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ABSTRACT

We use collisionless N-body simulations to determine how the growth of a supermassive black hole (SMBH)
influences the nuclear kinematics in both barred and unbarred galaxies. In the presence of a bar, the increase in the
velocity dispersion σ (within the effective radius) due to the growth of an SMBH is on average �10%, whereas the
increase is only �4% in an unbarred galaxy. In a barred galaxy, the increase results from a combination of three
separate factors: (1) orientation and inclination effects; (2) angular momentum transport by the bar that results in an
increase in the central mass density; and (3) an increase in the vertical and radial velocity anisotropy of stars in the
vicinity of the SMBH. In contrast, the growth of the SMBH in an unbarred galaxy causes the velocity distribution
in the inner part of the nucleus to become less radially anisotropic. The increase in σ following the growth of the
SMBH is insensitive to a variation of a factor of 10 in the final mass of the SMBH, showing that it is the growth
process rather than the actual SMBH mass that alters bar evolution in a way that increases σ . We argue that using an
axisymmetric stellar dynamical modeling code to measure SMBH masses in barred galaxies could result in a slight
overestimate of the derived MBH, especially if a constant M/L ratio is assumed. We conclude that the growth of a
black hole in the presence of a bar could result in an increase in σ that is roughly 4%–8% larger than the increase
that occurs in an axisymmetric system. While the increase in σ due to SMBH growth in a barred galaxy might
partially account for the claimed offset of barred galaxies and pseudo bulges from the MBH–σ relation obtained for
elliptical galaxies and classical bulges in unbarred galaxies, it is inadequate to account for all of the offset.
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1. INTRODUCTION

Over the past 20 yr, it has become increasingly evident that
nearly all massive galaxies have a supermassive black hole
(SMBH) residing at their centers (Kormendy & Richstone 1995;
Magorrian et al. 1998; Richstone et al. 1998). A growing sample
of dynamically measured black hole masses has allowed for
the development and refinement of important scaling relations
between SMBHs and their host galaxies. Many scaling relations
have been established, including those that relate the mass of
the SMBH (hereafter MBH) to properties of the host spheroid/
bulge/elliptical, e.g., spheroid mass Mbul, bulge luminosity Lbul
(Kormendy & Richstone 1995; Magorrian et al. 1998; Richstone
et al. 1998; Marconi & Hunt 2003; Häring & Rix 2004),
stellar velocity dispersion within the half-light radius σ (the
MBH–σ relation; Ferrarese & Merritt 2000; Gebhardt et al. 2000;
Tremaine et al. 2002), the circular velocity of the dark matter
(DM) halo vcirc (Ferrarese 2002), the Sérsic index of the bulge
n (Graham & Driver 2007), the number of globular clusters
(Burkert & Tremaine 2010; Harris & Harris 2011), and even
the spiral arm pitch angle of the galaxy (Seigar et al. 2008;
Ringermacher & Mead 2009). These scaling relations imply a
strong coupling between the SMBH at a galaxy’s center and the
global properties of the galaxy itself. A complete understanding
of these scaling relations, and the causes of any deviations,
will enable us to infer more accurately, e.g., the masses of
SMBH in distant galaxies where direct MBH measurements are
not possible. Theoretical investigations of the physical causes of
deviations from scaling relations can enhance our understanding

of the growth and coevolution of SMBHs and their host galaxies
over cosmic time.

The tightest and most extensively studied of the SMBH scal-
ing relations is the MBH–σ relation, which takes the form
log MBH = α + β log(σ/200 km s−1). Since the contempo-
raneous papers by Gebhardt et al. (2000) and Ferrarese &
Merritt (2000) established values for the slope β of the re-
lation as 3.75 ± 0.3 and 4.80 ± 0.54, respectively, there have
been numerous revisions and recalculations of the slope, includ-
ing 4.02 ± 0.32 (Tremaine et al. 2002), 4.86 ± 0.43 (Ferrarese
& Ford 2005), 4.24 ± 0.41 (Gültekin et al. 2009), 5.13 ± 0.34
(Graham et al. 2011), and most recently 5.64±0.32 (McConnell
& Ma 2013).

As the number of galaxies with measured MBH has grown,
attempts have been made to examine whether the scaling
relations are dependent on the morphological type of the
host galaxies. Some recent studies have shown that barred
galaxies may be offset from the MBH–σ relationship obtained
for unbarred galaxies (e.g., Hu 2008; Graham 2008a, 2008b;
Graham & Li 2009; Graham et al. 2011). Graham & Li (2009)
found that if barred galaxies are excluded from the MBH–σ
relationship, the scatter in the relation drops from 0.47 dex to
0.41 dex. Furthermore, Graham et al. (2011) showed that barred
galaxies reside ∼0.30 dex below the MBH–σ relation defined
by unbarred galaxies (classical bulges and elliptical galaxies),
although both populations follow parallel scaling relations with
β ∼ 5. However, in a study of the MBH–σ relation for active
galactic nuclei (AGNs), Xiao et al. (2011) find that there is no
significant difference in the slope β for barred and unbarred
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AGN, but these authors do find a small offset between low-
inclination and high-inclination disk galaxies (highly inclined
galaxies have larger σ at a given value of BH mass). A study
of the MBH–σ relation in ∼150 galaxies (including ∼100 upper
limits) found no offset between barred and unbarred galaxies
(Beifiori et al. 2012). Greene et al. (2010) found that MBH
values measured in a sample of late-type Seyfert II galaxies were
about a factor of two smaller than MBH values predicted from
the observed σ using the standard MBH–σ relationship. This is
consistent with a recent examination of the MBH–σ relationship
for early-type galaxies versus late-type galaxies (McConnell &
Ma 2013), which shows that both types have consistent slopes
(β = 5.2 ± 0.36 and β = 5.06 ± 1.16, respectively), but the
late-type galaxies have a significantly lower zero-point α.

Graham et al. (2011) find that the offset of barred galaxies
from the MBH–σ relationship for unbarred galaxies is 0.3 dex in
MBH, assuming a slope of β � 5, this corresponds a rightward
offset of 0.06 dex in σ . This implies that on average, the stellar
velocity dispersion of barred disk galaxies is ∼15%4 higher than
that of unbarred disk galaxies. Recently, Hartmann et al. (2013)
reevaluated the offset of barred galaxies with classical bulges
from the MBH–σ relation for unbarred galaxies with classical
bulges and found an offset of 0.2 dex (and a scatter of 0.19 dex).
However, they find that barred galaxies with pseudo bulges are
offset by 0.4 dex from the MBH–σ relationship of unbarred
classical bulges. The intermediate value of 0.3 dex found by
Graham et al. (2011) probably results from their inclusion of
barred galaxies with pseudo bulges. This larger offset for pseudo
bulges is consistent with the finding of Kormendy et al. (2011)
that pseudobulges do not follow the MBH–σ relation defined by
elliptical galaxies and classical bulges.

Graham et al. (2011) offer several possible explanations
for systematically large observed σ for the barred sample.
These include viewing angle—the orientation of the bar to
the line of sight and the inclination of the disk (which can
cause contamination of σ by disk particles)—and the presence
of nuclear star clusters. Also, Graham (2008a) examined the
possibility that the offset of barred galaxies could be the
consequence of their having undermassive SMBHs as opposed
to their having systematically higher velocity dispersions than
their unbarred counterparts. He argued that since barred galaxies
are not offset from the MBH–L relation, anemic SMBHs are not
to blame.

Hartmann et al. (2013) use N-body simulations to examine
the effects of bar formation and evolution on the observed σ in
bar-unstable disk galaxies with classical bulges. They analyze
a set of 25 disk+bulge simulations both before and after bar
formation. It is well known that bar formation in an initially
cold disk followed by bar buckling can lead to a redistribution
of angular momentum and kinetic energy that results in the
heating of the disk (e.g., Hohl 1971; Raha et al. 1991) and
the formation of a boxy, peanut-shaped bulge. The simulations
examined by Hartmann et al. (2013) do not include the growth
of a point mass representing an SMBH. Rather they assume that
each bulge contains an SMBH whose mass is set by the MBH–σ
relationship and MBH does not change as the bar evolves.

In this paper we examine via N-body simulations whether
the claimed offset of bars from the MBH–σ relation could be
a consequence of the effects of the dynamical evolution of a
bar resulting from the growth of a central black hole on the
observed value of σ . We also discuss how stellar dynamical

4 β = 4 would imply an increase in σ of ∼19%.

measurements of MBH may be affected. We analyze a set of
N-body simulations of barred galaxies (and unbarred coun-
terparts constructed from them) both with and without clas-
sical bulges. Central mass concentrations (CMCs) representing
SMBHs are grown adiabatically in each of our disk galaxies, and
the dynamical response of the barred or unbarred disk galaxy is
examined.

Although it has long been thought that the feeding of a
central AGN and the resulting growth of the central black
hole could be a consequence of the evolution of a bar and gas
transport by it (Simkin et al. 1980), the evidence for a direct
connection between bars and AGN growth remains elusive (e.g.,
Oh et al. 2012). The study by Hartmann et al. (2013) and the
one presented here are complementary in that they span two
extremes of the range of possibilities: Hartmann et al. (2013)
explore the effects of bar formation and evolution on bulges
assumed to have preexisting SMBHs, while we examine the
effect of the adiabatic growth of a SMBH on a preexisting bar.
Reality probably lies somewhere in between these possibilities.

