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Abstract  2 

Purpose: The aim of this study was to determine whether combining potential biomarkers of fruit and 3 

vegetables is better at predicting FV intake within FV intervention studies than single biomarkers. 4 

Design: Data from a tightly controlled randomised FV intervention study (BIOFAV; all food provided 5 

and two meals/d on weekdays consumed under supervision) were used.  A total of 30 participants 6 

were randomised to either 2, 5 or 8 portions FV/d for four weeks, and blood samples were collected at 7 

baseline and four weeks for plasma vitamin C and serum carotenoid analysis.  The combined 8 

biomarker approach was also tested in three further FV intervention studies conducted by the same 9 

research team, with less strict dietary control (FV provided and no supervised meals).   10 

Results: The combined model containing all carotenoids and vitamin C was a better fit than either the 11 

vitamin C only (P<0.001) model or the lutein only (P=0.006) model in the BIOFAV study.  The C-12 

statistic was slightly lower in the lutein only model (0.85) and in the model based upon factor analysis 13 

(0.88), and much lower in the vitamin C model (0.68) compared with the full model (0.95). Results for 14 

the other studies were similar, although the differences between the models were less marked.   15 

Conclusions: Although there was some variation between studies, which may relate to the level of 16 

dietary control or participant characteristics, a combined biomarker approach to assess overall FV 17 

consumption may more accurately predict FV intake within intervention studies than the use of a 18 

single biomarker.  The generalisability of these findings to other populations and study designs 19 

remains to be tested. 20 

Keywords: fruit; vegetables; dietary intake; biomarkers; methodology  21 
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Introduction 22 

Increased intake of fruit and vegetables (FV) has consistently been associated with reduced chronic 23 

disease risk in observational studies [1], which have been subjected to meta-analysis [2,3].  Such 24 

observational evidence has been supplemented by recent randomised controlled trials testing the effect 25 

of increased FV intake on clinically relevant endpoints [4-8]. 26 

 27 

In both epidemiological research and interventional studies, the accurate measurement of FV 28 

consumption is crucial. Traditional self-reported questionnaire-based approaches to the measurement 29 

of FV consumption, for example, food frequency questionnaires, 24 hour dietary recalls or food 30 

diaries, have well-reported inaccuracies [9-11]. Given such constraints, alternative, objective measures 31 

of dietary intake of FV would be valuable. Nutritional biomarkers in biological samples, such as blood 32 

and urine, may offer an objective indicator of FV intake [9]. The use of biomarkers would allow a 33 

more accurate assessment of the association between FV intake and disease risk, allow population FV 34 

intakes to be confirmed, as well as facilitating the measurement of compliance within FV intervention 35 

studies [12]. 36 

 37 

In order for a biomarker to be an accurate and valid indicator of FV intake, there are a number of 38 

requirements that must be satisfied. Biomarkers of FV intake need to be minimally invasive to 39 

participants, have the ability to discriminate between different FV intakes, be easy to measure, 40 

reproducible, and be highly responsive to any change in FV intake [13-15]. 41 

 42 

Suggested possible biomarkers of FV intake include plasma vitamin C, carotenoids and flavonoids 43 

[16-20]. In a recent systematic review [15] vitamin C and carotenoids were the two biomarkers that 44 

were most frequently measured and consistently responsive within dietary FV interventions. Some 45 

single biomarkers have been shown to be strong indicators of specific single FV, for example the 46 

carotenoid lycopene is a good predictor of tomato intake [21]. However, while some of these proposed 47 

biomarkers have been associated with a specific fruit or vegetable, or FV class, they have been less 48 

reliably associated with overall FV consumption [17-19, 22-26]. This is likely to be due, at least in 49 
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part, to FV being a complex food group with variability in the bioactive compounds contained within 50 

individual FV. Therefore, measuring a panel of potential biomarkers of FV intake within FV 51 

intervention studies has been recommended [15].  Examining this panel in an integrated way may 52 

more reliably predict overall FV consumption than a single individual biomarker or panel of individual 53 

biomarkers.  54 

 55 

This paper examines the effect of increased FV intake on a panel of biomarkers of FV consumption 56 

(vitamin C and six carotenoids), considered both singly and in combination. Using data from a strictly 57 

controlled randomised FV intervention study (BIOFAV) designed for this purpose, i.e. with strict 58 

dietary control to ensure compliance, and three further FV intervention studies, we sought to 59 

determine whether a combined biomarker approach was better at predicting overall FV intake within 60 

FV intervention studies than single biomarkers.  61 

 62 

Subjects and Methods 63 

The Biomarkers of Fruit and Vegetables (BIOFAV) study was a randomised controlled FV feeding 64 

study (2, 5 or 8 portions of FV per day for 4 weeks) in healthy volunteers (n=30).  The study was 65 

approved by the School of Medicine, Dentistry and Biomedical Sciences research ethics committee of 66 

