
User-assisted reverse modeling with evolutionary
algorithms

Pierre-Alain Fayolle
The University of Aizu
Aizu-Wakamatsu, Japan

Email: fayolle@u-aizu.ac.jp

Alexander Pasko
Bournemouth University

Bournemouth, UK
Email: apasko@bournemouth.ac.uk

Abstract—This paper presents a system for user-assisted
reverse modeling: from digitized point-cloud to solid models ready
to be used in a CAD modeling system. Our approach consists
in the following steps: segmentation, fitting, and constructive
model discovery. Each of these steps are based on evolutionary
algorithms. The obtained objects can then be further edited or
parameterized by users and fitted to adapt their shape to different
point-clouds.

I. INTRODUCTION

Reverse engineering is the process of reconstruction from a
scanned point-cloud of a geometric model ready to be used in
a modeling system. In this work, we consider objects modeled
in a constructive way by recursively applying geometric op-
erations to primitives. Constructive Solid Geometry (CSG) is
an example of such a constructive approach, where primitives
correspond to quadrics and the operations include regularized
Boolean operations and rigid transformations.

We are considering here evolutionary approaches to discov-
ering a constructive model from a given scanned point-cloud.
Our approach is based on the following steps: segmentation of
the input point-cloud; fitting of primitives to each cluster; and
discovery of a constructive model using these fitted primitives
and geometric operations. The obtained constructive object can
then be manipulated and edited by a user. A template model
can also be extracted by a user with abstract parameters that
can be fitted to adapt the shape to different point-clouds. We
illustrate these steps with various experiments.

The main contributions of this work are:

• A general pipeline for constructive model recovery
from point-clouds;

• Original evolutionary algorithms for constructive tree
search using fitted primitives and set-theoretic opera-
tions;

• Outline of the possible user interactive involvement at
the different stages of the process.

II. RELATED WORK

A. Background on implicit surfaces and Function Representa-
tion modeling

An implicit surface is a surface defined as the isovalue of a
given function: {(x, y, z) : f(x, y, z) = c}, usually c = 0, see
[1] and references therein. The Function Representation (see

[2]) considers solid as the point-set: {(x, y, z) : f(x, y, z) ≥
0}. Complex objects can be modeled using numerical tech-
niques or procedurally by applying modeling operations to
simpler primitives. The set operations (or boolean operations)
can be implemented using min/max [3] or R-functions [2], [4].
For example set operations can be implemented with min/max
as follow:

S1 ∩ S2 := min(fS1
, fS2

) (1)

S1 ∪ S2 := max(fS1 , fS2) (2)

S̄ := −fS (3)

S1 \ S2 := S1 ∩ S̄2 (4)

where S, S1 and S2 are solids and fS , fS1
and fS2

their
corresponding functions.

This allows for representing a solid with a set-theoretic
expression or equivalently by a function. In this work, solids
are represented using this model.

B. Reverse engineering

Reverse engineering consists in transforming a digitized
object into a computer model suitable for further processing.
Surface reconstruction techniques in computer graphics consist
generally in computing a triangle mesh approximating the
shape, sometimes through the computation of an intermediate
implicit surface (see e.g. [5] and references therein). Recent
works are putting efforts on intelligent processing of acquired
data: detection of symmetry and pattern, fitting of basic
primitives, see for example the recent state of the art article
[6] and the references it contains. In solid modeling, reverse
engineering consists in retrieving accurate and consistent mod-
els using standard surfaces from common CAD (Computer
Aided Design) systems [7]. Some of the problems to be solved
include: identifying sharp edges, treatment of blends, providing
continuity and smoothness between the patches, and others [8].

C. Segmentation

A necessary step in most reverse engineering techniques is
the segmentation of the input point-set, i.e. the clustering of the
input data. There are various techniques available depending
on the domain of application, see, for example, the section 1.1
of [9] for a more comprehensive survey of existing methods.
Common techniques used in reverse engineering are also de-
scribed in [10] (and references therein). After the segmentation
step, patches need to be fitted to each cluster. This fitting step

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42142517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

can either be done separately from the segmentation step as,
for example, in [11] or be done jointly with the segmentation
as in [12]. The result of the segmentation and fitting can
be improved by considering global relations between fitted
primitives as in [13].

