number

of triangles a priori of computation. This is problematic for the current

development frameworks as memory can only be managed by a host

program. Because of the model, a new step has to be introduced to MC

16

1 1 A0 B1
0 1 C0 2D
0 0 0 1

1 0 1 0

A3 3B
1C 2D9

Base LevelLevel 1Level 2

Figure 2.7: A pyramid is accessed by using a key k. A pointer p, a
current level l, and a local key kl are maintained during traversal. Given
k = 5, the level below ranges equal to A = [0, 3), B = [3, 6), C = [6, 7),
D = [7, 9). In the first step the kl falls to range B. The p now points
to B. In second step A = [0, 0), B = [0, 1), C = [1, 1), D = [1, 3) and
kl = 5− 3, hence p ends up pointing to a texel D. The figure is a partial
reproduction of a figure seen in (Dyken et al. 2008).

algorithm that calculates the number of triangles that will be generated.

Only then right amount of memory can be allocated.

The MC algorithm creates triangles relative to the respective voxel.

Therefore, to correctly place the triangle, a polygon has to be associated

with a correct voxel. This further complicates the newly introduced pre-

processing step, not only the amount of triangles is required but also

information to which voxel the triangles belong.

To accommodate the above requirements Dyken et al. use a HistoPy-

ramid data-structure (Ziegler et al. 2006). The HP algorithm is divided

into two stages. In the first stage a HistoPyramid is constructed as a

bottom-up process. The construction starts by laying a base level, which

contains the number of triangles per voxel. In this step the voxels are

sampled.

An overall count of the triangles is calculated by constructing a pyra-

mid structure. The structure is constructed level-by-level, where each

new level is constructed from elements that sum values from values of a

17

previous level. This is done recursively until a level only contains sin-

gular scalar value. The figure 2.6 illustrates this procedure. The scalar

value represents the number of triangles the MC algorithm will produce.

After memory has been allocated for the triangles, the pyramid is

traversed from top-down to associate the triangle with a correct voxel.

See Figure 2.7.

2.3.2 Direct rendering

In direct rendering methods, a functionally defined object is generally

visualised by casting rays at it (Hart 1993). In FRep, ray casting can

be used to find the zero-set surface either analytically or numerically.

The analytical solution is possible only for a very limited set of algebraic

functions hence a numerical solution is widely used.

A popular method to visualise the boundary of a solid object is volume

ray casting. Ray casting is often implemented as ray marching algorithm

where the defining function is sampled along the rays in a step by step

basis. In the zero-set extraction, a ray progresses through the scene

until a step interval contains a zero-value. To determine whether a step

interval contains a zero value, the end points of the interval are analyzed.

If either of the sample values at the end points is zero, the boundary is at

that location. If the function values at the endpoints of the step interval

change from negative to positive or vice versa, the boundary of the solid

lies within the step. See Figure 2.8.

Ray casting methods are usually executed in a screen-space where a

ray is per a pixel. In practice a virtual camera is placed in E3 space,

and according to the size of screen resolution, a number of rays are cast

from proximity of the camera. Each a ray is stepped until an interval is

marked to contain a boundary. In case a ray has a marked interval, the

respective pixel is shaded.

A ray marching algorithm results to a camera dependent approxima-

tion of the surface location. Higher quality approximation is achieved by

increasing the number of steps, for example by reducing the step size. In

18

- - - - + +

Exterior Interior

interval

Figure 2.8: In ray marching, a ray progresses through the scene until
sampling at either of the intervals end points returns a zero or the values
have different signs. The boundary will be within the interval if the values
have opposite signs.

adaptive approach the marked interval’s endpoints are used to construct

a start point and an end point for a new ray, and the new ray is stepped

with a reduced step, and the procedure recursed until pre-defined exit

conditions are met.

2.4 Survey on efficient FRep function eval-

uation

A modelling process of an object is an iterative trial-and-error process.

Therefore, it is crucial for a modeling software to provide quick visual

feedback. To attain interactive update rates, a combination of both

efficient function evaluation and fast rendering method is required.

A number of papers tackle the problem of improving efficiency of

sampling. All methods can be roughly classified into:

• Algorithmic methods, where the efficiency is obtained by minimiz-

ing the number of queries by using characteristics of the method

itself;

• Hardware methods, where the algorithm is implemented efficiently

when specialised hardware is used;

The following subsections give an survey on both of these methods.

19

2.4.1 Hardware methods

Hardware methods achieve efficiency by facilitating hardware features.

These methods generally use the fixed graphics pipeline that contain

several programmable stages. In the last stage where that outputs the

final image, objects can be visualised by sending rays from pixels. If a

ray hits and object, that pixel is shaded (Fryazinov and Pasko 2008).

A tool based on the mechanism has been proposed by (Reiner et al.

2011): a modeller based on the direct rendering method using a GPU for

acceleration. In Reiner et al. (2011)’s work the render algorithm is fully

executed on a GPU. See Figure 2.9. This is achieved by constructing a

shader that expresses the tree structure. There are several drawbacks on

the fully GPU-based evaluation:

• Whenever a structural modification to the function tree is made a

recompilation of a new shader is required.

• In modern development frameworks, the memory has to be allo-

cated a priori of computation. Therefore, memory requirements of

a complex tree containing multiple nodes with big memory needs

could exceed the available memory.

In Reiner et al. (2011); Fryazinov and Pasko (2008)’s work he trans-

formation of a defining function into a GPU executable shader consists

of following steps:

• The host application has a modifiable tree structure that represents

the current state of the object. When the structure is modified,

the host application traverses it and constructs a textual represen-

tation. As an example, G3 is an object that is a result of a binary

operation using objects G1 and G2 as operands. The mathematical

notation for such an object is:

G3 = Φi(G1, G2),

Therefore, the defining function of G3 is:

f3 = Ψ(f1(p), f2(p)) ≥ 0

20

F1

F2

F4

F8 F9

F5

F3

F6 F7

F1

F2

F4

F8 F9

F5

F3

F6 F7

F1

F2

F4

F8 F9

F5

F3

F6 F7

F1

F2

F4

F8 F9

F5

F3

F6 F7

F1

F2

F4

F8 F9

F5

F3

F6 F7

Processor 1 Processor 2 Processor 3 Processor 4

V0 V1 V2 V3Device Memory:

Host

Device
Scheduler

Executable

Host

Figure 2.9: An instance of the whole FRep tree is given to each execu-
tion unit. An execution unit in case of a GPU is a streaming processor,
and in case of a multiprocessor system: a CPU or a core.

where Ψ is a continuous real function of two variables. Consider a

case of a union of two primitive shapes, a sphere and a torus. In

imperative programming language, the representation would look

similar to:

f3= Union(Sphere(p), Torus(p));

• This function string is appended to a pre-existing text that contains

the textual definitions for the primitives and operations. In this

case, the pre-existing file would contain definitions for a sphere, a

torus and a union.

• The full textual representation gets compiled into the device exe-

cutable program.

• Finally, to evaluate the function, the host program initiates the

evaluation with a set of sample points, which a scheduler distributes

to the available processing resources.

21

The method has few problems. Every time a mutation on the tree

structure happens, a new shader has to be created and compiled. Pa-

rameters of the nodes can be stored read from memory so re-compilation

is only needed if there is a structural change in the tree. The compilation

can cause slowdowns during applications runtime, which results in an-

noyances and in the worst case some geometrical features can be missed

because of the slowdowns.

Another problem is caused by the memory management model of cur-

rent development frameworks. All the data the tree requires has to be

allocated and transferred to the device before the evaluation step is ini-

tiated. In case of a tree that contains multiple complex nodes that have

large memory requirements the memory could run out before the evalu-

ation resulting in a failure.

Additionally some nodes, as seen in following chapters, have evalua-

tion profile which can be difficult to express in a single shader.

2.4.2 Algorithmic methods

A range of modelling tools polygonize the zero-value isosurface of the

defining function (Schmidt et al. 2005a; Schmidt and Singh 2010; Alexe

et al. 2004). The papers describing the tools typically do not provide in-

depth technical discussion on the function evaluation procedure. How-

ever, several techniques are discussed to reduce redundant function eval-

uation: a modelling process generally modifies only a local area of a

function tree, hence only modified subtree and affected nodes require

function re-evaluation. To avoid redundant re-evaluation of a subtree the

intermediate results can be stored in cache for further queries (Schmidt

et al. 2005b; Reiner et al. 2012).

Adaptive sampling is another technique where sample placement is

driven by previous sample results (?). However, the technique does not

necessarily reduce the number of function evaluations but usually leads

to better results with the same number of samples than exhaustive enu-

meration. However, implementation of these techniques is often complex

22

and may not suit the GPU development frameworks.

The tools use only a small sub-set of shapes and operations. These

tools are often specialized on a single method of modelling, such as mod-

elling using sculpt-like methods.

