
Secure System? Challenge Accepted:
Finding and Resolving Security Failures Using

Security Premortems

Shamal Faily
Department of Computer Science

University of Oxford
shamal.faily@cs.ox.ac.uk

Simon Parkin
School of Computer Science

Newcastle University
s.e.parkin@ncl.ac.uk

John Lyle
Department of Computer Science

University of Oxford
john.lyle@cs.ox.ac.uk

Risk-driven approaches are dominant in secure systems design; these aim to elicit and treat vulnerabilities
and the threats exploiting them. Such approaches, however, are so focused on driving risks out of system
design, they fail to recognise the usefulness of failure as a vehicle for security innovation. To explore the
role of failure as a design tool, we present the security premortem: a participative design technique where
participants assume that a system has been exploited, and plausible reasons are given for explaining why.
We describe this approach and illustrate how software tools can be used to support it.

Risk,Premortem,CAIRIS

1. INTRODUCTION

Many of the approaches associated with secure
system design are driven by the elicitation and
mitigation of risks. These are concerned with
identifying vulnerabilities which expose assets of
value, together with threats which exploit them. While
useful concepts for both design and information
security management, focusing too much on risks
may draw undue attention to the symptoms of
security failures, rather than their root causes. To
better understand these causes we must elevate
security failures to concepts worthy of analysis in
their own right.

Because there are many reasons for why a system
might be exploited, it has been argued that security
is what social planners call a wicked problem. This
is because we lack clarity about what it means
to secure systems, tests for proving a system is
secure, and a grasp of all possible solutions for
satisfying a specified security problem (Faily and
Fléchais 2010b). Therefore, while assurances may
be given that a system’s specification is secure,
we can never be certain that circumstances won’t
arise where these assurances fail to hold. What
specifying a design does do is force designers to
make value judgements about what might be a good
enough solution. Even if these judgements lead
to ineffective design decisions, knowledge about

failures still provide insights to designers about the
nature of the problem space.

It seems nonsensical that we might want to make
design decisions knowing that they are doomed
to fail, but doing so is also emancipatory. While
it is generally accepted that security is a weak
link problem in that attackers will find and exploit
this weak link, reflecting on the different ways a
chain might break can lead to insights that would
otherwise be missed if the weak link is allowed to
fail and then quickly replaced with another functional
— but still imperfect — link. The idea of thinking
about the potentially broken chain rather than its
weak link is analogous to the business scenario
planning metaphor of the premortem. These operate
on the assumption that a solution has failed and,
rather than reflecting on what might have gone
wrong, designers instead generate plausible reasons
for explaining the solution’s failure (Klein 2007).
Even when ambiguity shrouds the reason for this
failure, the lack of clarity provides clues about what
additional evidence is needed before the “cause of
death” can be established.

In this paper we present an approach for planning,
running, and evaluating the results of a security
premortem: a participative design technique where
participants assume that a system has been
exploited, and plausible reasons are given for

c© The Authors. Published by BISL. 1
Proceedings of BCS HCI 2012 Workshops
Designing Interactive Secure Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42142148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Secure System? Challenge Accepted: Finding and Resolving Security Failures Using Security Premortems
Faily et al.

explaining why. The objective of security premortems
is to identify the reasons for a failure, rather than
attempting to mitigate them. In Section 2, we present
our approach, before illustrating how the software
tools can support this technique, and integrate
its results into the broader secure system design
process in Section 3. Finally, in Section 4, we reflect
on some of the consequences that might arise from
running and evaluating premortems.

2. APPROACH

Our approach for running security premortems is
loosely based on the three-step process proposed
by Klein (Klein 2007); this is described in more detail
in the following sections.

2.1. Presenting the scenario

In the first step the project team is brought together
and informed that the project has failed because of
security problems. Careful thought needs to be given
to the “breaking-news” scenario being presented; it
must be significant enough to cause the project’s
failure, believable enough for participants to take the
failure seriously, yet also imprecise enough to yield
several causes of failure. Based on an imaginary
software platform we shall call ACME, an example
of a possible scenario is described below:

A major news provider picked up a story based on
blog reports by angry mobile phone users; these
complain about increased email spam and phishing
mails since they started using ACME services. This
spam is sufficiently targeted that it evades spam
filters. These incidents led to irate twitter posts
appearing on the twitter feed on the ACME home
page, especially from developers who users blame
for this problem. As the bad press grew, major
partners began to leave the project, and funding was
cut. The cuts meant that the project was forced to
stop work.

