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This study investigates the contact temperatures caused by frictional heating of sliding parallel pairs. In
this case the materials studied are a PTFE composite in contact with a high carbon steel plate. These
materials are commonly used for industrial applications, in particular as the main contacting
components within a scroll expander system. The expected contact temperature values are important
to be quantified in order to predict failure mechanisms associated with excessive thermal effects caused
by sliding friction. A rational and coherent interpretation of the thermal effects on the actual tribological
contact is presented.

Contact temperatures are monitored continuously using a high-precision infrared thermal imaging
technique with a systematic variation in surface roughness of the high carbon steel material. These
surface temperatures are investigated as a function of the friction coefficient, the sliding velocity and the
applied load while the most influential parameter for the temperature rise is determined. Analytical
results using conventional mathematical methodology are also produced. The analytical and experi-
mental findings are then compared indicating interesting correlations within the macro- and micro-
surface temperature regimes and the experimental conditions. Microscopic observations show that
thermal effects can seriously affect fibers durability while transfer films formed across the steel
counterpart can be beneficial for the operation of scroll systems under specific roughness and test
conditions.

Crown Copyright & 2013 Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Scroll expander systems are widely used in mechanical appli-
cations characterized by dry or lubricated sliding conditions.
Typical industrial examples are micro-combined heat and power
systems, electrical generators and air-conditioners. Within these
applications, scroll devices are utilized and face wear and cavita-
tion are seen. Tzanakis et al. [1,2] has identified the main wear and
cavitation mechanisms responsible for the severe damage of the
tip seal and the steel plate of a specific scroll expander. Apart from
cavitation and sliding wear, frictional heating can also play an
important role on the tribological behavior of a scroll expander
system.

Frictional heating may cause surface temperatures to reach the
melting or softening temperature of polymer materials resulting in
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a change in friction and wear rates [3,4]. Flash temperatures are
generated which are considerably in excess of the bulk and the
average temperature of the apparent contact area. This rise of the
surface temperature can influence the surface geometry leading to
severe local wear and lubrication breakdown. The ability to predict
and measure the surface temperatures of the actual contacting
bodies is important in order to prevent the failure mechanisms of
various tribological components like tip seals. A number of research
papers dealing with frictional heating and surface temperatures of
various materials under dry and lubricated conditions have been
published [5–11] in the recent years. Effects on the applied load,
sliding velocity and testing time were most commonly considered.
Furthermore, surface roughness parameters are likely to influence
the distribution of temperature rise in a sliding contact.

Many studies have shown that the friction coefficient of
polymers in rubbing contact with metals decreases with the
increment of the applied load and the sliding speed due to the
generation of thermal effects in the contact spots [12–15]. An
extensive work has been conducted by Persson [16] who devel-
oped a theory, which describes the influence of the flash
D license.

www.elsevier.com/locate/wear
www.elsevier.com/locate/wear
dx.doi.org/10.1016/j.wear.2013.02.011
dx.doi.org/10.1016/j.wear.2013.02.011
dx.doi.org/10.1016/j.wear.2013.02.011
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.wear.2013.02.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.wear.2013.02.011&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.wear.2013.02.011&domain=pdf
dx.doi.org/10.1016/j.wear.2013.02.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


I. Tzanakis et al. / Wear 303 (2013) 154–168 155
temperature on rubber materials with various roughness profiles
including different velocity and load parameters. Additionally
Guha and Roy Chowdhuri [17], using a pin on disk apparatus
observed that surface temperature for six different roughness pairs
of sapphire pin against a steel disk increases monotonically with
roughness. Moreover Chang and Friedrich [18], using a similar
configuration investigated the influence of TiO2 nano-particles in
the wear and thermal behavior of four different pairs of short
fiber-reinforced polymers (SFRP). Chang has shown that the sur-
face roughness of the SFRP significantly increases with the incre-
ment of pressure velocity product PV until a certain value
(6 MPa m/s) is reached; beyond this point the value slightly drops.
In contrast the temperature on the counterface steel disk gradually
increases with the PV parameter. Thus no direct correlation
between thermal effects and roughness parameters can be effec-
tively drawn. Generally, the thermal behavior of sliding bodies is a
multi-complex issue and it is widely recognized that the friction
processes are not well understood.

In general, within the rubbing surfaces, the sliding bodies
dissipate heat and the temperature falls. However, within a
damaged area of a polymer the dissipation of heat is more difficult
and the temperature significantly increases reducing the cohesive
energy of the material [19]. Consequently cracks and deep grooves
are developed across the surfaces leading to the wear debris
formation. The PV limit, which is the upper limit of acceptable
operating conditions for plastic materials, is directly correlated
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Fig. 1. Schematic of the experimental test rig.
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Fig. 2. (a) The scroll expander system disassembled. (b) Schematic of the leakage g
interpretation of the references to color in this figure legend, the reader is referred to t
with the generation of frictional heat, the thermal deformation of
the actual contact and the wear behavior of the materials. Lan-
caster [20] showed that the PV limit is in reality a critical surface
temperature limit. Tzanakis et al. [21] highlighted the importance
of the PV limit in a lubricated sliding contact of a scroll expander
unit. These results indicate that the viscoelastic behavior of a tip
seal similar to that in this study can be significantly affected and
the resulting friction can be altered due to the adhesion product
formation.

In this study, the main objective is to understand how the
surface temperatures, which are generated by the combination of
various surface profiles, sliding velocities and applied loads, affect
the studied tribo-pair. Thus a combination of experimental meth-
ods and analytical findings which provide an in depth under-
standing of the heat generation mechanism during the specific
friction regime is used. Analytical results using the thermal models
of Bowden and Tabor [22] show very good agreement with the
experimental macro-contact temperature results and the micro-
scopic observations of the thermally deformed fibers and
worn areas.
2. Experimental procedure

2.1. Microfriction infrared experiment

The experimental test rig used for this study is described in
Fig. 1. The TE 77 micro-friction machine operates by sliding a
lower-plate sample (high carbon steel) with a reciprocating
motion in contact against a fixed sample pin (tip seal). A pin is
connected via a feedback mechanism to a transducer to provide
friction force feedback. A high precision infrared camera (Flir
3000) was installed at a distance (10 cm) close to the concentrated
contact. This thermal camera has a working temperature range of
−20 °C to þ2000 °C with an accuracy of ±1% or 1 °C for measure-
ment ranges of þ150 °C maximum. The system has a thermal
sensitivity of 20 mK at 30 °C and a spectral range of 8–9 μmwith a
aps. (c) Test samples. (d) X-ray diffraction pattern of the tip seal sample. (For
he web version of this article.)