2.5 Conclusion

From the discussion above, it is clear that FRep function evaluation can

benefit from using parallel hardware and many industry and academic

tools already facilitate these features. However, many of the tools focus

only on a subset of FRep operations and no extensive study exist whether

the tools are able to handle arbitrary shapes.

The GPGPU is a fairly new approach for parallel software develop-

ment, therefore the previous work is mostly done using the graphical

pipelines that to some extent restrict the methods used. For example,

the direct rendering methods generally use the fragment shader stage

that produces visual output, which is efficient but limit the use only to

visual applications.

Even with the general purpose frameworks, some limitation still exist

for the ways the GPU can be used. This is apparent in the parallel

MC algorithm, which requires an additional step in order to determine

memory requirements.

In this work, an extensive study is done using wide range of operations

and primitives to determine the suitability of using state of the parallel

hardware and frameworks for function representation.

The existing hardware methods have few problems, for example an

explicit shader creation and compilation that can cause slowdowns during

applications runtime. Implementation of complex nodes is also difficult

using these methods. In this work, a solution is presented that overcomes

these problems.

23

Chapter 3

Efficient function evaluation

In the first part of this chapter, a proposal of a new novel way to dis-

tribute sampling workloads to parallel devices is described. This method

overcomes some of the problems seen in the previous methods, such as

abolishing the need for explicit compilation step.

In the previous work, the methods often specialize on a small subset

of nodes and no proof is given whether they are suitable for wider range

of functions. Therefore, a goal of this work is to build a method that

can handle majority of the existing primitives and operations in FRep.

The second part of this chapter describes a classification for a existing

FRep functions. The variety of FRep functions are classified based on

(Pasko and Adzhiev 2004). In this chapter, a formalization of classes

is presented. The classifications is used as a basis for empirical results,

which can be used to identify whether a class of primitives or operations

is suitable for GPU evaluation.

3.1 A multikernel approach to distributed

function evaluation

The problem of transforming the mathematical formulation into a par-

allel program currently has an solution where a program is constructed

24

that represents the whole FRep tree structure (Fryazinov and Pasko

2008; Reiner et al. 2011). However, this approach has few problems.

During applications runtime, a compilation step is required for each new

tree structure and memory management in current development frame-

works has to be done before execution of the program. In the following

text, this method is called single kernel method.

In this work an alternative method is proposed where each geomet-

ric operation and primitive is as a small program or multiple programs.

Similarly to the previous work, the host application contains a modi-

fiable tree structure that represents the shape. During evaluation, the

structure is traversed and on each node a program respective to the node

is deployed to execution device. In the context of FRep modelling, this

evaluation model has similarities to the interpreted HyperFun language

used for modelling (Adzhiev et al. 1999). The proposed method is called

multikernel method. A more detailed description is given below.

3.1.1 The multikernel method

In the proposed multikernel method, a set of operations and primitives

are pre-defined and pre-compiled into a set of small programs. The host

application contains a tree structure constructed from elements that con-

tain evaluation instructions for the nodes. During function evaluation,

the tree is traversed and the host takes appropriate measures to evaluate

each node with the instructions within. In pratice when visiting a node:

memory can be managed and a small program is deployed to a parallel

device. See Figure 3.2.

Each node can be implemented agnostic the general structure. There-

fore, the tree can contain nodes that have different evaluation profiles.

In practice, the multikernel method allows partial distribution of the tree

to different types of devices. For example, some parts of the tree can be

executed on a multiprocessor device, and other parts on a GPU device.

Therefore, if certain node is deemed GPU-unfriendly, it can be evaluated

on a CPU instead. One example of such node is a complex mesh that

25

F1

F2

F4

F8 F9

F5

F3

F6 F7 F1 F3 F7 F6 F2 F5 F4 F9

QUEUE

F8(p),
where

{p ∈ p0, . . . ,pn1} {p ∈ pn1+1, . . . ,pn2} {p ∈ pn2+1, . . . ,pn3} {p ∈ pn3+1, . . . ,pn}

Processor 1 Processor 2 Processor 3 Processor 4

{v0, . . . , vn1} {vn1+1, . . . , vn2} {vn2+1, . . . , vn3} {vn3+1, . . . , vn}

Scheduler
Host

Device

F8

Device memory

Figure 3.1: When evaluating nodes individually, a node is distributed
amongst the execution units and results stored for subsequent nodes that
require the results. The first step is to turn the tree into a queue of tasks;
In this example Post-order tree traversal is used. An execution unit in
case of a GPU is a streaming processor, and in case of a multiprocessor
system: a CPU or a core.

could too big memory requirements for a GPU. It is therefore important

to determine whether a certain node is a good fit for GPU evaluation.

Compared to a single kernel method, in which the host application

controls memory only before initiation of the program, the multikernel

method gives control to host application in each node. This is important

for memory management purposes: temporary memory that is required

by the node can be allocated when needed and freed after use. Also, the

parameters to specific nodes are defined on a node basis in contrary to

single kernel method that defines node parameters before the function

evaluation.

In the multikernel method each node is evaluated in all sample lo-

cations before continuing to next node. Essentially the results of each

node evaluation are temporarily stored as a cache, similarly to (Reiner

et al. 2012). Caching can be used to avoid unnecessary evaluation of

nodes that are not affected by modification. However, temporary stor-

age of node results can be problematic in systems with limited memory,

especially when conducting dense sampling of the function.

26

Union

Torus Sphere

TorusPrimitive

allocateMemory(Buffer2)

TorusKernel(Buffer2 , p0, . . . ,pn)

return Buffer2

SpherePrimitive

allocateMemory(Buffer3)

SphereKernel(Buffer3 , p0, . . . ,pn)

return Buffer3

UnionOperation

Buffer2 = LeftBranch(p0, . . . ,pn)

Buffer3 = RightBranch(p0, . . . ,pn)

allocateMemory(Buffer1)

Buffer1 = UnionKernel(Buffer2 , Buffer3)

freeMemory(Buffer2)

freeMemory(Buffer3)

return Buffer1

Figure 3.2: The host side instructions for a simple tree. In the evalua-
tion post-order traversal is used to evaluate the tree; on each node, mem-
ory is managed and kernels initiated.The keep track of allocated GPU
memory the host uses reference counted handles.

3.2 FRep function classifications

The set of geometric objects M , and the set of geometric operations Φ

can be classified from multiple perspectives. This section describes the

current classifications and explains the distinct characteristics of each

category.

3.2.1 Geometric objects

The leaf functions are currently classified two separate classifications.

The first classification divides leaves according to their defining function:

• Algebraic function: The function can be defined by a polynomial

equation. Polynomial equation is expressed as finite sequence of

27

terms involving only algebraic operations: addition, subtraction,

multiplication, and raising to a fractional power. A wide variety

of geometric primitives can be modeled using simple operations.

Torus in E3:

f(p) = (R−
√
x2 + y2)2 + z2 − r2, (3.1)

where R is the distance from the center of the torus to the center

of ring shape defining a torus, r is the radius of the ring, and x, y, z

are the coordinates of a sample p.

• Analytical function with arbitrary closed-form functions and ex-

pressions: In closed-form solutions a function is expressed in terms

of functions and mathematical operations from an predefined set.

In geometric modelling the predefined set extends to cover trigono-

metric functions such as sine and cosine functions. An example of

such function is the Blob (Bourke) which defines the object as:

f(p) = x2 + y2 + z2 + sin(4x) + sin(4y) + sin(4z)− 1,

where x, y, z are the coordinates of a sample p.

• Procedural function, non purely analytical involving at least some

constructs of imperative programming: Typical constructs of im-

perative language includes if-statements, switch-statements, for-

loops, and while-loops. Iterative primitives that require exit con-

ditions are defined by using if-statements to branch the execution

if needed. As an example, HyperFun fractal(Hyp) as seen in Algo-

rithm 4 in Chapter 4.

The second classification of leaves distinguishes the primitives accord-

ing to their data requirements:

• No external data required: Simple algebraic and analytical func-

tions do not require external data for the function definition.

• Use of restricted external data: As an example a complex geometric

object can be modeled using a skeleton structure. The defining

28

function f(p) is obtained via a convoluting a geometry function

g(p), with a kernel function h(p) (Sherstyuk 1999):

f(p) = g(p) ? h(p) (3.2)

The kernel function defines the distribution of some potential, that

is produced by each point on the object. A geometry function is

defined as g =
∑N

i=1 gi, where the skeletal elements gi are generally:

points, line segments, arcs, triangles and planes.

• Essential data of large size: A complex geometric object that is

defined by a large data set. As an example, a manifold geomet-

ric object represented as a triangle mesh requires an inside-outside

segmentation to be used in conjunction with the rest of FRep func-

tions. Several algorithms providing inside-outside segmentation are

available (Jacobson et al. 2013).

3.2.2 Geometric operations

The set of geometric operations Φ contains unary, binary or k-ary oper-

ations:

Φi : M1 +M2 + · · ·+Mn →M, (3.3)

where n is a number of operands on the operation. A unary op-

eration on object G1, with a function of F1(p) ≥ 0, is described as

G2 = Φi(G1). A binary operation on objects G1 and G2 is described as

G3 = Φi(G1, G2).