Queen’s University Belfast and participants gave informed written consent.  The study was registered 67 

at clinicaltrials.gov as NCT01591057.  The study duration was chosen to be long enough to allow the 68 

proposed biomarkers to change in response to the alteration in FV intake, whilst the inclusion and 69 

exclusion criteria ensured a broad range of ages and healthy volunteers were included, to maximise 70 

generalisability of study findings.  A sample size of n=10 per group was chosen for two reasons, firstly 71 

because variability data from previous studies suggested that statistically significant increases in 72 

blood-based FV biomarkers would be achieved with such a sample size, whilst this was also 73 

achievable from a manpower perspective, given the intensity of the dietary intervention. 74 

 75 

Participants were recruited using university intranet emails and posters between June 2011 and May 76 

2012.  Inclusion criteria were: aged between 18 and 65 y; current consumption of FV ≤ two portions/d, 77 
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while exclusion criteria were: body mass index >35 kg/m
2
; use of high dose vitamins, minerals or 78 

dietary supplements likely to affect biomarkers of FV intake; excessive alcohol consumption (defined 79 

as >28 units/week for males and >21 units/week for females); food sensitivities or allergies that would 80 

interfere with the tolerance of a high FV-rich diet; current smoking; medical conditions or dietary 81 

restrictions that would considerably limit the participant’s ability to complete the study requirements; 82 

history of diabetes; pregnant or lactating; following a weight loss diet.  Participants’ usual diet was 83 

assessed using the 7-day diet history method.   84 

 85 

Participants were randomly assigned, using a block design, to one of three intervention groups, to 86 

consume 2, 5 or 8 portions of FV daily for 4 weeks.  87 

 88 

All food, including the FV consumed during the intervention, was provided and there was supervised 89 

consumption of two meals per day on weekdays. The menu plan was based around the participant’s 90 

portions allocation, their likes and dislikes and also their usual energy intakes.  Participants were 91 

therefore free to choose the FV they wished to consume, although a balance of fruit versus vegetables 92 

was encouraged, and variety also promoted.  A portion of FV was as recommended by Department of 93 

Health (UK) guidelines, e.g. one apple, orange or banana, 3 heaped tablespoons of vegetables, or 150 94 

ml fruit juice) [27].   95 

 96 

A fasting blood sample was collected from all participants at baseline and week 4. All bloods were 97 

processed within two hours of being drawn and stored at -80C. Weight and height were also assessed 98 

at baseline and week 4, and weight was re-measured at week 2 to ensure it remained constant over the 99 

course of the study, and diets were altered if weight loss or gain was observed.  Demographic 100 

information was collected on alcohol consumption, smoking status, levels of physical activity (MRC 101 

Recent Physical Activity Questionnaire), medication use at baseline and week 4 to ensure there were 102 

no changes to these behaviours over the study duration. 103 

 104 

Other fruit and vegetable intervention studies 105 
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The other FV intervention studies included in the current analysis were randomised interventions, 106 

conducted in a similar way to BIOFAV, and by the same research team, except the intervention was 107 

less strictly controlled, i.e. FV were provided to the participants rather than whole diet, and there was 108 

no supervised consumption.  The FAVRIT study randomised participants with hypertension to 1, 3 or 109 

6 portions of FV/d for 8 weeks, the ADIT study randomised participants >65 y to 2 or 5 portions of 110 

FV/d for 16 weeks, while the FIRST study recruited participants at increased risk of CVD and 111 

randomised them to 2, 4 or 7 portions FV/d for 12 weeks.  Detailed methodology and analysis of the 112 

primary outcomes of these studies have been published [5,7-8], and the studies are summarised in 113 

Table 1. 114 

 115 

Laboratory analysis 116 

All biomarker analysis was conducted blinded to allocated FV group.  For all studies, plasma ascorbic 117 

acid concentrations were determined by fluorometric assay [28]. Serum concentrations of lutein, 118 

zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene and lycopene were measured by reverse phase 119 

high performance liquid chromatography (HPLC) [29]. Assays were standardised against appropriate 120 

National Institute of Standards and Technology reference materials.  These assays are also externally 121 

quality assured by participation in the French Society for Vitamins and Biofactors quality assurance 122 

scheme.  123 

 124 

Statistical Analysis 125 

For baseline characteristics continuous variables are presented as mean (SD) and categorical variables 126 

are presented as n (%). Between groups comparisons of baseline characteristics were made using one 127 

way ANOVA tests for continuous variables and Chi-square tests for categorical variables. 128 

 129 

Biomarker status variables were summarised as mean (standard deviation) and changes are expressed 130 

as mean (95% CI). Changes in micronutrient status were assessed using one-way ANOVA, with a test 131 

for linear trend across groups if there were > two intervention groups. 132 

 133 



7 

 

In BIOFAV, ordinal (proportion odds) logistic regression analyses were utilised to predict allocated 134 

FV group (2, 5 or 8 portions of FV per day).  Initially, models were fitted with single biomarkers 135 

