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ABSTRACT
We propose an analytical model for the quasi-static evolution of starless cores confined
by a constant external pressure, assuming that cores are isothermal and obey a spherically
symmetric density distribution. We model core evolution for Plummer-like and Gaussian
density distributions in the adiabatic and isothermal limits, assuming Larson-like dissipation
of turbulence. We model the variation in the terms in the virial equation as a function of core
characteristic radius, and determine whether cores are evolving towards virial equilibrium
or gravitational collapse. We ignore accretion on to cores in the current study. We discuss
the different behaviours predicted by the isothermal and adiabatic cases, and by our choice
of index for the size–linewidth relation, and suggest a means of parametrizing the magnetic
energy term in the virial equation. We model the evolution of the set of cores observed by Pattle
et al. in the L1688 region of Ophiuchus in the ‘virial plane’. We find that not all virially bound
and pressure-confined cores will evolve to become gravitationally bound, with many instead
contracting to virial equilibrium with their surroundings, and find an absence of gravitationally
dominated and virially unbound cores. We hypothesize a ‘starless core desert’ in this quadrant
of the virial plane, which may result from cores initially forming as pressure-confined objects.
We conclude that a virially bound and pressure-confined core will not necessarily evolve to
become gravitationally bound, and thus cannot be considered pre-stellar. A core can only
be definitively considered pre-stellar (collapsing to form an individual stellar system) if it is
gravitationally unstable.
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1 IN T RO D U C T I O N

Starless cores are the immediate precursors to the formation of pro-
tostars: small-scale overdensities within a molecular cloud which
will, if gravitationally unstable, collapse to form an individual star
or system of stars (Beichman et al. 1986). Not all starless cores
will go on to form protostellar systems. The gravitationally unsta-
ble and collapsing subset of starless cores are known as pre-stellar
cores (Ward-Thompson et al. 1994). Barring external disruption, an
individual stellar system will form from a pre-stellar core. Under-
standing the properties of starless cores is essential to understanding
the stars which will one day form from them; recent studies have
shown an apparent link between the core mass function and the ini-
tial mass function (see Offner et al. 2014, and references therein).

There is a paucity of analytic and semi-analytic evolutionary
models for starless cores. Historically, the Singular Isothermal
Sphere model (Shu 1977; Shu, Adams & Lizano 1987) has been
used. However, the dynamical instability of this model was noted by
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Whitworth et al. (1996), and more recent high-resolution observa-
tions have shown that starless cores have a non-singular geometry,
typically with a flat central plateau (e.g. Alves, Lada & Lada 2001).
Frequently used starless core geometries include the Plummer den-
sity distribution (Plummer 1911), which was first applied to starless
cores by Whitworth & Ward-Thompson (2001), and the Bonnor–
Ebert (BE) density distribution (Ebert 1955; Bonnor 1956). The
BE density distribution is parametrized by its central density and
characterized by a plateau of slowly decreasing density at small
radii and a power law decrease at large radii, and which treats a
core as an isothermal, self-gravitating, polytropic sphere bounded
by external pressure. At least some starless cores appear to be well
characterized by a BE density distribution (Alves et al. 2001), and
the BE critically stable mass of a starless core is often treated as a
proxy for virial mass (e.g. Könyves et al. 2015). However, the BE
model requires the Lane–Emden equation to be solved numerically,
and so modelling the evolution of a BE sphere remains the preserve
of computational astrophysics (e.g. Broderick & Keto 2010; Keto,
Caselli & Rawlings 2015).

Starless cores have been shown to be confined by external pres-
sure in many cases (e.g. Johnstone et al. 2000; Alves et al. 2001;
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Maruta et al. 2010). Pattle et al. (2015) found a population of viri-
ally bound starless cores in the Ophiuchus molecular cloud, for
which external pressure significantly dominates over gravity in core
confinement. It is not clear whether a virially bound and pressure-
confined starless core will evolve to become gravitationally unsta-
ble. Scenarios can be envisaged in which a core will contract under
pressure until it becomes self-gravitating, or alternatively, where the
core will contract to virial equilibrium with its surroundings.

In this paper we construct a model for the quasi-static evolu-
tion of a spherically symmetric pressure-confined starless core. We
consider two fully analytic solutions to this model: (1) a truncated
Plummer-like density distribution (which produces a density profile
similar to that of a BE distribution) and (2) a truncated Gaussian
density distribution. The model is intended to assess whether an
observed starless core is likely to evolve to become gravitation-
ally unstable, or to virial equilibrium with its surroundings. We
model cores in the non-magnetic and magnetized cases. The non-
magnetic model has six initial parameter conditions, all of which
are observable quantities: mass, size, temperature, internal velocity
dispersion, external velocity dispersion, and external density. The
magnetized case introduces a seventh observable initial condition,
magnetic field strength. In this paper, we assume negligible accre-
tion of mass on to the core. In a subsequent paper, we will consider
the case in which a core can continue to accrete mass.

The model presented in this paper is envisaged as a means by
which the likely evolutionary outcome – gravitational collapse or
virial equilibrium – of an observed starless core can be rapidly as-
sessed, without the need for computationally expensive simulations
to be performed.

In Section 2 we formulate the model. In Section 3 we consider
Plummer-like and Gaussian density profiles. In Section 4 we discuss
core stability as a function of radius and construct evolutionary
tracks in the virial plane. In Section 5 we discuss the cases of
adiabatic and isothermal core contraction. In Section 6 we discuss
the parametrization of non-thermal motions. In Section 7 we discuss
the parametrization of the magnetic field. In Section 8 we apply this
model to the starless cores identified in the L1688 region of the
Ophiuchus molecular cloud by Pattle et al. (2015). In Section 9 we
discuss our results, and in Section 10 we summarize our conclusions.

2 FO R M U L AT I O N O F T H E EVO L U T I O NA RY
M O D E L

We first present the general case of the model, without specifying a
core geometry.

2.1 Core density profile

We model a starless core as having a spherically symmetric density
distribution which is a continuous function of radius r, defined by a
central density ρc and a characteristic size scale R:

ρ(ρc, R, r) = ρc f (R, r), (1)

where f(R, r) is a monotonically decreasing function which obeys
the limits f(R, r → 0) → 1 and f(R, r → ∞) → 0.

We assume that the core is bounded by external pressure at a
density of ρe at a radius re (where re is a function of ρc and R).
Material at radii r < re is considered to belong to the core, and obeys
the density relation given in equation (1). Material at radii r > re is

considered to belong to the surrounding cloud, and has a constant
density ρe. Thus, the density profile of the system is given by

ρ(r) =
{

ρ(ρc, R, r) 0 < r ≤ re,

ρe r ≥ re.
(2)

Note that while we have assumed that this function is continuous
across the boundary at re (i.e. ρ(ρc, R, re) = ρe), there is no require-
ment in the model for this to be the case.

The mass of the core – i.e. the mass enclosed in the radius re – is
given by

M(re) = 4π

∫ re

0
dr r2ρ(ρc, R, r). (3)

We assume that the mass of the core remains constant throughout
its evolution.

For a given characteristic radius R, and assuming a fixed en-
closed mass M and bounding density ρe, equation (3) can be solved
for central density ρc, and hence for bounding radius re. We thus
construct the functions

ρc = ρc(M,ρe, R) (4)

and

re = re(M,ρe, R) (5)

for the behaviour of central density ρc and bounding radius re as a
function of characteristic radius R, respectively.

In this work, we consider two cases in which equation (3) has
an analytic solution. However, this method could be generalized to
non-analytic core geometries.

2.2 Terms in the virial equation

In Section 2.1, we showed that given our specifications for a core’s
density profile, for a given mass and bounding density, the bounding
radius and central density of the core can be expressed as functions
of characteristic radius only. We consider the virial stability of the
core as a function of characteristic radius, in order to determine
whether the core is likely to contract or expand. Contraction is
defined as a decrease in the characteristic radius R, while expansion
is defined as an increase in characteristic radius R. Note that this
does not necessarily equate to identical behaviour in the bounding
radius re.

We assess the stability of the core against contraction or expan-
sion by estimating the magnitude of each of the terms in the virial
equation. We consider the virial equation in the form

1

2
Ï = 2�K + �G + �M + �P, (6)

where Ï is the second derivative of the moment of inertia I, �K is
the internal energy, �G is the gravitational potential energy, �M is
the magnetic energy, and �P is the energy due to external pressure
acting on the core. If Ï < 0, a core’s net energy is negative, and
hence the core is virially bound. Conversely, a core with Ï > 0 will
be virially unbound, and the virially stable mass of a core is the
mass at which Ï = 0.

We consider the virial stability of a core using the ratio,

Virial Ratio = − �G + �P

2�K + �M
, (7)

where a ratio value >1 indicates that the core is virially bound, a
value <1 indicates that the core is virially unbound, and a value of
1 indicates that the core is virially stable.