2.2. Stating potential causes of death

In the second step, team members are given
time to independently write down every reason
they can think of for the failure; this includes
reasons they would normally consider inappropriate.
Following this, the facilitator asks each person in
turn for a reason, starting with the team leader or
most senior team member present. These reasons
may correspond to problems at different levels
of abstraction. For example, one possible reason
might be: Hardcoded administrator accounts and
secrets were, as a result of testing, committed in
a major release of ACME that is used in most
installations of ACME. This allowed attackers to

target cloud services hosting ACME services, and
leaking personal information to pastebin.

2.3. Incorporating reasons into the design

After each reason has been recorded, participants
review a hard-copy collection of project specification,
reports, and models. Where these artefacts corre-
spond with a possible reason, these are tagged by
affixing a “reason” post-it note to the appropriate
location in the physical document. Where an artefact
does not but should, ideally, exist, then these are
noted on a white-board or flip-chart and post-it notes
are attached. At the end of the workshop, the team
leader reviews the reasons; the tags are used to
determine how these reasons cross-cut the system
design. Based on this, an action plan is proposed for
addressing these reasons.

3. SUPPORTING TOOLS

We now illustrate how software tools can be re-
used or extended to support security premortems.
In particular, we consider the open-source CAIRIS
(Computer Aided Integration of Requirements and
Information Security): a Requirements Management
tool for supporting the elicitation and specification of
usable and secure systems. CAIRIS was developed
to implement the IRIS (Integrating Requirements and
Information Security) meta-model, which integrates
concepts from HCI, Requirements Engineering, and
Information Security (Faily and Fléchais 2010a).
CAIRIS was designed to be a research tool and can
be extended to support new design concepts and
techniques. A more detailed overview of CAIRIS is
beyond the scope of this paper, but more information
about its design and evolution can be found in (Faily
and Fléchais 2012).

3.1. Presenting the scenario

Software tools like CAIRIS can be used to support
the elicitation and specification of scenarios used
in premortem workshops. These scenarios might
be consequences of misusability cases: scenarios
which describe how design decisions cause usability
problems that might lead to system misuse (Faily
and Fléchais 2011). These scenarios are motivated
by argumentation models, the grounds of which
might be requirements or architectural components
which specify how the system should behave,
or behavioural characteristics of personas —
descriptions of archetypical user behaviour (Cooper
1999) — that use it. As such, these scenarios
describe contexts where a system which satisfies
the designers’ intentions might be unintentionally
exploited.

2



Secure System? Challenge Accepted: Finding and Resolving Security Failures Using Security Premortems
Faily et al.

Scenarios might also arise from specified misuse
cases; these describe the consequences of specified
risks being realised (Sindre and Opdahl 2005). For
example, (Atzeni et al. 2011) describes how, with
the aid of CAIRIS, open-source threat data from the
OWASP (The OWASP Foundation 2011) project was
used to create personas for attackers and elicit the
attacks they might employ.

3.2. Stating potential causes of death

The causes of failure naturally fit with the require-
ments engineering concept of domain properties;
descriptive statements about the problem world. In
the case of premortem scenarios derived from mis-
usability cases, CAIRIS can associate these reasons
with the both the scenarios and its argumentation
model. This is illustrated by the example in Figure
1, which forms the basis of the scenario presented
in Section 2.

3.3. Incorporating reasons into the design

To support the integration of premortem reasons into
the requirements and architectural design, we have
extended CAIRIS in two ways.

First, we have extended CAIRIS to support the
association of one or more tags with model concepts.
In addition to providing a means for interrogating
CAIRIS models based on these tags as a search
criteria, several of CAIRIS’ visual models have also
been updated to support the annotation of tags to
different model elements.

Second, if risks are not evident then these tagged
artefacts can be analysed in more detail. To
allow this, we have built qualitative data analysis
capabilities into CAIRIS. This allows us to assign
codes — words or phrases that assign a summative,
essence-capturing attribute for a portion of language
based data (Saldaña 2009) — directly to design
artefacts stored in CAIRIS. For example, based on
the reason we gave in Section 2.2, we might wish to
better understand the factors that might lead to this
reason; as Figure 2 shows, this might include coding
persona descriptions. Relationships drawn between
these thematic concepts might be used to motivate
vulnerabilities, in the same way that argumentation
models can motivate premortem scenarios.

4. CONCLUSION

This paper presented an approach for applying
premortems for finding security failures in a secure
system design. We have also shown how CAIRIS
can support this technique by facilitating scenario
generation, categorising models according to failure
reason and, based on these reasons, analysing

model data to find ways of addressing their root
causes.