Table 1
Measured and calculated contact temperature results according to the frictional
contact regime (PTFE/steel plate) and (Fiber/steel plate) of the steel plate with the
composite tip seal for four different steel roughness profiles under various contact
pressures and sliding velocities.

Roughness
(μm)

Pu factor
(MPa, m/s)

Friction
coefficent

Measured Calculated

Contact
temperature
(°C)

Contact
temperature
(°C)

FLIR camera PTFE/steel
plate

Fibers/steel
plate

0.125 0.8 MPa,
0.25 m/s

0.15 47.1 51.7 270.0

1.6 MPa,
0.25 m/s

0.13 61.5 62.4 329.9

0.4 MPa,
0.5 m/s

0.22 52.6 76.7 529.4

0.8 MPa,
0.5 m/s

0.21 74.4 95.4 706.5

1.2 MPa,
0.5 m/s

0.19 87.3 109.2 786.3

1.6 MPa,
0.5 m/s

0.175 96.6 111.2 831.4

0.25 0.8 MPa,
0.25 m/s

0.19 52.7 56.9 333.3

1.6 MPa,
0.25 m/s

0.16 75.8 63.4 392.7

0.4 MPa,
0.5 m/s

0.24 55.8 80.5 574.4

0.8 MPa,
0.5 m/s

0.23 84.3 101.6 770.9

1.2 MPa,
0.5 m/s

0.22 102.6 115.4 899.5

1.6 MPa,
0.5 m/s

0.21 114.8 126.8 991.0

0.5 0.8 MPa,
0.25 m/s

0.13 39.6 46.3 235.4

1.6 MPa,
0.25 m/s

0.11 52.7 50.8 277.1

0.4 MPa,
0.5 m/s

0.19 48.4 70.5 461.4

0.8 MPa,
0.5 m/s

0.14 56.1 69.8 477.2

1.2 MPa,
0.5 m/s

0.15 73.8 85.4 620.0

1.6 MPa,
0.5 m/s

0.14 81.8 91.0 667.2

0.7 0.8 MPa,
0.25 m/s

0.12 41.7 48.2 222.8

1.6 MPa,
0.25 m/

0.10 53.2 50.8 256.6

0.4 MPa,
0.5 m/s

0.18 44.9 68.5 438.8

0.8 MPa,
0.5 m/s

0.15 57.6 77.8 514.3

1.2 MPa,
0.5 m/s

0.15 73.0 88.0 622.6

1.6 MPa,
0.5 m/s

0.14 79.2 91.9 668.1
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resolution of 320×240 pixels. Calibration was carried out in
agreement with the procedure described in the instructions for
use of the FLIR ThermoCamera. The primary interest was to
minimize the reflected energy from the surrounding materials in
the vicinity of the contact. Thus, most of the metallic parts of the
test rig were insulated ensuring that precise temperature mea-
surements will be achieved. Friction and thermal results at the
contact points were analyzed during post-test analysis using the
camera's software.

This experimental set-up using a TE 77 micro-friction trib-
ometer enabled a continuous reciprocating surface contact. The
reciprocating tribometer simulates the kinematic motion of the
industrial scroll's expander system. Thermal energy, which is not
removed from the interface, raises the temperature locally. The
infrared camera measures the heat radiation of the frictional
contact surface, which is dissipated from the edges of the contact.
In contrast, in the pin-on-disk experiments the cooling effects of
the pin play a more important role in thermal calculations as heat
can be released from the track between passes. Thus, the mea-
surements of contact temperatures using the TE 77 infrared test rig
are more accurate.

2.2. Test samples and preparation

The scroll is a device that uses two interleaved spiral shaped
scrolls to compress or to expand fluids (Fig. 2a). In the areas across
the tip seal and the steel plate contact, where frictional wear is
excessive, leakage path (radial leakage) can be developed from tiny
micro-gaps which are formed between the bottom or the top steel
plate and the scrolls (Fig. 2b). The efficiency of the scroll can be
significantly affected. Several sets of laboratory tests utilizing the
tip seal and the steel plate of the scroll were conducted to study
the friction mechanisms and the surface temperature rise of the
tested samples (Fig. 2c).

The steel plate sample is a high carbon steel material (0.95%
carbon) with a length of 15 mm and 0.3 mm thickness and it has a
thermal conductivity of 50 W/mK, thermal diffusivity of
1.4×10−5 m2/s and a hardness of 530 HV. Its mechanical properties
and chemical composition can be found in [4]. The surface quality
of the steel plate samples is achieved by surface grinding, lapping
and fine polishing (down to 1 μm polycrystalline diamond suspen-
sion in combination with colloidal silica suspension for final
polishing). The steel samples are carefully selected according to
the surface profile measurement using a ZYGO optical interferom-
eter and then cleaned with acetone and dried. The repeatability
and reproducibility have also been considered. The repeatability
has been verified by performing 10 times the same measurement
on the same surface at different locations (each location/area was
5 mm2). The reproducibility has been tested by producing samples
with similar and uniform roughness profiles. The composite tip
seal is a PTFE material reinforced with a combined structure of
randomly oriented short fibers made by amorphous man-made
mineral fibers (MMMF) calcium aluminosilicate (with chemical
formula CaAlSi3O5). Use of calcium aluminosilicate as fillers in the
making of PTFE matrix composites or other similar polymers can
reduce the density of the composite material while maintaining or
increasing their strength, making these light-weight composites
very desirable for industrial applications [23].

The fiber's chemistry and morphology were characterized by
using a Zeiss Supra 35VP FEG-SEM for energy-dispersive X-ray
analysis (EDX) and crystallinity was investigated using a Bruker D8
Advance X-ray diffractometer with Bragg–Brentano geometry. The
XRD spectrum identified peaks (green arrows) of PTFE material
while the amorphous peaks (red arrows) belong to the MMMF
calcium aluminosilicate fibers (Fig. 2d). The tip seal has a thermal
conductivity of 0.4 W/mK, thermal diffusivity of 1.85×10−7 m2/s, a
roughness of 3.2±0.4 μm and a hardness of 5.2±0.1 HV while the
fiber sizes vary from 50 to 100 μm having a diameter of about 8–
10 μm, thermal conductivity of 1.6±0.1 W/mK and a hardness of
865±25 HV [24]. Bulk PTFE has a transition phase between 10 and
30 °C; above 30 °C the material converts into a pseudo-hexagonal
disordered phase from a partially ordered hexagonal phase. Thus,
thermal diffusivity temperature dependence above 25 °C is small.
Conte et al. [25] explain how this transition phase can be
considered as the main cause of the transfer layer mechanism at
the running in stage. The nominal area of contact of the tip seal
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samples over the steel plate is 25 mm2. Prior to any test tip seal
samples were merged into boiling water for 30 min in order to be
thoroughly cleaned from any undesirable surface contaminants
like dirt or dust.