D. Constructive model discovery

Related to the problem of constructive model discovery is
the problem of boundary representation to CSG conversion.
Approaches to solve this problem are discussed in [14], [15].
These algorithms may require some additional halfspaces not
available from the faces information or from the segmentation.
An attempt to recover construction trees from point-cloud
is discussed in [16]. The authors use strongly typed genetic
programming. Parsimony is used to control the tree size.
However, sizes of generated trees are still quite large. Fitting
of primitives and construction tree extraction are performed
together by genetic programming, making the approach un-
suitable for complex objects. In [17], the authors use a genetic
algorithm to evolve a linear tree with boolean operations in the
nodes and given primitives in the leaves. However, for a given
list of primitives, some objects can not be represented by a
linear tree. In such case, the algorithm has to be iteratively
applied reusing the best model obtained so far. We intend
to improve the above approaches to the constructive model
recovery and to propose an aoriginal solution suitable to wider
clas of constuctive models.

III. OVERVIEW

The input to our algorithm is a finite 3D point-cloud made
of points sampled on the surface of a digitized object. We
compute a constructive tree model for the object, made of
primitives fitted to the point-cloud and connected by modeling
operations. In the experiments described in section VIII, we
use the following operations: union, intersection, complement
and difference. Figure 1 illustrates the intermediate steps of
our approach. The input point-cloud (left) is first segmented
into clusters and primitives from a predefined set are fitted
to each cluster (center-left). A constructive expression is then
recovered that involves the fitted primitives and connect them
by modeling operations (center-right). The expression can be
imported in a constructive modeling system and further edited
(right).

The main steps in our approach are:

• Point-cloud pre-processing: denoising, sub-sampling,
normals computation;

• Segmentation and primitive fitting;

• Constructive tree discovery;

• Parameterization and fitting.

IV. PRE-PROCESSING

The normal vector field is used in the fitting and construc-
tive tree discovery steps. Some systems used for acquiring
point-cloud data can sometimes retrieve this information. If
the normal information is absent from the input point-cloud,
we estimate it at a given point x of the input point-set by
fitting the best plane using linear least square fitting over the

k-nearest neighbors of x (in our experiments we used k = 20).
Orientation propagation is done following the algorithm given
in [18]. For noisy point-sets, we are estimating normals using
the approach described by Mitra et al in [19].

The algorithms described below can handle some noise in
the input data without any further pre-processing. However,
for objects severely corrupted by noise, it helps applying a
denoising algorithm as a pre-processing step. The smoothing
algorithms described by Jones et al. in [20] or Fleishman
et al. in [21] give sufficiently good results. We can replace
the connectivity information needed in these algorithms by k-
nearest neighbor queries for point-cloud data. After the point-
cloud has been smoothed, we re-estimate the normals using
the updated points positions.

V. SEGMENTATION AND FITTING

A. RANSAC

The first step of our approach consists in the segmentation
of the input point-set into clusters and fitting of primitives
to each of these clusters. We also need to identify a primitive
from a set of candidates, such as plane, sphere, cone or others,
and fit its parameters to the points of each of the identified
clusters. For this purpose, we can use the approach based on
RANSAC [22] described in [12]. Given a finite point-set, the
best fitted plane, sphere, cylinder, cone and torus to the point-
set are computed using the RANSAC approach. Then the fitted
primitive that best describes the data-set is selected and the
corresponding points are removed from the point-set. In order
to determine which of the fitted primitives best describes the
data, the authors of [12] propose to count the number of points
from the input point-set S that are near the surface of the fitted
primitive (see section 4.4 in [12]). These two steps are then
repeated until the number of points left in the point-set is below
some given threshold.

B. Evolutionary based segmentation

An alternative approach for fitting primitives from a list of
candidates is described in [9]. For each type of primitive, its
parameters maximizing an objective function are computed.
The optimization is done in two steps: in the first step the
objective function E1(p; f, P̃) in eq. 5 is maximized for the
parameters p. In the second step, the optimal parameters are
refined using the Levenberg-Marquardt algorithm [23], [24].
In [9], the first step optimization is performed by simulated-
annealing. However, using a genetic algorithm gives similar
results. The primitive best describing the data is then selected
among all fitted primitives at this step and the corresponding
points are removed from the point-set. These two steps are
repeated until the number of points left in the point-set is below
some given threshold.

1) Objective function: Given a primitive f and a point-
cloud P̃ , the parameters of f are obtained by maximizing:

E1(p; f, P̃) =

N∑
i=1

exp(−di(p)2) + exp(−θi(p)2) (5)

where N is the number of points in the point-set P̃ , P̃ is
a uniform random subsampling of the original point-set P ,
di(p) = f(xi;p)

εd
, θi(p) = ArcCos(|∇xf(xi;p)· ~ni|)

α and xi ∈ P̃ .