In Section 2 we describe the set up for the N-body simulations,
in Section 3 we describe the analysis of these simulations, and in
Section 4 we present the results of our analysis of the dynamical
effects of bars and CMCs on observed two-dimensional (2D) and
one-dimensional nuclear kinematics, aperture dispersion, and
velocity anisotropy. In Section 5 we summarize our results, and
in Section 6 we discuss their implications to our understanding
of the coevolution of galaxies and their SMBHs.

2. SIMULATIONS

Our disk models, CMC, and dark halo models are almost
identical to those presented in Shen & Sellwood (2004). We
refer the reader to this paper (and to references therein) for a
more detailed description of the simulations. What follows is a
brief description of each of the components of the simulations.

As is standard for such simulations, the units used are
G = Md = Rd = 1, where G is Newton’s gravitational
constant, Md is the mass of the disk, and Rd is the disk
scale length. Dimensional arguments give a unit of time of
tdyn = (R3

d/GMd )1/2. We describe the initial configuration of
the model in these units. Physically relevant scalings can be
obtained by choosing observationally motivated values for Md
and Rd. In this paper we adopt Md = 5 × 1010 M� and Rd = 3
kpc, which corresponds to a unit of time tdyn ∼ 11 Myr. In
all the figures and analysis that follows, velocities are given
in units of km s−1 and distances in units of kpc, using this
conversion.

We started with two types of initial conditions: one con-
sisting of a pure disk (Section 2.1) embedded in a static halo
(Section 2.2) and the second that also contains a spheroidal
central distribution representing a classical bulge (Section 2.3).
Each set of initial conditions (at time t0) was evolved until a
time t1 = 700 (t1 = 400) for the pure disk (disk+bulge) simu-
lations, respectively. During the time t0 to t1, the disks became
bar unstable and the bars underwent buckling. At t1, the bars
in both simulations have reached a nearly steady state and have
bulges that show the peanut shape characteristic of the buckling
instability. Additionally, the model with a pure disk has a boxy
(pseudo) bulge, while in the model with a disk + classical bulge,
it has a more oval shape.

From each of the simulations at t1 we constructed an unbarred
“control disk galaxy” by repositioning each particle in the
simulation at a randomly selected azimuthal angle φ while
keeping their radius and vertical displacement from the disk
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plane fixed. The two resulting “scrambled disks” have the same
radially averaged mass and velocity distributions as the two
barred galaxies and enable us to compare and contrast the
dynamical effects of the growth of an SMBH on bar, bulge, and
disk particles. An important consequence of the “scrambling”
process is that our unbarred (axisymmetric) disks are too hot
to be able to subsequently form a bar, although they do form
weak spirals, which produce slightly nonaxisymmetric features
following the growth of an SMBH.

We grow a CMC representing an SMBH with two possible
final masses (MCMC = 108 M� and MCMC = 107 M�) in each
of the above four simulations (see Section 2.4 for details).
The CMCs are grown adiabatically starting at an initial time
t1 and evolved until t2 = 1200 (t2 = 900) for the pure
disk (disk+bulge) simulations, respectively. At t2, the transients
due to the changing CMC potential have dissipated and the
simulations are examined and compared with those at t1.

Each simulation is then examine at two different times t1
and t2. Thus, in total we examine two snapshots each of eight
different simulations. In the figures that follow, light colors
(pink/cyan) are representative of simulations with MCMC =
107 M�, while dark colors (blue/red) show results for MCMC =
108 M�. Below we list the symbols/line styles used to denote
each snapshot in the figures.

1. A pure disk with a bar at t1: open blue/cyan squares
(denoting a boxy bulge) connected by dashed blue/cyan
lines.

2. A scrambled version of (1): open red/pink squares con-
nected by dashed red/pink lines.

3. Model (1) after a CMC was adiabatically grown: open
blue/cyan squares connected by solid blue/cyan line.

4. Model (2) after a CMC was adiabatically grown: open
red/pink squares connected by solid red/pink lines.

5. Disk+bulge with a bar at t1: filled blue/cyan dots connected
by dashed blue/cyan lines.

6. A scrambled version of (5): filled red/pink dots connected
by dashed red/pink lines.

7. Model (5) after a CMC was adiabatically grown: filled
blue/cyan dots (denoting a classical bulge) connected by
solid blue/cyan lines.

8. Model (6) after a CMC was adiabatically grown: filled
red/pink dots connected by solid red/pink lines.

The set up of initial conditions for particles in each component
of the disk galaxies used in our simulations and the growth of
the point mass are described in greater detail below.

2.1. Disk Model

The disk component is an evolved Kuz’min–Toomre disk
with the following surface density distribution:

Σ(R) = Md

2πR2
d

(
1 +

R2

R2
d

)−3/2

, (1)

where R is the radial distance from the axis of rotation and
Rd is the disk scale length. The disk is spread vertically as an
isothermal sheet and truncated at R = 5Rd . Particles are drawn
from a distribution function which yields a Toomre Q � 1.5. The
resulting structure is unstable to bar formation (Athanassoula &
Sellwood 1986). The bar forms and is vertically thickened via
the buckling instability, resulting in a stable bar (Toomre 1966;
Raha et al. 1991; Sellwood & Wilkinson 1993).

2.2. Halo

We choose a DM halo with the well-known logarithmic
potential

Φhalo(r) = V 2
0

2
ln

(
1 +

r2

c2

)
, (2)

which yields a flat circular velocity when r � c, where c
is the core radius (Binney & Tremaine 2008). We choose
c = 30Rd = 90 kpc and V0 = 0.7(GMd/Rd )1/2 = 187 km s−1.
Since we use a rigid halo as opposed to a live halo, the halo in our
simulations cannot exchange energy or angular momentum with
the disk and/or bulge particles. Shen & Sellwood (2004) found
that replacing their rigid logarithmic halo with a live one resulted
in little change to the evolution of the bar in their simulations.
In these simulations, the central region of the halo is shallow,
preventing the halo from affecting the evolution of the angular
momentum significantly. However, Athanassoula et al. (2005)
found in their simulations with live halos that the survival of the
bar depended quite strongly on the density profile of the dark
matter halo. They found that for a CMC of the same mass, a
bar in a DM halo with a shallow central cusp is more easily
destroyed than a bar in a DM halo with a steeply rising DM
cusp. In this paper we will assume only a rigid logarithmic halo
with a core. We address the effect of this assumption on our
results in Section 6.

2.3. Bulge Component

In the disk+bulge simulations, the bulge component has a
mass of 0.15Md and is initially truncated at a radius of 0.9Rd.
The two component system is constructed using a method
first proposed by Prendergast & Tomer (1970), used in Raha
et al. (1991), and described in Jarvis & Freeman (1985) and
Appendix A of Debattista & Sellwood (2000). Using the
integrals of motion (E, Jz), a distribution function f (E, Jz) is
chosen that corresponds to a King model (King 1966) with
some net rotation (Jarvis & Freeman 1985). Integrating the
distribution function over velocity yields a density ρ(R, z). The
density is converted to a mass, which is added to that of a smooth
disk component. The potential due to this new mass distribution
is computed, yielding a new distribution function. This process
is iterated until convergence.

2.4. Central Mass Concentration

The CMC representing a SMBH is modeled as a Plummer
sphere with potential of the form

ΦCMC(r) = − GMCMC(t)√
r2 + εCMC

, (3)

where εCMC is the softening length. The softening length
corresponds to the compactness of the CMC. A large value
of εCMC is representative of a relatively diffuse CMC (e.g.,
molecular gas clouds or a nuclear star cluster), whereas a
small value represents a relatively compact (hard) CMC. Shen
& Sellwood (2004) showed that the effect of a very compact
CMC is much greater than that of a softer CMC. Here we set
εCMC = 0.001Rd (corresponding to a length scale of a few
parsecs) since we wish to assess the stronger effect of its growth
on the observable kinematics.

In half of our simulations, we choose a final MCMC of 0.2%
Md, which for our choice of physical units corresponds to
108 M�. Note that this CMC is a factor of 6.5 more massive
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than the SMBH mass predicted from scaling relation MBH �
0.002 Mbulge (Häring & Rix 2004). For this reason, we also carry
out an investigation of the effect of a CMC with 10 times smaller
mass (MCMC = 107 M�) and show that the effects of this smaller
black hole on the stellar velocity dispersion are similar to those
resulting from the MCMC = 108 M�. More importantly, the
fractional difference in σ between the barred and axisymmetric
models is nearly independent of MCMC. To remind readers that
the central point mass in some of our simulations are somewhat
overmassive, we will henceforth refer to it as a CMC rather than
a SMBH.

We adopt the definition for a black hole’s “sphere of influ-
ence,” rs, as the radius within which the mass of stars is equal
to the mass of the black hole. For MCMC = 108 M�, the sphere
of influence rs = 0.17 ± 0.078 kpc. Since rs is directly pro-
portional to the mass of the CMC, it is about a factor of 10
less for MCMC = 107 M�, which would make rs much smaller
than the particle softening and therefore unresolvable by our
current simulations. Nevertheless, we will show that despite the
factor of 10 difference in final masses of the two CMC, they
both affects on the observed values of σ in qualitatively similar
ways and differing quantitatively by at most a few percent—a
difference that is unlikely to be observationally detectable.

The CMC is grown adiabatically on a timescale that is much
longer than the orbital period of stars near the disk center. MCMC
is a function of time given by

MCMC(τ ) =
⎧⎨
⎩

0 τ < 0

MCMC sin2(πτ/2) 0 � τ � 1,

MCMC τ > 1

(4)

where τ ≡ (t − tCMC)/tgrow for a CMC that began growing at
tCMC. We increase MCMC over tgrow = 50 dynamical times.

