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This paper presents closed form solutions to the classical beam elasticity differential equation in order to effectively model
the displacement of standard aerodynamic geometries used throughout a number of industries. The models assume that the
components are constructed from in-plane generally anisotropic (though shown to be quasi-isotropic) composite materials. Exact
solutions for the displacement and strains for elliptical and FX66-S-196 and NACA 63-621 aerofoil approximations thin wall
compositematerial shell structures, with andwithout a stiffening rib (shear-web), are presented for the first time. Each of themodels
developed is rigorously validated via numerical (Runge-Kutta) solutions of an identical differential equation used to derive the
analytical models presented.The resulting calculated displacement andmaterial strain fields are shown to be in excellent agreement
with simulations using the ANSYS and CATIA commercial finite element (FE) codes as well as experimental data evident in the
literature. One major implication of the theoretical treatment is that these solutions can now be used in design codes to limit the
required displacement and strains in similar components used in the aerospace and most notably renewable energy sectors.

1. Introduction

Currently there is great deal of interest in the design of
structurally efficient aerodynamic structures constructed of
advanced composite materials. In the aerospace sector these
are defined as a number of chemically distinctmaterials being
macroscopically bonded with the resultant amalgamation
being superior than original chemically distinct constituents
[1]. The emphasis in the renewable and aerospace commu-
nities is to embed a strong (though usually brittle) ceramic
material such as glass or carbon fibre in a polymeric material
such as epoxy or more recently the biodegradable polypropy-
lene [2]. The resulting composite material is a heterogeneous
anisotropic material with a reality high strength-to-weight
ratio.The consequence is that the polymeric material is made
a couple of orders ofmagnitude stronger in addition to signif-
icantly increasing the displacement at failure when compared
to the original ceramics employed as the reinforcement.

Consequently, there has beenmuch development ofman-
ufacturing processes in order to produce components such

as wind turbine blades from these rapidly becoming inex-
pensive materials. Since the macroscopic bonding results in
a heterogeneous more flexible material then the conventional
assumptions of material failure tend to be inappropriate. It
is known that most composite material wind-turbine blades
employed in the industry fail via a combination of strain
and displacement modes, where fibre-glass is concerned; it is
nowwidely accepted [1] that suchmaterials fail viamaximum
stain. In order to reduce both the cost of physical testing
and time prohibitive computationally expensive simulations
in the design phase, the need for accurate and effective
modelling of the displacement and strain fields in materials
which are used to construct wind turbine blades, under
standard testing conditions, has very recently become of
utmost importance.

It is generally accepted that the geometry of a blade is
determined by aerodynamic properties, which are defined by
aerofoil characteristics such as chord, twist, and thickness dis-
tribution. The structural design should incorporate material
selection and spar/shear design with a purpose ofminimizing
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the tip deflexion, thus limiting the chance of blade/tower
collision [3]. Also of importance from a design viewpoint is to
gain an understanding of the loads that a wind turbine blade
undergoes during a design life of approximately 20 years [4].

Moreover, it is known that most structural failures of
wind turbine blades are found in the blade root section,
which has been confirmed via the application of a three-
dimensional analyticalmodel developed by El Chazly [5].The
results showed that maximum strains occurred at the root of
the blade in the flapwise direction and that tapering blades
diminishe strain values. In addition to savingmaterial weight
and cost, a successful blade design must satisfy a wide range
of objectives:

(1) maximize annual energy yields;
(2) stall regulated machines;
(3) resist extreme and fatigue loads;
(4) restrict tip deflexion to avoid tower collisions;
(5) avoid resonances.

Objectives 1 and 2 are taken into consideration when a blade
is designed to suit an aerodynamic design, while objectives
3 to 5 are taken into consideration with regard to structural
design. When designing from an aerodynamic perspective
the blade geometry is of vital importance. Though these
two design processes are separated, it is often found that
an iteration process will be needed between the two. This
is to accommodate adequate blade thickness to house a
spar/shear-web required to significantly reduce the displace-
ment field and hence strain in the shell and consequently the
layers of the composite material.

In short the work presented throughout this paper lays
significant groundwork to the development of generic design-
codes (expert system) for the development of structural
aerodynamic components such as wind-turbine blades. The
design solutions presented are in principle easily extended to
allow all necessary geometrical and mechanical variations to
be considered.