MNRAS 459, 2651–2669 (2016)

 at T
he L

ibrary on M
ay 19, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


An analytical model for starless cores 2653

2.2.1 Gravitational potential energy

The gravitational potential energy of the core is given by

�G(ρc, R, re) = −4πG

∫ re

0
dr r ρ(ρc, R, r)M(ρc, R, r), (8)

where M(ρc, R, r) is given by

M(ρc, R, r) = 4π

∫ r

0
dr ′ r ′2ρ(ρc, R, r ′). (9)

2.2.2 External pressure energy

The external pressure term in the virial equation, �P, is given by

�P = −3PEXTV = −4πPEXTr3
e (10)

for a core of volume V being acted on by an external pressure PEXT.
PEXT can be estimated from the ideal gas law:

PEXT ≈ ρeσ
2
EXT, (11)

where σEXT is the mean line-of-sight (one-dimensional) gas velocity
dispersion in the material surrounding the core.

We assess the balance of confining forces – whether the core is
confined by external pressure, or by self-gravity – with the ratio,

Confinement Ratio = �G

�P
, (12)

where a ratio >1 indicates that the gravitational potential energy of
the core is greater than the external pressure energy (i.e. the core is
gravitationally confined), and a ratio <1 indicates that the external
pressure energy is greater than the gravitational potential energy
(i.e. the core is pressure confined).

2.2.3 Internal kinetic energy

The internal energy term in the virial equation is given by

�K = 3

2
Mσ 2, (13)

where σ is the line-of-sight (one-dimensional) velocity dispersion
for the mean gas particle in the core.

2.3 Adiabatic and isothermal variation of internal
velocity dispersion

The velocity dispersion σ obeys the relation

σ 2(T , re) = σT(T , re)2 + σNT(re)2, (14)

where σT is the one-dimensional line-of-sight thermal gas velocity
dispersion,

σT =
√

kBT

μmH
, (15)

and σNT is the non-thermal gas velocity dispersion.
We model the evolution of the thermal velocity dispersion with

core radius in the limits of isothermal and adiabatic compression
of the core material. In the isothermal case, the thermal velocity
dispersion is given by

σT(T ) = σT(T0), (16)

where T0 is the initial temperature of the gas in the starless core.
(All variables subscripted with a ‘0’ refer to the initial value of

that quantity.) We assume T0 = 7 K, as being representative of the
central temperature of a pre-stellar core (see e.g. Stamatellos, Whit-
worth & Ward-Thompson 2007).

In the adiabatic case, we assume that the gas obeys the adiabatic
equation of state,

PV γ = P0V
γ

0 , (17)

where γ = 7/5, assuming the gas is diatomic. If the gas is ideal
then PV ∝ T, and the equation of state becomes

T = T0

(
V0

V

)γ−1

= T0

(
V0

V

) 2
5

= T0

(
re

re,0

)− 6
5

. (18)

We assume that turbulence dissipates as a core contracts, and that
the non-thermal component of the linewidth decreases in a manner
which obeys the Solomon et al. (1987) relation between the size
and non-thermal internal linewidth of a starless core,

σNT ∝ r0.5
e . (19)

We discuss the validity of this assumption in Section 6. We further
assume that there is no mechanism by which a core can increase
its non-thermal velocity dispersion, as there is no mechanism for
injecting turbulence into the system. Thus, we parametrize the non-
thermal linewidth as

σNT =
{

σNT,0

(
re

re,0

)0.5
re ≤ re,0,

σNT,0 re > re,0.
(20)

This is the only non-reversible parameter in our model. Note that this
simple functional form assumes that re is a monotonic function of
R, i.e. that a core which has decreased in size and hence dissipated
its turbulence will not subsequently increase in size again. This
condition is true for the density profiles which we consider in this
paper.

2.4 Model parameters

Fig. 1 shows the key parameters of the model, for a generalized
starless core density distribution with characteristic radius R. Our
model requires the specification of the following measurable initial
conditions: a total core mass M (fixed throughout), the density of the
surrounding medium ρe (fixed throughout), an initial characteristic
radius R0, an initial temperature T0, an initial internal gas velocity
dispersion σ 0, and an external gas velocity dispersion σEXT (fixed
throughout).

For a given set of initial (measurable) conditions, and having cho-
sen an appropriate core density profile, we can create adiabatic and
isothermal evolutionary tracks as a function of core characteristic
radius R only.

2.5 Model assumptions

Throughout this analysis, we assume that the enclosed core mass
M is fixed (i.e. there is negligible accretion of mass on to the core),
that the core density profile obeys the distribution given in equation
(1) at all radii less than the truncation radius re, that the core has
a uniform temperature at all radii less than the truncation radius
(although this temperature varies as a function of characteristic size
in the case of adiabatic evolution), that the core is bounded by a
constant external pressure PEXT at a constant density ρe, and that
no external disruption occurs.
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Figure 1. Key parameters of the model; grey-scale indicates local volume
density, with darker shading indicating increased density. The material in-
terior to the white circle is considered to be part of the starless core.

3 A NA LY TIC D ENSITY PROFILES

3.1 Plummer-like density profile

Starless cores are frequently modelled as having Plummer-like den-
sity distributions (e.g. Whitworth & Ward-Thompson 2001). This
model produces a density profile consistent with observations show-
ing that starless cores typically have a flat central plateau and a
power law decrease in density at large radii (e.g. Alves et al. 2001).
It also produces a density profile similar to that of a BE distribution
(Ebert 1955; Bonnor 1956). There are a family of Plummer-like
distributions, characterized by their power-law behaviour at large
radii (Plummer 1911), some of which have fully analytic solutions.
We consider one of these analytic solutions here.

If the starless core obeys a Plummer-like density distribution
(Plummer 1911), then f(R, r) is given by

f (R, r) =
(

R√
r2 + R2

)η

, (21)

where R defines the radius of the flat central plateau of the dis-
tribution and η defines the power-law slope of the distribution at
large radii. For a true Plummer distribution, η = 5 (Plummer 1911).
Throughout the remainder of this work we will assume η = 4 (Whit-
worth & Ward-Thompson 2001). Thus, equation (1) becomes

ρ(ρc, R, r) = ρc

(
R√

r2 + R2

)4

. (22)

The core is truncated at a radius

re = R

√(
ρc

ρe

) 1
2

− 1, (23)

at which the density drops to the bounding value, ρe.

The mass of a truncated Plummer-like distribution when η = 4
is given by

M(re) = 2πρcR
3

[
arctan

( re

R

)
− reR

r2
e + R2

]
. (24)

For a given mass M, bounding density ρe, and flat radius R, this
equation can, when coupled with equation (23), be solved numeri-
cally for core central density ρc.

The gravitational potential energy of this distribution is given by

�G = −π2Gρ2
c R

7

[
2reR(

r2
e + R2

)2 + 1

R2

(
arctan

( re

R

)
+ reR

r2
e + R2

)

− 4 arctan
(

re
R

)
r2

e + R2

]
. (25)

These results are derived in Appendix A.
As re/R → ∞ (which in this model occurs when both re and

R become small, as discussed below), equation (25) tends to the
gravitational potential energy of an infinite η = 4 Plummer-like
distribution,

�G,inf = − 1

2π

GM2
inf

R
, (26)

where Minf is the mass of an infinite η = 4 Plummer-like distribu-
tion,

Minf = π2ρcR
3. (27)

3.2 Gaussian density profile

Starless cores have previously been modelled as having Gaussian
density distributions (e.g. Ward-Thompson et al. 1994). This model
has the advantage of being particularly analytically tractable.

If the starless core obeys a Gaussian density profile, then f(R, r)
is given by

f (R, r) = e− 1
2 ( r

R )2

, (28)

where R is the characteristic radius of the Gaussian distribution, and
equation (1) becomes

ρ(ρc, R, r) = ρc e− 1
2 ( r

R )2

. (29)

The core is truncated at a radius

re = R

√
2 ln

(
ρc

ρe

)
, (30)

at which the density drops to the bounding value, ρe.
The mass enclosed by a truncated Gaussian distribution is given

by

M(re) = 4πρc

[
R3

√
π

2
erf

(
re

R
√

2

)
− R2ree− 1

2 ( re
R )2

]
, (31)

where ‘erf’ is the error function. For a given mass M, bounding
density ρe, and characteristic radius R, this equation can, when
coupled with equation (30), be solved numerically for core central
density ρc.