2.3. Test conditions

Experiments were carried out using velocity and load condi-
tions in close proximity with those in the actual scroll expander
system as in [4]. Two different sliding speeds were used at 0.25
and 0.5 m/s and a contact force of 10, 20, 30 and 40 N is applied.
Additionally, four different Ra profiles of the steel plate with a
mean value of 0.125±0.015, 0.25±0.025, 0.5±0.04 and 0.7±0.05 μm
were used in order to investigate the influence of the Ra profile to
the contact temperature rise. The run-in time period is 600 s since
it has been seen that steady state thermal effects are developed
within that time [26]. Specifically, during previous measurements
of 30 and 60 min it was found that after a lapse of 10 min the
contact temperature on the surface of the rubbing samples
stabilizes and so equilibrium of the heat generated inside the
sample with the environment is achieved. The average increment
of the contact temperature (percentage change) after the first
10 min is in the order of 3%, indicating an average temperature
increment of 2 °C for each case and implying that significant
changes in the thermal regime are restricted for a prolonged
period of time. This was achieved by correlating the results
of [26] and the results of preliminary tests conducted for the
purpose of this research. This was calculated using the following
expression:

IT ð%Þ ¼ jTS−TP j
TS

� 100 ð1Þ

where IT is the average percentage of increment (percentage
change) of the contact temperature after the initial running-in
stage of 10 min, TS (°C) is the temperature over the initial period of
time i.e. 10 min and TP (°C) is the temperature over a prolonged
period of time i.e. 30 or 60 min. All the tests were performed
under dry sliding condition and an ambient temperature environ-
ment with temperature at 23±1 °C and humidity levels at 50%. In
all the experiments the pre-test contact temperature when sam-
ples were at rest was varied within the range of 28±3 °C according
to the applied load and the roughness profile.
3. Experimental results

A number of experiments using different combinations of
applied pressure, sliding speed and surface roughness were carried
out (Table 1). A thermal image (Fig. 3) of a measurement, along the
S
P

Thermally 
Insulated Parts 

Sliding contact  

Auxiliary Steel Plate 10 mm

Fig. 3. (a) Real time measurement with thermal camera across the lin
longitudinal direction of the steel plate counterpart, shows the
temperature field. The higher temperature areas are clearly visible
across the contact surfaces showing a tendency of the frictional
heat to be accumulated within the mass of the polymer bulk
material. The temperature of the tip seal sample is aggravated
since thermal effects dominate and soften the contact while the
poor thermal conductivity and diffusivity of the polymer restrains
the dissipation of the accumulated frictional heat.

The thermal behavior of the rubbing materials was evaluated
by a series of temperature and friction graphs (Figs. 4–9). The
graphs show the relationship of the contact temperature with the
sliding time, distance and friction coefficient for different applied
loads, sliding speeds and roughness profiles. In order to obtain
meaningful and comparable data a repeatable test regime was
required. Thus, each result is an average value of at least three
experimental data and the scatter in data was within ±10%.

In Figs. 4–9 it can be seen that the friction coefficient increases
rapidly, in the very first stage of the sliding test while it then
stabilises to a steady-state level when thermal effects become
active. The thermal effects cannot be instantaneously generated,
softening the substrate of the polymer, thus contact is more severe
initially. Then transfer films are formed alleviating the contact.
After transfer layers are removed the temperature is significantly
increased until another layer is formed. Every time the film
thickness is removed friction coefficient is increased due to
the severe contact between the fibers and the steel surface while
the contact temperature gradually increases until it stabilises after
the end of the running-in stage (first 10–30 s) where thermal
effects dominate and a steady friction regime is achieved. As the
velocity and load increases thermal effects are elevated and the
real contact area between the contact bodies tends to increase due
to thermal expansion of the polymer. Consequently, hot-spots are
multiplied leading to higher contact temperature values. In the
case where higher roughness profiles were used the frictional and
thermal effects are alleviated. Steel samples with 0.7 and 0.5 μm
Ra roughness profile exhibit significantly lower friction coefficients
than the 0.25 and 0.125 ones. Correspondingly the thermal effects
are also lower.

Figs. 4 and 5 present the variation of frictional coefficient and
contact temperature over the sliding distance and the testing time
for four roughness steel profiles 0.125, 0.25, 0.5, and 0.7 μm under
two applied load levels at 20 and 40 N and sliding velocity at
0.25 m/s. It can be seen that for both cases the 0.25 μm roughness
profile exhibits the highest friction coefficient as well as contact
temperature followed by the 0.125 μm Ra profile while the
remaining higher Ra profiles of 0.5 and 0.7 μm show similar
frictional and thermal behavior. Specifically with the increment
of the applied load from 20 N (0.8 MPa) to 40 N (1.6 MPa) friction
coefficient is slightly reduced especially for the lower Ra's while
Stroke: 2.5 mm 

Applied Load 

Polymer 
Composite 

teel  
late 

Sliding  
Direction 

Upper  
Holder 
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e contact of the tested samples. (b) Sketch of the configuration.



Fig. 4. Comparison of the frictional process (frictional coefficient and contact temperature) of the steel/polymer dry contact for various roughness profiles (0.125, 0.25,
0.5 and 0.7 μm) under an applied pressure of 0.8 MPa and sliding velocity of 0.25 m/s.

Fig. 5. Comparison of the frictional process (frictional coefficient and contact temperature) of the steel/polymer dry contact for various roughness profiles (0.125, 0.25,
0.5 and 0.7 μm) under an applied pressure of 1.6 MPa and sliding velocity of 0.25 m/s.
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contact temperature is significantly increased. This is something
that was expected to be seen, since due to the excessive thermal
effects by the increment of the applied load, the viscoelastic
behavior of the tip seal smoothens the contact and thus friction
coefficient drops. On the contrary, the real contact area increases
accumulating more frictional heat leading to higher contact
temperatures. Interestingly, something which was not expected
to be seen is that maximum thermal effects for both cases were
recorded when roughness was at 0.25 μm.