The set of Geometric operations Φ can be roughly divided into two

main categories, geometric space and function mappings, however exten-

sion to this categorisation exists (Savchenko and Pasko 1998). Essentially

all operations are transformations of an initial object or objects that can

29

be described by a system of equations:

p
′
= φ1(p, ξ)

ξ
′
= φ2(p, ξ)

ξ = f(p),

where p
′

= φ1(p, ξ) is a space mapping operation and ξ
′

= φ2(p, ξ)

a function mapping operation. The zero-set ξ = 0 is the surface of a

geometric object.

The first classification of operations classifies the operations from the

tree traversal and geometric transformation point of view:

• Geometric space mappings, evaluated on the top-down traversal

pass: In space mapping the geometric object is modified by dis-

placing the coordinate parameter instead of deforming the resulting

scalar field. A space mapping, in En, defines a relationship between

original point coordinates and deformed point coordinates:

p
′
= φ1(p) (3.4)

Where φ1 is one-to-one invertible mapping of the subspace En. The

transformed geometric object is therefore defined as:

ξ
′
= f(φ−1

1 (p
′
)) (3.5)

An example of such operation is a Twist (Barr 1984). A render of

a twisting of a cube is seen in in Chapter 4 Figure 5.10.

• Function mappings, evaluated on bottom-up traversal pass. The

transformed geometric object is defined by:

ξ
′
= φ2(p, f(p)), (3.6)

Where φ2(p, f(p)) is the mapping of the scalar returned by the

30

function f . A more practical way to define the function is:

ξ
′
= f(p) + d(p), (3.7)

where d(p) is a continuous real displacement function. An example

of such operation is metamorphosis (Hughes 1992).

• Function-dependent space mappings, evaluated on both traversal

passes: Let inverse space mapping function of Eq. 3.5 be defined

as :

φ−1
1 (p) = ψ(p, f(p)) (3.8)

where ψ = (p1, x2, · · · , xn) is a function generating point coordi-

nates in En. The transformed object is therefore defined as:

ξ
′
= f(ψ(p, f(p))), (3.9)

Hence, as Eq. 3.8 states, the reult of function-dependent space

mapping is requires the operand to be evaluated first. Evaluation of

a function-dependent space mapping operation therefore requires

instructions to be carried out on both tree traveral passes. See

2.1.1.

An example of such operation is offsetting along a normal. To

calculate a normal at a given point, the operand function has to be

evaluated and from result a normal vector derived. The given point

is then offset along the normal vector. A render of the operation

applied on a NoiseSphere can be seen in Figure 5.8.

• Combined mapping, evaluated on both traversal passes defined as

a usage of geometric space mappings as parameters to function

mapping:

ξ
′
= ψ2(ψ

−1
i (p), f(ψ−1

1 (p))), (3.10)

The second classification of operations is based on the complexity of

the subtree evaluation:

• Single point function evaluation: The most general case of geomet-

31

ric operation evaluation, where the function is evaluated using the

point coordinates given as a parameter.

• Fixed number of multiple points: The initial object G1 in En is

defined by function f1(pn) ≥ 0. As an example, a geometric

object G2 is a projection of G1 to En−1 with the defining func-

tion f2(pn−1), which is more or equal zero in the given point

pn−1 = (x1, x2, · · · , xi−1, xi+1, · · · , xn), only if the point pn exists

where f1(pn) ≥ 0 (Pasko and Savchenko 1997). The object G2 can

be thought as a union of cross-sections of G1 by the infinite set of

hyperplanes xi = C. Another way to define f2 is:

f2(pn−1) = ∪xi(f1(pn)) (3.11)

In practice the function result is approximated by selecting only a

finite set of hyperplanes. In case of union of the cross-sections of

the hyperplanes, xi = Cj, the function can be defined as:

f2(pn−1) = (((f11 ∪ f12) · · · ∪ f1j) · · · ∪ f1N) (3.12)

Where f1j = f1(x1, x2, · · · , xi−1, Cj, xi−1, · · · , xn), and N is the

number of cross sections. See Figure 5.2.3 in Chapter 4 for a render

of a sweep operation applied onto two spheres and a cube.

• Iterative evaluation with exit conditions: As an example, an Hy-

perTextures(Perlin and Hoffert 1989) can be seen as an operation

on a shape used to produce rough surfaces. Hart (1997) presents a

practical FRep formulation of HyperTextures as:

ξ
′
= f(p) + 1/vβ − noise(p), (3.13)

where v is the frequency and, β controls roughness of the surface.

In order to achieve fractal-like shapes through HyperTextures the

function can be reformulated to:

ξ
′
= f(p) +

N−1∑
i=0

2−βinoise(2ip), (3.14)

32

where noise(p) is a scalar valued function: noise : Rn → R, and

N is the number of intervals. By iterating, successive refinement

is applied to the surface.

• Recursive evaluation: The evaluation procedure of the function

calls itself. No practical examples exist for this class.

The third classification categorises the operations according to exter-

nal data requirements:

• No external data is required: Operations that only require the

definition of the function parameters do not require any external

data.

• Use of some restricted external data:

As an example, consider warping operation that distorts a shape

by modifying coordinates in its neighbourhood. The warping can

be influenced by using primitives as skeletal elements, for example

points (Wyvill and van Overveld 1997) or curves (Sugihara et al.

2010). The defining function is described as:

f
′
(p) = f(p + fbounding(p) ∗ d(p)), (3.15)

where d(p) returns the displacement of a point p and fbounding(p) is

the bounding field, generated by convolving skeletal primitives with

a kernel function. The result is a scalar value per p that modulates

the displacement. The skeletal primitives require external data for

their definitions.

• Essential data of large size: As an example, Free-form deformations

(FFD) in general are implemented to require two large lattices. An

object is first embedded into a reference lattice, deformations are

then achieved by modifying a deformation lattice which reflects as

modifications to the object. Hua and Qin (2003) propose a scalar

field as the embedding space, where deformation of the scalar field

will modify the embedded object.

33

3.3 Conclusion

In this chapter a novel work distribution, the multikernel, method is

proposed that overcomes some problems present in methods. In multik-

ernel method the need for runtime compilation is abolished by compiling

smaller set of nodes either off-line or at application start-up.

The multikernel method also provides better memory management

model to the previous methods. The host application receives control

to manage memory on each node. As a consequence the tree can con-

tain complex nodes. Another benefit of splitting the function evaluation

into smaller execution units is that it is easier to implement nodes with

complex evaluation profiles.

In the second part of the chapter a formalization of the classifications

is made to be used as a basis for testing.

34

Chapter 4

Applications

In this chapter, a description of all the test cases are given. For the

test cases both multikernel method and single kernel method are imple-

mented and compared where appropriate. Moreover, an implementation

of wide range of FRep operations and primitives are made using the

multikernel method. Some of the nodes are complex for single kernel

method, therefore only multikernel method is considered for the single

node evaluations. As a basis for the test cases the classifications from

the Section 3.2 are used.

In the following text, the test for a each class is described. Some more

complex nodes are described in more detail in case study subsections.

The case studies demonstrates the complexity why some nodes might

not be suitable for the single kernel method.

In the final part of the chapter a description is given how test case

for a complex tree structure is built. In the next chapter the complex

tree structures are evaluated using on both single kernel and multikernel

methods.

4.1 Test settings for node evaluations

FRep contains several classes of functions for both geometric operations

and geometric primitives as shown in Chapter 3. In order to test how

35

Leaves
L1A Algebraic function
L1B Analytical function, with closed form functions
L1C Procedural function
L2A No external data
L2B Use of restricted data
L2C Essential data of large size

Nodes
N1A Geometric space mapping
N1B Function mapping
N1C Function-dependent space mapping
N1D Combined mapping
N2A Single point function evaluation
N2B Fixed number of multiple points
N2C Iterative evaluation with exit conditions
N2D Recursive evaluation
N3A No external data
N3B Use of restricted data
N3C Essential data of large size

Table 4.1: A simplification of node classifications in form of a graph.
L1 and L2 are classes for geometric objects: L1 classifies functions ac-
cording to their defining function, L2 classifies the functions according
to their requirements for external data. N1, N2, and N3 are classes
for geometric operations: N1 classifies operations according to their tree
traversal method, N2 classifies the operations according to the complex-
ity of function evaluation, N3 classifies the operations according to their
requirements for external data.

different devices handle functions from varying classes, for each class in

Table 4.1, a test case was chosen and implemented. The test cases were

implemented using OpenCL framework, therefore each implementation

includes host side instructions and device instructions written as kernels.

To target different devices, a specific back-end compiler compiles the

kernel instructions into a device executable program.

In the following listing an implementation for an example from each

class is described, with notes and references to related work.

L1A: Torus A simple algebraic function defined in Section 3.2.