Fig. 1. Overview of the approach: The input point-cloud (left) is segmented and primitives from a selected set are fitted to each cluster. Each fitted primitive is
represented in its own color (center-left). A constructive model made of primitives and modeling operations is recovered: the center image shows the recovered
solid and the center-right image the corresponding constructive expression as a tree with fitted primitives in the leaves and modeling operations in the nodes.
Right: the edited object after addition of a cylinder and subtraction of a ball and cylinders.

Fig. 2. Points were sampled on a surface made of two ellipsoids. Left:
segmentation and fitting using RANSAC. Right: segmentation and fitting with
the approach described in section V-B.

This objective function is maximized for the vector p of
unknown parameters of the current primitive f . With this
objective function, the parameters p are penalized when the
zero level-set of the corresponding primitive f(x;p) does
not approximate well points in the point-cloud P or when
∇xf(x;p) does not align with the normal to the surface at
each point in P . The term exp(−θi(p)2) in (5) is used to
distinguish between two primitives with ”close” zero level-set.

This method has the advantage over RANSAC of allowing
for a larger set of possible primitives (such as ellipsoid or
super-ellipsoid [25], for example). Consider, for example, Fig.
2. Points were artificially sampled on a surface obtained
from two ellipsoids. The image on the left illustrates the
segmentation result from the RANSAC based algorithm where
each zone is identified as a part of a sphere. The right image
shows the result of the method described in this section with
the two identified ellipsoids.

C. Separating primitives

Primitives detected on the surface of an object are not
always sufficient to describe the object when set operations
are used. Sometimes it is necessary to introduce additional
primitives that do not appear in the segmentation. These

Fig. 3. Additional primitives may be required to build a constructive
representation from a boundary representation. The left object is a boundary
representation of a simple two-dimensional solid, where each boundary patch
has a different color. The right object contains an additional primitive, which
is needed to build a constructive representation of the solid.

are called separating primitives or separators. The idea of
introducing such primitives in order to describe an object by
a CSG expression was introduced by Shapiro and Vossler in
[14]. To illustrate the idea, consider the example in Fig. 3. The
left part illustrates a boundary representation of a simple two-
dimensional object, where each boundary patch has a different
color. Building a constructive representation of this object,
given the boundary patches, is not possible. An additional
halfspace is required as illustrated in Fig. 3, right. The final
CSG representation of the solid is given by: f = a∪b∩c∩d∩e.

In order to compute separating primitives, we use the
following method. First, we iterate through all the primitives
identified during the segmentation step. If the current primitive
is not a plane, we retrieve the set of points on or near
this primitive. We compute the axis aligned bounding box
corresponding to this point-set and add all the planes of
the bounding box to the list of primitives obtained from the
segmentation. If the plane to be added is already present in
the list, we discard it. All identified separating primitives are
added to the list of fitted primitives for the further steps of the
recovery process.

VI. CONSTRUCTION TREE RECOVERY

We propose here some methods for recovering a model
defined by a constructive tree (with geometric operations in
internal nodes and primitives in leaves) from a point-cloud and
a list of primitives. The list of primitives is obtained from the

previous steps. The goal is to automate the modeling process
by providing ways to recover models that can be further edited,
or parameterized and used as valid template models. Two
evolutionary techniques are explored here: a genetic algorithm
is first considered. Then a more generic approach based on
genetic programming is described.

A. Genetic algorithm

Let us call P = {x1, . . . ,xn} the input point-cloud and
F = {f1, . . . , fm} the set of primitives fitted to the seg-
mented point-cloud. Given a finite set of geometric operations
{o1, . . . , ol}, we are searching for an ordering of the primitives
with operations acting on them such that the formula:

fi1oj1fi2 . . . fim (6)

is a model for the solid corresponding to the point-cloud P .
In the above expression, jk ∈ {1, . . . , l} (k ∈ {1, . . . ,m})
and {i1, . . . , im} is a permutation of {1, . . . ,m}. We assume
that all fitted primitives obtained from the previous steps are
correctly oriented. Then we can restrict the list of operations to:
union, intersection, difference, which are all binary operations.
It simplifies the approach described below.