(vitamin C only, lutein only) and then a combined biomarker model was fitted (containing all 136 

carotenoids and vitamin C).  Biomarker variables entered into models were based upon change 137 

between week 4 and baseline and were standardised to calculate (adjusted) odds ratios (OR) per 138 

standard deviation increase in each variable and 95% confidence intervals (95% CI).  To avoid 139 

computational problems when calculating, for the full model, an optimism corrected C-statistic 140 

(described later), a separate model was created in which factor analysis (based upon the principal-141 

factor method, including 2 factors and no rotation) was first used to reduce the carotenoid variables to 142 

produce two factor score variables.  These two factor score variables were entered into a model along 143 

with vitamin C.  The combined biomarker model was formally compared to the models with vitamin C 144 

and lutein model using likelihood ratio tests.  The proportional odds assumption was informally 145 

checked by comparing the estimates from logistic regression models comparing 2 to 5 items of FV 146 

intake per day and 5 to 8 items of FV intake per day.      147 

 148 

The ability of the models to correctly classify FV intake (i.e. 2, 5 or 8 portions of FV per day) were 149 

measured by creating 3 by 3 tables of predicted intake based upon the model scores against the 150 

observed intake (i.e. the actual category of intake).  The cut offs for the predicted intake categories 151 

were chosen post-hoc to obtain the correct total number of predicted cases for each outcome category 152 

overall.  Based upon these 3 by 3 tables, the percentage agreement of predicted and observed intake 153 

and a weighted Kappa value was calculated.  154 

 155 

The discriminative ability of each model was formally quantified using a C-statistic.  C-statistics and 156 

confidence intervals were calculated using STATA add-on somersd [30]. This statistic can be 157 

interpreted as the probability that, for a pair of individuals with different FV category intake, the one 158 

in the higher FV intake category has higher predicted probability for that category from the model.  159 

Bootstrap methods were applied to attempt to correct for over-fitting. Specifically, each model was 160 

estimated in a bootstrap sample and the modified C-statistic was calculated in the bootstrap sample 161 
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and in the original sample. This process was repeated 200 times and the average difference in 162 

performance in the bootstrap sample and in the original sample was calculated (the optimism) and 163 

subtracted from the apparent performance to estimate the internally validated performance [31].   164 

 165 

These analyses were replicated in FIRST (using ordinal logistic regression models with outcome 2, 4 166 

and 7 FV per day and explanatory variables based upon the difference in biomarker levels from 167 

baseline to week 12) and FAVRIT (using ordinal logistic regression models with outcome 1, 3 and 6 168 

FV per day and using explanatory variables based upon the difference in biomarker levels from 169 

baseline to week 8).  In ADIT similar analyses were conducted using logistic regression, as only two 170 

FV intake categories were used (2 and 5 FV per day), with explanatory variables based upon 171 

difference in biomarker from baseline to week 16.   172 

 173 

These analyses were conducted to predict allocated FV group, but, because of the reduced dietary 174 

control in these studies (supply of FV and close contact with study team to encourage compliance), it 175 

is possible that compliance with the dietary intervention in these other studies was less than in 176 

BIOFAV.  Linear regression analysis with self-reported FV intake as the outcome was therefore also 177 

used to calculate an adjusted R
2
 value for models containing change in vitamin C alone, lutein alone 178 

and a combination of all carotenoids and vitamin C in FAVRIT, FIRST and ADIT. 179 

 180 

Statistical analyses were performed using SPSS version 19.0 for Mac (SPSS Inc, Chicago, IL) and 181 

STATA version 12 (StataCorp, College Station, Texas).  182 

 183 

Results 184 

A total of 30 participants completed the BIOFAV study.  Figure 1 shows the flow of participants 185 

through the study.  One participant had a missing blood sample at week 4.  Table 2 shows the baseline 186 

study population characteristics. Also shown in table 2 are the baseline characteristics according to FV 187 

intervention group (2, 5 or 8 portions FV/d). The baseline characteristics were similar in the three FV 188 

intervention groups (2, 5 or 8 portions FV/d). 189 
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 190 

Table 3 shows baseline and change in biomarker status in the three FV intervention groups. The 191 

groups were similar at baseline, but there were statistically significant between group changes in all 192 

biomarkers measured at week 4, with the exception of zeaxanthin and lycopene, although a similar 193 

trend was observed for zeaxanthin. 194 

 195 

Table 4 illustrates the single and combined biomarker models used to predict allocated FV group in 196 

BIOFAV participants.  In the vitamin C only model, vitamin C was associated with FV group, whilst 197 

in the lutein only model, lutein was also associated with FV group. Formal tests indicated that the 198 

combined model containing all carotenoids and vitamin C was a better fit than either the vitamin C 199 

only (P<0.001) model or the lutein only (P=0.006) model.  The combined model correctly allocated 200 