36

L1B: NoiseSphere A function that uses of some closed form func-

tions, such as trigonometric functions. Perlin and Hoffert (1989) de-

scribes HyperTextures which can be turned into implicit form and used

to create rough surfaces.

L1C: HyperFun fractal The algorithm for HyperFun fractal is de-

fined in (Hyp) and in Section 4.1.4.

L2A: Sphere An algebraic function.

L2B: Convolution surface using lines A convolution surface is con-

structed from skeletal primitives where the definition of the skeletal prim-

itives generally require some external data. For example, a line segment

can be defined by the start and end points (Sherstyuk 1999). The host

side instructions for this function are listed in Algorithm 3 later in this

Chapter.

L2C: Inside-outside segmentation of a polygonal mesh Some

primitives require data of large size, for this test case a polygonal mesh

is used. A polygonal mesh requires inside-outside segmentation before

it can be used as a primitive. Several solutions to determine whether

a point lies within a mesh exists (Sanchez et al. 2012), the test case

implementation is based on winding numbers and is defined in (Jacobson

et al. 2013).

N1A: Twist A twist is an operation where a space is twisted using

a pair of global basis vectors without altering the third (Barr 1984). A

render of a twist operation applied on a cube can be seen in Figure 5.10.

N1B: Metamorphosis The metamorphosis is an operation that al-

lows smooth transition from one volumetric model to another. With two

volumetric models, linear interpolation can be directly used for this effect

(Hughes 1992).

37

N1C: Offset along a normal An offset along a normal is a function-

dependent space mapping. In our test case the operation first evaluates

the subtree to determine a normal vector per point. Secondly, the original

sample point is offset in direction of the normal. Finally, the subtree is

evaluated in the modified sample point (Savchenko and Pasko 1998).

The host side instructions for this node is shown in Algorithm 2 and a

render seen in Figure 5.8.

N1D: Not implemented No specific implementation for this class is

made. Such operation can be seen as a combination of geometric space

mapping and function mapping, however in context of this paper, these

are treated as separate entities. Therefore, they are tested on their own

(Savchenko and Pasko 1998).

N2A: Union A simple max operation on two scalar values is used.

N2B: Sweeping by a moving solid The host side algorithm for

sweeping by a moving solid is shown in Algorithm 1, the kernels are

defined in Appendix .1. The operation is defined in (Sourin and Pasko

1996).

N2C: Projection The implemented test case uses Monte Carlo Method

to find the global maximum. A random points are generated on a line

segments defined within bounded volume. The exit conditions are: the

number of sampling points exceeds a predefined number, or the values

of last n sample points are within a found range. The n is predefined.

N2D: Not implemented No practical examples of functions of class

exist. Moreover, a GPU does not support recursive functions.

N3A: R-Union R-functions operate on real-valued inequalities as

differentiable logic operations. (Shapiro 2007)

38

N3A: Warp Point deformation Warping point is defined in Section

3.2.

N3C: Inverse free form deformation In inverse free form deforma-

tion, is implemented as two lattices: reference and deformation. First

an object is embedded into a reference lattice, succeeding with modifi-

cations to the deformation lattice, which will reflect on the embedded

object (Comninos et al. 2014). See Figure 5.11 for results and a render.

39

4.1.1 Case study: sweeping by a moving solid

Algorithm 1: Sweeping by a moving solid Host instructions

Data: Sample set S

Number of subdivisions N

Result: Values V 3 for the samples in S

Allocate memory for new sample set S2, and for sample result set V ;

// Calculate a new sample set S2

S2← SolidSweepStep1(S,N);

V ← Evaluate(SolidSweep.child(S2));

Free memory of S2;

Allocate memory for new sample set S3, and for sample result set V 2;

// Calculate a new sample set, by interpolating values of V

S3← SolidSweepStep2(S,N , V);

Free memory of V ;

V 2← Evaluate(SolidSweep.child(S3));

Free memory of S3;

Allocate memory for sample result setV 3;

// Finally, calculate the final results for the sample set

S by finding the maximum value of samples on a

trajectory

V 3← SolidSweepStep3(V 2, N);

Free memory of V 2;

return V 3;

A sweeping by a moving solid operation is one of the complex test

cases implemented. In the classification, it is classified according to its

complexity of function evaluation. See Algorithm 1 for the host side

instructions of the operation. The S2 is a set of samples on trajectories;

For each sample in S a trajectory is created and N number of samples

placed on it. Therefore, the size of S2 equals SizeOf(S) ∗N . The sub-

tree of the solid sweep operation is evaluated in S2 space resulting to

V . To get smoother result the values in V are interpolated according to

Newton’s interpolation method, the interpolants are used to create new

40

sample points. The procedure results to a sample set S3, which contains

N interpolated point coordinates on trajectories for each sample in S.

The evaluation of solid sweeps sub-tree at S3 results to V 2. Finally, to

get values for V 3: For each trajectory, union all the samples on it, and

append the result to V 3.

See Section 5.2.3 for a render. See Appendix .1 for the kernels used:

SolidSweepStep1, SolidSweepStep2, SolidSweepStep3.

4.1.2 Case study: Offset Along a Normal

Algorithm 2: The host instructions of offset along normal operation

Data: Sample set S

Offset O

Result: Values V for the samples in S

V ← Evaluate(OffsetAlongNormal.child(S));

Allocate memory for set of normals N ;

// Compute a normal per a sample in S

N ← GetNormalsKernel(V);

Free memory of V ;

Allocate memory for set of samples S2;

S2← OffsetAlongNormalKernel(N , 0);

Allocate memory for set of values V ;

V ← Evaluate(OffsetAlongNormal.child(S2));

Free memory of S2;

return V ;

Offset along a normal is an operation classified according to its tree

traversal method, but it can also be classified as a geometric space map-

ping. In practice, the operation calculates a normal vector at a sample

position, then the vector is used to offset the original sample point along

the normal vector. See Algorithm 2 for the host side instructions.

41

4.1.3 Case study: convolution surface using lines

Algorithm 3: The host instructions for Convolution Surface Using Lines

Data: Sample set S

Set of lines L defined by the user

A set of coefficients Ch, one per line in Lh

Result: Values V for the samples in S

Allocate memory for Cd and Ld;

// Transfer memory from host to device

Transfer Ch to Cd, and Lh to Ld;

V ← ConvolutionLinesKernel(S, Ld, Cd);

return V ;

A convolution surface is classified according to its requirements for

external data. When using lines as skeletal elements, the required data

consists start and end points for the lines and coefficients to control a

kernel width (McCormack and Sherstyuk 1998). The kernel function and

the coefficients associated with a line describe the final shape.

42

4.1.4 Case study: HyperFun fractal

Algorithm 4: The kernel instructions for one type of HyperFun fractal

Data: Sample set S

Coefficients c1, c2, c3, c4

bailout b

number of iterations n

Result: Values V for the samples in S

lvalue← 0.0;

bailoutsq ← b2;

for i← 0 to SizeofS do

Fetch samplei from sample set S;

for k ← 0 to n do

if !bSkip then

length← samplei.x
2 + samplei.y

2 + samplei.z
2 + lvalue2;

if length > bailoutsq then

bSkip← True;

k ← n;

fi =
√
length− bailout;

Append fi to V ;

The HyperFun fractal is classified according to its defining function.

The implementation contains constructs from imperative programming

such as if and for loops. An if statement is generally problematic when

using GPUs (Zhang et al. 2010), as SIMD-instructions are implemented

as a group of threads, if a single or more threads within a group diverge

in their execution because of a conditional statement, all the threads

in that group execute the conditional instructions. In order to achieve

maximum performance gains, conditional statements should be generally

avoided.

43

4.2 Complex tree structure generation

A tree structure to compare a complex tree structure evaluation is con-

structed from a set of predefined primitives and operations. The trees are

built using genetic programming as a basis (Koza 1992). In the context

of this thesis, the initial creation of a random population is sufficient.

From a terminal set and functions the genetic algorithm creates random

population.

For purpose of FRep, the terminal set contains geometric primitives

and set of functions contains geometric operations. The created popu-

lation can be seen as a FRep tree structure that expresses complex geo-

metric shape. However, in the context of this work the constructed trees

do not necessarily describe sensible geometric shapes. They are suitable

for simulating structures that could be seen in a modelling application,

and therefore are sufficient for performance measurement.

The constructed test trees are built from primitives: sphere, plane,

cone, cylinder and torus; and operations: union, intersection, subtrac-

tion and negation. The results in Section 5.1 are measured with trees

construced in this manner.

4.3 Conclusion

In this chapter the test cases are described. The cases for individual

node evaluations are based on the existing FRep classifications. Overall,

two classifications exists for the primitives and three for the operations.

The primitives are classified according to the defining function and re-

quirements for external data. The operations are classified according to:

the geometric transformation and tree traversal method, the complex-

ity point of view in terms of the function evaluation for subtrees, and

from the point of view of external data requirements. Each classification

contains several classes of functions which are shown in Table 4.1.