2.5. Numerical Methods

The simulations use a three-dimensional (3D), cylindrical,
polar grid-based N-body code described in Sellwood & Valluri
(1997). The gravitational field at a distance d from a particle is
given by a Plummer sphere Φ(d) = −G/(d2 + ε2)1/2. We use
a constant particle softening length, ε = 0.02Rd , in all of our
simulations. See Table 1 for the full set of numerical parameters.

Because of the differing time scales associated with each
particle, the simulation is divided into four spherical zones and
different time steps are used in each zone, with the minimum
time step of 0.01/128 (for details see, Shen & Sellwood 2004).
Additionally, the ”guard shell” scheme described in detail in the
Appendix of Shen & Sellwood (2004; the CMC is enclosed by a
number of spherical regions with successively shorter time steps
as R decreases) helps ensure accurate orbit integrations in areas
where particles are subjected to relatively strong accelerations.

3. ANALYSIS OF SIMULATIONS

For the analyses of the simulations, we constructed 2D
kinematic maps of each of the snapshots to represent the
“observable” kinematics in 2D “integral field” maps. Our main
goals in this paper are (1) to examine the dependence of σ ,
the velocity dispersion within the half-light radius, on viewing
angle (disk inclination and angle of the bar to the line of nodes),
and the presence or absence of a bar, bulge, or CMC; and (2) to
examine how the stellar nuclear kinematical quantities (that are
normally used to measure the dynamical mass of the SMBH)
differ between the barred and the unbarred systems.

Table 1
Summary of Model Setup

Parameter Disk Disk+Bulge

Numerical Parameters

Number of particles 2.8 ×106 1.15 ×106

Grid size (R, φ, z) 55 × 64 × 375 58 × 64 × 375
Vertical plane spacing 0.02 0.01
Grid boundaries (R, z) (20.0, ± 3.74) (26.8, ± 3.74)
Particle softening length 0.02 0.01
Time step Δt0 without CMC 0.04 0.04
Time step Δt0 with CMC 0.01 0.01
Number of guard shellsa 9 9
Outermost guard radius rmax 0.127 0.127
Innermost guard radius rmin 0.008 0.008
Smallest time step tstep/29 tstep/29

Initial Disk

Toomre Q 1.5 1.2
rms vertical thickness 0.3 0.5
Truncation radius 5 5

Fixed Halo

V0 0.7 0.8
Core radius c 30 8

Bulge

Mass · · · 0.15
Truncation radius · · · 0.9

CMC

MCMC (1) 0.002 0.002
MCMC (2) 0.0002 0.0002
Softening length εCMC 0.001 0.001
Growth time tgrow 50 50

Note. a See the Appendix of Shen & Sellwood (2004) for guard shell details.

To address the first goal, we use the kinematic maps to com-
pute σ for each of our simulations for a variety of viewing
angles, from assumed values of Re. In Section 4.4 we use “differ-
ence maps” representing the difference between the kinematic
maps of barred and unbarred systems to examine the effects
of bar dynamics on nuclear stellar kinematics. We describe the
computation of the kinematic maps and σ below.

3.1. Two-dimensional Kinematic Maps

Our analysis begins by “observing” each snapshot at a specific
angle of inclination of the disk to the line of sight, i, and the
angle formed by the bar (if present) to the line of nodes, ΦLON.

Because of our focus on the nuclear region of the models,
we restrict our field of view of the simulations to ±10.5 kpc
(and ±7.5 kpc) in the x and y directions for the disk-only
(and disk+bulge) simulations, respectively. We binned all the
particles that fall within this projected rectangular region on
a 300 × 300 Cartesian grid corresponding to a pixel size
of 0.07 × 0.07 kpc in the pure disk models (and pixels of
0.05 × 0.05 kpc in the disk+bulge models). This is roughly
equal to the particle softening length. We then adaptively bin
the square pixels to maintain a minimum signal-to-noise ratio
(S/N) ≡ √

N � 50 using the Voronoi binning scheme outlined
in Cappellari & Copin (2003).5 Our choice of pixel size and
S/N was a compromise between maintaining computational

5 We used M. Cappellari’s IDL Voronoi binning routine available at
http://www-astro.physics.ox.ac.uk/∼mxc/idl/
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Figure 1. Top: 2D kinematics (vlos, σlos, h3, h4) and surface brightness (log10 Σ) for a 10.5 kpc × 10.5 kpc field of view for the disk-only simulation with a bar, after
the growth of the 108 M� CMC. The quantities in parenthesis above each panel give the maximum (light red)/minimum (dark blue) of the quantity being plotted in
that panel, with contours linearly spaced. The viewing angle is such that i = 45◦ and ΦLON = 45◦. The red line represents the slit used to extract the kinematics. The
slit is oriented approximately along the bar passing through the center of the model. Bottom: the corresponding kinematics along the slit for each of the four kinematic
parameters and surface brightness.

(A color version of this figure is available in the online journal.)

economy and attempting to resolve the sphere of influence
rs ∼ 0.17 kpc of the MCMC = 108 M�.6 We found that the
resulting kinematics were relatively insensitive to our choice
of pixel size and S/N threshold, given a S/N � 30. On
average, each Voronoi bin is composed of ∼300 pixels, with the
smallest and largest Voronoi bins containing 3 and 767 pixels,
respectively. Inside R ∼ 2 kpc, individual pixels are comparable
to the size of the Voronoi bins; outside of R ∼ 2 kpc, the Voronoi
bins are considerably larger than a single pixel.

We construct line of sight velocity distributions (LOSVDs)
from all particles that fall within a Voronoi bin. Since the
LOSVDs of such systems generally depart from pure Gaus-
sian shapes, following the standard practice we parameterized
the LOSVD within each Voronoi bin using a Gauss-Hermite
expansion (van der Marel & Franx 1993; Gerhard 1993) and
define vlos as the mean line of sight velocity, define σlos as the
line of sight velocity dispersion, and describe the asymmetric
and symmetric departures from a Gaussian LOSVD by the Her-
mite coefficients h3, h5 and h4, h6, respectively. The parameters
characterizing the LOSVD in each Voronoi bin were obtained
by using the MPFIT procedure implemented in IDL (Markwardt
2009) to simultaneously fit γ , vlos σlos, h3, h4, h5, and h6.

Because of the anisotropic velocity distribution inherent to
barred galaxies, both the inclination of the disk i and the angle
made by the bar to the line of nodes7 ΦLON are likely to alter
the measured nuclear kinematics.

Figure 1 (top) shows the 2D kinematics fields (from left to
right: vlos, σlos, h3, h4, and projected surface brightness log10 Σ)
for i = 45◦ and ΦLON = 45◦ for the disk-only simulation with a
bar after the growth of the MCMC = 108 M�. The bottom panels
show the kinematics that would be observed along the artificial

6 Recall that rs for the MCMC = 107 M� is not resolved by our simulations.
7 Here we take the line of nodes to be the intersection of the disk plane to the
plane of the sky, and it is along the x-axis in our images.

“slit” oriented along the major axis of the bar (shown as a red
line in the top panels). For each rectangular “aperture” along
the slit, we average the kinematics of the bins that fall within
that aperture. While we do not weight the bins according to the
area of the slit they occupy (i.e., bins that fall only partially
within a slit aperture are given the same weight as those that
fall entirely within the aperture), we find that a more careful
treatment of apertures with partial overlap accounted for does
not produce noticeable differences in the resulting slit profiles.
In these figures we use a slit of length −6 kpc � r � 6 kpc
and a width of 0.075 kpc (a factor of a few smaller than the
sphere-of-influence of 0.17 kpc).

Similarly, Figure 2 shows 2D kinematics (top) and slit
kinematics (bottom) (for i = 45◦ and ΦLON = 45◦) for the
snapshot of the disk+bulge simulation with a bar after the growth
of the a CMC with MCMC = 108 M�. We note that in both the
disk-only and disk+bulge simulations the vlos fields show a slight
kinematic twist that is characteristic of triaxial systems and the
rotational axis of symmetry is misaligned with the minor axis of
the bar. In axisymmetric systems, h3 is generally anticorrelated
with vlos; however, in the region where the bar dominates,
h3 tends to be correlated with vlos (Bureau & Athanassoula
2005). This is indeed what we observe in both the disk-only
and disk+bulge barred simulations, even in the presence of a
CMC. Finally we observe the regions of negative h4 that are
characteristic of bars that have buckled and are then viewed
face-on (Debattista et al. 2005). In the model with the classical
bulge (Figure 2), the bar is weaker than in Figure 1; however,
the kinematic twist in vlos, the correlation between h3 and vlos,
and the misalignment of the short axis of the central oval and
the rotation axis are telltale signs of the presence of a bar.

3.2. Computing σ

The method and aperture used to define σ is a historically
contentious issue (e.g., Merritt & Ferrarese 2001; Tremaine et al.
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Figure 2. Same as Figure 1 but for the 7.5 kpc × 7.5 kpc field of view for the disk+bulge simulation with a bar, after the growth of the CMC.

(A color version of this figure is available in the online journal.)