1.1. Governing Equations. Froma structural (static) viewpoint
any composite material wind-turbine blade can be modelled
as cantilever with the root located at the hub.This explains the
aforementioned observations [5] of structural failure at the
root evident in the literature.Thus, it is obvious that the basic
displacement equations of elasticity are applicable, albeit in
anisotropic form for the heterogeneous materials considered
[6].

Consider the following:
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is the elastic modulus of the composite material

parallel to the 𝑖-axis. Moreover, since the standard testing
protocols [7] only consider loads in a single direction at right

angles to the fibres then this simplifies the familiar expression
for beam displacements; namely:

𝑑
2
𝑢
𝑦
(𝑧)

𝑑𝑧2
=

𝑀
𝑧

𝐸
𝑧
𝐼
𝑥

. (2)

Furthermore, if the fibres are assumed to align on application
of load to the direction of maximum principal strain, the
elastic modulus can be determined from the rule of mixtures,
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where 𝑉 is the total volume of the turbine blade, 𝑉
𝑓
is the

volume of the the reinforcement fibres, 𝑉
𝑚

is the volume
of the aforementioned polymeric matrix material, 𝐸
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elastic modulus of the reinforcement phase, and 𝐸
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elastic modulus of the matrix material. Incidentally for most
practical design purposes 𝐸
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so (3) reduces to the

following:
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where ]
𝑓
= 𝑉
𝑓
/𝑉 is the volume faction of the the fibres.

Moreover classical lamination theory (CLT) dictates [1] that
some of the stiffness of the fibres is utilized for reinforcement
in the traverse direction also, meaning that this expression
has a more general form:
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, (5)

where 𝜂 is a fibre orientation factorwhich is usually 0.5-0.6 for
quasi-isotropic continuous layered composite materials and
is also applicable for short-fibre composites, where it can be
as low as 0.25 [1].

Additionally, since wall sections are generally small in
comparison to the other cross-section dimensions then every
infinitesimal second moment of area is proportional to the
thickness of the section and an infinitesimal arc length;
therefore any second moment area of the shell, symmetric
about the abscissa (as simulated in this paper), can be
determined from the following:
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where 𝑡 is the thickness of the material and 𝑦(𝑥, 𝑧) which
suitably describes the cross-section that is in the simulations
that follow this, takes the formof a circle, an ellipse, or aerofoil
as a function of the distance from the root.

Substitution of (5) and (7) into (2) renders the general
governing elasticity shell differential equation as follows
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This equation is also applicable for quasi-isotropic and
isotropic materials subjected to pure single direction bend-
ing.

With the displacement of the beam found, the global
strain field in the shell from the simpler algebraic relationship:
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(9)

we note that the modelling presented in this paper investi-
gates only cross-section variations with the material assumed
to be constant; in principle variations in the material thick-
ness and hence the effective modulus of the components can
also be incorporated. Moreover, realistic empirical and/or
computational fluid dynamics (CFD) load data can also be
simulated. Thus, the models presented and their associated
results are considered a representative benchmarking studies
in order to demonstrate general purposemethods for prelim-
inary design purposes.

2. Simulation Methods

Industrial standard design codes [8] dictate that for aerofoil
sections, the thickness to chord ratio should be approximately
40% at the root and inboard region of the blade as this allows
bending moments that are generated to be absorbed. This
can be lowered to a value of 16% towards the tip of the
blade. However, the blade thickness is in constant conflict
between aerodynamic efficiency and stiffness and strength
requirements. High performance aerofoils are desired for
very specific aerodynamic reasons [9], that is, the thinnest
blade possible, whereas structural requirements look for
a thick enough cross-section to counter the load bearing
elements. The maximum thickness is provided by the height
of the spar-box or shear-web and has a direct influence on the
section modulus on spar-box cross sections [10].