Points xi in the point-cloud P are on (or near) the surface
of the object, so we are searching for f = fi1oj1 . . . fim
minimizing the least-square error: E2(f) =

∑
xi∈P f(xi)

2.
Following [17], a genetic algorithm is used for this minimiza-
tion problem.

1) Genetic algorithm setting: An individual of the popu-
lation represents a possible solution to the problem. In this
case, it is an expression f . Each individual contains m pairs
of integers (opk, Lk), 1 ≤ k ≤ m. In contrary to [17], we
represent these m pairs (opk, Lk) by an array of 2m integers.
Here, opk is an index in the set of possible operations. And Lk
corresponds to the position of the primitive k in the expression
f . The operation corresponding to opk is applied between the
primitive k (at the position Lk) and the preceding primitive (at
the position Lk − 1) in the reconstructed expression. Because
there are only m − 1 operations in an expression with m
primitives, we always ignore the operation paired with the
primitive appearing at the first position.

Mutation With a given probability (using a uniform dis-
tribution), a creature in the current population is mutated.
A mutation point is obtained by sampling from an uniform
distribution. There are two cases depending on whether the
mutation point falls on an operation index (opk) or a primitive
position (Lk). If it falls on an operation index, then we can
simply select a new index at random. Otherwise, one of the
primitives position Lk is randomly altered. The problem is
that we may then have two primitives at the same position:
i.e. Li = Lj for some i 6= j. The same type of problem can
happen after the crossover operation is applied. One way to
resolve it is to sort the pairs opk, Lk with a stable sorting
algorithm. The position of the primitive k is then given by its
position in the sorted array of pairs.

Crossover Pairs of creatures are subject to crossover with
a given probability. A one-point crossover is used in the
experiments. Similarly to the case of the mutation, a creature
may contain two primitives at the same position after the

crossover operation is applied. We use the same technique as
for the mutation operation to resolve this issue.

Selection Creatures to be included in the next population
are selected using fitness proportionate selection (roulette
wheel). We also always include the best creatures (two in the
experiments) from the precedent population.

In [17], (6) is evaluated from left to right. It corresponds
to a left-skewed tree structure with operations in the internal
nodes and primitives in the leaves. However, not any given
object can necessarily be represented by a left-skewed tree.
The best creature is only an approximation of the object in
such case. Since any object represented by a construction tree
has an equivalent left-heavy tree, it is possible to iteratively re-
apply the genetic algorithm re-using the best found creature as
an additional primitive. In contrary we use a different approach
in this work. Instead of evaluating (6) from left to right, we first
evaluate the operations with higher precedence: intersection
(∩) and difference (\).

B. Genetic programming

An alternative approach is to derive the expression (or the
construction tree) by genetic programming [26]. A creature
in the population corresponds to an expression with fitted
primitives as leaves and geometric operations as internal nodes.
A common approach is to use ”S-expressions” to represent
the creatures and use a language that directly manipulates ”S-
expression” such as Lisp to implement the genetic program-
ming approach. Instead we are directly representing the tree
in memory, and evaluate a given expression by tree traversal.
It allows us to implement the approach with any programming
language. The set of terminals (leaves) consists of all the fitted
primitives (including separating primitives) obtained from the
segmentation and fitting step. The set of functions (internal
nodes) consists of geometric operations applied to the leaves
and sub-trees. In our experiments, we used the traditional
set-theoretic operations: union, intersection, difference and
complement implemented with min/max (see section II-A).

For a given creature c and a finite point-set P , we need
to assign a raw score to c. We use the following objective
function E:

E3(c;P) =

N∑
i=1

(exp(−d2i) + exp(−θ2i))− λ size(c) (7)

where: xi are the points from the input point-set P , N is the
number of points in the point-set, di = f(xi)

εd
, with f() is

the expression corresponding to the creature c and εd a user
defined parameter, θi = ArcCos(−∇xf(xi)· ~ni)

α , with ∇xf the
gradient of the expression corresponding to the creature c, ~ni
the normal vector to the surface at the point xi, and α a user
defined parameter, size() the function that counts the number
of nodes (internal and leaves) in the tree corresponding to the
creature c, and λ a user defined parameter.

The goal is to maximize E3(c, P) by genetic programming.
Note the similarity of (7) with (5) used for segmentation in
section V-B. One essential difference is the additional term
−λ size(c). This term is used in order to prevent trees to
grow unnecessary large. For the coefficient λ, we used in our
experiments log(N), where N is the size of the point-cloud.