2002). Here we closely follow the observational definition of σ
as the luminosity weighted rms velocity within the projected
half-light radius Re:

σ 2 =
∫ Re

0 I (R)
(
σ 2

los + v2
los

)
dR∫ Re

0 I (R)dR
, (5)

where I (R) is the luminosity distribution of the bulge as a
function of projected radius R, and σlos and vlos are the line
of sight velocity dispersion and mean line of sight velocity,
respectively. For our simulations, we assume that all particles
are stars of the same type, that there is no dust, and that the
stars have a constant mass-to-light ratio (i.e., M/L = 1). We
then define a circular aperture of radius Re that we project onto
the field of view. We then convert the integral into a sum and
compute σ as

σ 2 =
∑

Ri�Re
mi

(
σ 2

i,los + v2
i,los

)
∑

Ri�Re
mi

, (6)

where the sum is over the cells on the 300 × 300 grid that fall
within Re, and Ri, and mi, are the projected distance from the
center, mass, mean velocity, and velocity dispersion of the ith
cell, respectively. Note that this approach allows us to mimic
what is done in integral field unit (IFU) observations with a
fixed pixel scale.

Since the orientation of the bar to the line of nodes as well
as the inclination of the disk to the line of sight can alter σ , we
measured this quantity using Equation (6) for nine different
orientations, as follows. With i fixed at 45◦, we varied the
orientation of the bar so that ΦLON = 0◦, 30◦, 45◦, 60◦, and
75◦. We obtain four additional measurements with ΦLON fixed
at 45◦ and inclination of the disk varied so that i = 0◦, 30◦, 60◦,
and 75◦.

Since a classical bulge is only present in half of the simula-
tions, Re cannot be defined in a uniform way for all our simula-
tions. Noting that when a bulge is present, its truncation radius

is 0.90Rd (2.7 kpc), we computed the mass within this radius
(including the mass of disk particles interior to the truncation
radius) and then (assuming that mass follows light with con-
stant M/L) we compute the half-mass radius r1/2 = 0.367Rd =
1.1 kpc.8 We note that Hartmann et al. (2013) show that, for their
sample of simulations, the values of σ obtained using Re/8 are
consistent with those obtained using Re. We also tried four other
possible values for Re : 0.04, 0.08, 0.16, and 0.30Rd , which cor-
respond to values of 0.12, 0.24, 0.48, and 0.9 kpc, respectively.

Figure 3 shows how 〈σ 〉ΦLON,i (the value of rms velocity aver-
aged over all orientations) varies with Re for MCMC = 108 M�
(top) and MCMC = 107 M� (bottom). 〈σ 〉ΦLON,i depends slightly
on Re in the disk-only simulation but is almost independent of
Re for the disk+bulge model. Since 〈σ 〉ΦLON,i is not strongly
dependent on Re, hereafter we selected Re = 0.9 kpc unless
otherwise noted. In the disk-only simulations, this slightly over-
estimates the effective Re, but the difference between the barred
and unbarred systems is unlikely to be affected. The error bars
represent the standard deviation obtained averaging over nine
different orientations. We emphasize that the error bars do not
represent the error on the mean σ but are meant to show the
scatter introduced by orientation effects. While the error bars for
the barred models with CMCs (blue/cyan solid curves) slightly
overlap the error bars for the unbarred models (red/pink solid
curves), it is clear that the mean values of 〈σ 〉ΦLON,i for the
barred models with CMCs are almost always larger by at least
one standard deviation. This figure also shows that in the ab-
sence of the CMCs (dashed lines) there is little or no difference
between the barred and unbarred galaxies, demonstrating that
the orientation of the bar alone cannot be responsible for the
observed differences.

We will discuss the vertical offsets between the different
curves (corresponding to models with/without a bar, bulge,
CMC in future sections).

8 The half-mass radius is computed in cylindrical coordinates to be between
1.0 and 1.1 kpc and slightly larger (∼1.1–1.2) when computed in spherical
coordinates for the barred disk+bulge case at t1 and t2, respectively.
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Figure 3. Orientation averaged rms velocity 〈σ 〉ΦLON,i , measured for various
assumed values of Re = 0.12, 0.24, 0.48, and 0.9 kpc. Squares denote simula-
tions with only a disk, while filled circles denote disk+bulge simulations. Solid
lines connect models with a black hole, while dashed lines show models prior to
the growth of a black hole; blue/cyan curves and points denote barred models,
while red/pink denotes the unbarred models. The top panel shows results for
MCMC = 108 M�, while the bottom panel shows results for MCMC = 107 M�.
For a given model (connected by lines), the value of 〈σ 〉ΦLON,i is almost inde-
pendent of Re within Re ∼ 0.5.

(A color version of this figure is available in the online journal.)

4. RESULTS

4.1. Factors Affecting the Measurement of σ

In this section we examine various factors that affect the
observed σ in our simulations. These include the angle of
l the bar to the line of nodes (Section 4.1.1), the inclination
of the disk to the line of sight (Section 4.1.2), and the growth
and final mass of a CMC (Section 4.1.3).

4.1.1. Dependence of σ on ΦLON

Figure 4 (left) shows the dependence of σ on the choice of
ΦLON, where σ is measured within Re = 0.9 kpc. The angle of
inclination of the disk is fixed at 45◦. In the barred cases, the
positive correlation between σ and ΦLON is to be expected from
a simple geometrical argument. Bar-supporting x1 orbits are
elongated along the bar, and their primary motion is oscillation
back and forth along its major axis (e.g., Sellwood & Wilkinson
1993; Athanassoula 1992; Bureau & Athanassoula 1999; Shen
& Sellwood 2004). In the disk-only cases (blue/cyan squares),
we see that as the orientation of the bar approaches end-on
(i.e., as ΦLON → 90◦ and the major axis of the bar aligns with

the line of sight) σ increases. This is because a given circular
aperture of radius Re encloses a greater fraction of x1 orbits for
end-on bar orientations. The alignment of these radial orbits
with the line of sight results in a wider distribution of line
of sight velocities, increasing our measurement of σ . Shen &
Sellwood (2004) showed for similar disk-only simulations that
the x1 family that supports the bar is slowly destroyed by a
growing CMC. However, they found that the mass of the CMC
necessary to completely destroy this family (and the bar) was
about 25 times larger than the most massive CMC used in our
simulations.

In the unbarred counterpart (red/pink squares), all the disk
particles have been scrambled in azimuth as described in
Section 2, erasing the bar but preserving the radially averaged
mass and kinematic profiles. For the unbarred models, ΦLON
is not defined (since there is no bar with respect to which the
angle of the line of nodes can be measured); however, to make it
clear that the velocity dispersion is constant for all line of sights
with the same inclination, we mark the measured σ by red/pink
squares or solid dots connected by horizontal lines. At time t2
following the growth of the CMC, the initially unbarred models
develop weak spiral patterns that cause small dependence on
ΦLON, which we show connected by solid red/pink lines.

Before the CMC is grown, the barred simulation with the
classical bulge (solid blue/cyan dots connected by dashed
curves) shows a dependence on ΦLON similar to the disk-only
case (open blue/cyan squares connected with dashed curves).
The vertical offset of the former results because of the added
mass of the bulge. However, after the growth of the CMC
(solid blue/cyan dots and lines), the dependence on ΦLON is
significantly weaker in the presence of the bulge than in the
absence of the bulge. This implies that when the CMC grows
inside a bulge+bar it results in a more significant reduction in the
fraction of x1 orbits, compared to when the identical CMC grows
in a pure bar. We investigate the cause of this in Section 4.3.

Figure 4 (right) shows the fractional difference Δσ/σax =
(σbar − σax)/σax between σ for a barred model and its unbarred
counterpart, relative to the unbarred case. Δσ/σax is plotted
as a function of ΦLON (while keeping the inclination fixed at
i = 45◦). For the models without a CMC (dashed lines), the
orientation of the bar can result in either negative Δσ/σax as the
bar becomes parallel to the line of nodes or positive Δσ/σax as
the bar is viewed end-on. In contrast, after the growth of a CMC
(solid curves) σ is always larger for the barred case than for the
unbarred case regardless of the value of ΦLON, but once again
the fractional difference becomes larger as the bar is seen end-on
(i.e., ΦLON → 90◦). In the presence of a classical bulge (solid
dots), the maximum difference in σ is about 5%. Interestingly,
the fractional difference in σ is larger in the absence of a classical
bulge, but even so it is �10%. A comparison of the top panel
(MCMC = 108 M�) and bottom panel (MCMC = 107 M�) shows
that the overall trends are similar for the two CMCs. In fact
the right-hand panels in this figure show that there is almost no
difference in Δσ/σax despite the fact that the CMC in the bottom
right panel is a factor of 10 smaller than that in the top right
panel.

4.1.2. Dependence of σ on Inclination

Figure 5 shows the dependence of σ on the angle of inclination
of the disk to the line of sight (ΦLON = 45◦). Once again the
dependence of σ on inclination can, in part, be explained with
a geometrical argument. At low inclination (i.e., nearly face-
on), the contribution of the rotational velocity component of the
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Figure 4. Left: σ for Re = 0.9 kpc vs. ΦLON, for each of our eight data sets. The angle of inclination is fixed at 45◦. Squares (circles) denote disk (disk+bulge)
simulations, solid (dotted) lines denote the presence (absence) of a black hole, and blue/cyan (red/pink) denotes the presence (absence) of a bar. The top panel shows
the results for the 108 M� CMC, while the bottom panel shows the results for the 107 M� CMC. As expected, the unbarred (red) models show no dependence on
ΦLON. The correlation between σ and ΦLON in the barred cases is due to the alignment of the bar with our line of sight as ΦLON approaches 90◦. Right: the fractional
change in velocity dispersion Δσ/σax (see text for definition) and different values of ΦLON for i = 45◦. Δσ/σax increases as the bar is viewed more end-on.