The gravitational potential energy of a truncated Gaussian distri-
bution is given by

�G = −16π2Gρ2
c R

5

[√
π

4
erf

( re

R

)

−
√

π

2
e− 1

2 ( re
R )2

erf

(
re

R
√

2

)
+ 1

2

re

R
e−( re

R )2
]

. (32)
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These results are derived in Appendix B.
As re/R → ∞, equation (32) tends to the gravitational potential

energy of an infinite Gaussian distribution,

�G,inf = − 1

2
√

π

GM2
inf

R
(33)

(see Pattle et al. 2015 for a derivation of this result), where Minf is
the mass of an infinite Gaussian distribution,

Minf = 2
√

2π
3
2 ρcR

3. (34)

4 C O R E STA B I L I T Y A S A FU N C T I O N O F
C H A R AC T E R I S T I C R A D I U S

We initially solve equations (7) and (12) for non-magnetic star-
less cores with masses 0.1, 0.25, and 0.5 M�, external pressure
PEXT/kB = 1.5 × 107 K cm−3, and, at an initial characteristic ra-
dius of 0.005 pc, a core temperature of 7 K and a non-thermal
internal velocity dispersion of 250 m s−1. These values are chosen
to be representative of starless cores in the Ophiuchus molecular
cloud (see Table 1, below). We assume that the cores are confined
by material at a density ρe = 105 H2 molecules cm−3, and that
the mean molecular weight is 2.86 mH (assuming that the core is
70 per cent molecular hydrogen by mass; Kirk et al. 2013). These
values were chosen in order to illustrate the range of behaviours
predicted by our model for a typical low-mass starless core.

Fig. 2 shows the virial ratio, −(�G + �P)/2�K, in black and
the confinement ratio, �G/�P, in red, both plotted as a function of
core characteristic radius R. The left-hand column of Fig. 2 shows
the result of assuming a Plummer-like density distribution, while
the right-hand column shows the result of a Gaussian density dis-
tribution. The solid black line shows the virial ratio in the adiabatic
case, while the dashed black line shows the virial ratio in the isother-
mal case. The blue point marks the initial virial ratio of the core,
while the blue line extending from that point guides the eye to the
initial value of �G/�P on the red curve. The green line marks
where the virial and confinement ratios equal unity. While the virial
ratio is above the green line the core is virially bound, and while
it is below, the core is unbound. Similarly, while the confinement
ratio is above the green line, the core is gravitationally dominated,
while it is below the green line it is pressure dominated. The region
shaded in grey is ‘pre-stellar’, where −(�G + �P)/2�K < 1 and
�G/�P > 1. A core whose virial ratio (the black line) falls in this
region will be both virally bound and confined by gravity.

As can be seen in Fig. 2, the results of the two density pro-
files are qualitatively very similar. In both cases, our model for the
virial parameter as a function of R shows two regimes. The first
is a gravitationally dominated regime at small R. If this regime is
not virially bound over all of its range, it generally becomes so
as R approaches zero (with the exception of adiabatic collapse in
some Gaussian models, discussed below). The second is a pressure-
dominated regime at large R which will be virially bound over some
or all of its range, and will become increasingly virially bound as R
increases.

We show the behaviour of various terms in our model as a function
of characteristic radius in Fig. 3 for the core of mass 0.25 M�
described above. We use this figure to explain the behaviour of the
virial and confinement ratios seen in Fig. 2.

Figs 3(a) and (b) show the behaviour of the bounding radius re as
a function of characteristic radius R. When R is small, the bound-
ing radius is much greater than the characteristic radius, and so the
gravitational potential energy of the core tends to the value it would
take if the core were infinite in extent. As the core’s characteristic

and bounding radii increase, in order to conserve mass, the cen-
tral density decreases (see Fig. 3b). Similarly, the density contrast
between centre and edge decreases (see Fig. 3d), and the ratio of
the bounding radius to the characteristic radius becomes small (see
equations 23 and 30). At large values of R, the bounding radius re

is much smaller than the characteristic radius and the density con-
trast from the centre to the edge of the core becomes small, and so
the gravitational potential energy tends towards the value it would
take if the core were a uniform sphere of radius re. The behaviour
of gravitational potential energy as a function of R is shown in
Fig. 3(e).

At the smallest R, gravity dominates over external pressure, as
�G ∝ R−1, and �P ∝ r3

e . The variation of external pressure energy
with core characteristic radius R is shown in Fig. 3(f). At small R
the total energy due to external pressure is small because the source
is small. At intermediate R, �P increases, while �G falls off as
shown in Fig. 3(e), and so the core becomes pressure dominated.
�P continues to dominate at large R, as the gravitational potential
energy approaches that of a uniform sphere, and as �P increases
with re.

The internal kinetic energy of the core stays approximately con-
stant over a wide range of radii (Fig. 3g). The differences between
isothermal and adiabatic behaviour are significant at small radii
only, discussed below.

4.1 Behaviour of model at small characteristic radii

The behaviour of the Plummer-like and Gaussian core geome-
tries diverge significantly only at small radii, as shown in Fig. 3.
This is due to a core with a Gaussian density distribution being
more centrally condensed than a core with a Plummer-like density
distribution. In both cases, when characteristic radius R is small
the bounding radius re is also small, but is significantly larger
than the characteristic radius. At small radii the bounding radius
of the Plummer-like distribution is larger than that of the Gaussian
distribution, in order to conserve the mass enclosed M while obeying
a less centrally condensed density distribution. Thus, the Plummer-
like distribution has a higher energy due to external pressure at small
radii than the Gaussian distribution, as �P ∝ r3

e (see Fig. 3f).
For both density distributions the gravitational potential energy

increases as R becomes small, tending towards the value of �G

would take if the core were infinite in extent. The Gaussian model
tends towards a value of �G which is

√
π greater than that of

the Plummer-like model (compare equations 26 and 33, and see
Fig. 3e). Hence, the Gaussian model becomes gravitationally domi-
nated (�G > �P) at larger values of R than the Plummer-like model
(compare areas shaded grey in Fig. 2). However, the Plummer-like
model is more virially bound than the Gaussian model at small-to-
intermediate radii, due to the dependence of the external pressure
energy of the core on bounding radius (see Fig. 2).

At small radii the adiabatic and isothermal values of the internal
kinetic energy diverge significantly, as shown in Fig. 3(g). At small
values of re, the contribution of the non-thermal kinetic energy
becomes small (see equation 20), and the behaviour of the total
internal kinetic energy is dominated by the behaviour of the thermal
kinetic energy term. Thus, in the isothermal case, at small radii the
internal kinetic energy tends to a constant value,

�K,I → 3

2
M

kB

μmH
T0. (35)
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Figure 2. Stability as a function of characteristic radius for hypothetical starless cores of mass 0.1, 0.25, and 0.5 M� (see text for details of core properties).
The left-hand column assumes a Plummer-like density profile; the right-hand column assumes a Gaussian density profile. Solid black line shows adiabatic
virial ratio; dashed black line shows isothermal virial ratio. Red line shows ratio of gravitational potential energy to external pressure energy. Blue dot shows
initial virial ratio (vertical blue line is to guide the eye to the initial value of the confinement ratio). Horizontal green line shows line of virial stability. Grey
shaded region indicates parameter space in which the core would be considered to be pre-stellar.

�K,I tends to this value when

re

re,0
� kBT0

μmHσ 2
NT,0

. (36)

The core shown in Fig. 3 has a large initial non-thermal linewidth,
250 m s−1, and so in this case, �K,I tends to a constant value at radii
smaller than those shown in Fig. 3(g).

The adiabatic internal kinetic energy will diverge at small radii,
as

�K,A → 3

2
M

kB

μmH
T0

(
re

re,0

)− 6
5

. (37)

The adiabatic internal kinetic energy will become larger faster as
R → 0 in the Gaussian case than the Plummer-like case, as re

becomes smaller faster with decreasing R in the Gaussian case (see
Figs 3a and g). Thus, in the Gaussian model, the virial ratio in the
adiabatic case may tend to a value <1 – i.e. the core may be virially
unbound – as R becomes small (see Fig. 2b).

The increase in adiabatic internal kinetic energy at small radii is
equivalent to an increase in core temperature, as the core heats as it
collapses. This increase is shown in Fig. 3(h), in which it can be seen
that the Gaussian model results in higher core temperatures at small
R than the Plummer-like model. The Gaussian model shows core
temperatures ∼100 K at the smallest radii, while the Plummer-like
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An analytical model for starless cores 2657

Figure 3. Various model terms as a function of core characteristic radius R for a core of mass 0.25 M� (see text for details of core properties), assuming a
Plummer-like density profile (black), and a Gaussian density profile (blue): (a) bounding radius, re; (b) ratio of bounding radius to characteristic radius, re/R;
(c) central density, ρc; (d) ratio of central and bounding densities, ρc/ρe; (e) gravitational potential energy, �G; (f) external pressure energy, �P; (g) internal
kinetic energy (solid line – adiabatic, dashed line – isothermal), �K; (h) temperature in the adiabatic case, T.

model shows a more physically plausible increase in temperature,
up to ∼20 K.