2.1. Benchmarking. In this section we present benchmarking
studies required to validate the analytical and numerical
modelling methods used prior to a more complete formula-
tion of the tapered aerofoil section wind turbine blade. We
will show that analytical solutions can be found for thin-
wall tapered beams with elliptical sections. These solutions
use extensions of the general double integration (antideriva-
tive) method for the determination of beam deflexion. For
example consider, the displacement field of circular shell
section beam.This problem is being an extension of a typical
advanced undergraduate mechanics of materials problem
[11].Thekey geometrical property, the secondmoment of area
can be obtained via application of (7):
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where 𝑅
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is the radius at the root of the beam, 𝑅
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radius at the tip of the beam, and 𝐿
𝑟
= 𝑅
𝑟
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𝑟
− 𝑅
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) is a

characteristic lengthwith 𝐿 the length of the blade. Given that
the aforementioned testing protocol [7] applies a point load
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Figure 1: Tapered circular cross-section second moment of area
predictions.

at the tip of the blade this implies that the governing equation
(8) becomes

𝑑
2
𝑢
𝑦
(𝑧)

𝑑𝑧2
=

𝐹𝐿
3

𝑟
(𝐿 − 𝑧)

𝜂V
𝑓
𝜋𝐸
𝑓
𝑡𝑅3
𝑟
(𝐿
𝑟
− 𝑧)
3
, (11)

where 𝐹 is the force applied to the tip during testing. Initially
this equation can be solved via direct double integration,
and applying appropriate zero slope and deflexion boundary
conditions at the root of the beam, to obtain the so-called
analytical antiderivative solution:
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where 𝐸
𝑒

𝑧
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𝑓
𝐸
𝑧
is the effective elastic modulus of

composite in the 𝑧-direction and 𝐼
𝑟
= 𝜋𝑡𝑅

3

𝑟
is the second

moment of area at the root of the beam. This anti-derivative
solution was initially validated using analog finite element
and finite differencemethods evident in the literature [12, 13].
We observed excellent agreement as indicated in Figures 1
and 2 with the finite difference (FD) and finite element (FE)
numerical approaches. It is noted from the insert in Figure 1
that in general the shell approximation slightly overestimates
the value of second moment of an area of the circular section
investigated in this work [14]. This results in a minimal
underestimation of the displacement field when compared to
the solid anti-derivative formulation as depicted in the insert
of Figure 2; also evident here is an underapproximation of the
FE predictions from the commercial ANSYS software [15].
This initial benchmarking process is therefore offered here as
a proof of methodologies employed throughout this paper.
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Figure 2: Tapered circular cross-section cantilever displacement
field.

We will show in the proceeding section that as the geom-
etry of the beam cross-section becomes only slightly more
complicated, the methods of integration required to obtain
the necessary anti-derivatives become much more involved
[12]. Moreover, for even the most idealized aerofoils (as those
that follow) no explicit closed-form analytical solutions are
possible, meaning that analogue numerical solutions must be
obtained, which justifies the use of the numerical approaches
outlined.

2.1.1. Elliptical Tapered BeamGeneral AnalyticalModel. It will
be shown in the proceeding section that from a structural
design viewpoint most aerofoil sections have some elliptical
geometrical nature (e.g., FX66-S-196 and NACA 63-621 [16,
17]). However, the inherent mathematical complexity with
regard to the derivation of anti-derivatives of elliptical func-
tions [18] has resulted in a lack of treatment of particularly
elliptical shell beams and hence wind-turbine blades in the
literature. For this reason an elliptical beam benchmarking
regime was performed as a precursor to a complete and
rigorous treatment of specific aerofoil sections: firstly as
a verification of the second moment of area and then of
the displacement and strain fields and finally and most
importantly to provide the first general analytical treatment
of the elliptical shell tapered beam problem absent in the
literature.

The calculation of the second moment of area as a
function of the the span was evaluated by two analytical
and two independent numerical methods, namely, one-
thousand point trapezoidal integration and adaptive Simpson
quadrature. In the case of continuum solid formulation, the

analytical model consisted of casting the exact formula as a
function of the span variable; thus [11],
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is now a function of 𝑧 only as the expression assumes
a continuum solid cross-section. For reasons that became
obvious later in this section (most notably the development
of an explicit analytical model for elliptical shell sections) for
elliptical shells (i.e., 𝑡 < 𝑏; 𝑏 < 𝑎), by expanding (13) and
retaining only linear factors of 𝑡 we have
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Now we notice that the term in brackets is a constant as is
the first term in the parenthesis and both are again effective
length terms.This leads to the more lucid form of the second
moment of area for a tapered elliptical shell:
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These formulae were validated via numerical integration
of (7) using both the aforementioned integration methods
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and values extrapolated from suitable positions along a
computer aided three-dimensional interactive application
(CATIA© [19]) model. Figure 3 shows that for the elliptical
shells investigated in this work (15) evaluates the required
second moment of area well and hence was used in all
subsequent formulations included as part of the blade model
described in Section 2.2.