86% of individuals to the correct group compared with 52% in the vitamin C only model and 66% in 201 

the lutein only model.  These corresponded to Kappa values of 0.85 in the combined model compared 202 

with 0.31 in the vitamin C only and 0.54 in the lutein only models.  The C-statistic was slightly lower 203 

in the lutein only model (0.84) and in the model based upon factor analysis (0.88), and much lower in 204 

the vitamin C model (0.68) compared with the full model (0.95). An optimism corrected C-statistic 205 

was not calculable for the full model, however correction for optimism reduced the C-statistic for the 206 

factor analysis model (0.85) but the C-statistics for the vitamin C model and lutein model were little 207 

altered (0.68 and 0.84).  208 

  209 

Results for the other studies are shown in Table 5, but the differences between the models were less 210 

marked.  For instance, the optimism corrected C-statistics was slightly higher in the combined model 211 

compared with the vitamin C only model and lutein only model in FAVRIT (0.76, 0.64 and 0.65, 212 

respectively) and in ADIT (0.75, 0.72 and 0.67, respectively), but not in FIRST (0.64, 0.58 and 0.66, 213 

respectively).  Similarly, adjusted r
2
 values were higher in the combined model compared with the 214 

vitamin C only model and lutein only in FAVRIT (0.22, 0.03 and 0.16, respectively) and in ADIT 215 

(0.26, 0.12 and <0.01, respectively), but not in FIRST (0.11, <0.01 and 0.15, respectively).   216 

 217 
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When analyses were replicated to predict allocated FV group in each of the four studies based upon 218 

the final biomarker values as opposed to the change variables, similar levels of agreement were 219 

demonstrated (data not shown). 220 

 221 

Discussion 222 

This study suggests that a combined biomarker panel may better predict FV intake within intervention 223 

studies than consideration of single biomarkers.  Plasma vitamin C, and certain carotenoids and 224 

flavonoids have been suggested as biomarkers of intake of overall FV [16-20, 23-24, 26, 32-343]. A 225 

systematic review of FV biomarkers within FV intervention studies showed that vitamin C and 226 

carotenoids are commonly used and do tend to increase [15].  However, there are two problems with 227 

the assessment of these biomarkers of overall FV intake: firstly FV is a complex food group, and the 228 

content of phytochemicals proposed as biomarkers will vary markedly between different classes of 229 

FV, and even within different varieties of the same FV [3435-3637].  Storage and processing of FV 230 

can also affect phytochemical content [3738].  Secondly, there are a number of factors that will affect 231 

biomarker response to a given FV intake, including inter-individual variation in digestion, absorption 232 

and metabolism. Some of this variation will be genetic in origin, but environmental factors such as 233 

BMI [3839], smoking [3940], baseline biomarker status [4041,4142] and other aspects of diet (e.g. fat 234 

content of meal in which FV are consumed [24, 4243-4546]) will affect bioavailability of the 235 

phytochemicals and/or biomarker response. Nutritional biomarkers will therefore never be perfect at 236 

reflecting dietary FV consumption on their own, because physiological processes in the body will also 237 

impact upon response.  Furthermore, there are other dietary sources of some of these compounds and 238 

therefore single compounds may not reflect total overall FV consumption.  In addition, the plasma 239 

concentration of vitamin C has a linear relationship with vitamin C intake up until a specific point, 240 

above which plasma concentrations of vitamin C plateau (>5 servings of FV) [19,4647], and therefore 241 

vitamin C may be a less useful biomarker at higher levels of intake.  242 

 243 

Despite these limitations, efforts to improve the ability of biomarkers to predict FV intake would be 244 

valuable in nutritional epidemiology.  Campbell et al, [26] initially suggested combining biomarkers, 245 
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and summing carotenoid status [4748] or flavonoid urinary excretion [4849-5051] has previously been 246 

attempted.  Such an approach, however, will take greater account of the more predominant compounds 247 

(e.g. lycopene when summing total carotenoids), and therefore a more sophisticated approach may be 248 

required.  A recent publication has conducted a similar analysis to that performed here in a single, less 249 

well-controlled FV intervention [5152]. 250 

 251 

Because of the limitations of the FV biomarkers when examining overall FV intake, we proposed that 252 

a combined biomarker approach (vitamin C and six carotenoids) may be able to take into account the 253 

diversity and variety of bioactive compounds found within FV and would be more likely to capture the 254 

total amount of FV consumed.  Hence the current analysis aimed to determine whether a model 255 

including a panel of biomarkers (vitamin C and six carotenoids) was better at predicting FV intake 256 

within a FV intervention study than models examining individual biomarkers.  These The analyses 257 

utilised a tightly controlled FV intervention study (all food was provided and two meals/d on 258 

weekdays consumed under supervision;( BIOFAV) and three previously-conducted, less tightly 259 

controlled FV interventions (FAVRIT, FIRST and ADIT).  The combined biomarker model performed 260 

better in the more tightly controlled intervention, BIOFAV. Similar patterns of results were observed 261 

for the other studies, but differences between the combined biomarker and individual biomarker 262 

models were less marked, and this was particularly true for the FIRST study, where the combined 263 

model was not significantly better than the lutein only model. This suggests that an integrated panel of 264 

biomarkers in intervention studies may obtain a more accurate and precise measure of total FV 265 

consumption, but the observed differences detected between studies do need to be explored. 266 