In Figs. 6–9 the variations of friction coefficients and contact
temperatures are presented as a function of the distance for sliding
velocities of 0.5 m/s. Four different applied loads at 10, 20, 30 and
40 N were used under the same roughness profiles as in Figs. 4 and
5. In this series of graphs it can be noted that contact temperature
increases with sliding speed and the applied pressure whereas
friction coefficient drops with the increment of load as viscoelas-
ticity dominates. In general for all the graphs, an increment of
friction coefficient indicates an immediate increment of the con-
tact temperature. The contact temperatures reach higher values i.e.
118 °C in the case of the 40 N applied load (1.6 MPa), accelerating
the shearing mechanism of the polymer tip seal. Since the glass
temperature of the polymer is in the range of 120–130 °C a surface
film with different thermal and mechanical properties than those
of the substrate is likely to be developed due to shearing and



Fig. 6. Comparison of the frictional process (frictional coefficient and contact temperature) of the steel/polymer dry contact for various roughness profiles (0.125, 0.25,
0.5 and 0.7 μm) under an applied pressure of 0.4 MPa and sliding velocity of 0.5 m/s.

Fig. 7. Comparison of the frictional process (frictional coefficient and contact temperature) of the steel/polymer dry contact for various roughness profiles (0.125, 0.25,
0.5 and 0.7 μm) under an applied pressure of 0.8 MPa and sliding velocity of 0.5 m/s.
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seizure of the polymer material. Consequently, a transfer film layer
having a dual role of acting as a cushion and as a thermal insulator
will not only affect the coefficient of friction, but also the dissipa-
tion of thermal energy. The transfer film accumulates frictional
heat within the rubbing surfaces while simultaneously reducing
friction coefficient values.

Once again the contact regime with Ra at 0.25 μm generates the
higher contact temperature values among all the studied cases. It
seems that there is a specific roughness profile where the
particular contact regime generates excessive thermal effects.
The initial idea was that this could be due to the accumulation
of larger number of transfer films in that particular Ra profile
affecting the frictional heat dissipation rate; however since the
contact temperature increases according to friction coefficient this
cannot be the case. Thus it can be explained by the combined
performance of the steel asperities and the transfer films forma-
tion. In the case where Ra is at 0.25 μm transfer films are not so
effective allowing more contact within the steel asperities and the
reinforced polymer compared to the case where Ra is at 0.125 μm
where transfer films create a thicker cushion layer in between the
rubbing materials avoiding excessive asperity contact. On the
contrary, in the cases with higher Ra values, 0.5 and 0.7 μm,
transfer films are limited but substantially thicker across the
contact zones of the highest surface asperities. This particular
mechanism alleviates severe contact reducing the friction force
while as the real average distance of two sliding surfaces is higher
air layers can be trapped within the contact zones cooling down
the contact. Therefore, the evolution of the roughness of the



Fig. 8. Comparison of the frictional process (frictional coefficient and contact temperature) of the steel/polymer dry contact for various roughness profiles (0.125, 0.25,
0.5 and 0.7 μm) under applied pressure of 1.2 MPa and sliding velocity of 0.5 m/s.

Fig. 9. Comparison of the frictional process (frictional coefficient and contact temperature) of the steel/polymer dry contact for various roughness profiles (0.125, 0.25,
0.5 and 0.7 μm) under an applied pressure of 1.6 MPa and sliding velocity of 0.5 m/s.
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counterface plays a significant role along the traveled distance.
However a direct correlation between roughness profile and
contact temperatures cannot be effectively drawn.

In Fig. 10 the contact temperature under different roughness
profiles was plotted against the rate of specific frictional work in
order to further understand the correlation between these three
parameters. The rate of specific frictional work Wf is defined as

_Wf ¼ μPu ðNm=m2sÞ ð2Þ
where μ is the frictional coefficient, P is the applied pressure

(MPa) and u is the sliding velocity (m/s). It is clear that for all the
cases the contact temperature is almost linearly proportional to
the rate of frictional work. The highest surface temperature values
are measured when roughness profile was at 0.25 μm followed by
the 0.125 μm, then the 0.5 μm and finally the 0.7 μm. Interestingly
it can be seen that as the roughness increases or decreases from
0.25 μm, contact temperatures are alleviated significantly when
roughness doubled up to 0.5 μm and less significantly when it
doubled down to 0.125 μm. The influence of the roughness on the
actual contact temperature can be clearly observed when a
random area on the graphs of Fig. 10 is considered i.e. rate of
specific frictional work at 0.1×106 Nm/m2s. In that area surface
temperatures for all the cases are nearly 80 °C; however for the
contact with roughness 0.25 μm, contact temperature is achieved
using significantly lower PV factor combinations in comparison to
the rest of the cases where higher PV factors are requested
(Table 1). The reason is that in the 0.25 μm roughness case, higher
friction coefficient rates are generated under the same PV factors



Fig. 10. The steady state experimentally measured contact temperature against the steady state rate of specific frictional work under various roughness profiles.

Sliding Velocity 
from 0.25 to 0.5 m/sec

Contact Pressure 
from 0.8 to 1.6MPa
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Roughness Profile 
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Fig. 11. Percentage of influence of the sliding speed, applied pressure and rough-
ness profile on the generation of contact temperatures across the steel/polymer dry
contact. Plus indicates an increase and minus a decrease on the contact tempera-
ture regime.
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leading to higher surface temperatures. It seems that for the
specific roughness profile hot-spots are significant while the
absence of third particle mechanisms in combination with
the inefficient cooling performance by the transfer films cannot
alleviate severe frictional contact. Additionally as roughness
moved further up from 0.5 to 0.7 μm insignificant changes to the
contact temperatures were recorded.