For complex tree traversal random trees are constructed from pre-

44

defined set of primitives and operations. With randomness it is pos-

sible to quickly build trees that avoid some caching and optimization

behaviour that might happen within the devices if the test cases are

predictable.

45

Chapter 5

Results

This chapter presents results for tree traversal and individual node eval-

uation. The implementation of the test cases is described in Chapter 4.

The tests are conducted on a hardware listed in Table 5.1.

CPU
Device: Intel(R) Xeon(R) CPU E5-1650 0 @ 3.20GHz
Vendor: Intel(R) Corporation
CL Profile: FULL PROFILE
OpenCL device version: OpenCL 1.2 (Build 82248)
OpenCL C version: OpenCL C 1.2
Overall memory: 33587380224 B ≈ 32 GB
Max block allocation size: 8396845056 B ≈ 8 GB
Compute Units: 12

GPU
Device: Quadro K2000
Vendor: NVIDIA Corporation
Device OpenCL Profile: FULL PROFILE
OpenCL device version: OpenCL 1.1 CUDA
OpenCL C version: OpenCL C 1.1
Overall memory: 2146762752 B ≈ 2 GB
Max block allocation size : 536690688 B ≈ 500 MB
Compute Units(=Streaming Multiprocessor): 2
Streaming Processors per Compute Unit: 192

Table 5.1: The GPU and CPU device info.

46

5.1 Tree traversal results

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
pe

r
10

0
sa

m
pl

es
 (

m
ic

ro
se

co
nd

s)

Resolution in E3

GPU out of memory

single kernel
multikernel

Figure 5.1: Execution of a random tree with 112 nodes on a GPU; When
a GPU can not fit all the samples into memory, the average execution
time rises.

In Figure 5.1, a comparison between multi- and single kernel methods

shows the initialization cost of small kernels. An initialization of small

kernels without sufficient amount of data diminishes overall execution

speed because of the overhead caused by the command initiations. The

overall performance plateaus when enough samples are used.

Both single- and multikernel executions suffer minor speed reductions

when sample set is larger than the maximum memory allocation size for

GPU. When limit is reached the sample set is separated into two memory

blocks instead of one. In batch-execution mode, the tree evaluation is

initiated with two separate batches of samples one after each other.

47

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
pe

r
10

0
sa

m
pl

es
 (

m
ic

ro
se

co
nd

s)

Resolution in E3

single kernel
multikernel

Figure 5.2: Execution of a random tree with 112 nodes on a multipro-
cessor system.

In multiprocessor system, each processor is capable of using vector-

instructions, which improves the performance in form of reducing scalar

instructions. However, as Figures 5.2 and 5.1 show both multiprocessor

and GPU execution suffer from the same overhead caused by initiating

small kernels with small sample sets. One factor contributing to the

overhead on a multiprocessor system is thread migration which happens

when a idle CPU starts executing thread, such thread also suffers from a

small overhead when the informs about a completed thread. The cache

of the idle CPU is empty, therefore few cycles are spent to fill the cache.

With small sample sets and small kernels, this overhead is significant

enough to drastically reduce the overall performance (Gummaraju et al.

2010).

In a single kernel method executing the thread of instructions that

describes the whole tree, gives better cache prediction behaviour than

small fragmented threads of a multikernel method. Therefore, when ini-

tiating the kernel with a sufficiently small sample set, the work can be

executed on available processors with smaller number of thread migra-

48

tions and smaller number of thread-ready notifications. With larger sets,

the problem is not that apparent.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

C
a
c
h

e
-m

is
s
 %

Batch size in MB

cache size exceeded

single kernel
multikernel

Figure 5.3: Execution of a random tree with 112 nodes on multiproces-
sor system ; High number of memory queries results in high cache-miss
ratio.

The Figure 5.3 shows a comparison between cache-miss rate between

a single kernel and multikernel methods. The data is collected using

perf-tools. A curve for a multikernel method clearly shows when a cache

memory is depleted, this is partly because of fragmented execution of

small functions the cache prediction becomes difficult and the cache-miss

rate plateaus.

In the single kernel method, the cache miss rate rises linearly while the

amount of samples increases exponentially. The cache-miss rate can be

partly explained by the required number of thread migrations to another

CPU. When a migration occurs the local cache of the target CPU doesn’t

necessarily contain relevant data, so cache-misses happen (Tanenbaum

2007).

The overall cache prediction is significantly better in single kernel

execution than in multikernel one. The cache prediction is conducted

49

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90

E
xe

cu
tio

n
tim

e
(m

ic
ro

se
co

nd
s)

Number of nodes in the tree
multikernelsingle kernel

 450000

 600000

Evaluation Compilation Evaluation

Figure 5.4: A compilation step in comparison to the evaluation in a
single kernel method, is a major cause for execution overhead.

by the hardware and with small fragmented function executions, the

prediction is difficult. Therefore, a single long thread of instructions

is better for cache-prediction rather than small fragmented threads of

instructions.

Whenever a structural modification to a function tree is made, the tree

requires re-evaluation, and in case of single kernel method, re-compilation

before. The Figure 5.4 shows the time spent on evaluation of a tree and

time spent on compiling the tree.

With a complex tree, the time spent in compilation is around half a

second. When conducting an iterative trial-and-error process, the com-

pilation time can cause severe distractions to the process. However,

only when a structural change to a tree is made a re-compilation is re-

quired. When a change of an argument value on a function made, only

re-evaluation is required.

50

A B C

L1

L2

64x64x64

S: 0.0011s

M: 0.0001s

G: 0.0004s

128x128x128

S: 0.0061s

M: 0.0069s

G: 0.0012s

256x256x256

S: 0.0449s

M: 0.0899s

G: 0.0067s

512x512x512

S: 0.3615s

M: 0.7372s

G: 0.0520s

64x64x64

S: 0.0071s

M: 0.0020s

G: 0.0007s

128x128x128

S: 0.0548s

M: 0.0091s

G: 0.0031s

256x256x256

S: 0.4346s

M: 0.1178s

G: 0.0225s

512x512x512

S: 3.4719s

M: 0.9462s

G: 0.0822s

64x64x64

S: 0.0013s

M: 0.0019s

G: 0.0005s

128x128x128

S: 0.0782s

M: 0.0120s

G: 0.0016s

256x256x256

S: 0.0591s

M: 0.0912s

G: 0.0102s

512x512x512

S: 0.4689s

M: 0.8397s

G: 0.1274s

64x64x64

S: 0.0010s

M: 0.0025s

G: 0.0004s

128x128x128

S: 0.0062s

M: 0.0139s

G: 0.0016s

256x256x256

S: 0.0460s

M: 0.1016s

G: 0.0066s

512x512x512

S: 0.3656s

M: 0.8180s

G: 0.0522s

64x64x64

S: 0.0154s

M: 0.0042s

G: 0.0011s

128x128x128

S: 0.1142s

M: 0.0296s

G: 0.0052s

256x256x256

S: 0.9108s

M: 0.1551s

G: 0.0374s

512x512x512

S: 7.2840s

M: 1.4504s

G: 0.2989s

64x64x64

S: 33s

M: 3.3931s

G: 1.9643s

128x128x128

S: 266s

M: 30s

G: 13.7s

256x256x256

S: 36m

M: 6m

G: na

512x512x512

S: 5h

M: 1h

G: na

S = Sequential Execution, M = Multicore Execution, G = GPU execution, = Out of Memory

Figure 5.5: The execution speed calculations made on existing FRep
function classifications for geometric objects.

5.2 Individual node results

These results presented in this section are done using the multikernel

method. Most of the test cases are simple tree structures containing

only an individual node or few nodes. For example the operations are

applied on simple primitives.

Chapter 4 defines all the test cases used for collecting results. The

Figures 5.5, 5.6 show the results for each category. Unless otherwise

stated, the results in the Figures 5.5 and 5.6 are implemented using

OpenCL Framework.