Fig. 4. Illustration of a parameterized template model: a model is built in a
constructive way with abstract parameters that can be tuned to satisfy some
modeling criteria.

Similarly to (5), this objective function smoothly penalizes
expressions that do not pass on or near the points from the
input point-set or have a gradient not aligned with the surface
normal at each given point. The term exp(−θ2i)) is used to
guarantee that the object is globally correctly oriented. It is
also used to guarantee that locally the function behaves like a
distance field (and therefore remove some potentially unwanted
extra iso-surfaces).

We use standard implementation for the genetic operators:
one-point crossover and one-point mutation. For the mutation,
we either alter a given node in the tree or with a given
probability (from a uniform distribution) replace a subtree at
the given node by a new random creature. We use fitness
proportionate selection.

VII. FITTING OF TEMPLATE MODELS

Once a constructive model has been recovered (even if only
partially), it can be further edited (or completed if needed) and
eventually can be parameterized to be re-used as a template
model.

A. Template models

Given a constructive model, it is possible to identify various
parameters (width of a box, radius of cylinder). The modifica-
tion of these parameters can result in different shapes, which
can also be tuned to fit some modeling criteria. Template model
can exist in specialized libraries for each application domain
(mechanical design, human prosthesis design, and others) and
can be reused, or need to be created by a user. In the latter case,
a modeling work needs to be done by a designer. An example
of a parameterized template model, with different instances of
its parameters, is illustrated in Fig. 4.

A template model can be written using its corresponding
function as: f(x;p) where x corresponds to an evaluation
point in the 3D space and p is a vector of parameters
controlling the shape.

B. Fitting

Given a point-cloud S, the parameters p are optimized
such that the isovalue {x : f(x;p) = 0} approximates
the shape of the point-cloud. The parameters are obtained
by optimizing an objective function E4 defined for a given
template model f and a point-cloud P = {xi}. The simplest
choice for the objective function is to use the least square error:∑
i f

2(xi;p). This objective function should be minimized for
the vector of parameters p. An alternative choice is to use
an objective function similar to what we used in (5) or in
(7): E4(p;P) =

∑
i exp(−

f2(xi;p)
σ2). E4 is maximized for p.

Fig. 5. A CAD object. Left: result of the segmentation. Right: recovered
object by the genetic algorithm approach.

Either simulated annealing [27] or a genetic algorithm [28]
with real encoded creature.

VIII. EXPERIMENTS

In this section, we illustrate with experiments the different
steps of our approach. For the genetic algorithm and genetic
programming technique, we are using large populations (at
least 100 creatures). We are using a mutation rate high enough
to avoid premature convergence to a local optimum (premature
convergence to a uniform population). In these experiments,
a mutation rate of 0.3 is used. In our experiments, we use
a large number of iterations (at least 3000) and let the
algorithm run until the end. In practice, one would implement
some mechanism for trying to detect convergence (such as
convergence to a uniform population or the value of the best
creature(s) below/above some threshold).

A. Experiments with constructive tree recovery

a) Genetic algorithm: Figure 5 illustrates an example of
point-cloud segmented (left), with primitives (plane, cylinder,
sphere) fitted to each subset (in different colors), and the
final object (right) obtained by the genetic algorithm approach
described in section VI-A. The object’s surface is defined
as: {(x, y, z) ∈ R3 : f(x, y, z) = 0} where f is the
expression recovered by the genetic algorithm. This surface
is approximated by a triangle mesh using a meshing algorithm
(the Marching Cubes algorithm [29]) and rendered with a
typical mesh viewer.

One difficulty with the genetic algorithm approach is to
extend it to work with the additional separating primitives
computed in section V-C. A possible solution would be to
include a boolean to each pair (opk, Lk), where the boolean
variable controls whether the primitive k should be accounted
for in the final expression or not. It makes the method more
complicated to implement. The genetic programming based
approach described in section VI-B seems a more natural
approach.

b) Genetic programming: Figure 6 illustrates the result
of applying the genetic programming approach from section
VI-B to a complex CAD shape (a fandisk). The input point-
cloud is initially clustered in 23 segments with primitives iden-
tified and fitted to each segment. The result of the segmentation
is shown in Fig. 6, left, with each segment in a different
color. The best creature found by genetic programming is

Fig. 6. Left: result of the segmentation and primitive fitting. Right: recovered
object by genetic programming.