 267 

It is likely that the difference detected within the current studies arose due to the less intensive and less 268 

dietary control in the other three dietary interventions compared to BIOFAV, although efforts were 269 

made in each of these other interventions to maximise compliance with the allocated intervention and 270 

minimize inaccuracies in self-reporting. For example, FV was delivered to the participants in all three 271 

studies, participants were contacted weekly by telephone to monitor compliance with the intervention 272 

study, and participants were encouraged to report any lack of compliance with the intervention.  It is 273 
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possible that there was a lack of adherence to the dietary intervention, and therefore the analysis 274 

according to allocated FV group would not have been appropriate.  However, the association between 275 

biomarker response and self-reported FV intake (in portions/d) was also calculated and revealed 276 

similar associations.  It is still possible that the self-reported measures utilised to assess numbers of 277 

portions of FV consumed were inaccurately reported.  There may also have been between-study 278 

differences in the FV self-selected by participants or in the composition of the FV consumed, which 279 

could have impacted on biomarker responses.  For example, the range of FV consumed within 280 

BIOFAV may have been less broad than in the other studies, although this is unlikely, and similar 281 

guidance regarding selection of FV (a balance of FV, encouragement to maximise variety) was given 282 

in all studies.  Similarly, the FV supplier was the same in all studies, and all fieldwork duration 283 

periods were long enough to account for between-study seasonal differences in FV composition.  284 

Another major difference between BIOFAV and other FV intervention studies was that BIOFAV 285 

recruited young healthy individuals, whilst the other studies recruited either older participants or those 286 

at high CVD risk.  BIOFAV participants were non-smokers, and had BMIs in the normal range, 287 

whereas those in the other s tudies included smokers, and participants were overweight.  It is possible 288 

that there is an age-related reduction in FV biomarker response, or that biomarker responses are 289 

reduced with increasing weight [3839] and in smokers [3940] and that this contributed to the 290 

differences observed.  291 

 292 

The analyses presented here have several strengths.  They are the first to examine combining FV 293 

biomarkers to improve prediction of FV intake in a tightly controlled intervention, or other than simple 294 

summation [4748-5051].  The BIOFAV study was strictly controlled, and we are confident that 295 

participants consumed the number of FV portions they were allocated to, therefore our observation of 296 

improved prediction of FV intake using a combined panel of biomarkers is  novel and robust.  The 297 

ability to test this hypothesis in further FV interventions is also a strength.  There are, however, some 298 

accompanying limitations – the overall absolute performance of the model to predict intake, 299 

particularly in the less controlled studies, was relatively low (e.g. an r
2
 of 0.26 in ADIT), indicating 300 

there is substantial variability in FV intake not explained by the included biomarkers, and that what we 301 



13 

 

are commenting on is the relative improvement with a combined biomarker approach.  A further 302 

limitation is that internal validation was not possible for the combined model in BIOFAV, due to the 303 

small number of observations relative to the parameters estimated, and therefore it was not possible to 304 

correct for over fitting/optimism in the models.  Although internal validation was performed for the 305 

other models, a better estimate of the prognostic power of these models would be determined using 306 

external validation.  The combined biomarker approach could be extended and incorporate further 307 

biomarkers (e.g. flavonoids) and account for environmental factors that could affect biomarker 308 

response (e.g. BMI, smoking), while the ability of such an approach, compared with s ingle 309 

biomarkers, to predict individual intakes on a population level would require further model 310 

development and testing.  The utility of a combined biomarker approach to predict different patterns of 311 

FV intake (e.g. predominantly fruit or vegetable) or diets containing different classes of FV (e.g. green 312 

vegetables, root vegetables, pulses, fruits), or different varieties of the same FV classes could also be 313 

explored.  A combination of multiple measures of dietary assessment may provide more accurate 314 

estimates of true dietary intake, for example combining biomarkers and self-reported measures of 315 

dietary intake using regression calibration equations [5253,5354], and this could represent a natural 316 

extension of combining biomarkers when measuring FV intake. The biomarkers measured here are 317 

commonly used in FV intervention studies and therefore the suggested approach, if confirmed as 318 

useful, would be at no extra cost.   319 

 320 

In conclusion, there was some evidence that a combined model including a range of FV biomarkers (a 321 

carotenoid panel and vitamin C) performed better at predicting allocated FV within a strictly 322 

controlled dietary intervention study than the use of a model with vitamin C only or lutein only. A 323 

similar pattern was observed in three less intensive FV interventions, although differences between 324 

models were less clear cut.  Therefore, a combined biomarker approach to assess overall FV 325 

consumption may more accurately predict FV intake within intervention studies than the use of single 326 

biomarkers.  The utility of such an approach to predict population level intake of FV remains to be 327 

tested. 328 

 329 
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Table 1. Summary details of the intervention studies included in the combined biomarker analysis. 