We are currently evaluating both this technique and
CAIRIS’ ability to support it as part of the webinos
project. As part of this evaluation, we are exploring
possible stimuli that might be used by participants
for eliciting reasons. These stimuli includes adopting
the perspective of an attacker with the aid of pre-
developed attacker personas. We are also evaluating
the physical settings where premortem processes
can be run. By running premortem workshops,
participants gain respect from their colleagues by
suggesting insightful reasons, and healthy team
dissent is encouraged rather than discouraged
(Klein 2009). However, workshops can be difficult
to set up when team members are distributed,
and a successful outcome is often dependent on
the effectiveness of the group’s facilitator. For this
reason, we are currently investigating how effective
the premortem process might be if reasons are
elicited on a one-to-one basis outside of a workshop,
and what sort of factors might lead to the elicitation
of insightful reasons given the change of setting.

By tool-supporting premortems, we also raise the
question of how far tools can go before they obstruct,
rather than stimulate, creativity and innovation? The
innovation design dilemma suggests that structure
might stymie creativity but, without it, creative output
might become too disruptive (Hobek 1988). In this
respect, we believe CAIRIS strikes a balance. By
providing only modest tool-support during workshop
settings, the tool provides little to obstruct group
dynamics. Also, by aligning reasons and their
rationale with CAIRIS models, the impact of security
innovation arising from premortem scenarios can be
explored.

If qualitative data analysis is to be used to find
the root causes of failure then CAIRIS will need
to be used more visibly in group settings; this will
help mediate discussions around qualitative models
stored within the tool. While techniques for using
software for supporting qualitative research are well
known, their use for supporting design, especially
for security, is ill-explored. Consequently, future work
will also explore the effectiveness of qualitative data
analysis techniques in conjunction with premortems
to more directly support secure system design
activities.

5. ACKNOWLEDGEMENTS

The research described in this paper was funded
by the EU FP7 webinos project (FP7-ICT-2009-05
Objective 1.2).

3



Secure System? Challenge Accepted: Finding and Resolving Security Failures Using Security Premortems
Faily et al.

Figure 1: Misusability case argumentation model motivating a security premortem

Figure 2: Coding a persona based on a premortem reason

REFERENCES

Atzeni, A., Cameroni, C., Faily, S., Lyle, J., and
Fléchais, I. (2011). Here’s Johnny: a Methodology
for Developing Attacker Personas. In Proceedings
of the 6th International Conference on Availability,
Reliability and Security, pages 722–727.

Cooper, A. (1999). The Inmates Are Running the
Asylum: Why High Tech Products Drive Us Crazy
and How to Restore the Sanity (2nd Edition).
Pearson Higher Education.

Faily, S. and Fléchais, I. (2010a). A Meta-Model
for Usable Secure Requirements Engineering. In
Proceedings of the 6th International Workshop on

Software Engineering for Secure Systems, pages
126–135. IEEE Computer Society.

Faily, S. and Fléchais, I. (2010b). To boldly go
where invention isn’t secure: applying Security
Entrepreneurship to secure systems design. In
Proceedings of the 2010 New Security Paradigms
Workshop, pages 73–84. ACM.

Faily, S. and Fléchais, I. (2011). Eliciting Usable
Security Requirements with Misusability Cases.
In Proceedings of the 19th IEEE International
Requirements Engineering Conference, pages
339–340. IEEE Computer Society.

Faily, S. and Fléchais, I. (2012). Software
for Interactive Secure System Design: Lessons
Learned Developing and Applying CAIRIS. In
Designing Interactive Secure Systems: Workshop
at British HCI 2012. To Appear.

Hobek, J. (1988). The innovation design dilemma:
some notes on its relevance and solution. In
Grønhaug, K. and Kaufmann, G., editors, Innova-
tion: a cross-disciplinary perspective. Norwegian
University Press.

Klein, G. (2007). Performing a project premortem.
Harvard Business Review, 85(9):18–19.

Klein, G. A. (2009). Streetlights and shadows:
searching for the keys to adaptive decision
making. MIT Press.

Saldaña, J. (2009). The coding manual for qualitative
researchers. Sage.

Sindre, G. and Opdahl, A. L. (2005). Eliciting security
requirements with misuse cases. Requirements
Engineering, 10(1):34–44.

The OWASP Foundation (2011). Open Web
Application Project (OWASP) web site. http://
www.owasp.org.

4

http://www.owasp.org
http://www.owasp.org

	Introduction
	Approach
	Presenting the scenario
	Stating potential causes of death
	Incorporating reasons into the design

	Supporting tools
	Presenting the scenario
	Stating potential causes of death
	Incorporating reasons into the design

	Conclusion
	Acknowledgements