A comparison of the tested parameters was conducted in order to
evaluate their impact factor on the surface temperature values.
Figs. 4–9 reveal the influence the sliding velocity, applied pressure
and surface roughness has on contact temperature and frictional
coefficient. In Fig. 11, results indicate the percentage of influence of
the same parameters on the generation of thermal effects. The higher
the percentage, the greatest the impact on the contact temperature
regime. For all the cases two out of the three parameters were kept
steady while the remaining one was doubled (except in the last case
of roughness, which went from 0.5 to 0.7 μm). Consequently, the
influence which individually each parameter has on the actual
contact temperature is revealed. Contact temperature is significantly
influenced by the sliding velocity rather than the applied load and
surface roughness. Sliding velocity has the biggest share on the pie
chart with 51.3% of influence on the contact temperature regime
which means that if the sliding velocity is doubled the surface
temperature correspondingly is almost doubled as well. It could be
explained considering that the higher the sliding velocity, the shorter
the exposition time of free surface to the environment with sub-
sequent less heat dissipation. Then contact pressure follows which
exhibits a steady performance for both cases, around 35%. This again
shows that if applied pressure is doubled contact temperature is
increased at around one-third from the initial value. In contrast to the
applied pressure the impact of the roughness profile varies more
significantly showing a discrepancy of the percentage of influence.
The alteration of roughness profile from 0.25 to 0.5 μm revealed a
high influence on the contact temperature regime about 29.4%.
Interestingly, this is the only case where surface temperature is
declined, in a similar rate (about one third) to that of the applied
pressure. In contrast, in the case where the roughness changed from
0.125 to 0.25 μm the percentage of influence is significantly lower to
around a half at 16.8% showing an increment of the contact
temperature while when roughness increased from 0.5 to 0.7 μm
the influence was almost negligible. Thus it can be deduced by
comparing the influence of each parameter in the friction regime that
sliding speed plays an overwhelming role in local heating and
the determination of surface contact temperatures, followed by the
applied pressure and finally the evolution of the roughness of the
counterface.
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4. Theoretical contact temperature

The system of interest for the studied contact is the surface of
the PTFE composite sliding against the high carbon steel plate.
Two are the case studies, which were developed for this particular
contact. The first one investigates the contact temperature
between the bulk material of the polymer composite and the steel
surface, the so called macro-contact, while the second one
examines the generation of contact temperatures between the
MMMF calcium aluminosilicate fibers and the steel asperities, the
so called micro-contact. The maximum surface contact tempera-
ture is calculated.

TContact ¼ TbulkþTf lash ð3Þ
where Tbulk is the bulk temperature of the sample before

entering the contact (28±3 °C) and Tflash is the flash temperature.
Flash temperature is generated due to frictional heat and is
reached for a very short time at the contacting asperities during
sliding. There are two types of thermal models in order to calculate
flash temperatures. The first one takes into account the dimen-
sions of the surfaces in contact while the second one considers
only the material properties neglecting the geometrical profile of
the contact. The first type of models is represented by the thermal
models of Blok, Jaeger, Ashby et al., Tian and Kennedy [27–30] and
the second one by Bowden and Tabor [22]. The above models
predict the magnitude of flash temperature from certain input
data. However experimental validation of these models often
shows that there is a big discrepancy between the measured and
the calculated values. For the purposes of this analysis, as in nearly
all frictional heating situations it is assumed that the steady-state
(or quasi-steady-state) conditions prevail and all frictional energy
is dissipated as heat within the contacting bodies at the actual
contact interface, producing temperature rise.

In this study both of the numerical approaches were used;
however only the Bowden and Tabor (Eq. 4) model worked well
for the specific contact [31].

ΔT ¼ 0:443
gμVðWPmÞ1=2
Jðk1þk2Þ

ð4Þ

where ΔT is the flash temperature (°C), g is the acceleration
constant (9.81 m/s2), μ is the dynamic friction coefficient, V is the
sliding speed (m/s), W is the contact load, Pm is the hardness of the
softer material (MPa), J is the mechanical equivalent of heat
(4.186 J) and k1 and k2 are the thermal conductivities of the
contacting materials (W/mK).

Bowden and Tabor's equation takes directly into account the
work done by the friction force, considering just the shape of the
contact area where Hertz's theory is applied. Blok, Jaeger, Asbhy,
Tian and Kennedy equations are explicitly dependent on the
dimensions of the contact area. Bowden and Tabor's equation puts
the attention to the thermal and mechanical characteristics of the
rubbing materials and to the importance of velocity and friction
(both enter at the first power into Bowden's equation). Consider-
ing the hardness of the softer material Bowden's equation permits
a direct correlation with Hertz's theory for calculating the theore-
tical contact area and the maximum contact pressure. Additionally,
according to Persson's investigation [16], due to the strong
temperature dependence of viscoelastic properties of rubber-like
material, local temperature calculation should be taken into
account in order to explain the frictional behavior of the tribo-
pair. Considering the thermal behavior of polymers, for example by
means of differential scanning calorimetry (DSC), it is possible to
affirm that PTFE structure changes when heated up, increasing
thermal stability and degree of crystallinity of the matrix due to
the release of volatile components, the movement of polymeric
chains and a possible secondary bonding effect between the fibers
and the matrix [32]. The latter phenomenon, in particular, affects
the crystalline structure as observed by Conte et al. [33] where the
small crystals are broken and re-generate the transfer layer. The
bulk material has a more compact structure where fillers are
interposed between big crystals and aligned polymeric chains
suspended in the amorphous phase. Thus, it is still possible to
approximate the real contact area with the nominal contact area,
using again the Bowden and Tabor's equation for the thermal
asperity calculations.

Initially, the theoretical flash temperature using the macro-
asperity contact of the sliding units is determined. In a polymer
contact is rather vague to use the term flash temperature as the
polymer does not have required hardness to generate truly flash
temperature in a sliding contact; thus the term “interface tem-
perature” is used instead. Interestingly, the calculations were
shown (Table 1) that in most of the cases the interface tempera-
ture of the macro-asperity contact correlates very well with the
real time recorded thermographic results. Specifically, there is a
good agreement in general between the calculated results and the
experimental results measured with the IR camera. However, in
some cases calculations reveal a small discrepancy of the contact
temperature results compared to the real time measurements,
especially when lower loads were applied. This is due to the fact
that the thermal models like the Bowden and Tabor are focused on
the interface and not on the thermal impedance of the surround-
ing equipment like heat flow into the fixtures, forced convection
and radiation. Thus, as the real area of contact is reduced, the
surrounding air environment, which is trapped within the contact
bodies, plays an important role in alleviating thermal effects.

In the case where the micro-asperity contact was taken into
consideration an attempt to determine the rise of the flash
temperature by the asperities contact of the MMMF calcium
aluminosilicate fibers against the asperities of the steel plate is
performed. As far as interface temperature is well predicted by the
Bowden and Tabor model for the particular macro-contact of the
composite with the steel, it is assumed that the specific thermal
model will work equally well with the micro-contact between the
steel asperities and the exposed fibers. After a running-in period,
that is, after the formation of a transfer layer on the steel
countersurface, the roughness of the hardest part is attenuated
and furthermore, the fibers are sliding partially on PTFE and
partially on the steel. For the purpose of this analysis only the
contact between the steel asperities and the fibers is considered
since the contact between the transfer films and the fibers is
hardly appropriate to calculate due to the viscoelastic effects and
the transient nature of the transfer films.