The physical relevance of quasi-static contraction of the core at
the smallest radii is not certain. Once a core is both virially bound

and gravitationally dominated, the quasi-static model is unlikely
to apply. However, in this case, the core is still expected to un-
dergo further collapse. The simple model presented in this work is
only justified over the range of characteristic radii which have been
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2658 K. Pattle

measured for starless cores, and may not be relevant at the smallest
and largest radii.

4.2 Behaviour of model at large characteristic radii

Both the Plummer-like and the Gaussian core geometries tend to
the same behaviour at large radii, as shown in Fig. 3.

Fig. 3(a) shows that as R becomes large, the rate of increase
of re with R becomes small. This is because as the centre-to-edge
density contrast approaches unity, and the core density distribution
approaches that a uniform sphere, the density interior to the core
becomes insensitive to changes in R, and re tends towards the value
it would take if the core were a uniform sphere of density ρe and
mass M, i.e. re → (3M/4πρe)

1
3 . The gravitational potential energy

of the core tends towards

�G → −3

5

GM2

re
= −3

5

(
4π

3

) 1
3

Gρ
1
3

e M
5
3 , (38)

while the external pressure energy tends towards

�P = −4πPEXTr3
e → −3MPEXT

ρe
. (39)

Thus, the confinement ratio �G/�P tends towards

�G

�P
→ 1

5

(
4π

3

) 1
3

GM
2
3 ρ

4
3

e P −1
EXT. (40)

Fig. 3(g) shows the behaviour of the internal kinetic energy of the
core with R. In the isothermal case, as the core expands, the internal
kinetic energy maintains its initial value,

�K,I = 3

2

[
kBT0

μmH
+ σ 2

NT,0

]
. (41)

However, in the adiabatic case, the internal kinetic energy, �K,A,
tends towards a smaller value,

�K,A → 3

2

⎡
⎣ kBT0

μmHr
− 6

5
e,0

(
3M

4πρe

)− 2
5

+ σ 2
NT,0

⎤
⎦ . (42)

Thus, at large R, in the isothermal case the virial ratio tends towards
the value

−�G + �P

2�K,I
→ 2

3

[
3

5

(
4π

3

) 1
3

Gρ
1
3

e M
5
3 + 3MPEXT

ρe

]

×
[

kBT0

μmH
+ σ 2

NT,0

]−1

, (43)

while in the adiabatic case the virial ratio tends towards the slightly
larger value

−�G + �P

2�K,A
→ 2

3

[
3

5

(
4π

3

) 1
3

Gρ
1
3

e M
5
3 + 3MPEXT

ρe

]

×
⎡
⎣ kBT0

μmHr
− 6

5
e,0

(
3M

4πρe

)− 2
5

+ σ 2
NT,0

⎤
⎦

−1

. (44)

As ρc → ρe, the core tends towards the behaviour of a uni-
form sphere, while becoming effectively indistinguishable from the
medium in which it is embedded. However, as discussed below, this
parameter space is not physically accessible to the realistic starless
cores which we consider.

4.3 Core evolution

When considering the evolution of the cores in our sample, we pre-
sume that any virially bound and gravitationally dominated core
(−[�G + �P]/2�K > 1 and �G/�P > 1) is pre-stellar and col-
lapsing under gravity, and will evolve away from virial equilibrium
to become more gravitationally bound – i.e. we expect a core which
occupies the grey-shaded regions of Fig. 2 to evolve towards smaller
radii in all cases. It is unlikely to do so precisely along the evolu-
tionary track given by our model, as the core’s evolution will not
continue to be quasi-static as it undergoes runaway collapse under
gravity.

We assume that a virially bound and pressure-dominated core
will contract under external pressure until it either reaches virial
equilibrium or becomes gravitationally unstable. An effect of the
functional form of �P is to produce a local minimum in the virial
ratio in the intermediate region between gravitationally dominated
and pressure-dominated behaviour (�G ∼ �P) at small R. This min-
imum can be seen for every core in Fig. 2. As a result of this mini-
mum, not all contracting pressure-confined and virially bound cores
will become gravitationally bound pre-stellar cores. In Fig. 2, while
all the cores are initially virially bound and pressure confined, the
0.25 M� Plummer-like core (Fig. 2c) and both the Gaussian and
Plummer-like 0.5 M� starless cores (Figs 2e and f) will evolve to
become pre-stellar in both the adiabatic and the isothermal cases,
as in each of these cases, the core becomes gravitationally domi-
nated (�G > �P) while virially bound, and does not subsequently
become virialized. The Gaussian 0.1 M� core in Fig. 2(b) becomes
virialized while still pressure dominated in both the adiabatic and
isothermal cases. The 0.1 M� Plummer-like core (Fig. 2a) and the
0.25 M� Gaussian core (Fig. 2d) become gravitationally dominated
while virially bound in the isothermal case, but in the adiabatic case
become virialized while pressure dominated.

We expect an initially virially unbound core to expand due to
its internal pressure until it reaches a pressure-bound virial equi-
librium and, once that equilibrium is reached, to remain in or near
virial equilibrium thereafter. Note that if the core has an initial char-
acteristic radius less than that at which the minimum in virial ratio
occurs, this increase in radius will initially cause the core to expand
away from virial equilibrium.

We do not expect a starless core which contracts to equilibrium
with its surroundings to instantaneously cease its contraction (or
a core which expands to equilibrium to cease its expansion). A
more realistic scenario is one in which the core passes virial equi-
librium, until the increasing virial instability forces its contraction
(or expansion) to halt, and then reverse. One might expect these
pressure-confined starless cores without a route to gravitational in-
stability to oscillate slightly around virial equilibrium. Figs 2(a),
(b), and (d) show examples of cases in which there are charac-
teristic radii R at which the virial ratio of the core is predicted to
be equal to 1. Examination of those points where the virial ratio is
equal to 1 and the core is pressure dominated (�G < �P) shows that
small perturbations in R will have a tendency to force the core back
towards virial equilibrium. Keto et al. (2006) suggested, and mod-
elled, oscillating pressure-confined starless cores as an explanation
for starless cores observed to show red-asymmetric line profiles, or
reversals in line-profile asymmetry.

4.4 Choice of core geometry for further analysis

Figs 2 and 3 show that the Plummer-like and Gaussian density
profiles produce similar core behaviours. For the remainder of this
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An analytical model for starless cores 2659

Figure 4. A family of loci of equations (1)–(20) in the virial plane, assuming a Plummer-like core geometry, showing (a) the contracting track and (b)
the expanding track. Solid lines show adiabatic loci; dashed lines show isothermal loci. Cores have M = 0.05–2.0 M�, external pressure PEXT/kB =
1.5 × 107 K cm−3, an initial temperature of 7 K, an initial non-thermal linewidth of 250 m s−1, and an initial characteristic radius of 0.005 pc, and are confined
by material of density ρe = 105 H2 molecules cm−3. For clarity, each mass track has a different colour.

paper, we choose to model cores as obeying a Plummer-like density
profile. The Plummer-like density profile is more physically moti-
vated than the Gaussian density profile, and produces a more phys-
ically realistic temperature range for the core. The Plummer-like
density profile can be seen as an analytically soluble approximation
to the BE density profile.

5 EVO L U T I O NA RY TR AC K S IN TH E V I R I A L
P L A N E

Pattle et al. (2015) introduced the ‘virial plane’ as a means of
demonstrating the balance of forces in a starless core. We use this
diagram throughout the remainder of this paper, and so introduce
it in some detail here. The virial ratio is plotted as the abscissa,
and the ratio of gravitational potential energy to external pressure
energy (the confinement ratio) is plotted as the ordinate. The virial
ratio indicates the virial stability of the starless core, while the
gravitational potential/external pressure energy ratio indicates the
mode of core confinement. Examples of the virial plane can be seen
in Figs 4 and 5, discussed below. Cores on the right-hand side of
the virial plane (virial ratio > 1) are virially bound, while cores on
the left-hand side of the virial plane (virial ratio < 1) are virially
unbound. Cores in the upper half of the virial plane (�G/�P >

1) are gravitationally dominated, while cores in the lower half of
the virial plane (�G/�P < 1) are external pressure dominated. We
model the loci of starless cores in this plane as a function of core
characteristic radius.

Fig. 4 shows the loci in the virial plane predicted by our model
for a family of Plummer-like starless cores in the mass range 0.05–
2.0 M� with external pressure PEXT/kB = 1.5 × 107 K cm−3,
an initial temperature of 7 K, an initial non-thermal linewidth of
250 m s−1, and an initial characteristic radius of 0.005 pc. Fig. 4(a)
shows the contracting tracks, with the adiabatic track shown as a
solid line and the isothermal track shown as a dashed line. The
expanding tracks are shown in Fig. 4(b). The two sets of tracks

are separated for clarity. We propose that each core will have
an evolutionary track in this plane, along the locus defined by
equations (1)–(20). As discussed above, we expect virially bound
and pressure-confined (−(�G + �P)/2�K > 1 and �G/�P < 1)
cores to contract towards virial equilibrium. Thus, for each of the
cores shown in Fig. 4, only some part of the locus of equations (1)–
(20) is accessible, and represents an evolutionary track. The 2.0, 1.0,
0.5, and 0.25 M� cores, we expect to follow the contracting track
indefinitely. The 0.1 M� core, we expect to follow the contracting
track indefinitely in the isothermal case, and to contract to virial
equilibrium in the adiabatic case. We expect the 0.05 M� core to
follow the contracting track to virial equilibrium. All of the cores in
this family are initially virially bound; we expect them to contract,
either to equilibrium or indefinitely.