To simulate several execution environments the same OpenCL C code

is compiled with different compiler back-ends to two targets: x86 instruc-

tions for a CPU and PTX instructions for NVidia GPU. The compilation

stage into x86 instructions also include AVX Three different execution

targets for instructions are: an uniprocessor, a multiprocessor system,

and a GPU. An uniprocessor is simulated by restricting the openCL

runtime to execute instructions using only one thread. Most modern

processors have vector extensions, therefore vector-instructions are en-

51

A B C

N1

N2

N3

64x64x64

S: 0.0011s

M: 0.0001s

G: 0.0017s

128x128x128

S: 0.0061s

M: 0.0069s

G: 0.0117s

256x256x256

S: 0.0449s

M: 0.0899s

G: 0.0885s

512x512x512

S: 0.3615s

M: 0.7372s

G: 0.7040s

64x64x64

S: 0.0071s

M: 0.0020s

G: 0.0020

128x128x128

S: 0.0548s

M: 0.0091s

G: 0.0130s

256x256x256

S: 0.4346s

M: 0.1178s

G: 0.0994s

512x512x512

S: 3.4719s

M: 0.9462s

G: 0.7927s

64x64x64

S: 0.0489s

M: 0.0025s

G: 0.0034s

128x128x128

S: 0.3888s

M: 0.0283s

G: 0.0304

256x256x256

S: 3.3752s

M: 0.4716s

G: 0.2524s

512x512x512

S: 26.388s

M: 3.3229s

G: na

64x64x64

S: 0.2052s

M: 0.0107s

G: 0.0018s

128x128x128

S: 1.6134s

M: 0.1798s

G: 0.0109s

256x256x256

S: 12.889s

M: 1.4489s

G: 0.0847s

512x512x512

S: 103.329s

M: 11.544s

G: 0.6751s

64x64x64

S: 58.591s

M: 5.588s

G: 0.763612

128x128x128

S: 8m

M: 52.76s

G: na

256x256x256

S: na

M: na

G: na

512x512x512

S: na

M: na

G: na

64x64x64

S: 0.4245s

M: 0.0197s

G: 0.0053s

128x128x128

S: 1.6981s

M: 0.1927s

G: 0.0213s

256x256x256

S: 6.7872s

M: 0.6487s

G: 0.0824s

512x512x512

S: 27.179s

M: 3.6000s

G: na

64x64x64

S: 0.2070s

M: 0.0249s

G: 0.0017s

128x128x128

S: 1.3094s

M: 0.1888s

G: 0.0115s

256x256x256

S: 13.095s

M: 1.3564s

G: 0.0881s

512x512x512

S: 104.87s

M: 11.479s

G: 0.7040s

64x64x64

S: 0.0293s

M: 0.0052s

G: 0.0017s

128x128x128

S: 0.2214s

M: 0.0277s

G: 0.0115s

256x256x256

S: 1.7119s

M: 0.3754s

G: 0.0882s

512x512x512

S: 13.665s

M: 2.9594s

G: 0.5875s

64x64x64

S: 0.3369s

M: 0.1074s

G: 0.0762s

128x128x128

S: 2.2074s

M: 0.3129s

G: 0.1298s

256x256x256

S: 15.811s

M: 1.9105s

G: 0.5698s

512x512x512

S: 125.69s

M: 14.622s

G: na

S = Sequential Execution, M = Multicore Execution, G = GPU execution, = Out of Memory

Figure 5.6: The execution speed calculations made on existing FRep
function classifications for geometric operations.

abled for both: an uniprocessor and a multiprocessor system.

In the following subsections, a hand picked selection is made according

to the execution results for further analysis. A comprehensive conclusion

is given in the end of the chapter.

52

5.2.1 Case study: Inside-outside segmentation of

polygonal mesh

B

N2

64x64x64

S: 33s

M: 3.3931s

G: 1.9643s

128x128x128

S: 266s

M: 30s

G: 13.7s

256x256x256

S: 36m

M: 6m

G: na

512x512x512

S: 5h

M: 1h

G: na

S = Sequential Execution,
M = Multicore Execution,
G = GPU Execution,

= Out of Memory

Figure 5.7: Evaluation times of Mesh on the left-hand side graph.

Operation on a polygonal mesh is a computationally expensive operation,

which leads to better performance on a GPU than a CPU. However, as

a result of memory constraints the GPU evaluation is not an optimal

solution for a complex mesh.

53

5.2.2 Case study: Offset along a normal

C

N1

64x64x64

S: 0.0489s

M: 0.0025s

G: 0.0034s

128x128x128

S: 0.3888s

M: 0.0283s

G: 0.0304

256x256x256

S: 3.3752s

M: 0.4716s

G: 0.2524s

512x512x512

S: 26.388s

M: 3.3229s

G: na

S = Sequential Execution,
M = Multicore Execution,
G = GPU Execution,

= Out of Memory

Figure 5.8: Evaluation times of OffsetAlongNormalNode on the left-
hand side graph. A rendered image of operation applied to union of two
spheres and a cube on right-hand side.

An offset along a normal operation requires evaluation of its subtree

before the operation can take effect. The subtree evaluation calculates a

gradient per a sample point. The gradient is used to offset the points of

the original evaluation space.

Concurrently the memory has to store the original samples, the nor-

mals and the new point coordinates. After the new coordinates have

been calculated, the memory holding the normals is released.

54

5.2.3 Case study: Sweeping by a moving solid

B

N2

64x64x64

S: 58.591s

M: 5.588s

G: 0.763612

128x128x128

S: 8m

M: 52.76s

G: na

256x256x256

S: na

M: na

G: na

512x512x512

S: na

M: na

G: na

S = Sequential Execution,
M = Multicore Execution,
G = GPU Execution,

= Out of Memory

Figure 5.9: Evaluation times of SolidSweepNode on the left-hand side
graph. A rendered image of solid sweep operation applied to union of two
spheres and a cube on right-hand side.

A sweep operation multiplies the evaluation space with the number of

subdivisions on the trajectory. Greater number of subdivisions, generally

leads to better quality of the sweep. The operation can also be seen as a

projection from E4 → E3 and therefore as an union of cross-sections of

the operand object in E4. In practice a single hyperplane in E3 is dupli-

cation of the original evaluation space, with a trajectory defined offset.

In a batch-mode evaluation, even with a small batch-size the operation

quickly out memory as the coordinate-batch given as parameter is to be

multiplied with the number of subdivisions.

As an example, if the operation is given 64x64x64 sample coordinates

and 128 subdivisions as parameter, the required memory is:

RequiredMemory = BatchSize ∗ sizeof(Coordinate) ∗ subdivisions

RequiredMemory = 64 ∗ 64 ∗ 64 ∗ 3 ∗ 4 ∗ 128

RequiredMemory = 402653184 bytes ≈ 400MB

If evaluation is done with per-coordinate execution rather than per-batch

55

execution the memory requirements are far less; The memory is allocated

on coordinate basis rather than batch basis. See Figure 5.9 for the exe-

cution speed comparison.

5.2.4 Case study: Projection

C

N2

64x64x64

S: 0.4245s

M: 0.0197s

G: 0.0053s

128x128x128

S: 1.6981s

M: 0.1927s

G: 0.0213s

256x256x256

S: 6.7872s

M: 0.6487s

G: 0.0824s

512x512x512

S: 27.179s

M: 3.6000s

G: na

S = Sequential Execution,
M = Multicore Execution,
G = GPU Execution,

= Out of Memory

Figure 5.10: Evaluation times of Projection on the left-hand side graph.
A rendered image of projection operation applied to twisted cube on right-
hand side. The faraway plane is the result of the projection.

A projection operation from E3 → E2 is an operation that requires

extensive amount of memory. As with solid sweep in section5.2.3, the

projection is a union of cross sections of an object in E3. The hyperplanes

therefore are in E2 space. From memory requirement point of view the

E2 space is duplicated with the desired number of subdivisions. This

directly correlates with the amount of memory required.

Along with the memory requirement caveat, a projection from E3 →
E2 results to a two dimensional entity that is used in three-dimensional

framework. Therefore, for a projection to be used with rest of the op-

erations, the E2 space of the projection has to be padded with empty

data for the projection to be used with operations working in E3. This

results in redundant computation when computing the empty cells.

56

5.2.5 Case Study: Inverse free-form deformation

C

N3

64x64x64

S: 0.3369s

M: 0.1074s

G: 0.0762s

128x128x128

S: 2.2074s

M: 0.3129s

G: 0.1298s

256x256x256

S: 15.811s

M: 1.9105s

G: 0.5698s

512x512x512

S: 125.69s

M: 14.622s

G: na

S = Sequential Execution,
M = Multicore Execution,
G = GPU Execution,

= Out of Memory

Figure 5.11: Evaluation times of InverseFFD on the left hand side
graph. A rendered image of InverseFFD operation applied on torus on
right hand side.

Inverse free-form deformation is defined by an offset between a reference

lattice and a deformation lattice. A geometric object is embedded to

the reference lattice. After the object is embedded, a modification of

the deformation lattice modifies it. The result of the operation is a new

evaluation space. The memory requirements of the function are directly

related to the density of the defining and deformation lattice (Comninos

et al. 2014).

5.2.6 Memory

Memory transfer between the host and the device is slow. The Figure

5.12 shows the time spent executing the tasks: clEnqueueMapBuffer and

clEnqueueNDRangeKernel, which initiates the kernel execution. A CPU

in a multiprocessor system is able to access the main memory without an

explicit memory transfer, therefore clEnqueueMapBuffer does not move

memory, and allows usage of the memory block where data was originally

initialized. However, in case of a GPU the memory has to be transferred

57

GPU:

 0 1 2 3 4 5

Time (ms)

MemCpy(HtoD) Eval MemCpy(DtoH)

CPU:

 0 1 2 3 4 5

Time (ms)

MemCpy(HtoD)

Eval
MemCpy(DtoH)

Figure 5.12: A division of Hyperfun fractal evaluation into a memory
transfer from host to device, evaluation of the code, and transfer of the
results back to host. The timings are done with OpenCL timing events.

from the main memory to the device memory. The memory transfer

for the sample points is only done at initialization, so subsequent node

evaluations using the same points can use the same data. Therefore from

perspective of a user, a complex tree has better ratio between memory

transfer and computation.