The calculations in Table 1 show that flash temperature in
micro-asperity contact rises nearly to 1000 °C in the case where
roughness is at 0.25 μm and 830 °C when it is at 0.125 μm in
contrast to the case where roughness was at 0.5 and 0.7 μm and
temperature went up to 670 °C. These temperatures can become
critical for the operation of scroll expanders or similar automotive
industrial units since heat can be carried away by lubricant and
debris increasing the wear rate and the degradation process of the
oil at a micro-contact level. The results are in good agreement with
the extensive work carried out by Varadi et al. where he used finite
element models to estimate the generation of flash temperature
within similar contact regimes [34] and with the analytical
measurements carried out by Conte et al. [25]. The author could
not identify any similar experimental approach, which matches
well with the experimental and analytical result of such a contact
within the literature. Additionally, a possible thermal deformation
of the fibers was expected according to the flash temperature
calculations which were close to the Tg (glass transition tempera-
ture) range of the fibers (1100±50 °C) [35]. A very good match of
the calculated flash temperature results within the micro-asperity
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contact with the SEM observations of the post-test MMMF calcium
aluminosilicate fibers is revealed as it can be seen in (Section 5.2).
5. SEM observations of surface wear

5.1. Fibers wear damage

In order to analyze in a qualitative way the wear damage of the
fibers, images of the worn fiber surfaces were observed by a
scanning electron microscope Zeiss Supra 35VP and an optical
microscope Olympus BX60. According to these observations, and
as is cited by other authors [36,37] the various stages of fiber
thinning, cutting, pulling-out, cracking and pulverization during
post-test microscopy analysis across the wear surface of the
contact path are shown in Fig. 12. Since the MMMF calcium
aluminosilicate fibers are not crystalline in structure, they do not
split longitudinally into thinner fibers but rather break transver-
sely into shorter pieces [38] as shown in Fig. 12a. Additionally, the
inherent brittleness and the high grindability of most of the
reinforcement fibers, like the studied ones, result in rapid fiber
damage under abrasive wear [39] or erosive wear [40].

In all the cases when the pressure and velocity increased, the
friction force and consequently frictional heating is significantly
increased. Specifically, in the case where roughness profile was at
0.5 and 0.7 μm an accelerative breakage in the interfacial region is
observed, resulting in fibers removal. Many tiny fiber fragments in
the size of a few nanometers were generated alleviating severe
contact by introducing a third body mechanism with a positive
rolling effect. During sliding contact the viscous flow of the
composite facilitates the movement of these fragments effectively
reducing the frictional coefficient, shear stress and contact tem-
perature within the rubbing materials. Additionally it is believed
that nano-debris is helpful to the formation of transfer films
leading to lower wear rates [41]. In contrast, in the cases where
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Fig. 12. Micrographs of wear mechanisms of fibers showing (a) fiber thinning and f
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deposition across the fiber surface.
roughness profile was at 0.125 and 0.25 μm the wear of the fibers
is much smoother, the fibers are merely exposed to the surface and
excessive fiber damage is restricted.

Moreover, in Fig. 12f, some tiny areas on top of the fiber
depicted by blue color indicate chemical attack. Fiber reinforced
polymers are vulnerable to chemical attack by many substances
including lubricating oils and fuels [42]. Chemical attack in this
particular contact happened due to the presence of water and
fluorine generating hydrofluoric acid (HF) or by electrolysis of
metal fluorides (MF and MF4) generating tetrafluoremethane (CF4)
a strong chemical solvent. Hydrofluoridic acid as well as tetra-
fluoremethane (CF4) attacks the surface of the sample close to the
edges, causing fiber debonding which results in rapid wear of the
polymer matrix [43].
5.2. Thermal effects on fibers

Frictional heating induced by the fibers generates a relatively
high temperature in the vicinity of the bulk material. Thus,
thermal softening of the polymer matrix aggravates fibers expo-
sure on the polymer surface, accelerating wear due to an instant
sliding contact with the asperities of the steel counterpart. Fric-
tional heat not only alters temperature frictional characteristics of
fibers but it also combines with surface fatigue effects to hasten
microcracking and fiber thinning. Frictional heat causes cracks to
form across the refractory fibers and combined wear of the fibers
and metal may occur despite the large difference in the hardness
of the two materials [41,44]. Additionally, due to the brittleness of
the fibers, cracking from thermal stresses after rapid cooling can
also occur leading to pulverization as a result of crack growth and
convergence [45].

SEM observations on isolated fibers show that accumulative
thermal effects can seriously affect fibers durability by modifying
their shape. In Fig. 13, the profound effect of frictional heating on
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an isolated fiber is illustrated. The edges across the fiber body are
very smooth with an irregular undulation shape implying a
thermal deformation process. Additionally fibers get thinner due
to material removal while their size and diameter are significantly
reduced. In Fig. 13a the thinner mechanism can be observed as the
fiber from around 10 μm diameter in one edge it goes down to
about 6 μm in the other edge. Thermal deformation effects are
even more obvious in the case of Fig. 13b where a similar fiber
experiences material loss due to the thinning process while
consequently the round shape of the cylinder fiber is significantly
deformed to an ellipsoidal shape by the synergic effect of thermal
and squeezing mechanisms due to accumulative stresses. The
thermal effects are noticeable affecting the performance and
durability of fibers used for reinforcing polymer materials.

5.3. Transfer films

The sliding contact of the PTFE composite against the steel plate
can produce contact temperatures capable of melting part of the
polymer material under the conditions studied. This in turns forms
a thin back transfer film on the worn surface of the steel plate.
Transfer films develop due to the adhesion and interlocking of the
polymer fragments into metal asperities during sliding [46]. In
general wear it increases nonlinearly with the applied load and the
sliding speed [33,47,48]. This nonlinear trend is mainly due to the
trapped debris which alleviates the severity of the contact by
introducing a third-particle, transfer films on the abrading surface
and back transfer films to the rubbing surface of composite [47].
Furthermore, trapped debris and transfer of a polymer film to the
abrading surface result in a clogging effect, which eventually
mitigates the abrasion of material after few traverses [49].