  

S tudy 

Number of 

participants 

completing 

intervention S tudy Duration Portions/d 

Dietary intervention 

intensi ty Age (y) Health S tatus 

Assessment visi ts when 

blood col lected 

BIOFAV 30 

4 weeks (no wash out  required as 

1-2 port ions/day  FV consumers 

recruited) 2, 5 or 8 

All food p rovided, 

including FV.  Two 

meals/d consumed under 

supervision. 18-65 Healthy  0, 2 and 4 weeks 

FIRS T [5] 89 12 weeks (+4 week run-in-period) 2, 4 or 7 

FV supp lied weekly .  

Compliance encouraged 

by  weekly  telephone 

call. 40-77 High risk of CVD 

0 and 12 weeks of 

intervent ion period 

FAVRIT [8] 117 8 weeks (+4 week run-in-period) 1, 3 or 6 

FV supp lied weekly .  

Compliance encouraged 

by  weekly  telephone 

call. 40-65 Hypertensive 

0 and 8 weeks of 

intervent ion period 

ADIT [6,7] 82 

16 weeks (no wash out  required as  

≤ 2 port ions/day  FV consumers 

recruited) 2 or 5 

FV supp lied weekly .  

Compliance encouraged 

by  weekly  telephone 

call. 65-85 Healthy  0, 6, 12 and 16 weeks 

Form atted Table
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Table 2. Baseline characteristics of BIOFAV participants (n=30) according to FV intervention group 

 

 
 

 

 

 

 

 

 

 

 

a
Cont inuous variables p resented as mean (SD).

 b
Categorical variables p resented as n(%).  

  

Participant Characteristic Total  2 portion group (n=11) 5 portion group (n=9) 8 portion group (n=10)  

Age (years)
a
 28.5 (11.8) 25.9 (10.8) 28.2 (9.6) 31.7 (14.9)  

S ex n (% female)
 b

 15 (50) 6 (54.5) 4 (44.4) 5 (50)  

Weight (kg)
a
 69.7 (13.7) 70.9 (17.8) 70.4 (8.6) 67.8 (13.5)  

Height (m)
a
 1.70 (0.1) 1.70 (0.1) 1.7 (0.1) 1.69 (0.07)  

BMI (kg/m
2
)

a
 24.0 (4.1) 24.6 (5.4) 23.8 (2.7) 23.7 (3.6)  

Waist (cm)
a
 81.7 (12.2) 82.0 (13.8) 83.7 (11.2) 79.6 (12.0)  

Hip (cm)
a
 100.7 (6.9) 101.5 (8.9) 100.6 (5.2) 99.8 (6.3)  

S ystolic blood pressure (mmHg)
a
 109.6 (29.2) 109.3 (23.7) 107.1 (32.2) 112.2 (34.5)  

Diastolic blood pressure (mmHg)
a
 72.7 (21.6) 74.8 (22.1) 70.6 (23.8) 72.3 (21.2)  

Past smoker n (%)
b
 6 (20) 2 (18.2) 2 (22.2) 2 (20.0)  

Alcohol  consumers n (%)
b
 22 (73.4) 9 (81.8) 7 (77.8) 6 (60.0) 

 
  Never or occasionally  8 (26.7) 2 (18.2) 2 (22.2) 4 (40.0) 

  Once or twice a week 20 (66.7) 9 (81.8) 6 (66.7) 5 (50.0) 

  Three to five t imes a week 2 (6.7) 0 (0) 1 (11.1) 1 (10.0) 

Full  time education (years)
a
 16.1 (2.8) 15.9 (1.5) 16.2 (3.1) 16.3 (3.8)  

Using medication n (%)
b
 13 (43.3) 4 (36.4) 5 (55.6) 4 (40.0)  

Employment
b
 

    
 

  Student  18 (60) 8 (72.7) 4 (44.4) 6 (60) 

  Full t ime employment  11 (36.7) 3 (27.3) 4 (44.4) 4 (40) 

  Unemployed 1 (3.3) 0 (0) 1 (11.1) 0 (0) 
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Table 3. Serum and plasma FV biomarker status of BIOFAV participants at baseline and 

during intervention in those consuming 2, 5 or 8 portions of FV/d 

  n Basel ine Change at 4 wk 

Vitamin C (mol/l)
 2 port ions/d 11 58.4 (16.3) -7.7 (-20.9,5.5) 

 5 port ions/d 9 61.0 (13.1) 14.0 (2.9,25.1) 

 8 port ions/d 9 52.6 (20.5) 11.7 (-6.7,30.0) 

 P-value  0.45 0.04 

Lutein (mol/l ) 2 port ions/d 11 0.16 (0.07) -0.01 (-0.03,0.01) 

 5 port ions/d 9 0.15 (0.05) 0.03 (0.02,0.05) 

 8 port ions/d 9 0.16 (0.03) 0.06 (0.03,0.08) 

 P-value  0.89 <0.001 

Zeaxanthin (mol/l ) 2 port ions/d 11 0.04 (0.02) 0.002 (-0.003,0.006) 

 5 port ions/d 9 0.05 (0.02) 0.006 (0.003,0.009) 

 8 port ions/d 9 0.05 (0.01) 0.008 (-0.002,0.018) 

 P-value  0.69 0.11 

 -cryptoxanthin 

(mol/l ) 