Fig. 9. A more complex CAD part recovered by our approach. Left: The
input point-cloud. Right: The meshed recovered expression.

shown in Fig. 6, right. In this picture, the zero level-set of
the best expression is approximated with a meshing algorithm
as previously described. The resulting construction tree with
geometric operations (Boolean) in the internal nodes and fitted
primitives in the leaves is shown in Fig. 7.

The object shown in Fig. 6, right image, is the best creature
found after 3000 iterations of genetic programming. The raw
fitness (7) of the best creature at each iteration is illustrated
in the right graph, Fig. 8. Unless the input shape is relatively
simple, the recovered object will be an approximation only.
Approximation can occur in the segmentation and fitting stage.
It can also occur in the genetic programming stage. The point-
wise approximation error (using a log-scale) on the fandisk
data-set is illustrated in Fig. 8 (left image). The point-wise
error was obtained by evaluating the discovered expression f
at each point of the input point-cloud P . The middle picture
in Fig. 6 shows the distribution of point-wise error.

Finally, Fig. 9 illustrates a more complex shape processed
by the proposed approach. The input point-cloud consists in
280K points with normals.

B. User-assisted construction tree recovery

Given that we execute a fixed number of iterations in the
genetic programming step, it is possible to get incomplete
objects. The pot shown in Fig. 10 was incompletely recovered
after 3000 iterations of genetic programming. A part of the
handle was missing. The model was first edited by the user to
remove the existing part. Then points from the input point-
cloud that were not properly recovered were automatically
identified by selecting points from the point-cloud with an error
above some given threshold. The segmentation, fitting and
genetic programming steps were then applied to this residual
point-cloud in order to obtain the handle (see Fig. 10 second
to right). Finally, the handle was attached to the rest of the
object by using the union of the two recovered expressions
(using (2)).

In the next experiment, we are trying to recover a freeform
object from the point-cloud illustrated in Fig. 11, left. After
the steps of segmentation, fitting and constructive tree recovery,
we obtained the model illustrated in Fig. 11, middle. In this

example, approximation appears at different levels: fitting of
primitives and constructive tree recovery. While the final result
appears to be an interesting approximation and convey the
overall shape of the object, one may want to improve the
results. In order to obtain the result shown in Fig. 11, right
image, the following additional steps were carried: First, the
box approximating the horns was removed from the construc-
tive model. Then, the set of points corresponding to the horns
were isolated from the input point-cloud, and used to fit RBF
splines [30]. Finally, we computed the union of the horns fitted
by splines with the previous constructive model (from which
the horns approximation was removed). The result is shown in
Fig. 11, right image.

IX. CONCLUSION

We have presented in this paper our approach for discov-
ering a constructive model from a given scanned point-cloud
for an object. Our approach consists in: segmentation of the
point-cloud, fitting primitives to it and discovery a constructive
model using an evolutionary approach. Parameters can be
extracted by a user from the model and fitted to adapt the shape
to different point-clouds. Experiments illustrated some results
obtained with our actual prototype. Perfect automation of the
process is a difficult task and we plan to further incorporate
user assistance in the different steps of the approach.

ACKNOWLEDGEMENT

The authors acknowledge the authors of [13] for providing
the point-cloud used in Fig. 9. The point-clouds used in Fig.
6 and 11 is courtesy of AIM@SHAPE.

REFERENCES

[1] J. Bloomenthal, C. Bajaj, J. Blinn, M.-P. Cani-Gascuel, A. Rockwood,
B. Wyvill, and G. Wyvill, Introduction to implicit surfaces. Morgan-
Kaufmann, 1997.

[2] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko, “Function repre-
sentation in geometric modeling: concepts, implementation and appli-
cations,” The Visual Computer, vol. 11, no. 8, pp. 429–446, 1995.

[3] A. Ricci, “A constructive geometry for computer graphics,” The Com-
puter Journal, vol. 16, no. 2, pp. 157 – 160, 1973.

[4] V. Shapiro, “Theory of r-functions and applications: A primer,” Cornell
University, Tech. Rep., November 1988.

[5] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transaction on Graphics, vol. 32, no. 3, pp. 29:1 – 29:13, 2013.

[6] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf,
and C. Silva, “State of the art in surface reconstruction from point
clouds,” Computer Graphics Forum, vol. 1, no. 1, pp. 1–xx, 2014.

[7] T. Varady, R. Martin, and J. Cox, “Reverse engineering of geometric
models-an introduction,” Computer-Aided Design, vol. 29, no. 4, pp.
255–268, 1997.