The formation of transfer films across the steel plate is
evaluated when the optimum (0.25 μm) and the poorest (0.7 μm)
case scenario for the generation of contact temperatures is
considered. In this study like in [4] clogging effect dominates the
contact and many parallel transfer film layers with various
thicknesses are formed across the steel plate (Fig. 14). In
Figs. 14a and 15a where the roughness profile was at 0.25 μm
the layers are firmly attached across the counterface. The forma-
tion of these polymer layers in correlation with the fact that in the
edges of the sliding path a significantly thicker and higher layer of
polymer is developed (Fig. 14a), creating an artificial boundary
wall, indicates that radial leakage points within scroll expanders
(Fig. 2b) can be significantly minimized and the tendency of the
working fluid to flow through these areas is further confined. The
adhesion performance in combination with the use of a less
viscous lubricant is proved to be useful in increasing the perfor-
mance and durability of the specific scroll unit [50]. In contrast in
Figs. 14b and 15b where the roughness profile was at 0.7 μm, layers
are discontinuous, more superficial and less dense restricting
accumulation of the polymer material across the edges of the
contact. Debris of the polymer is accumulated only on the highest
surface asperities of the steel plate implying that a synergic effect
of adhesion due to polymer melting and abrasion (shearing) due to
penetration by the single and sharp asperities is taking place.

In Fig. 16 the formation of transfer films for 0.25 and 0.7 μm
roughness profiles is shownwith the use of a ZYGO interferometer.
It is clear that for all the tested cases roughness displays a
particular role. Interestingly it can be seen that in the case where
roughness is in the range of 0.125–0.25 μmwhere the contact area
is very smooth and the synergic effect by frictional heat is
significant, the number of contact points with the counterface
polymer material is increased forming continuous and dense
transfer films. If roughness is in the range of 0.5–0.7 μm generating
lower contact temperatures, transfer film layers are sporadic and
discontinuous. Additionally the height difference between these
two kinds of layers is significant. In the first case of 0.125–0.25 μm
profile the average height is about 1 μm; however in the case
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Fig. 16. Height and density of transfer films formed across the steel plate for two different cases: (a) Ra: 0.25 μm and (b) Ra: 0.7 μm.
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where profile is at 0.5–0.7 μm average height can reach up to 5 μm.
The reason for that is that the sharper and highest surface
asperities of 0.5 and 0.7 μm profiles accumulate polymer material
mainly across their tips. In contrast the blunt and more geome-
trically smoother asperities of 0.125 and 0.25 μm profiles accumu-
late more polymer material creating coherent transfer films.
6. Discussion

In the present study the contact temperature rise during the
dry sliding contact of a PTFE composite against a high carbon steel
plate was investigated with means of high precision thermal
imagery using various combinations of sliding speeds 0.25 and
0.5 m/s, applied loads 10, 20, 30 and 40 N and Ra surface profiles
0.125, 0.25, 0.5 and 0.7 μm. The contact temperature on the
studied sliding tribo-pair is the sum of ambient temperature,
steady state frictional heating and transient friction temperature,
which includes flash and interface temperatures as a function of
the applied pressure, the sliding speed and the roughness profile.

It has been seen that for all the cases with the increment of the
sliding velocity from 0.25 to 0.5 m/s heating zones are more
concentrated and contact temperature as well as friction coeffi-
cient significantly increases. When sliding speed increases, the
friction energy being dissipated is also increased. This is caused by
the increment of the polymer's asperities impaction rate by the
polished counterface, which resulted in a rapid increment of the
adhesive friction and the temperature at the interface. Conse-
quently, increased contact temperature affects the strain rate and
shear strength (rate of deformation at the interface) of the
adhesive junctions formed between the PTFE material and the
steel counterface and friction coefficient increases. Moreover, an
experimental assessment of the Bauschinger effect showed that
the strain hardening and strength of polymers increase with the
rate of deformation to which they are subjected [51]. Additionally
according to Conte et al. [33], PTFE structure changes when it is
heated up and a more compact structure is generated while
Khedkar et al. [32] in their work showed that the higher the heat
fusion values exhibited by PTFE composites during sliding, the
higher the thermal stability at the interface. Thus, when sliding
speed increases (rate of deformation at the interface), strain rate
increases and consequently the strength of adhesive junctions
formed between PTFE and the counterface also increases; hence
there is an increase in friction.

With the increment of the applied pressure more asperities of the
steel plate establish a contact with the composite PTFE leading to
higher thermal deformation at the contact points. The contact
temperature generally increases due to the larger contact area and
the poor thermal diffusivity of the PTFE material. The generated
frictional heat results in two antagonistic effects on the friction
coefficient. On the one hand the shear strength of the PTFE composite
decreases and thus so does the friction coefficient. On the other hand,
the elastic modulus of the composite decreases, assisting the forma-
tion of multiple adhesion joints by the asperities impaction which
resulted in more contact spots due to the larger contact area and then
the friction coefficient increases. Therefore these two competitive
aspects would determine the final friction coefficient. In the present
study, the friction coefficient of the specific tribo-pair gradually
decreases at higher applied loads since the decrease in shear strength
is dominant and higher thermal stability is achieved while the
contact temperature at the interface increases significantly. Thus, an
increment of friction coefficient is not necessarily followed by an
increment of the contact temperature for this particular contact
regime. In lower applied loads, contact is restricted between the
hard fibers and the steel asperities raising the friction coefficient,
whereas in higher applied loads the viscoelastic performance of the
polymer relaxes the severe contact regime and drops the friction
coefficient. The abovementioned phenomenon is also explained in
the work carried out by Tzanakis et al. [21] where similar materials
were used for sliding friction tests.