Fig. 5 shows the loci in the virial plane we predict for a less-bound
family of starless cores, in the mass range 0.01–0.5 M� with exter-
nal pressure PEXT/kB = 1.5 × 107 K cm−3, an initial temperature
of 7 K, an initial non-thermal linewidth of 280 m s−1, and an initial
characteristic radius of 0.002 pc. These cores show a more varied
range of behaviours: the 0.5 M� core is gravitationally and viri-
ally bound and will collapse indefinitely under gravity. The 0.25,
0.1, 0.05, and 0.025 M� cores are virially unbound; we expect
these cores to follow the expanding track to virial equilibrium. The
0.01 M� core is virially bound and pressure dominated; we expect
this core to follow the contracting track to virial equilibrium.

6 N O N - T H E R M A L M OT I O N S

We choose to parametrize the non-thermal motions of our cores as
Larson-like (i.e. σNT ∝ rζ

e – see equation 20), in order to include
the dissipation of turbulence expected to occur in starless cores (e.g.
Klessen et al. 2005; Offner, Klein & McKee 2008) in our model.

It is important to note that the scale-free, Kolmogorov-type,
behaviour which is parametrized by a Larson-like size–linewidth
relation may not apply on the smallest size scales which we
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2660 K. Pattle

Figure 5. A family of loci of equations (1)–(20) in the virial plane, assuming a Plummer-like core geometry, showing (a) the contracting track and (b)
the expanding track. Solid lines show adiabatic loci; dashed lines show isothermal loci. Cores have M = 0.001–0.5 M�, external pressure PEXT/kB =
1.5 × 107 K cm−3, an initial temperature of 7 K, an initial non-thermal linewidth of 280 m s−1, and an initial characteristic radius of 0.002 pc, and are confined
by material of density ρe = 105 H2 molecules cm−3. For clarity, each mass track has a different colour.

consider here. A number of different values have been determined
for the turbulent energy dissipation scale in molecular clouds, the
length scale below which turbulent motions dissipate rapidly. Os-
triker, Stone & Gammie (2001) found a non-constant spectral index
in velocity dispersion spectra created from magnetohydrodynamic
simulations of turbulent giant molecular clouds. They interpreted
the change in spectral index at smaller size scales as being indica-
tive of a turbulent energy dissipation scale. Ossenkopf & Mac Low
(2002) found a turbulent energy dissipation scale of 0.05 pc in the
Polaris Flare, larger than the typical core size considered in this
work. However, Offner et al. (2008) found Larson-like dissipation
of turbulence continuing to scales ∼0.01 pc in their simulations of
molecular clouds. Li & Houde (2008) found that HCN observations
of M17 showed a constant spectral index above size scales ∼0.16 pc
(their limiting spatial resolution), and inferred a turbulent energy
dissipation scale of 0.0018 pc, similar to the smaller size scales
considered in this work. Pattle et al. (2015) found core non-thermal
velocity dispersions in the Ophiuchus molecular cloud to be typi-
cally mildly supersonic. While this does not allow determination of
the turbulent energy dissipation scale in this region, it suggests that
the turbulent energy dissipation scale is smaller than the measured
characteristic radii of cores in this region (∼0.0015–0.0065 pc; see
Table 1, below), and that Larson-like behaviour may be valid for
the cores considered in this work at least on larger scales.

Larson-like behaviour is not known to hold at the smallest scales,
and at these smallest scales our values of the internal non-thermal
linewidths of the cores may be overestimated. However, in the
absence of a means of determining the turbulent energy dissipation
scale for the cores we consider, we parametrize the dissipation of
turbulence as Larson-like on all scales smaller than the initial size
of the core.

We choose an index ζ = 0.5 (Solomon et al. 1987). How-
ever, other indices have been proposed – for example, for whole
molecular clouds an index of ζ = 0.38 is expected (Larson 1981),
while Caselli & Myers (1995) find an index ζ = 0.21 in high-mass

star-forming regions. We investigated how our evolutionary model
varies with ζ . We found that as the non-thermal contribution to
the core’s kinetic energy becomes small at small radii, and as the
dependence of the non-thermal linewidth on size is relatively weak
(σNT ∝ r0.5

e ), over the range of radii being considered, small changes
in the index of equation (20) do not substantially alter the expected
behaviour of our cores.

While σNT ∝ rζ
e and 0 < ζ < 1, the behaviour of our cores

does not alter significantly with varying ζ . A ζ = 0 would indicate
that there is no dissipation of turbulence as the core contracts,
while ζ < 0 would require turbulence to be enhanced, rather than
dissipated, as the core decreases in size. A value of ζ < 0.5 implies
a sublinear increase in non-thermal kinetic energy as a function
of re (as �K,NT ∝ σ 2

NT). If ζ > 0.5, then the substantial increase in
non-thermal kinetic energy with increasing re that this causes begins
to destroy the minimum in virial ratio seen in the intermediate-R
region of Fig. 2. As discussed above, we assume that σNT(R >

R0) = σNT(R0), and so the core’s non-thermal kinetic energy does
not increase as a core expands from its initial size.

The variation in the virial ratio with ζ is shown in Fig. 6, for
a core with mass M = 0.25 M�, external pressure PEXT/kB =
1.5 × 107 K cm−3, external density ρe = 105 H2 molecules cm−3,
and, at an initial characteristic radius of 0.005 pc, a temperature of
7 K and a non-thermal internal velocity dispersion of 220 m s−1.
Fig. 6 shows that as ζ increases, the virial ratio of the core increases
and the virial minimum at small radii becomes less distinct, i.e. the
core is dissipating turbulence more effectively. Fig. 6 also shows
that there is only a small difference in the behaviour of the virial
ratio between the Solomon et al. (1987) index of 0.5 and the Larson
(1981) index of 0.38.

We choose the Solomon et al. (1987) value for the index of the
relation between characteristic radius and non-thermal linewidth
(i.e. ζ = 0.5) as being justifiable and physically plausible, while
noting that varying this value within a physically reasonable range
would not substantially alter our results.
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An analytical model for starless cores 2661

Figure 6. Variation in behaviour of the virial ratio with index of rela-
tionship between core size and non-thermal linewidth for a Plummer-
like core with M = 0.25 M�, PEXT/kB = 1.5 × 107 K cm−3, T0 = 7 K,
σNT,0 = 220 m s−1, and R0 = 0.005 pc. Top panel: adiabatic case. Bottom
panel: isothermal case. Legend shows the index ζ where σNT ∝ r

ζ
e . Note the

similarity between the behaviours resulting from the Solomon et al. (1987)
index of 0.5 (yellow) and the Larson (1981) index of 0.38 (orange). The line
of unity and the �G/�P ratio are plotted in grey, for reference.

7 PA R A M E T R I Z AT I O N O F M AG N E T I C FI E L D
T E R M

We have thus far neglected the magnetic field term in the virial
equation in this analysis. However, we note that the effect of the
magnetic field on the virial balance of a core can be included in our
model.

Assuming that the Basu (2000) relation,

B ∝ n
1
2 σNT (45)

(where B is magnetic field strength and n is number density), holds
for our starless cores, then, as shown by Pattle et al. (2015), there is
a constant ratio between magnetic energy and non-thermal kinetic
energy:

�M

�K,NT
= 1

3μ0

B2
0

ρ0σ
2
0,NT

= 	M. (46)

	M = B2
0 /3μ0ρ0σ

2
0,NT is the ratio of magnetic energy to non-

thermal kinetic energy, from measurement of a magnetic field
strength B0 and a non-thermal linewidth σ0,NT in material with a
density ρ0 (μ0 is the permeability of free space).

Figure 7. Variation in behaviour of the virial ratio with initial magnetic field
strength B0, for a core with M = 0.25 M�, PEXT/kB = 1.5 × 107 K cm−3,
T0 = 7 K, σNT,0 = 250 m s−1, and R0 = 0.005 pc. Adiabatic curves are
shown as solid lines; isothermal curves are shown as dashed lines. The 0,
1, 5, and 10 μG curves overlap. The line of unity and the �G/�P ratio are
plotted in grey, for reference.