(A color version of this figure is available in the online journal.)

Figure 5. Left: σ for Re = 0.9, vs. the angle of inclination of the disk to the line of sight, i, for each of our eight snapshots. ΦLON is fixed at 45◦. The top panels show
the results for MCMC = 108 M�, while the bottom panels show the results for MCMC = 107 M�. The measured σ increases with increasing inclination because of
an increasing fraction of disk particles with anisotropic velocity dispersion contaminating the measurement of σ . Right: the fractional change in velocity dispersion
Δσ/σax as a function of inclination (see text for definition) for ΦLON = 45◦. Δσ/σax is only weakly dependent on inclination.

(A color version of this figure is available in the online journal.)

disk to σ is relatively insignificant. However, the number of disk
particles contained within a given aperture of radius Re increases
with inclination. As the inclination increases, a larger number of
disk particles on both the near and far side of the nuclear region
fall within Re, causing σ to increase. Note that if the disk orbits
were perfectly circular, the orbits falling within Re would have
velocities that are nearly perpendicular to the line of sight and
would have little effect on σ . However, since the orbits in the
inner region of both the barred and scrambled disks are quite
radial, there is a fairly strong dependence on inclination, for
both the barred (blue/cyan) and scrambled (red/pink) models
(see Figure 5, left).

There is also a more subtle contribution to the correlation
between σ and inclination. As inclination increases and the
orientation of the disk becomes more edge-on, the intrinsic
(3D) velocity dispersion becomes dominated by the radial and
tangential dispersions, σR and σφ respectively, rather than the

vertical dispersion σz. As we will show in Figure 7, σR and σφ are
greater than σz, contributing to a positive correlation between σ
and inclination.

Figure 5 (right) shows the fractional difference Δσ/σax as
a function of inclination (with ΦLON = 45◦). For the models
without a CMC (dashed lines), Δσ/σax is almost independent of
inclination. After the growth of a CMC (solid curves), σ is larger
for the barred cases than for the unbarred cases (i.e., both solid
curves are above zero for all values of i) and depends weakly
on inclination. In the presence of a classical bulge (solid dots
connected by solid lines), the maximum increase in σ is about
3% for a nearly edge-on orientation and about 4% for the pure
disk (squares connected by solid lines).

It is important to note that ΦLON is fixed at 45◦, hence
the orientation of the bar can essentially be thought of as
intermediate between the side-on and end-on orientations. It was
evident in Figure 4 that a side-on view of the bar produces values
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Figure 6. Fractional change in velocity dispersion Δσ/σinit (see text for definition) due to the growth of the CMC as a function of ΦLON when inclination is fixed at
45◦ (left), as a function of i when ΦLON = 45◦ (right). The top panels show results for MCMC = 108 M�, while the bottom panels results for MCMC = 107 M�. The
square (circle) symbols represent disk (disk+bulge) simulations. Blue/cyan lines indicate that the system is barred and red/pink lines are for the unbarred models.

(A color version of this figure is available in the online journal.)

of σ that are less than the unbarred case, while an end-on view of
the bar does the opposite. Thus, when ΦLON is fixed at 45◦, the
barred and unbarred observations at t1 produce nearly identical
values of σ . This allows for a direct comparison between the t2
values of σ in the barred and unbarred cases. The growth of a
CMC in the presence of a bar clearly produces a greater change
in σ than the growth of the same CMC in an unbarred galaxy.

4.1.3. Dependence of σ on CMC Growth

In Sections 4.1.1 and 4.1.2 we saw that for both the unbarred
and barred models σ is more sensitive to the presence/absence of
a CMC than to changes in the orientation of the disk to the line of
sight. This is surprising since the sphere of influence of the CMC
(estimated to be ∼0.17 kpc for models with MCMC = 108 M�) is
a factor of six smaller than Re = 0.9 kpc! This implies that the
gravitational potential of the CMC is not directly responsible
for this increase, and rather it is the effect that the changing
potential has on the evolution of the bar. In this subsection we
quantify the effect of the growth of the CMC on σ , and in the
following two sections we examine the causes of this increase.

Figure 6 shows the fractional change Δσ/σinit = (σ (t2) −
σ (t1))/σ (t1)) for the unbarred (red/pink) and barred (blue/cyan)
models without (squares) and with (solid dots) a classical bulge.
Δσ/σinit is plotted as a function of ΦLON for models with i = 45◦
(Figure 6, left) and as a function of inclination for models with
ΦLON = 45◦ (Figure 6, right). In the left panels we see that in the
unbarred models the growth of the CMC produced an increase
in σ (∼3%–5% when MCMC = 108 M�) that is essentially
independent of ΦLON (the very small fluctuations with ΦLON
arise from the weak spiral features in the unbarred models at t2).

The barred models (blue) display a larger relative increase in
σ (∼5%–10% when MCMC = 108 M�). In Figure 4 (left) we
saw that the growth of the CMC in a bulge+bar model (solid
blue dots) results in no dependence on ΦLON. This implies
that the velocity distribution of stars within Re is essentially
isotropic. It appears that the growth of a CMC scatters and
therefore axisymmetrized a significant portion of bar supporting
orbits in the innermost regions of the system. This results in
a reduced dependence of σ on ΦLON in the barred disk+bulge
simulations at t2. Thus, Δσ/σinit decreases with increasing ΦLON.
The weakening of the bar is less significant in the disk-only

simulation, resulting in a flatter relationship between Δσ/σinit
and ΦLON.

In the right-hand panels of Figure 6, all models tend to
show a similar dependence on inclination (with ΦLON = 45◦).
The increase in Δσ/σinit following the growth of a CMC is
inversely proportional to the inclination. This trend is evident
in the unbarred simulations and, to a lesser extent, in the barred
disk+bulge simulation. As inclination is increased, the fractional
change in σ between t1 and t2 decreases. A comparison of top
and bottom panels shows that the larger CMC (top) produces a
2%–3% larger increase in Δσ/σinit only for ΦLON ∼ i ∼ 30◦.
For other orientations, we see almost no dependence on the mass
of the CMC.

We note that the axisymmetric disk-only simulation with
the 107 M� CMC shows a slight decrease in σ between t1
and t2 at high inclination. In Figure 3 this simulation also
showed a decrease in σ between t1 and t2 at small Re. Both
of these trends can be attributed to a significant decrease in
radial velocity dispersion after the CMC is grown. This decrease
radial dispersion is most prominent at small radii and causes
the decrease in σ in this simulation for small values of Re. We
therefore conclude that a less massive CMC mass will produce
a slightly smaller increase in σ than a more massive CMC, but
it will nonetheless produce an increase that is larger in a barred
disk than in an unbarred disk.

We defer a discussion of the cause of the decrease in Δσ/σinit
with increasing inclination to the next section (see Figure 7),
where we show that this is because the intrinsic velocity
dispersions in the radial, azimuthal, and vertical directions (σR ,
σφ , and σz) all increase by roughly the same amount.

4.2. Velocity Dispersion and Velocity Anisotropy Profiles

To analyze the distributions of intrinsic velocity anisotropy,
we compute the standard deviation of the radial, tangential, and
vertical particle velocity distributions σR , σφ , and σz of particles
enclosed within cylindrical annular bins in R. The bins have
a width of 0.06 kpc and contain �104 particles on average.
We use these quantities to compute the tangential anisotropy
parameter βφ = 1 − σ 2

φ/σ 2
R and vertical anisotropy parameter

βz = 1 − σ 2
z /σ 2

R as a function of radius. Figure 7 shows
(from top to bottom) σR , σφ , σz, βφ , and βz as a function of
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Figure 7. As a function of radius from top to bottom: σR , σφ , σz, βφ , and βz. Disk-only simulations are shown in the left panels; disk+bulge simulations are shown
in the right panels. Solid (dotted) lines denote the presence (absence) of a black hole, and blue/cyan (red/pink) denotes the presence (absence) of a bar, while black
curves/points show the velocity distributions of both barred and unbarred models at t1.

(A color version of this figure is available in the online journal.)

cylindrical radius R. These quantities are shown for the disk-
only models (left) and disk+bulge models (right). Recall that
anisotropy values βφ = 0 and βz = 0 signify that σφ = σR and
σz = σR , respectively. A positive value of β signifies a larger
radial velocity dispersion.

In all cases at time t1, the barred and unbarred models over-
lap because of the fact that their cylindrically averaged velocity
ellipsoids are identical, and they are therefore represented by
the dotted black lines. While we recognize that cylindrically
averaging the barred models erases physically important non-
axisymmetric features in the shapes of the velocity ellipsoids,

we are justified in doing this because the main purpose of these
figures is to understand the differences in the measured values
of σ that themselves are obtained by averaging over a circular
region of projected radius Re.

The bottom two rows of Figure 7 show that in both the disk-
only (left) and disk+bulge (right) simulations, the growth of a
CMC in an unbarred potential (red curves) definitively reduces
both βφ and βz relative to the models at t1 (black curves) over
most of the radial range plotted. From examining the top three
rows, it is clear that the decreases in βφ and βz are because σφ and
σz increase slightly between t1 and t2, but σR (top row) remains
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essentially unchanged, or even decreases slightly between t1
and t2. This comes as no surprise given previous studies (e.g.,
Goodman & Binney 1984; Quinlan et al. 1995; Sigurdsson
2004) that show that the adiabatic growth of a CMC in an
axisymmetric system preferentially increases σφ over σR , thus
reducing radial anisotropy. We see here that σz also increases
quite significantly relative to σR , resulting in a decrease in βz.
Notice that the increase in σR and σφ due to the growth of the
a CMC with MCMC = 108 M� in the barred galaxies (blue) are
slightly larger than the increase due to the smaller CMC (cyan).
However, in the unbarred simulations (red/pink), the difference
resulting from the two CMCs is negligible, and both are similar
to the initial values of σR and σφ (black curves). For the unbarred
galaxies only σz differs from the initial models.