In the cases where roughness profile was doubled from 0.125 to
0.25 μm, contact temperature is slightly increased. In contrast in
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the cases where roughness profile was doubled from 0.25 to
0.5 μm, the contact temperature significantly dropped. Then as
roughness increased from 0.5 to 0.7 μm the surface temperature
regime was kept at similar levels. Interestingly there is an
optimum surface roughness profile at 0.25 μm, which can seriously
affect surface temperature gradient at the interface of the contact
and achieve high contact temperatures. Specifically, when a lower
roughness than 0.25 μm is used, contact temperature is reduced to
about 17% while when higher roughness is used contact tempera-
ture is dropped to about 29%. Temperature fluctuation depends on
two contrary effects. On one hand there is a drop in the tempera-
ture due to the fact that multiple continuous layers of polymer are
formed across the counterface of the steel sample, creating a very
soft substrate which dumps the heat effects and cools down the
critical region. On the other hand since the thermal diffusivity of
the bulk polymer material is low, heat is accumulated within the
transfer films. In the case of surface profile at 0.125 μm where the
morphology of the asperities on the steel plate (blunt asperities) is
extremely smooth (larger contact area), temperature reduction is
mainly derived from the fact that the number of contact points
between the hard fibers and the exposed steel asperities is
restricted since transfer layers interpose the severe contact alle-
viating thermal effects and minimizing hot-spots. In the case
where roughness was at 0.25 μm a similar mechanism is involved
as a semi-soft surface contact is observed; however friction
coefficient is slightly higher. The friction component resulting
from adhesion equaled the product of the real contact area and
the contact between the hard fibers and the exposed steel
asperities. In this particular case as hot-spots dominate the contact
zone, elastic modulus of PTFE decreases (friction coefficient
increases) and large amounts of frictional heat are accumulated
within the sliding bodies and the transfer films. Thus a combina-
tion of contact points and transfer layers, according to their
performance as cooling agents or accumulative heat sources,
determines the final friction coefficient and contact temperature.
In contrast, in the case where roughness is further increased (from
0.25 to 0.5 and to 0.7 μm) the contact is mainly isolated between
the highest surface asperities indicating that severe contact is
limited only in that contact area and shear strength governs this
particular contact regime (friction coefficient decreases). Consid-
erably higher transfer films are mainly formed across these contact
points relaxing the contact and absorbing part of the heat.
Additionally, the dissipation of frictional energy as heat and the
conduction into the rubbing bodies is alleviated due to the
surrounding air environment which is trapped within the contact
bodies. The combination of polymer layers and convection by the
cooler air medium alleviates thermal effects and significantly
reduces the friction coefficient and the contact temperature of
the interface.

The addition of fibers within the bulk material of the polymer is
potentially useful to improve its tribological performance. How-
ever the flash temperature which is generated in the contact spots
between the fibers and the counterface material is very high,
accelerating the wear and thermal degradation of the polymer
matrix and the fibers. Analytical results indicated high tempera-
ture regimes up to 1000 °C in some cases implying that fibers
should have been affected or deformed in such temperatures.
Moreover, microscopic observations of thermal deformed fibers
have shown good agreement with the analytical flash temperature
calculations of micro-asperity contact. In such high temperatures
the interfacial toughness of the bulk material in the vicinity is
reduced and the size of the interfacial crack increases. The
reinforcement can be easily removed during abrasive wear condi-
tions, especially in higher roughness profiles where asperities are
sharper, and a negative reinforcement effect is observed [52]. Any
portion of reinforcement that is removed as wear debris
contributes to the overall frictional work rate of the material
alleviating the contact. Additionally, pulverization of the exposed
or removed fibers accumulates debris, which according its size can
contribute to the reduction of the frictional coefficient and conse-
quently of the frictional heat [53]. Thus, a positive rolling effect by
nano- or micro-scale particles can improve friction regime by
avoiding severe contact.

In all the test regimes transfer films were formed across the steel
counterpart and produce adhesive wear mechanism which strongly
affects the mitigation of the thermal effects. The determinant is that
in the cases where the roughness of the steel plate was at 0.125 and
0.25 μm a rapid formation of stable transfer films is achieved. This is
explained by the higher contact temperatures achieved among the
lower roughness profiles and recorded by the thermal camera.
Contact temperatures generate viscoelastic effects by melting parts
of the polymer material. The deposition of the melted polymer across
the asperities of the steel plate creates symmetric and continuous
transfer films. In contrast in the cases where steel roughness was at
0.5 and 0.7 μm transfer films formation was constrained. Observa-
tions from the thermal camera showed that contact temperatures are
significantly lower implying less vigorous viscoelastic behavior by the
polymeric material. The formation of continuous and stable transfer
films is restricted. Transfer films are mainly formed by shearing or
seizure of the exposed asperities, which tend to gouge into the
counterface of the polymer matrix. Consequently abrasion dominates
across the polymer surface. This shearing mechanism can also be
interpreted by the fact that friction coefficient is significantly lower
compared to the 0.125 and 0.25 μm roughness profiles for the reason
that the decrease in shear strength dominates the contact as
discussed previously.

Finally it is also noticed that the tip seal during conditions of
dry friction could be heated to a relatively high temperature, at
nearly 120 °C. This testifies to the intensity of the process of
friction energy dissipation. As far as the properties of PTFE
composites depend strongly on temperature, a knowledge of the
distribution of the thermal field in a seal component, like the
studied tip seal of the scroll, will make it possible to model the
shearing and stress mechanisms and most importantly to deter-
mine their viscoelastic behavior during the process of friction [13].
This in turn will improve the durability and sustainability of PTFE
seals while the performance of advanced engines as scroll expan-
ders will be enhanced. Engine losses will be minimized whereas a
high-pressure ratio over the service period will be maintained.
7. Conclusions

The following conclusions can be drawn from the present
study:
1.
 Thermal contact regime of the specific sliding contact is a
combination of surface roughness, sliding velocity, applied
load, debris size and transfer films. A good correlation of the
experimental findings with the analytical results has been
achieved.
2.
 Friction coefficient increases with the sliding speed and is
substantially reduced with the increment of the applied load
whereas contact temperature increases with the increment of
both the parameters.
3.
 An ultra-fine or a very rough surface of the steel material sample
alleviates thermal effects. The contact with Ra roughness profile at
0.25 μm achieves the highest temperatures followed by the
contact with 0.125 μm whereas the contacts with 0.5 and 0.7 μm
generate the lowest frictional temperatures.
4.
 The most influential parameter for the surface temperature rise
within the specific contact is the sliding velocity. The impact
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the sliding velocity has on the specific contact can be up to 51%
in contrast to the applied load and the surface roughness which
are both significantly lower.
5.
 A reasonable correlation between the rate of frictional work
and the contact temperature rise during sliding was observed
experimentally and the influence of the roughness on the
actual contact temperature regime is highlighted.
6.
 Flash temperatures generated in the fibers/steel plate contact
can reach up to 1000 °C. Thermal effects are noticeable as SEM
micrographs revealed, affecting the performance and durability
of calcium aluminosilicate fibers.
Additional remarks

The formation of continuous transfer films across the steel
counterpart with Ra at 0.125 and 0.25 μm and the development of
artificial barriers in the edges of the sliding path indicate that
radial leakage points (Fig. 2b) within scroll expanders can be
significantly minimized and their efficiency can be improved.
Smoother steel plate profiles can be extremely beneficial for scroll
expander applications or similar turbine units in order to mini-
mize the tendency of the working fluid to escape. An oil free
configuration can also be considered. Additionally, a detailed
determination of the morphology of transfer films in order to
analyze the physical parameters and mechanisms that guide the
frictional process and dominate the generation of contact tem-
peratures will be examined in future studies.
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