Hence substitution of (15) in the displacement differential
field equation (8) gives
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We can find the slope equation by direct integration of (17)
and imposing zero slope at the root
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This implies that the required displacement field can be found
from the antiderivative of this expression and by imposing
zero displacement at the root to render the following:
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Figure 3: Verification of elliptical second moment of area using a
variety of analytical and numerical methods.

with the final terms in the brackets being the constant of
integration, meaning the analytical anti-derivative reduces to
the following:
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Therefore (16), (18), and (21) form the components ofwhat
will be referred to fromhere on in as the analytical shellmodel
formulation; its solution evaluates the displacement of an
elliptical shell tapering beam.Asmentionedpreviously, to our
knowledge this is the first time that such an explicit solution
to this specific case has been presented in the literature.

The strain field can be found from the aforementioned
algebraic definition (see (9)) and substitution of (13) and (15)
to render continuum solid and shell models formulations; in
the case of the latter this gives:

𝜖
𝑧
=

−𝐹 (𝐿 − 𝑧)

𝐸𝑒Φ(𝐿
𝑎𝑏
− 𝑧) (𝐿

𝑏
− 𝑧)
2
. (22)

The validity of these models was verified using an explicit
Shampine and Gordon [18] Runge-Kutta, resident in the
Mathworks MATLAB [13] mathematical software. Further
verification of these solutions was performed using two anal-
ogous finite element (FE)models, employing two separate but
complementary commercial FE codes, namely, ANSYS and
CATIA©.

In the case of ANSYS the model was constructed from
1369 shell ℎ-type (approximate size range being ℎ = (35, 180])
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Figure 4: Aerofoil section (a) without and (b) with stiffening rib at the root and tip of the blade; (c) idealized three-dimensional wire-frame
tapered aerofoil blade representation.

elements of 5mm thickness permitting both bending and
membrane capabilities. Both in-plane and normal loads were
permitted by the software, which implied that each of 1382
nodes produced had six degrees of freedom: these being
translations in the principal nodal 𝑥, 𝑦, and 𝑧 directions
and rotations about these axes. The mesh produced used
advanced on-curvature sizing constraints with course rele-
vance and span angle center with smooth relevance transi-
tion. In the solution set-up phase a fixed support (clamp)
was applied to the the large end ellipse in order to simulate
the root of a cantilever, while a force was applied to smaller
end ellipse, thus simulating the blade tip load. A standard
(default) linear static solution solution was then sought.

As a final comparative study a similar FE model was
constructed using the advanced meshing tools resident in
the CATIA© code [19]. Here the Denizen frontal parabolic
quadrangle shell ℎ-elements with an average size 66mm and
a thickness of 5mm were employed. Identical mathematical
boundary conditions were applied as in all the modelling
methods described in this section; that is, a clampwas applied

at the root of the blade and the CATIA© generative structural
analysis distributive force was applied at the tip.

2.2. Aerofoil Section Models. In this section we present ana-
lytical and numerical models for the deflexion of a tapering
beam with specific aerofoil sections with and without the
presence of a stiffening (shear-web) rib. We begin with
predictions of the second moment of area for the aerofoil
sections using the methods outlined in the previous section
and thenmove on to the displacement and strain calculations
which are compared with FE analogue models produced
using the commercial ANSYS and CATIA© codes.

2.2.1. Idealized Tapered Beam Model. It was necessary to fit
the aerofoil sections to an elliptical and triangular section
as demonstrated in Figure 4. Here, the end elevations of the
idealized aerofoil sections without and with a reinforcement
stiffening rib are shown in Figures 4(a) and 4(b), respectively,
while an isometric MATLAB representation of the idealized
tapered aerofoil shell beam used in the work is presented
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in Figure 4(c). The geometries modelled consisted of a root
chord length of 600mm and depth of 178mm in line with
specific aerofoils under investigation (FX66-S-196 andNACA
63–621 [16]). Here the geometry remains similar at the tip
with a chord length of 110mm being apparent and a resulting
tip section depth of 33mm.