The growth of both CMCs in the barred simulations results
in a significantly larger increase in the radial velocity dispersion
than in the corresponding unbarred cases. This is seen in the
top row of Figure 7, which shows the blue/cyan curves in
both the disk-only (left) and disk+bulge (right) models to be
significantly higher than for the initial models at t1 (black
curves) and the unbarred models after the growth of the CMC
(red/pink curves). The increase in σφ and σz (second and third
rows) in the barred simulations are also significantly larger than
the unbarred simulations—especially within R = 0.5 kpc. In
general, the barred models at t2 are more radially anisotropic
than the unbarred models. This can be attributed to the dramatic
increase in radial dispersion accompanied by only moderate
increases in tangential and vertical dispersions.

Evidently the presence of the bar facilitates an increase in
radial anisotropy during the growth of the CMC. This supports
the idea that the elongated bar orbits are scattered by the CMC
allowing the system as a whole to become rounder, without
individual orbits becoming more tangential. In fact, Shen &
Sellwood (2004) showed that low energy bar supporting orbits
are converted to rounder, chaotic orbits by the growth of a CMC.
In contrast in the unbarred systems, the adiabatic growth of
a CMC induces a more tangentially biased velocity ellipsoid
(Quinlan et al. 1995), but angular momentum conservation
limits the degree to which matter can flow inward.

We now see that the inverse correlation between Δσ/σinit and
inclination seen in Figure 6 (right) can also be explained by
considering Figure 7. In both types of models, σz undergoes
a significant increase due to the growth of the CMC. At low
inclinations, σz is the primary contributor to σ , because the
system is viewed more or less face-on. Thus, the growth of
a CMC produces a noticeable increase in σ . However, at high
inclinations, σ is dominated by σR and σφ , which, in the unbarred
cases, are hardly affected by the growth of a CMC. As a result,
the unbarred models (red/pink) show an inverse relationship
between inclination and the change in σ between t1 and t2. This
is also why in Figure 6 (right) the barred disk (open blue squares)
simulation showed a weaker dependence between Δσ/σinit and
inclination.

Interestingly, between t1 and t2, βz decreases at small radii,
even in the barred case. This can be attributed to the fact that
the black hole scatters the low energy (radial) orbits, producing
a more isotropic velocity ellipsoid (Shen & Sellwood 2004).
Therefore, a consequence of growing a CMC in a barred or
unbarred galaxy is an overall decrease in βz at small radii.

4.3. Angular Momentum Transport

Lynden-Bell & Kalnajs (1972) first showed that angular mo-
mentum in collisionless disks can be transferred outward via

emission and absorption at the inner and outer Lindblad reso-
nances. Several subsequent studies (Weinberg 1985; Debattista
& Sellwood 2000; Athanassoula 2003) showed that resonant
material can exchange angular momentum between the bar and
halo of a galaxy. Other recent studies (e.g., Saha et al. 2012)
have investigated the transfer of angular momentum between
the bar and bulge components. The exchange of angular mo-
mentum between morphological components of a galaxy has
important implications for that galaxy’s dynamical evolution.

When a live halo is present, dynamical friction exerted by
the halo on the bar can slow it down by allowing angular
momentum exchange with the halo. It is important to note that
in our simulations, which incorporate a static halo potential,
a time-independent (nearly steady state) bar is not expected
to transfer significant amounts of angular momentum, since the
torque exerted by such a bar on a star during one half of its orbit is
of the same magnitude but opposite sign to the torque exerted on
the second half of the orbit (Binney & Tremaine 2008). However,
when the potential of the bar is changing with time, as is the
case when a central SMBH is growing, or if the bar strength or
pattern speed are changing because of dynamical friction with
the disk and bulge, a net transfer of angular momentum can
result.

While an exhaustive discussion of the transfer of angular
momentum from the inner to outer regions of our simulations
is beyond the scope of this paper, we briefly consider how the
presence of a bar influences such angular momentum exchange
in our simulations, and how this is related to the changes we
saw in the measured σ and σR profiles of barred galaxies, and
the differences between barred and unbarred galaxies. In the
preceding sections, we showed that changing the mass of the
CMC by a factor of 10 alters the observed velocity dispersion
by a mere 2%. Therefore, for the remainder of this paper we
consider only the 108 M� simulations, while examining the
cause of the differences in the evolution of the barred and
unbarred galaxies.

Figure 8 shows the cylindrically averaged mass density
profiles as a function of radius for the initial models and
for the barred and unbarred models after the growth of the
CMC. The right-hand panels plot the fractional difference in the
surface mass density between the barred and unbarred models:
ΔΣax = (Σbarred − Σax)/Σax as a function of cylindrical radius.
The increase in central mass surface density is between 5%
and 18% higher in the barred galaxy than in unbarred galaxy
(although the mass of the CMC is the same).

Figure 9 shows the cylindrically averaged velocity dispersion
profiles as a function of radius for the initial models and for the
barred and unbarred models after the growth of the CMC. The
right-hand panels plot the fractional difference in the intrinsic
velocity dispersion between the barred and unbarred models:
Δσax = (σbarred − σax)/σax as a function of cylindrical radius.
The increase in velocity dispersion is systematically higher by
5% in the barred galaxy in the disk-only case (top right panel)
and between 2% and 5% higher in the barred disk+bulge model
(bottom right panel).

We define Δσ̃ /σ̃init as the fractional change (between t1 and
t2) of the 3D intrinsic velocity dispersion σ̃ =

√
(σ 2

R + σ 2
φ + σ 2

z ),
for all particles within the same cylindrical volume of radius Re.
We define ΔMenc/Minit as the fractional change (between t1 and
t2) in the mass enclosed by a specified cylindrical radius (note
that ΔM excludes the mass contribution due to the CMC). In
Figure 10 we plot Δσ̃ /σ̃init versus ΔMenc/Minit, for four different
values of Re. Adding in the contribution of MBH would shift all
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Figure 8. Left: cylindrically averaged surface mass density profiles as a function of cylindrical radius for initial model at t1 (black), and after the growth of the CMC
in the unbarred galaxy (red) and barred galaxy (blue) in the disk-only model (top) and disk+bulge model (bottom). Right: fractional difference in surface density in
barred model relative to unbarred model ΔΣax as a function of radius for disk-only models (top) and for the disk+bulge models (bottom).

(A color version of this figure is available in the online journal.)

Figure 9. Left: cylindrically averaged velocity dispersion profiles as a function of cylindrical radius for initial model at t1 (black), after the growth of the CMC in the
unbarred galaxy (red) and barred galaxy (blue) in the disk-only model (top) and disk+bulge model (bottom). Right: fractional difference in velocity dispersion Δσax
as a function of radius for disk-only models (top) and for the disk+bulge models (bottom).

(A color version of this figure is available in the online journal.)

the points toward the right quite significantly for the smaller
values of Re (Minit ∼ 108 M� ∼ MBH for Re = 0.12) but
cause only a small rightward shift for the larger values of Re
(Minit ∼ 3 × 109 M� � MBH for Re = 0.9).

A clear dichotomy exists between the barred (blue) and
unbarred cases (red). At every value of Re, the barred models
shows both a larger fractional increase in the enclosed mass and a
larger fractional increase in the velocity dispersion of that. Thus,
the presence of a bar during the growth of a CMC facilitates both

a higher mass increase within a specified radius and a higher 3D
stellar velocity dispersion. This is clear evidence that angular
momentum transport in the barred simulations has facilitated the
increase in both the enclosed mass and the velocity dispersion.

It is also interesting to note that especially in the two smaller
radial bins (Re = 0.12, 0.24), although the increase in mass in
the disk+bulge models (solid dots) is significantly larger than it
is in the disk-only models (squares), the 3D velocity dispersion
is larger in the disk-only models. Again this is due to the fact
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Figure 10. Δσ̃ /σ̃init vs. ΔMenc/Menc due to the growth of a CMC for the four different values of Re used to measure σ . Blue (red) denotes the presence (absence)
of a bar. Squares (circles) denote disk (disk+bulge) simulations. For each value of Re, the barred cases have higher values of Δσ/σinit and ΔMenc/Menc than their
corresponding values in the unbarred case. Thus, the presence of a bar results in a greater change in both enclosed mass and stellar dispersion during the growth
of a CMC.

(A color version of this figure is available in the online journal.)

that in the disk-only case a larger fraction of the x1 bar orbits
survive the growth of the CMC, while in the disk+bulge case
these orbits are more readily destroyed (most probably by the
enhanced central density arising from the inflowing disk+bulge
material).