It is important to note that the relation given in equation (45) was
determined for flattened, disc-like structures, rather than the spheri-
cal geometries which we consider in this work. We use equation (46)
as a convenient means by which to parametrize the effect of internal
magnetic field on our cores, while noting that the applicability of
equation (45) to this problem is not certain.

Including the magnetic term, the virial ratio becomes

Virial Ratio = − �G + �P

2�K + �M
, (47)

and if the Basu (2000) relation holds and �M = 	M�K,NT, then

− �G + �P

2�K + �M
= − �G + �P

2�K,T + (2 + 	M)�K,NT
, (48)

and we can continue to model the evolution of our cores as a function
of characteristic radius R only, although another initial condition,
initial magnetic field strength B0, is now required.

The variation in the virial ratio with 	M is shown in Fig. 7, again
for a core with mass M = 0.25 M�, external pressure PEXT/kB =
1.5 × 107 K cm−3, external density ρe = 105 H2 molecules cm−3,
and a temperature of 7 K and a non-thermal internal velocity disper-
sion of 250 m s−1 at a characteristic radius of 0.005 pc. We estimate
	M for a representative initial core density of ρ0 = 3M(re,0)/4πr3

e,0

and a range of magnetic field strengths B0.
Fig. 7 shows that for the chosen set of initial conditions, the

cases of B0 = 0 μG (	M = 0), B0 = 1 μG (	M = 2.1 × 10−5),
B0 = 5 μG (	M = 5.2 × 10−4), and B0 = 10 μG (	M = 0.0021)
are not distinguishable; the contribution of the magnetic field to the
energy balance of the core is negligible. In the case B0 = 50 μG
(	M = 0.052), the effect of the magnetic energy term is visible in
Fig. 7, but not sufficient to cause more than a minimal variation in
the core’s evolutionary track. In the case of this core, it is not until
field strengths such as B0 = 100 μG (	M = 0.21) are reached that
the energy balance begins to change significantly.

8 A P P L I C AT I O N TO C O R E S I N L 1 6 8 8

We apply this model to the 23 starless cores in the L1688 re-
gion of Ophiuchus on which Pattle et al. (2015) performed a full
virial analysis. Pattle et al. (2015) determined core masses from
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Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and
Herschel flux density measurements taken as part of the James Clerk
Maxwell Telescope (JCMT) Gould Belt Survey (Ward-Thompson
et al. 2007) and Herschel Gould Belt Survey (André et al. 2010),
respectively, internal linewidths from IRAM N2H+ 1 → 0 data
originally presented by André et al. (2007), and external linewidths
from Heterodyne Array Receiver Project (HARP) C18O 3 → 2
measurements originally presented by White et al. (2015). In this
section, we predict evolutionary outcomes for these cores, taking
the core properties given by Pattle et al. (2015) as our set of initial
conditions. These initial conditions are listed in Table 1.

We neglect the magnetic energy term in the virial equation in
the following analysis due to the uncertainty of the applicability of
the magnetic energy analysis presented above to the problem. In
Ophiuchus, Pattle et al. (2015) determined a value of 	M = 0.11,
based on measurements by Troland et al. (1996). This is in the range
which will produce a small change in the predicted evolutionary
track of the core, but will change the predicted evolutionary outcome
of the core only in the most marginal cases. This suggests that our
neglect of the magnetic energy term in Ophiuchus is justifiable.

The model we use in this paper differs somewhat from that used
by Pattle et al. (2015) to assess the virial stability of their cores.
Pattle et al. (2015) assumed that their cores obeyed Gaussian den-
sity distributions and took the gravitational potential energies of
their cores to be those of infinite Gaussian density distributions of
the same total mass. In this work, we assume that the masses M
measured by Pattle et al. (2015) and listed in Table 1 represent the
masses enclosed in the cores’ bounding radii, re (where re is cal-
culated from mass, characteristic radius, and bounding density; see
equations 23 and 24), and that the cores obey a Plummer-like den-
sity distribution with characteristic radius R equal to the Gaussian
width measured by Pattle et al. (2015). This results in our initial
values of the virial and confinement ratios being slightly different

from those given by Pattle et al. (2015). However, the difference in
the model typically produces a difference in virial and confinement
ratios smaller than the uncertainties quoted by Pattle et al. (2015).
We reproduce the virial plane determined by Pattle et al. (2015) in
Appendix C, for purposes of comparison.

Fig. 8 shows the virial stability as a function of characteristic
radius of each of the starless cores in L1688, plotted in the manner
described for Fig. 2. Each panel of Fig. 8 shows, for an individual
starless core in our sample, the virial ratio, −(�G + �P)/2�K, in
black and the confinement ratio, �G/�P, in red, both plotted as a
function of core characteristic radius R.

We again assume an external density ρe = 105 H2 molecules cm−3

and a mean molecular mass 2.86 mH. Pattle et al. (2015) assumed
this bounding density to be representative of the density above which
C18O ceases to be an effective tracer of core material, becoming sig-
nificantly depleted on to dust grains, and also to be representative of
the density at which N2H+ becomes detectable (Di Francesco et al.
2007). Pattle et al. (2015) determined masses for the cores which
they detected in Ophiuchus using dust continuum emission, N2H+

emission and C18O emission, and found that masses determined
from N2H+ correlated well with masses determined from dust emis-
sion, while the correlation between C18O-determined masses and
dust-emission-determined masses was much weaker, which they
interpreted as indicating that N2H+ was tracing the dense gas in
the cores, while C18O was tracing the somewhat less dense gas sur-
rounding the core. As the continuum emission and N2H+ emission
were interpreted to be tracing the same material, the minimum den-
sity at which N2H+ is detectable was taken to be representative of
the density bounding the cores, whose sizes were measured from
continuum emission. As the main route to destruction of the N2H+

molecule in dense environments is the reaction

N2H+ + CO → N2 + HCO+ (49)

Table 1. Initial conditions for cores in Ophiuchus. Measured values of mass, characteristic radius, non-thermal velocity
dispersion, and external pressure are taken from Pattle et al. (2015). The bounding radius is calculated from measured
properties using equations (23) and (24).

Source M R0 σNT,0 PEXT/kB re,0
re,0
R0

ID (M�) (pc) (m s−1) (×107 K cm−3) (pc)

SM1 1.30 0.0033 270 0.79 0.0166 5.06
SM1N 1.00 0.0029 266 1.11 0.0151 5.15
SM2 0.76 0.0050 197 0.75 0.0164 3.29
A-MM5 0.26 0.0061 216 0.79 0.0134 2.20
A-MM6 0.75 0.0063 245 0.86 0.0175 2.78
A-MM7 0.26 0.0053 259 0.75 0.0129 2.43
A-MM8 0.28 0.0048 166 0.47 0.0127 2.64
A-MM4 0.11 0.0048 179 0.53 0.0102 2.12
A-MM4a 0.04 0.0015 173 0.60 0.0058 3.96
B1-MM3 0.27 0.0051 174 1.06 0.0129 2.52
B1-MM4a 0.29 0.0050 232 1.04 0.0131 2.61
B1-MM4b 0.06 0.0021 200 1.05 0.0070 3.34
B2-MM6 0.56 0.0056 358 1.53 0.0158 2.80
B2-MM9 0.61 0.0065 286 1.54 0.0167 2.58
B2-MM13 0.62 0.0050 307 1.09 0.0156 3.15
B2-MM14 0.79 0.0064 251 1.68 0.0178 2.77
B2-MM15 0.35 0.0043 225 2.38 0.0130 3.04
B2-MM16 0.25 0.0015 276 0.84 0.0089 6.11
C-MM3 0.24 0.0054 158 1.98 0.0128 2.35
C-MM6a 0.08 0.0035 164 2.25 0.0086 2.43
C-MM6b 0.09 0.0053 165 2.20 0.0101 1.89
E-MM2d 0.15 0.0045 124 1.16 0.0108 2.40
F-MM1 0.05 0.0015 153 1.72 0.0062 4.22
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Figure 8. Stability as a function of characteristic radius for our cores. Solid black line shows adiabatic virial ratio; dashed black line shows isothermal virial
ratio. Red line shows ratio of gravitational potential energy to external pressure energy. Blue dot shows measured virial ratio (blue line is present to guide the
eye to the measured confinement ratio). Green line shows line of virial stability. Grey shaded regions indicate parameter space occupied by pre-stellar cores.
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Figure 8 – continued
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Figure 8 – continued

(e.g. Snyder, Hollis & Watson 1977, and references therein), N2H+

can only reach high abundances at high densities, when CO (and
its isotopologues) is not present in the gas phase. This makes N2H+

and C18O unlikely to be tracing the same material. An example

of this is seen in the CO ‘snow line’ in the protostellar disc sur-
rounding the star HD 163296 (Qi et al. 2015). Qi et al. (2015)
showed that CO traces warmer disc material near to the protostar,
and that N2H+ traces a ring of cooler material at larger radii. Qi
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Table 2. The evolutionary outcomes predicted for each of our cores in Ophiuchus by the analytical model presented here.