2 port ions/d 11 0.10 (0.09) -0.01 (-0.03,0.02) 

 5 port ions/d 9 0.08 (0.04) 0.03 (0.004,0.06) 

 8 port ions/d 9 0.08 (0.02) 0.06 (0.01,0.11) 

 P-value  0.41 0.005 

-carotene (mol/l ) 2 port ions/d 11 0.14 (0.10) 0.08 (0.02,0.14) 

 5 port ions/d 9 0.10 (0.06) 0.13 (0.03,0.23) 

 8 port ions/d 9 0.13 (0.08) 0.34 (0.13,0.54) 

 P-value  0.80 0.003 

 -carotene (mol/l ) 2 port ions/d 11 0.34 (0.25) 0.14 (0.01,0.26) 

 5 port ions/d 9 0.24 (0.19) 0.36 (0.05,0.67) 

 8 port ions/d 9 0.48 (0.44) 0.88 (0.31,1.46) 

 P-value  0.33 0.002 

Lycopene (mol/l ) 2 port ions/d 11 0.51 (0.26) 0.064 (-0.032,0.159) 

 5 port ions/d 9 0.37 (0.18) 0.102 (-0.071,0.276) 

 8 port ions/d 9 0.48 (0.26) 0.003 (-0.218,0.224) 

 P-value  0.80 0.55 

Values are mean (SD) with changes expressed as mean (95% CI).  Change calculated as wk 4 – baseline.  Both 

baseline variables and changes were compared between 2, 5 and 8 port ions/d groups using one way analysis of 

variance with linear t rend fit ted.   
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Table 4. Ordinal logistic regression to predict allocated FV group in BIOFAV participants utilising single or combined biomarker models 

 
 Vitamin C only model Lutein only model  

Al l  carotenoids and 

vi tamin C model   

Factor analysis model  

(al l  Carotenoids) 

 

 

OR (95% CI) P  OR (95% CI) P  OR (95%CI)  P  OR (95% CI) P  

Estimates
a
: 

OR (95% 

CI) per 

standard 

deviation 

increase  

Vitamin C 
2.45 (1.09, 

5.54) 
0.03 

  
1.87 (0.51, 6.93) 0.35 1.59 (0.65, 3.87) 0.312 

Lutein               
  

8.18 (2.19, 30.54) 0.002 30.75 (1.28, 736.55) 0.04 
  

Zeaxanthin 
    

0.23 (0.02, 2.46) 0.23 
  

Lycopene 
    

0.32 (0.09, 1.11) 0.07 
  

β-cryptoxanthin  
    

4.11 (0.49, 34.48) 0.19 
  

α-carotene  
    

1.82 (0.04, 92.06) 0.77 
  

β-carotene  
    

2.19 (0.04, 107.34) 0.69 
  

First  factor (footnote)
b
 

      

12.71 (2.88, 

56.04) 
0.001 

Second Factor (footnote)
c
 

      
2.28 (0.73, 7.14) 0.157 

Model  

Performanc

e 

P value compared with full model
d
 <0.001 

 
0.006 

 
Reference 

 
<0.001 

 
Percentage agreement  

e
 52 % (15/29) 

 
66 % (19/29) 

 
86 % (25/29) 

 
75 % (22/29) 

 
Weighted Kappa 0.31 

 
0.54 

 
0.85 

 
0.69 

 

C-statistic 
0.68 (0.50, 

0.86)  
0.84 (0.71, 0.96) 

 
0.95 (0.89, 1.00) 

 
0.88 (0.76, 1.00) 

 

Opt imism corrected C-statistic 0.68 
 

0.84 
 

f 

 
0.85 

 a
 Est imates based upon ordinal logist ic regression with outcome intake in groups (2, 5 and 8 portions per day) and exp lanatory variables change in biomarker values at  4 

weeks.
 

b
First  factor calculated from factor analysis based upon all carotenoids (change at  4 weeks).  Calculate score= 0.22 X Lutein + 0.20 X Zeaxanthin + 0.02 X Lycopene + 0.09 X 

β-cryptoxanthin + 0.16 X α-carotene + 0.62 X β-carotene. 
c
Second factor calculated from factor analysis based upon all carotenoids (change at  4 weeks).  Calculate score= 0.41 X Lutein + 0.30 X Zeaxanthin + 0.04 X Lycopene + 0.14 

X β-cryptoxanthin + -0.52 X α-carotene + -0.11 X β-carotene. 
d
 P value for likelihood rat io test comparing each model to model containing all carotenoids and vitamin C  

e
 Comparing actual category  of intake with p redicted category of intake based upon model cut  offs (chosen to obtain the correct p roportion in each category  of intake). 

f
 Opt imism could not  be calculated due to large number of parameters compared with number of observations. 
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Table 5. Regression analysis to predict allocated FV group in FAVRIT, FIRST and ADIT 

studies utilising single or combined biomarker model approach 

 
  Vitamin C  

model  
Lutein model  

Al l  carotenoids and 

vi tamin C  model   

FAVRIT study
a
 

Est imates: OR 

(95% CI) per 

standard 

deviat ion 

increase  

Vitamin C 1.53 (1.05, 2.24) 