[8] P. Benkó, G. Kós, T. Várady, L. Andor, and R. Martin, “Constrained
fitting in reverse engineering,” Computer Aided Geometric Design,
vol. 19, no. 3, pp. 173–205, 2002.

[9] P.-A. Fayolle and A. Pasko, “Segmentation of discrete point clouds
using an extensible set of templates,” The Visual Computer, vol. 29,
no. 5, pp. 449–465, 2013.

[10] T. Várady, M. Facello, and Z. Terék, “Automatic extraction of surface
structures in digital shape reconstruction,” Computer-Aided Design,
vol. 39, no. 5, pp. 379–388, 2007.

[11] M. Vanco and G. Brunnett, “Direct segmentation of algebraic models
for reverse engineering,” Computing, vol. 72, no. 1, pp. 207–220, 2004.

Fig. 7. The construction tree for the fandisk model with geometric operations in the internal nodes and fitted primitives in the leaves.

Fig. 8. Left: Pointwise error (log scale) of the discovered object by genetic programming. Middle: Error distribution. Right: Raw fitness value of the best
creature at each iteration of the genetic programming approach.

[12] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud
shape detection,” Computer Graphics Forum, vol. 26, no. 2, pp. 214–
226, 2007.

[13] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mitra,
“Globfit: Consistently fitting primitives by discovering global relations,”
ACM Transactions on Graphics, vol. 30, no. 4, pp. 52:1–52:12, 2011.

[14] V. Shapiro and D. Vossler, “Separation for boundary to CSG conver-
sion,” ACM Transactions on Graphics (TOG), vol. 12, no. 1, p. 55,
1993.

[15] S. Buchele and R. Crawford, “Three-dimensional halfspace constructive
solid geometry tree construction from implicit boundary representa-
tions,” Computer-Aided Design, vol. 36, no. 11, pp. 1063–1073, 2004.

[16] S. Silva, P.-A. Fayolle, J. Vincent, G. Pauron, C. Rosenberger, and
C. Toinard, “Evolutionary computation approaches for shape modelling
and fitting,” in Progress in Artificial Intelligence. Springer Berlin
Heidelberg, 2005, pp. 144–155.

[17] P.-A. Fayolle, A. Pasko, E. Kartasheva, C. Rosenberger, and C. Toinard,
“Automation of the volumetric models construction,” in Heterogeneous
objects modelling and applications. Springer Berlin Heidelberg, 2008,

Fig. 10. User-assisted reverse modeling. Left: The original point-cloud. Middle: Intermediate object with the handle missing. Right: Final object with the
handle fitted and attached to the object with the union operation.

Fig. 11. Left: The original point-cloud. Middle: Recovered constructive object. Right: Horns fitted by splines are used instead.

pp. 214–238.
[18] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,

“Surface reconstruction from unorganized points,” in SIGGRAPH ’92:
Proceedings of the 19th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 1992, pp. 71–78.

[19] N. J. Mitra, A. Nguyen, and L. Guibas, “Estimating surface normals
in noisy point cloud data,” International Journal of Computational
Geometry and Applications, vol. 14, no. 4-5, pp. 261–276, 2004.

[20] T. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-preserving
mesh smoothing,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
943–949, 2003.

[21] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,”
ACM Transactions on Graphics, vol. 22, no. 3, pp. 950–953, 2003.

[22] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[23] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” The Quarterly of Applied Mathematics, pp. 164–168,
1944.

[24] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM Journal on Applied Mathematics, vol. 11, pp. 431–
441, 1963.

[25] A. Barr, “Superquadrics and angle-preserving transformations,” IEEE
Computer graphics and Applications, vol. 1, no. 1, pp. 11–23, 1981.

[26] J. Koza, Genetic Programming. MIT Press, 1992.
[27] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multi-

modal functions of continuous variables with the “simulated annealing”
algorithm,” ACM Trans. Math. Softw., vol. 13, no. 3, pp. 262–280, 1987.

[28] J. H. Holland, Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, 1975.

[29] W. Lorensen and H. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” Computer Graphics, vol. 21, no. 4,
1987.

[30] Y. Ohtake, A. Belyaev, and H.-P. Seidel, “A multi-scale approach to 3d
scattered data interpolation with compactly supported basis functions,”
in Shape Modeling International, 2003. IEEE, 2003, pp. 153–161.