As final evidence for our claim that angular momentum
transport by the bar plays a significant role in the velocity
dispersion increase, in Figure 11 we examine the fractional
change in the average specific angular momentum of stars
in the disk-only simulations (left) and disk+bulge simulations
(right) for the barred (blue) and unbarred models at time t2
relative to the value at t1. In the disk-only models, it is clear
that the change in the average specific angular momentum
of stars in the barred systems is negative over most of the
radial range plotted—indicating that on average, stars have lost
angular momentum. In contrast, the corresponding unbarred
system stars in the inner region have gained angular momentum
at time t2 relative to t1, because of the adiabatic infall that
gives rise to the growth of the central cusp that follows the
growth of the CMC (Quinlan et al. 1995). Since this system has
only weak spiral features incapable of transporting significant
angular momentum, the specific angular momentum of stars has
increased as the cusp formed.

Recall from Figure 10 that at each radius the fractional
increase in enclosed mass ΔMenc/Minit within each cylindrical
radial bin is always larger in the barred system than for the
corresponding unbarred system. In a collisionless simulation,
the net angular momentum of the system is conserved. If
significant angular momentum transport does not occur, then an
increase in specific angular momentum is expected as matter is
drawn inward. The fact that the angular momentum per particle
in most of the inner 0.8 kpc of the barred galaxy has decreased
shows that some of the angular momentum must have been
transported outward by the bar. In the disk+bulge models (right),
we see that change in the specific angular momentum of the
barred galaxy (blue) is always smaller than for the unbarred
galaxy also pointing to outward transport.

Thus, Figures 8–11 clearly demonstrate that the time-
dependent bar potential resulting from the growing SMBH re-
sults in angular momentum transport that is responsible for

increasing the central mass of stars and the radial anisotropy of
orbits.

4.4. Effects of Bar Kinematics on SMBH Mass Measurement

The measured values of MBH in barred galaxies compiled by
Graham et al. (2011) come from a variety of dynamical mea-
surement techniques: gas kinematics, stellar dynamics, and re-
verberation mapping. In the most recent compilation of galaxies
with dynamically measured SMBH masses (McConnell & Ma
2013) consisting of 72 galaxies, nearly 50% of the SMBH mass
measurements are derived via stellar dynamical methods. Stellar
dynamical methods entail modeling the nuclear stellar kinemat-
ics either via the technique referred to as the Schwarzschild
orbit superposition method (e.g., Schwarzschild 1979; van der
Marel et al. 1998; Cretton et al. 1999; Gebhardt et al. 2003;
Valluri et al. 2004; van den Bosch et al. 2008) or by solving
the axisymmetric Jeans equations (Binney & Tremaine 2008;
Cappellari 2008). Both methods simultaneously optimize the fit
to the 3D mass distribution (including the mass of the unknown
SMBH), the surface brightness distribution, and the observed
LOSVDs to constrain the best fit values of MBH and the M/L
ratio of the stars. A small number of elliptical galaxies in this
sample have been modeled with a (nonrotating) triaxial orbit
superposition code (e.g., van den Bosch & de Zeeuw 2010),
but most stellar dynamical MBH measurements have been made
with axisymmetric modeling codes.

We examined the table of 72 galaxies with dynamically
measured SMBH presented by McConnell & Ma (2013) and
find that of the sample of ∼35 galaxies in which MBH was
measured via stellar dynamical methods, 17 are S0 or spiral
galaxies. Of these, five galaxies (29%) are classified as barred
in the NASA Extragalactic Database,9 and another six (35%)
are edge-on galaxies in which a bar would be difficult to detect
should it exist. We note that the total fraction of barred +
edge-on galaxies (64%) is comparable to the fraction of local
disk galaxies that contain bars (e.g., Knapen 1999; Eskridge
et al. 2000; Menéndez-Delmestre et al. 2007; Marinova &
Jogee 2007; Sheth et al. 2008). The black hole masses for all

9 http://ned.ipac.caltech.edu
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Figure 11. Fractional change in specific angular momentum in annular bins a function of radius for the disk-only simulations (left) and disk+bulge simulations (right).
Blue (red) denotes barred (unbarred) simulations.

(A color version of this figure is available in the online journal.)

these galaxies have been obtained using axisymmetric stellar
dynamical codes. In this section we examine qualitatively the
possible systematic biases that the assumption of axisymmetry
might have on the measured mass of the SMBH in a barred
galaxy. We defer a more quantitative study to a future paper.

The process of measuring the dynamical mass of an SMBH
from the kinematics of stars in the nucleus suffers from the well-
known mass-anisotropy degeneracy (Binney & Mamon 1982).
In this classic paper the authors showed that the degeneracy
arises because orbits of stars in elliptical galaxies and the
bulges of disk galaxies can have a wide range of possible
velocity anisotropy distributions. A large line of sight central
stellar velocity dispersion in the nucleus could be the result
of a large central SMBH about which stars move on primarily
tangential orbits or could equally well be the result of stars
on primarily radial orbits moving around a much smaller (or
no) central SMBH. In axisymmetric and spherical models, the
degeneracy between mass and velocity anisotropy can be lifted
by the use of information contained in the shapes of the stellar
LOSVDs. It is customary to use Gauss-Hermite coefficients to
represent the deviations of an LOSVD from a Gaussian shape
(van der Marel & Franx 1993; Gerhard 1993). In axisymmetric
or spherical systems, stars on predominantly radial orbits will
give rise to LOSVDs with positive h4 parameters, while stars on
predominantly tangential orbits produce LOSVDs with negative
h4 parameters. An isotropic velocity distribution will produce
an LOSVD with h4 ∼ 0. Degeneracy between mass and
anisotropy is lifted by ensuring that the orbit superposition
method simultaneously fits at least σlos and h4.

In the immediate vicinity of a SMBH, the presence of a large
fraction of stars at high velocities causes an increase in the
amplitudes of the high velocity wings of the LOSVD, resulting
in large positive values of h4 (van der Marel 1994). These high
velocity tails provide strong constraints on kinematics of stars
in the vicinity of the SMBH and on its mass.

Currently there are no stellar dynamical modeling codes that
can measure the masses of SMBHs in barred galaxies. However,
recently Lablanche et al. (2012) used an axisymmetric stellar
dynamical modeling code (Jeans Anisotropic MGE (JAM)
method, Cappellari 2008) to assess the accuracy with which
the stellar M/L ratio and intrinsic velocity anisotropy could
be recovered. They applied the method to a sample of N-body
simulations of barred S0 galaxies and showed that biases in the
determination of M/L primarily arise because of the application
of an axisymmetric modeling code to a barred galaxy. They find
that for ΦLON = 45◦ and i > 30, the measured stellar M/L
ratio is essentially unbiased, but errors of up to 15% can arise

because of varying orientation of the bar and inclination of the
disk. Furthermore, they find that when a bar is present, the
inferred velocity anisotropy can be significantly in error.

While it is beyond the scope of this paper to carry out a similar
exercise to assess the systematic biases that would be introduced
into the measured masses of SMBHs by using axisymmetric
stellar dynamical codes, we will qualitatively examine the nature
and the direction of the bias.

Figure 12 shows the stellar kinematic difference maps in the
inner ±1 kpc region for the pure disk simulations (top row)
and the disk+bulge simulations (bottom row). The maps show
the differences in the kinematic quantities vlos, σlos, h3, and h4
and the projected mass density Σ. In each panel we plot the
difference in a specific quantity between barred and unbarred
models after the growth of the SMBH in each pixel in the
field of view. The angle of inclination of the disk and ΦLON
are both set to 45◦. Pixels that are colored green indicate that
there is no difference between the barred and unbarred models;
yellow and red pixels imply that the quantity in the barred galaxy
(vlos, σlos, h3, h4, Σ) is higher, and blue pixels indicate that the
quantity in the barred galaxy is lower than it is in its unbarred
counterpart. The values in parenthesis above each panel indicate
the range of the difference in the quantities. Notice that the
difference maps show that σlos in the inner regions of the map
is always red/yellow, indicating that it is systematically higher
in the barred models than in the unbarred models (see also
Figure 9), while h4 is green/blue, signifying that it is generally
lower than in the unbarred models.

Therefore, if a barred galaxy is modeled with the assumption
of axisymmetry, the dynamical model will attempt to fit the
negative h4 by putting a large fraction of orbits on tangential
orbits, while the requirement to simultaneously fit a large σlos
would require a larger enclosed mass than one would infer from
the same mass distribution in an unbarred model. The standard
approach in stellar dynamical modeling is to hold the M/L ratio
of the galaxy fixed (however, see McConnell et al. 2013). When
the M/L ratio is held fixed, it is largely determined by kinematic
constraints outside the sphere-of-influence of the SMBH, and
the M/L ratio of stars in inner part of the bulge is likely to be
underestimated. Since bar-induced evolution can significantly
increase mass inflow from large radii to small radii, the standard
practice of holding M/L fixed will also result in MBH being
overestimated. A striking example of this is seen in NGC 4151,
which has recently been modeled by Onken et al. (2013).

We also examined the LOSVDs of stars within the sphere-
of-influence of the CMC (rs) in both the barred and unbarred
models (for i = 45, ΦLON = 45). We find that although h4
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Figure 12. Maps showing the difference between quantities (from left to right: vlos, σlos, h3, h4, and surface mass density) measured in the barred simulations at t2 and
the same quantity measured in its unbarred counterpart at t2. Top row shows the difference maps for the pure disk simulations. Bottom row shows the difference maps
for the disk+bulge simulations.