Initial Confining Direction of Predicted outcome
Core state force evolution Isothermal Adiabatic

SM1 Bound Gravity Contraction Pre-stellar Pre-stellar
SM1N Bound Gravity Contraction Pre-stellar Pre-stellar
SM2 Bound Gravity Contraction Pre-stellar Pre-stellar
A-MM5 Bound Pressure Contraction Pre-stellar Pre-stellar
A-MM6 Bound Gravity Contraction Pre-stellar Pre-stellar
A-MM7 Unbound Pressure Expansion Virialized Virialized
A-MM8 Bound Pressure Contraction Pre-stellar Pre-stellar
A-MM4 Bound Pressure Contraction Virialized Virialized
A-MM4a Unbound Pressure Expansion Virialized Virialized
B1-MM3 Bound Pressure Contraction Pre-stellar Pre-stellar
B1-MM4a Bound Pressure Contraction Pre-stellar Pre-stellar
B1-MM4b Bound Pressure Contraction Virialized Virialized
B2-MM6 Unbound Pressure Expansion Virialized Virialized
B2-MM9 Bound Pressure Contraction Pre-stellar Pre-stellar
B2-MM13 Unbound Pressure Expansion Virialized Virialized
B2-MM14 Bound Pressure Contraction Pre-stellar Pre-stellar
B2-MM15 Bound Pressure Contraction Pre-stellar Pre-stellar
B2-MM16 Unbound Gravity Expansion Virialized Virialized
C-MM3 Bound Pressure Contraction Pre-stellar Pre-stellar
C-MM6a Bound Pressure Contraction Pre-stellar Pre-stellar
C-MM6b Bound Pressure Contraction Pre-stellar Pre-stellar
E-MM2d Bound Pressure Contraction Pre-stellar Pre-stellar
F-MM1 Bound Pressure Contraction Pre-stellar Pre-stellar

et al. (2015) further showed that that the radius of the CO snow
line corresponds well with the radius at which N2H+ emission be-
comes detectable, indicating that the two molecules are tracing two
separate but contiguous regions of the disc. Pattle et al. (2015) con-
sidered the inverse situation in Ophiuchus, in which N2H+ traces
the cool and dense starless core material, while C18O traces the
warmer and more rarefied material immediately surrounding the
cores.

According to our model, there are four gravitationally dom-
inated and virially bound cores in our sample: SM1, SM1N,
SM2, and A-MM6. We assume that these cores are pre-stellar
and collapsing under gravity, and will evolve away from virial
equilibrium.

Of the pressure-confined and virially bound starless cores in our
sample, we expect A-MM5, A-MM8, B1-MM3, B1-MM4a, B2-
MM9, B2-MM14, B2-MM15, C-MM3, C-MM6a, C-MM6b, E-
MM2d, and F-MM1 to evolve into gravitationally bound pre-stellar
cores. A-MM4 and B1-MM4b, we expect to contract to virial equi-
librium.

Cores A-MM7, A-MM4a, B2-MM6, and B2-MM13 are virially
unbound and pressure dominated, and will expand to reach virial
equilibrium.

The one gravitationally dominated and virially unbound star-
less core in our sample is B2-MM16. We predict that this core
will expand to virial equilibrium, despite this initially increas-
ing the core’s virial instability. We note that the uncertainty on
the virial ratio of this core given by Pattle et al. (2015) is large
enough for B2-MM16 to be consistent with in fact being a grav-
itationally bound pre-stellar core. We discuss this core further
below.

The predicted evolutionary outcomes of our cores are listed in
Table 2. We emphasize that all of these evolutionary outcomes
assume that there is no further accretion of mass by the core. We
address this in a future paper.

Figure 9. Evolutionary tracks in the virial plane, for a sample of the Pattle
et al. (2015) starless cores. All cores shown in Fig. 8 are shown here for
reference. See text for details. Colour coding indicates region, as defined
by Motte, André & Neri (1998): red, Oph A; orange, Oph A′ (low-column-
density region surrounding Oph A); dark green, Oph B1; light green, Oph
B2; blue, Oph C; dark purple, Oph E; light purple, Oph F. Solid black line
indicates adiabatic track; dashed back line indicates isothermal track. The
shaded region indicates the hypothesized ‘starless core desert’.

Fig. 9 shows our proposed evolutionary tracks for a subset of our
cores: SM1 (pre-stellar), C-MM3 (pressure confined, contracting to
pre-stellar), and A-MM4a (unbound and pressure dominated, ex-
panding to virialized). These are chosen to illustrate the behaviours
described above.
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9 D ISCUSSION

9.1 A ‘starless core desert’?

It is notable that there is only one core in the L1688 region which is
both gravitationally dominated and virially unbound, and that this
one core, B2-MM16, has an uncertainty on its virial ratio such that
the core is consistent with in fact being pre-stellar. We hypothesize
that this parameter space (−(�G + �P)/2�K < 1; �G > �P) may
be largely inaccessible to starless cores – a ‘starless core desert’ of
sorts. It may be difficult to assemble a starless core with sufficient
mass to be gravitationally dominated, while simultaneously main-
taining an internal linewidth sufficiently large that the core remains
virially unbound.

The absence of virially unbound and gravitationally dominated
starless cores further hints at a formation mechanism for pre-stellar
cores in which starless cores initially form as pressure-confined
objects, and those which are sufficiently virially bound then evolve
to become gravitationally bound pre-stellar cores, perhaps in the
manner described in this model.

In order to test this hypothesis, further measurements of the virial
balance of starless cores are needed. If the gravitationally dominated
and virially unbound quadrant of the virial plane is in fact signifi-
cantly underpopulated compared to the other quadrants – i.e. if the
hypothesized ‘starless core desert’ is not a result of the small count-
ing statistics in the L1688 core sample – this would lend support
to the suggestion that starless cores may initially form as pressure-
confined objects.

9.2 Comparison with numerical modelling

This model can be usefully compared to numerical simulations of
cores collapsing under external pressure. Such simulations typically
assume that cores obey a BE density distribution, and typically
involve the perturbation of a system which is initially in equilibrium
(e.g. Foster & Chevalier 1993; Hennebelle et al. 2003). This is a
somewhat different approach to our model, which considers cores
as obeying a Plummer-like density distribution, and models the
evolution of cores which are initially in a non-equilibrium (i.e.
virially unstable) state.

Hennebelle et al. (2003) modelled the evolution of an initially
stable BE sphere undergoing a steady increase in external pressure,
in order to study protostellar collapse induced by external com-
pression. They found that while the compression of their core is
slow (i.e. when the external pressure on their core increases on a
time-scale much greater than the sound-crossing time of the core),
the core evolves quasi-statically. During the pre-stellar stage of the
core’s evolution the outer boundary of the core is pushed inward –
qualitatively similar to the contraction of pressure-dominated and
virially bound cores in our model – and a modest, approximately
uniform, inward velocity field is set up. However, Hennebelle et al.
(2003) found that when cores are strongly compressed (i.e. the
external pressure increases on a time-scale shorter than the sound-
crossing time), a compression wave is driven into the core, leaving
behind it an inward velocity field which can become supersonic if
the core compression is strong enough. This is dissimilar to our
model, which assumes quasi-static core evolution throughout.

Our model is thus qualitatively similar to numerical simulations
of the collapse under slow compression of pressure-confined cores
(Hennebelle et al. 2003). Whether the environments in the molecu-
lar clouds studied in this work allow quasi-static core evolution is
not clear. However, Hennebelle et al. (2003) noted that their sim-

ulations in which core compression is slow – the quasi-static case
– produce results which match observational constraints on starless
cores, suggesting that core evolution may be quasi-static in at least
some cases.

9.3 The definition of ‘pre-stellar’

This analysis shows that a virially bound and pressure-confined
starless core will not necessarily evolve to become gravitationally
bound, and thus cannot be considered to be a pre-stellar core. Those
of our cores which have no route to becoming gravitationally bound
may be evolving towards or oscillating slightly about virial equi-
librium. A core can only be definitively considered pre-stellar (i.e.
about to form a protostar) if it is gravitationally unstable. Pressure
confinement alone is not necessarily sufficient.

9.4 Observational uncertainties

It must be emphasized that the core properties measured by Pattle
et al. (2015) and listed as initial conditions in Table 1 are sub-
stantially uncertain. The majority of the cores have virial ratios
consistent at the 3σ level with their being virialized, and the evo-
lutionary tracks described above are accurate only if measurements
of the core properties are precisely accurate. These evolutionary
scenarios should be viewed as representative of a core with the de-
scribed properties, rather than a prediction specific to the core being
observed.