 

1.71 (1.14, 2.56) 

Lutein   2.15 (1.40, 3.30) 1.69 (0.87, 3.27) 

Zeaxanthin   
 

0.68 (0.32, 1.41) 

Lycopene   
 

0.52 (0.30, 0.91) 

β-cryptoxanthin    
 

6.23 (2.65, 14.63) 

α-carotene    
 

1.33 (0.60, 2.94) 

β-carotene      0.60 (0.27, 1.32) 

Model 

Performance 

P compared with full model
d
 <0.001 <0.001 Reference  

Percentage agreement 
e
  41% (41/100) 44% (44/100) 61 % (61/100) 

Weighted Kappa 0.21 0.24 0.47 

C-stat istic 0.64 (0.55, 0.73) 0.65 (0.57, 0.74) 0.80 (0.71, 0.88) 

Opt imism corrected C-statistic 0.64 0.65 0.76 

Adjusted r
2 f

 0.03 0.16 0.22 

FIRST study
b
 

Est imates: OR 

(95% CI) per 

standard 

deviat ion 

increase  

Vitamin C 1.14 (0.77, 1.69) 

 

0.98 (0.64, 1.49) 

Lutein   1.96 (1.25, 3.08) 2.89 (1.30, 6.46) 

Zeaxanthin   
 

0.25 (0.05, 1.13) 

Lycopene   
 

0.89 (0.53, 1.52) 

β-cryptoxanthin    
 

2.48 (1.09, 5.63) 

α-carotene    
 

2.61 (0.23, 29.30) 

β-carotene      0.77 (0.36, 1.64) 

Model 

Performance 

P compared with full model
d
 0.02 0.40  Reference  

Percentage agreement 
e
 40 % (33/83) 41 % (34/83) 45 % (37/83) 

Weighted Kappa 0.12 0.19 0.30 

C-stat istic 0.58 (0.48, 0.68) 0.66 (0.57, 0.75) 0.70 (0.61, 0.79) 

Opt imism corrected C-statistic 0.58 0.66 0.64 

Adjusted r
2 f

 <0.01 0.15 0.11 

ADIT study
c
 

Est imates: OR 

(95% CI) per 

standard 

deviat ion 

increase  

Vitamin C 2.39 (1.37, 4.17) 

 

2.37 (1.24, 4.54) 

Lutein   1.70 (0.99, 2.93) 1.59 (0.74, 3.43) 

Zeaxanthin   
 

2.76 (0.25, 30.63) 

Lycopene   
 

1.03 (0.50, 2.12) 

β-cryptoxanthin    
 

1.91 (0.94, 3.92) 

α-carotene    
 

5.08 (0.62, 41.71)  

β-carotene      0.28 (0.10, 0.74) 

Model 

Performance 

P compared with full model
d
 0.02 <0.001 Reference   

Percentage agreement 
e
 70 % (55/79) 62 % (49/79) 75 % (59/79) 

Kappa 0.39 0.24 0.49 

C-stat istic  0.73 (0.62, 0.84) 0.68 (0.56, 0.80) 0.82 (0.72, 0.91) 

Opt imism corrected C-statistic  0.72 0.67 0.75 

Adjusted r
2 f

 0.12 <0.01 0.26 
a  

Est imates based upon ordinal logist ic regression with outcome intake in groups (1, 3 and 6 portions per day) 

and explanatory variables change in biomarker values at 8 weeks.  
b
 Est imates based upon ordinal logist ic regression with outcome intake in groups (2, 4 and 7 portions per day) 

and explanatory variables change in biomarker values at 12 weeks.  
c
 Est imates based upon logist ic regression with outcome intake in groups (2 and 5 portions per day) and 

explanatory variables change in biomarker values at  16 weeks.  
d
 P value for likelihood ratio test comparing each model to model containing all carotenoids and vitamin C.  

e
 Comparing actual category of intake with predicted category of intake based upon  model cut  offs, chosen to 

obtain the correct proportion in each category of intake. 
f  
Adjusted r

2
 calculated using mult iple linear regression with actual self-reported FV intake as the outcome and 

change in biomarker values as explanatory variables.  



27 

 

Legends for figures 

 

Figure 1:  Flow chart illustrating recruitment, randomisation and participants’ progression 

through BIOFAV dietary intervention study. 
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44 not eligible  
11 no reply 

12 suitable but did not wish to participate 

32 participants gave consent  

1 withdrawal due to 
other commitment 

31 participants completed baseline 
assessment 

Recruitment and 

Screening 

Randomisation 

Baseline Fasting blood sample 

  Anthropometry 

  Questionnaires 

2 portions/d 5 portions/d 8 portions/d 

11 randomised  10 randomised  10 randomised  

1 withdrawal - 

exclusion 

criteria 

Week 4 Repeat of baseline 

assessments  
4 week  intensive dietary intervention completed 

11 completed 9 completed 10 completed  

99 participants approached 