(A color version of this figure is available in the online journal.)

is negative on average within Re, within rs—the region where
the CMC dominates the dynamics of stars—LOSVDs of the
barred galaxies in our simulations have 30%–50% larger values
of h4 than the corresponding unbarred galaxies (for the same
mass of CMC). This is due to a combination of the increased
radial velocity anisotropy of stars resulting from the growth of
the CMC (seen in Figure 7) and streaming motions along the
bar. Since the σlos values are also about 5% larger in the barred
models than in the unbarred models, we predict that even if the
sphere-of-influence of the SMBH is resolved, the anisotropic
velocity distribution will also result in an overestimate of MBH.
The idea that the high central velocity dispersions of nearly
end-on bars can be mistaken for central black holes is not new
(Gerhard 1988) and has recently been invoked as an alternative
explanation (Emsellem 2013) for the claimed overmassive black
hole in NGC 1277 (van den Bosch et al. 2012).

Using unbarred dynamical modeling codes to measure the
masses of SMBHs in barred galaxies is therefore likely to result
in a systematic overestimate of MBH, regardless of whether the
sphere-of-influence of the SMBH is resolved or not. Since the
fraction of barred galaxies with stellar dynamical determinations
of MBH is currently quite a small fraction of all the SMBH
measurements used in the most recent MBH–σ relation, this
is unlikely to significantly alter this relation or offset of barred
galaxies from it. However, the effect of using unbarred models to
measure the mass of SMBHs should be examined quantitatively
in the future.

5. SUMMARY

We simulated the growth of CMCs representing SMBHs (with
mass up to 0.2% of the mass of the disk) in N-body simulations
of disk galaxies both with and without bars and both with and
without classical bulges. Our main findings are as follows.

1. The growth of a CMC in a barred galaxy produces an in-
crease in σ that is ∼5%–8% larger than in an axisymmetric
counterpart.

2. The measured value of σ is relatively insensitive to the
choice of Re.

3. Orientation effects are only partially responsible for the
different measurements of σ obtained from barred and
unbarred galaxies.

4. The growth of a CMC alters the potential of the bar, enabling
outward transport of angular momentum and a consequent
increase in the central mass of stars. The increase in central
mass is partly responsible for the increase in central velocity
dispersion.

5. The change in σ and Δσax is fairly insensitive to an order of
magnitude change in MCMC, showing that it is the evolution
of the bar potential induced by CMC growth, rather than
the final mass of the CMC, that is the primary factor driving
the increase in σ .

6. The scattering of bar orbits by the central CMC results
in an increase in all components of the velocity dispersion,
particularly the radial velocity dispersion. In contrast, CMC
growth in an axisymmetric disk induces an tangentially
biased velocity dispersion. Thus, a strong radial anisotropy
and a large offset in σ are likely to be predictors of bar
induced CMC growth.

7. We predict an overestimate of MBH if axisymmetric stellar
dynamical modeling codes are used to measure the masses
of SMBHs in barred galaxies, especially if M/L ratios are
assumed to be independent of radius.

6. DISCUSSION AND CONCLUSIONS

We have investigated the effect that the adiabatic growth of
a CMC representing an SMBH has on the nuclear kinematics
in galaxies with preexisting bars. We compared these barred
simulations to unbarred analogues with identical radially aver-
aged mass and velocity distributions that were constructed by
scrambling the barred disk particles in azimuthal angle. In these
simulations, we have assumed that the galaxy’s disk/bulge and
bar are fully formed before the growth of the SMBH begins,
and our focus is on the effect that this SMBH has on the sys-
tem. Clearly this is a simplification of reality, but it allows us
to isolate the effects of various observing conditions from the
dynamical effects of growing an SMBH. We do not consider
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the possibility that a disk with a preexisting bulge and SMBH
may become unstable to bar formation, which would also alter
the observed kinematics, since this scenario is considered by
Hartmann et al. (2013). This latter work shows that disk heating
and angular momentum transport due to bar formation may be
key contributors to the increased dispersion of barred galaxies.

AGN feedback and gas dynamics have been ignored here
and both can have important effects on the dynamics of the
host galaxy. AGN feedback may couple the SMBH to its host,
since only a small fraction of the energy available via accretion
processes is required to significantly alter the kinematics and
evolution of the host galaxy (Silk & Rees 1998; Fabian 1999;
Di Matteo et al. 2005). These works show that feedback from
SMBH accretion may strip the host galaxy of gas, thus halting
both star formation and SMBH growth, leading to the black
hole scaling relations we observe today. However, Anglés-
Alcázar et al. (2013) show that self-regulating feedback due
to the growth of an SMBH is not required to produce the
observed galaxy black hole–galaxy scaling relations. Instead,
gravitational torques (e.g., Hopkins & Quataert 2011) could
limit accretion, ultimately allowing for the rapid growth of
young SMBHs. This is an active area of current research, and
at present it is not clear whether SMBH feedback, gravitational
instabilities, or some other mechanism is driving the observed
black hole scaling relations.

It is important to recognize that the growth mechanism
of SMBHs in morphologically different galaxies need not be
the same. For instance, SMBHs with masses MBH ∼ 109 M�
typically found in massive elliptical galaxies have probably
grown via hierarchical merging accompanied by rapid accretion,
whereas the SMBHs with masses of MBH ∼ 107 M� residing
in disk galaxies may have grown primarily via secular accretion
processes. Recent Hubble Space Telescope WFC3/Infrared
imaging observations of heavily dust obscured AGN at redshifts
z ∼ 1–3 find that almost 90% of the host galaxies are disks
(Schawinski et al. 2012), suggesting that significant growth of
SMBHs could be occurring via secular processes in disks rather
than in major merger events. In fact, multiwavelength studies
of AGN from z ∼ 0–3 show that only the most luminous AGN
hosts are ellipticals, also suggesting that a significant fraction of
SMBH growth occurs in disk galaxies (Treister et al. 2012).
Cisternas et al. (2011) find little evolution in the MBH-host
stellar mass relation since z ∼ 0.9. However, since a significant
fraction of the galaxies at higher redshifts have a prominent
disk component, their bulges are undermassive. They argue
that over the last 7 Gyr there must have been a redistribution
of stellar mass from the disk to the bulge, perhaps driven by
secular evolution. The influence of the bar on the growth of
the bulge mass and bulge velocity dispersion demonstrated
in this paper is one secular evolution mechanism that could
have played a role in this redistribution. Although the precise
criteria for distinguishing between pseduo bulges and classical
bulges have been the subject of debate for nearly a decade
(for reviews of the status, see Kormendy & Kennicutt 2004;
Graham 2013), pseudo bulges are generally thought to have
formed as a result of secular evolution in a disk galaxy (e.g.,
due to outward transport of angular momentum, and inward flow
of matter resulting from a time-varying bar potential; for a recent
review, see Athanassoula 2012). In contrast, classical bulges are
thought to have formed via mergers. Clearly the issue of whether
or not there is clear observational evidence for differences in the
MBH–σ relationship based on morphological type is an issue
that is still in a state of flux.

Recently Debattista et al. (2013) showed that if disks reform
and grow around bulges with a preexisting SMBH, the velocity
dispersion of the bulge itself can increase because of adiabatic
compression by the disk, requiring the SMBH to grow by
50%–60% just to stay on the MBH–σ relation. Thus, the small
observed scatter in the BH-host galaxy scaling relations suggest
strongly that BHs “know about” their hosts. Hopkins et al.
(2009) argue that the amount of gas that formed stars in
the spheroid of host galaxies shows an order-of-magnitude
scatter and that unless black hole growth is self-regulated
via feedback processes, the scatter in BH-scaling relations
would be significantly larger than is observed. Searching for
galaxies of specific morphological types that show systematic
deviations from scaling relations that may arise because of
secular evolution allows us to confirm or reject the idea of
tightly self-regulated SMBH growth.

In Section 1 we noted that barred galaxies lie 0.3 dex below the
MBH–σ relation defined by unbarred galaxies but do not appear
to be offset from the M–L relation. Graham (2008a) has used this
to argue that MBH values in barred galaxies are not undermassive
relative to unbarred galaxies. If neglecting bar kinematics in
stellar dynamical modeling can result in an overestimate of
MBH as argued above, their true values could be even lower than
their currently estimated values. Since local samples of late-
type galaxies show that nearly 65% of them are barred (e.g.,
Knapen 1999) and since late-type galaxies may contain the vast
majority of black holes below 5 × 107 M� (e.g., Graham et al.
2011), there is a need for dynamical modeling methods that can
measure the masses of SMBH in barred galaxies.

The dark matter halos in the disk galaxies in our simulations
were embedded in static (rigid) dark matter halos with shallow
central density cores. Previous work has shown that the presence
of a live dark matter halo, especially one with a steep central
density cusp (e.g., Debattista & Sellwood 2000; Athanassoula
2003), can slow down the pattern speed of a bar because of
dynamical friction that causes energy and angular momentum
of the bar to be lost to the halo. In general, the presence of a live
halo enhances the process of angular momentum transport from
the bar to the halo, the details of which depend on the distribution
function of the halo. Previous studies suggest that with a live
halo, the amount of matter that flows inward could be somewhat
larger than in the simulation presented here; this might cause an
even greater increase in σ than we obtained. Further studies of
SMBH growth in disk galaxies with live halos are necessary to
quantify the extent of the increase in such simulations.

It is clear that the effect of the SMBH on σ arises from
the effect of the growing SMBH potential on the interaction
between the bar and the disk (disk+bulge). The SMBH alters
the observable σ (within the effective radius) well outside the
sphere of influence of the SMBH. Hence, the presence of a
bar during the growth of an SMBH may partially explain the
rightward offset of barred galaxies from the MBH–σ relation
defined by unbarred galaxies presented in Graham et al. (2011).
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