1 0 S U M M A RY

In this paper we have presented an analytic model for the evolu-
tion of a starless core, based on seven observable quantities: mass,
size, temperature, internal velocity dispersion, external velocity dis-
persion, external density, and magnetic field strength. This model
assumes that starless cores obey a monotonically decreasing den-
sity distribution, truncated at a constant external density and con-
fined by a constant external pressure. We considered Plummer-like
and Gaussian density distributions. Core evolution was considered
in the isothermal and adiabatic limits. Non-thermal internal mo-
tions were parametrized as Larson-like, obeying the Solomon et al.
(1987) σNT ∝ r0.5

e relation. The magnetic energy of the core was
parametrized as proportional to the non-thermal internal kinetic en-
ergy of the core, a result derived from the Basu (2000) relation
between magnetic field strength and number density.

We modelled the virial ratio and the ratio of gravitational poten-
tial energy to external pressure energy of a core as a function of
core characteristic radius. We constructed evolutionary tracks in the
‘virial plane’ diagram introduced by Pattle et al. (2015), under the
assumption that a gravitationally unstable and virially bound core
will collapse under gravity away from virial equilibrium, and that
all other cores will expand or contract towards virial equilibrium
as their energy balance dictates. We found that not all pressure-
confined and virially bound starless cores will evolve to become pre-
stellar, with many contracting to equilibrium with their surroundings
rather than becoming gravitationally unstable. Therefore, we con-
sider a core as pre-stellar – i.e. in the process of collapsing to form
a system of stars – only if it is both virially unstable and its gravi-
tational potential energy exceeds its energy from external pressure.

We considered the differences between adiabatic and isothermal
contraction, and noted that cores contract more effectively under
the assumption of isothermal contraction than under adiabatic con-
traction. However, we note that our model is not physically justified
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at the extremely small characteristic radii at which the adiabatic
and isothermal virial ratios differ significantly. We discussed the
variation in the virial ratio introduced by varying the index of the
Larson relation, and found that varying the Larson index in a phys-
ically reasonable range does not substantially alter our results. We
discussed the magnetic field strengths necessary to alter the energy
balance of a starless core, and found that the magnetic energy must
be �10 per cent of the non-thermal kinetic energy for its contribu-
tion to the energy balance to be appreciable, and �25 per cent to
significantly alter the energy balance of the core.

We applied our analysis to the 23 starless cores in the L1688 re-
gion of Ophiuchus for which Pattle et al. (2015) determined an en-
ergy balance, assuming that the cores obey a Plummer-like density
profile and are not magnetically dominated. We found that whether
virially bound and pressure-confined starless cores in L1688 will
contract to virial equilibrium or gravitational instability depends
sensitively on their measured properties. We found that no more
than one core in the L1688 region is both gravitationally dominated
and virially unbound, and hypothesized a ‘starless core desert’ in
this quadrant of the virial plane. We suggest that this parameter
space may be inaccessible if starless cores initially form as pressure-
confined objects.

The model we present in this paper parametrizes much of the
physics of a starless core in terms of six (or seven, in the magnetic
case) observable quantities. It is envisaged as a means by which
the likely evolutionary outcome of an observed starless core can be
rapidly assessed without the need to perform detailed and compu-
tationally expensive simulations.

Throughout this analysis we have assumed that the core under
consideration does not continue to accrete mass. In a subsequent
paper, we will consider the case in which the core’s mass can vary.
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276
Ward-Thompson D. et al., 2007, PASP, 119, 855
White G. J. et al., 2015, MNRAS, 447, 1996
Whitworth A. P., Ward-Thompson D., 2001, ApJ, 547, 317
Whitworth A. P., Bhattal A. S., Francis N., Watkins S. J., 1996, MNRAS,

283, 1061

A P P E N D I X A : G R AV I TAT I O NA L P OT E N T I A L
E N E R G Y O F A T RU N C AT E D P L U M M E R - L I K E
D I S T R I BU T I O N

We give here a brief derivation of the gravitational potential energy
of an η = 4 Plummer-like distribution.

For a radially symmetric potential, the gravitational potential
energy �G is given by

�G(r) = −4πG

∫ r

0
dr ′ r ′ ρ(r ′)M(r ′), (A1)

where ρ(r) and M(r) are the density and mass enclosed at radius r,
respectively. M(r) is given by

M(r) = 4π

∫ r

0
dr ′ r ′2ρ(r ′). (A2)

We assume a radially symmetric Plummer-like density distribu-
tion,

ρ(r) = ρc

(
R√

r2 + R2

)η

, (A3)

and choose an index η = 4. The total mass enclosed at radius r is
given by

M(r) = 2πρcR
3

[
arctan

( r

R

)
− rR

r2 + R2

]
, (A4)
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and the total mass summed over all radii is given by

Minf = π2ρcR
3. (A5)

Using equations (A1), (A3), and (A4), �G(r) is given by

�G(r) = −8π2Gρ2
c R

7

×
∫ r

0
dr ′ r ′

(r ′2 + R2)2

[
arctan

(
r ′

R

)
− r ′R

r ′2 + R2

]
.

(A6)

The first term in equation (A6) is∫ r

0
dr ′ r ′

(r ′2 + R2)2
arctan

(
r ′

R

)

= 1

4R2

[
arctan

( r

R

)
+ rR

r2 + R2

]
− arctan

(
r
R

)
2(r2 + R2)

. (A7)

The second term in equation (A6) is

−R

∫ r

0
dr ′ r ′2

(r ′2 + R2)3
= rR

4(r2 + R2)2

− 1

8R2

[
arctan

( r

R

)
+ rR

r2 + R2

]
.

(A8)

Hence, equation (A6) becomes

�G(r) = −π2Gρ2
c R

7

[
2rR

(r2+R2)2
+ 1

R2

(
arctan

[ r

R

]
+ rR

r2 + R2

)

− 4 arctan
(

r
R

)
r2 + R2

]
. (A9)

This is the gravitational potential energy of a truncated η = 4
Plummer-like distribution.

In the limit that r/R → ∞, arctan(r/R) → π
2 , and equation (A9)

reduces to the gravitational potential energy of an infinite η = 4
Plummer-like distribution,

�G,inf = − 1

2π

GM2
inf

R
. (A10)

A P P E N D I X B : G R AV I TAT I O NA L P OT E N T I A L
E N E R G Y O F A T RU N C AT E D G AU S S I A N
D I S T R I BU T I O N

We give here a brief derivation of the gravitational potential energy
of a truncated Gaussian distribution.

We assume a radially symmetric Gaussian density distribution,

ρ(r) = ρ0e− r2

2R2 , (B1)

for which the total mass enclosed at radius r is given by

M(r) = 4πρ0

∫ r

0
dr ′ r ′2 e−r ′2/2R2

(B2)

= 4πρ0

[
R3

√
π

2
erf

(
r

R
√

2

)
− R2r e

−r2

2R2

]
, (B3)

and the total mass summed over all radii is given by

Minf = 4πρ0

∫ ∞

0
dr ′ r ′2 e−r ′2/2R2

(B4)

= 2
√

2π
3
2 ρ0R

3. (B5)

Using equations (A1), (B1), and (B3), �G(r) is given by

�G(r) = −16π2Gρ2
0R

2

×
∫ r

0
dr ′ r ′ e

−r′2
2R2

[
R

√
π

2
erf

(
r ′

R
√

2

)
− r ′e

−r′2
2R2

]
. (B6)

The first term in the integral in equation (B6) is∫ r

0
dr ′ r ′ e

−r′2
2R2 R

√
π

2
erf

(
r ′

R
√

2

)

= R3

√
π

2

[
1√
2

erf
( r

R

)
− e− r2

2R2 erf

(
r

R
√

2

)]
. (B7)

The second term in the integral in equation (B6) is

−
∫ r

0
dr ′ r ′2e

−r′2
R2 = R3

[
1

2

r

R
e

−r2

R2 −
√

π

4
erf

( r

R

)]
. (B8)

Hence, equation (B6) becomes

�G(r) = −16π2Gρ2
0R

5

[√
π

4
erf

( r

R

)

−
√

π

2
e− r2

2R2 erf

(
r

R
√

2

)
+ 1

2

r

R
e− r2

R2

]
. (B9)

This is the gravitational potential energy of a truncated Gaus-
sian distribution. In the limit that r → ∞, erf(r/R) → 1 and
e−(r/R)2 → 0, and so equation (B9) reduces to the gravitational
potential energy of an infinite Gaussian distribution,

�G,inf = − 1

2
√

π

GM2
inf

R
. (B10)

A P P E N D I X C : T H E PAT T L E E T A L . (2 0 1 5 )
V I R I A L P L A N E

In Fig. C1, we reproduce the virial plane determined by Pattle et al.
(2015) for the cores in the L1688 region of Ophiuchus, for purposes
of comparison with this work.

Figure C1. The Pattle et al. (2015) virial plane for the L1688 region of
Ophiuchus.
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