5.3 Conclusion

As seen in Figures 5.5 and 5.6 certain functions are memory intensive,

making some functions problematic to be executed with big sample sets.

An easy solution is to execute the function with smaller sample sets

and compose results as a post-process, however as seen in Figure 5.1

when using GPUs, the overall performance slightly decreases when an

execution is split into multiple sets.

A closer analysis of 5.6 reveal that operations with severe memory

58

issues are following operations:

• N2B: sweeping by a moving solid: R4 → R3,

• N2C: projection: R3 → R2,

• N1C: Offset along a normal,

• N3C: Inverse free-form deformation.

These operations are classified as geometric space mappings or their

implementation contain duplication of the original sample set. All ge-

ometric space mapping operations duplicate the original sample set so

the duplicate can be modified to express the effect of the operation. In

such case, the memory contains two big sets of samples in memory sub-

sequently, the initial set and the modified set. If a tree contains multiple

elements that require such duplication, it can cause failure in the eval-

uation because of insufficient memory. This can be mitigated by in the

traversal by always visiting the longer branch first, finally resulting in a

case where all branches of the visited node have the length of one. This

traversal ensures only a single operation and its operands are currently

accessing the memory.

In the complex tree traversal results, multikernel is compared against

single kernel. From the results it is evident that in terms of pure evalua-

tion speed the single kernel method provides better performance. How-

ever, the overhead of the compilation step of the single kernel method

can make it insufficient for some work where a complex tree is constantly

under mutation.

Overall from the results it is clear that the GPU gives the best perfor-

mance in almost all of the cases. In the tree traversal and in individual

node evaluations, the GPU the performance gained by using the GPU

is significant. However, optimisations in a OpenCL kernel for specific

type of microarchitecture do not necessarily translate well for other mi-

croarchitectures (Gummaraju et al. 2010). In order to get maximum

performance improvements from a multiprocessor system, slightly better

results are likely be achieved by optimizing directly for that hardware.

59

Chapter 6

Conclusion and future work

In the previous academic work efficient FRep function evaluation has

been researched from perspective of special cases where the focus is only

on a small subset of shapes and operations. In this thesis, an extensive

survey on efficient function evaluation is done by using wide range FRep

functions and operations. The test cases cover evaluation of a complex

FRep tree structures containing a large number nodes and evaluations

of individual FRep functions that cover the existing FRep function clas-

sifications.

One of the problems in achieving efficient function evaluation espe-

cially in case of a GPU is how to transform a tree structure into an

executable program. A GPU requires an explicit compilation step for all

instructions given to it. This is evident in the previous methods where

the tree structure is compiled into executable program during applica-

tions runtime.

In an established solution for the transformation, a tree structure

is first transformed into a textual representation of the tree, secondly

the text is compiled into a device executable program. This procedure

happens every time there is a structural change to the tree. Along with

a compilation step, an actual evaluation step is conducted which yields

the final results. In this thesis, this approach is called a single kernel

method.

60

In the single kernel method, the compilation step can lead to interrup-

tions in the overall program execution because of the time spent compil-

ing the kernel. Another caveat in the single kernel method, is that the

memory required by the tree has to be initialized before the initiating the

evaluation. This is problematic in cases when the tree contains multiple

complex nodes that have large memory requirements.

To overcome some of the problems present in the single kernel method,

this thesis proposes an alternative method called a multikernel method.

A tree structure is composed from elements that represent operations

and primitives. Each element contains instructions on how to deploy a

program representing the node to a parallel device. The programs are

pre-compiled during either offline or application start-up. During the

evaluation the structure is interpreted and each element computes its

associated program on device.

In multikernel method the tree structure can contain nodes that have

implementations for mixed evaluation devices. For example some nodes

can be evaluated on a multiprocessor system and some on a GPU. This

allows for heterogeneous evaluation, where parts of the tree can be evalu-

ated on a multiprocessor system and others parts on a GPU. As an exam-

ple a node that requires large amounts of memory that is not evaluable

on a GPU can be evaluated on a CPU.

Some important features in the multikernel method:

• Memory management can be done during tree traversal. This is

important tree structures that contain a number of complex nodes

with large memory requirements.

• Elements from which the tree is built are are compiled at the ap-

plications startup or offline.

• The evaluation procedure is device independent and allows imple-

mentation of nodes with complex evaluation profiles. For example

sweeping by a moving solid has several steps in the evaluation.

The results in Chapter 5 provide some general guidelines. In case of

a static tree-structure constructed from functions with a small memory

61

requirements the single kernel methods provides the best performance.

However, when an object goes through iterative mutations, the compila-

tion stage required in single kernel method can cause interruptions.

In case of a complex tree structure with recurring mutations, the mul-

tikernel method is most likely to provide the best overall performance.

Such cases can be for example, interactive modelling and simulations.

Furthermore, from a perspective of an application design, the multikernel

method makes a plug-in system easy to implement. Through plug-ins, a

user is able extend the system by writing her own functions, from which

the tree will eventually be constructed. In the single kernel method, ex-

tending the system would require the user to have knowledge about the

parallel framework the application uses, and have access to the kernel

containing the function definitions.

The results in Chapter 5 show that by using the parallel features of

a GPU provides significant performance improvements. However, GPUs

memory is limited and the operations to move memory between the

host and the device are slow this is a problem when evaluating memory

intensive FRep functions. The simple algebraic and procedural functions

are a good fit for a GPU but complex operations require a lot of memory.

With a small sample sets they are able to provide good performance

improvements, but a dense sample set can cause the GPU to run out

of memory. In such cases the evaluation can be split into smaller sets,

which will sligthly decrease the performance and more importantly add

to the complexity of application.

A multiprocessor system also provides parallel capabilities that can

be used to improve the performance of the function evaluation. The

memory model in such a system is more flexible and generally has more

memory capacity than a GPU. Thus, some nodes such as large meshes

could be a better fit for CPU evaluation than for graphics programming

units.

62

6.1 Future work

Some micro-optimizations to further improve the performance gained

from efficient use of hardware could use the future models of GPU devel-

opment. The current GPU development model applies some restrictions

on the computation. The main restrictions are the memory manage-

ment model. A host program manages the memory of the device and

deploys program executions on it. In the future models of GPU evalua-

tion, the restrictions of the execution model are partially solved through

Dynamic Parallelism, which allows a kernel to create and synchronize

nested work. This is done without involvement of a CPU, which in case

of a multikernel method could provide some performance improvements

by eliminating need for a host to initiate and manage all the nodes in

the tree structure. Dynamic Parallelism also adds support for recursive

functions, hence a kernel may call itself NVIDIA (2012).

The multikernel method can be further developed to perform some

optimizations automatically. For example, if a structure contains a col-

lection of nodes that could be presented as a single shader, it should be

done as it provides better performance. Also, using the empirical results

presented in this paper, a multikernel method could determine the best

configuration for sample set splitting automatically by analyzing the tree

structure and comparing it against the memory limits.

An interesting direction for future efforts would be to further paral-

lelize the tree evaluation by using configuration of multiple GPUs mixed

with multicore CPUs. In a multi-device setting parallelization of subtrees

is possible. For example, in case of a binary operation, one branch could

be deployed to a GPU and the second to another GPU. The memory

transfer between the devices is likely to be a problem.

63

Bibliography

Hyperfun fractal. http://hyperfun.org/wiki/doku.php?id=gallery:

fractals. Accessed: 2014-06-19.

Adzhiev V., Cartwright R., Fausett E., Ossipov A., Pasko A. and

Savchenko V., 1999. Hyperfun project: a framework for collabora-

tive multidimensional f-rep modeling.

Alexe A., Gaildrat V. and Barthe L., 2004. Interactive modelling from

sketches using spherical implicit functions. In Proceedings of the 3rd

International Conference on Computer Graphics, Virtual Reality, Vi-

sualisation and Interaction in Africa, AFRIGRAPH ’04, New York,

NY, USA. ACM, 25–34.

Barr A. H., 1984. Global and local deformations of solid primitives. In

Proceedings of the 11th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’84, New York, NY, USA. ACM,

21–30.

Bourke P. The blob-shape. http://paulbourke.net/geometry/blob/.

Accessed: 2014-06-16.

Comninos P., Fryazinov O. and Pasko A., 2014. Free-form deformations

for function representation.

Dyken C., Ziegler G., Theobalt C. and Seidel H.-P., 2008. High-speed

marching cubes using histopyramids. Computer Graphics Forum, 27

(8), 2028–2039.

Flynn M. J., September 1972. Some computer organizations and their

effectiveness. IEEE Trans. Comput., 21(9), 948–960.

64

Fryazinov O. and Pasko A., 2008. Interactive ray shading of frep objects.

In Cunningham S. and Skala V., editors, WSCG’ 2008, Communica-

tions Papers proceedings, Plzen, Czech Republic. University of West

Bohemia, 145–152.

Gummaraju J., Morichetti L., Houston M., Sander B., Gaster B. R. and

Zheng B., 2010. Twin peaks: A software platform for heterogeneous

computing on general-purpose and graphics processors. In Proceed-

ings of the 19th International Conference on Parallel Architectures

and Compilation Techniques, PACT ’10, New York, NY, USA. ACM,

205–216.

Hart J. C., 1993. Ray tracing implicit surfaces. WSU Technical Report

EECS-93-014.

Hart J. C., 1997. Implicit representations of rough surfaces. Computer

Graphics Forum, 16(2), 91–99.

Hennessy J. L. and Patterson D. A., 2011. Computer Architecture, Fifth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 5th edition.

Hua J. and Qin H., 2003. Free-form deformations via sketching and ma-

nipulating scalar fields. In Proceedings of the Eighth ACM Symposium

on Solid Modeling and Applications, SM ’03, New York, NY, USA.

ACM, 328–333.

Hughes J. F., 1992. Scheduled fourier volume morphing. In Proceedings

of the 19th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’92, New York, NY, USA. ACM, 43–46.

Jacobson A., Kavan L., and Sorkine-Hornung O., 2013. Robust inside-

outside segmentation using generalized winding numbers. ACM Trans-

actions on Graphics (proceedings of ACM SIGGRAPH), 32(4), 33:1–

33:12.

Koza J. R., 1992. Genetic Programming: On the Programming of Com-

puters by Means of Natural Selection. MIT Press, Cambridge, MA,

USA.

65

Kravtsov D. Hybrid modelling of time-variant heterogeneous objects. PhD

thesis, Bournemouth University, 2011.

Lorensen W. E. and Cline H. E., 1987. Marching cubes: A high reso-

lution 3d surface construction algorithm. In Proceedings of the 14th

Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’87, New York, NY, USA. ACM, 163–169.

Luebke D., Harris M., Krüger J., Purcell T., Govindaraju N., Buck I.,

Woolley C. and Lefohn A., 2004. Gpgpu: General purpose computa-

tion on graphics hardware. In ACM SIGGRAPH 2004 Course Notes,

SIGGRAPH ’04, New York, NY, USA. ACM.

McCormack J. and Sherstyuk A., 1998. Creating and rendering convo-

lution surfaces. Computer Graphics Forum, 17(2), 113–120.

Nvidia . Fermi Compute Architecture Whitepaper. Technical report.

NVIDIA , 2012. Kepler GK110 whitepaper.

Pasko A. and Savchenko V. 1997. 197–205. Projection operation for

multidimensional geometric modeling with real functions. In Strasser

W., Klein R. and Rau R., editors, Geometric Modeling: Theory and

Practice, Focus on Computer Graphics, Springer Berlin Heidelberg.

Pasko A. and Adzhiev V. 2004. 132–160. Function-based shape modeling:

Mathematical framework and specialized language. In Winkler F.,

editor, Automated Deduction in Geometry, volume 2930 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg.

Pasko A. A. P. V. N., Pilyugin V. V., 1995. Geometric modeling in the

analysis of trivariate functions. Computers and Graphics, 12(3/4),

457–465.

Perlin K. and Hoffert E. M., 1989. Hypertexture. In Proceedings of

the 16th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’89, New York, NY, USA. ACM, 253–262.

Phong B. T., June 1975. Illumination for computer generated pictures.

Commun. ACM, 18(6), 311–317.

66

Reiner T., Lefebvre S., Diener L., GarćıA I., Jobard B. and Dachsbacher

C., August 2012. Smi 2012: Full a runtime cache for interactive pro-

cedural modeling. Comput. Graph., 36(5), 366–375.

Reiner T., Mückl G. and Dachsbacher C., June 2011. Interactive mod-

eling of implicit surfaces using a direct visualization approach with

signed distance functions. Comput. Graph., 35, 596–603.

Sanchez M., Fryazinov O. and Pasko A., 2012. Efficient evaluation of

continuous signed distance to a polygonal mesh. In Proceedings of the

28th Spring Conference on Computer Graphics, SCCG ’12, New York,

NY, USA. ACM, 101–108.

Savchenko V. and Pasko A., 1998. Transformation of functionally defined

shapes by extended space mappings. The Visual Computer, 14(5-6),

257–270.

Schmidt R., Wyvill B., Sousa M. C. and Jorge J. A., 2005a. Shapeshop:

Sketch-based solid modeling with blobtrees. In 2nd Eurographics

Workshop on Sketch-Based Interfaces and Modeling, 53–62.

Schmidt R. and Singh K., 2010. Meshmixer: An interface for rapid mesh

composition. In ACM SIGGRAPH 2010 Talks, SIGGRAPH ’10, New

York, NY, USA. ACM, 6:1–6:1.

Schmidt R., Wyvill B. and Galin E., 2005b. Interactive implicit modeling

with hierarchical spatial caching. In SMI, 104–113.

Shapiro V., 5 2007. Semi-analytic geometry with r-functions. Acta Nu-

merica, 16, 239–303.

Sherstyuk A., Mar 1999. Interactive shape design with convolution sur-

faces. In Shape Modeling and Applications, 1999. Proceedings. Shape

Modeling International ’99. International Conference on, 56–65, 270.

Shirazian P., Wyvill B. and Duprat J.-L. 2012. 89–98. Polygonization of

implicit surfaces on multi-core architectures with simd instructions. In

Childs H., Kuhlen T. and Marton F., editors, Eurographics Symposium

on Parallel Graphics and Visualization, EGPGV 2012, Cagliari, Italy,

May 13-14, 2012: Proceedings, Eurographics Symposium on Parallel

67

Graphics and Visualization, Eurographics: European Association for

Computer Graphics.

Sourin A. I. and Pasko A. A., March 1996. Function representation for

sweeping by a moving solid. IEEE Transactions on Visualization and

Computer Graphics, 2(1), 11–18.

Stokes J., 2006. Inside the Machine: An Illustrated Introduction to Mi-

croprocessors and Computer Architecture. No Starch Press, Inc., San

Francisco, CA, USA, 1st edition.

Sugihara M., Wyvill B. and Schmidt R., 2010. WarpCurves: A tool for

explicit manipulation of implicit surfaces. Computers and Graphics,

34(3), 282–291. Shape Modeling International (SMI) 2010.

Tanenbaum A. S. Modern Operating Systems, Multiple Processor Sys-

tems. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,

2007.

Wyvill B. and van Overveld K., Mar 1997. Warping as a modelling tool

for csg/implicit models. In Shape Modeling and Applications, 1997.

Proceedings., 1997 International Conference on, 205–213, 248.

Zhang E. Z., Jiang Y., Guo Z. and Shen X., 2010. Streamlining gpu ap-

plications on the fly: Thread divergence elimination through runtime

thread-data remapping. In Proceedings of the 24th ACM International

Conference on Supercomputing, ICS ’10, New York, NY, USA. ACM,

115–126.

Ziegler G., Tevs A., Theobalt C. and Seidel H.-P., June 2006. Gpu point

list generation through histogram pyramids. Research Report MPI-I-

2006-4-002, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg

85, 66123 Saarbrücken, Germany.

68

.1 Sweeping by a moving solid

Algorithm 5: Step 1: Calculate samples that lie on trajectory

Data: Sample set S
Number of subdivisions N
Result: A new sample set S2
for i← 0 to SizeofS do

for k ← 0 to N do
calculate sample sampleik that lies on a trajectory ;
Append sampleik to S2;

Algorithm 6: Step 2: Calculate interpolated sample positions

Data: Sample set S

Number of subdivisions N

A set of sampling results V

Result: A new sample set S3

for i← 0 to SizeofS do

for k ← 0 to N do

Read fv from V using i ∗N + k as a key;

Read fv−1 from V using i ∗N + k − 1 as a key;

Read fv+1 from V using i ∗N + k + 1 as a key;

a← fv − fv−1;

b← (fv+1 − fv)− (fv − fv−1);

ts← 0.5− a/b;
if ts > 2 then

ts← 2;

if ts < 0 then

ts← 0;

delta← 1.0/N ;

t← delta ∗ k + delta ∗ ts;
use value t, sik and the trajectory to process samplev;

Append samplev to S3;

69

Algorithm 7: Step 3: Find the maximum value from the sampling

results of interpolated space coordinates for each original sample

Data: Sampling results V 2 for sample set S3//Number of subdivisions

N

Result: Result V 3 for samples S

for i← 0 to SizeofS do

k ← 0;

Fetch fi0 from V 2 using i ∗N as key ;

for k ← 1 to N do

Fetch fik from V 2 using i ∗N + k as key ;

fvi ← Union(fik−1, fik);

Append fvi to V 3;

70