The required secondmoment of area can be found exactly
by noting that the section is half an ellipse plus the difference
between two triangles; thus, application of (13) together
with the standard result for that of the triangle renders the
continuum solid section formula:
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(23)

Alternatively we could employ (15) and then the definition
of the second moment of area to obtain a shell formula, this
being
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These formulae were again validated using the previously
described numerical integration method. What is noticeable
here is that all the approximate methods tend to overestimate
the second moment of area of the thin-wall aerofoil section
with greater convergence being observed at the root. This
said, all of the methods do predict the the second moment
of area well.

2.2.2. Numerical Modelling. It is obvious from (23) and (24)
(most notably the radical) that the extra terms imply that
no closed form solution is possible for the displacement
field; however, numerical finite-difference (Runge-Kutta [18])
solutions as discussed in the previous section are possible
and hence were sought and verified using FE models created
in the ANSYS and CATIA© commercial codes. Examples
of the FE model analogues to the analytical models are
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Figure 5: Idealized aerofoil second moment of area (without
stiffening rib) computational values.

depicted in Figure 4 are shown in Figure 6 using CATIA©

(without the stiffening rib) and ANSYS (with a stiffening rib
of 16mm thickness); these models being typical. In the case
of CATIA©, the model shown consisted of 1471 quadrilateral
8-noded (Q8D) ℎ-type elements with parabolic interpolation
functions. The average ℎ-value is being 50mm, internal
quadrilateral angle ranges ∼ [83∘, 97∘], and an average aspect
ratio is 1.168. The ANSYS model was analogous containing
some 1175 ℎ-type isoparametric quadrilateral parabolic shell
elements (average ℎ-value is 50mm) with the stiffening rib as
shown in Figure 6 or 1008 elements without the stiffening rib
(not shown). Each ANSYS mesh utilized a course relevance
center with a high degree of smoothing, fine span angel
center, on curvature advanced size functionality with a
default normal curvature angel of 30∘. Bothmodels were used
to simulate a standard design-code case as detailed in the
literature [7, 8] (See Figure 5).

The finite-difference solutions were obtained via direct
substitution of (23) and (24) into (8), while the solution of
shell strain field was obtained from by substituting (23) and
(24) into (9). Each of the solutions was obtained without and
then with a stiffening rib.The stiffening (shear) web consisted
of a further tapered solid rectangular beam located in the
centre of the aerofoil section; see Figure 4(b) for details.

3. Results

The results of the FE displacement calculations from the
ellipise, with an outside major axis of 300mm, an outside
minor axis of 89mm, and shell of thickness 5mm can-
tilever of length 4.2m (These dimensions being analogous
to the forthcoming analysis of the NACA 63-621 aerofoil
section as detailed in [17]) benchmark case are shown in
Figure 7 with an applied load of 8.5 kN. Here good agreement
is demonstrated between the ANSYS and CATIA© codes
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Figure 6: Idealized tapered aerofoil FE models using (a) CATIA without stiffening and (b) ANSYS with stiffening rib.
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Figure 7: Elliptical shell cantilever FE benchmark.

with Figure 7(a) showing a maximum deflexion of 359mm
calculated by the ANSYS code, while identical CATIA©

software calculations render a value of 357mm as shown in
Figure 7(b). The disparity of these values is being attributed,
as one would expect, to the greater default mesh density
imposed by the ANSYS software. The coarser CATIA© code
mesh render a stiffer model, indeed such overestimation of
the stiffness is consequence of the FE numerical method.
These maximum deflexion calculations are compared with
the analytical model, of the previous section, and FD (Runge-
Kutta) predictions in Table 1. In general excellent agreement
between all the modelling methods is demonstrated. Best
agreement is being observed between the Runge-Kutta and
anti-derivative shell formulations which themselves are in
close parity with the Runge-Kutta FD solution to the solid
formulation with an average difference of just over 0.08%
between the calculations. Less agreement is shown between
FD and analytical (anti-derivative) solutions when compared
with the FE calculations: discrepancies of 1.5% and 1.8%,
respectively, for Finite element analysis (FEA) performed

Table 1: Tapered elliptical beam models maximum deflexion pre-
dictions.

Model Formulation Maximum
displacement

Runge-Kutta (FD) Solid 363.4mm
Anti-derivative Shell 363.7mm
Runge-Kutta (FD) Shell 363.7mm
Finite element (FE) ANSYS-shell 358.2mm
Finite element (FE) CATIA-shell 357.0mm

using the ANSYS and CATIA© codes. This said, these differ-
ences are well within the default convergence settings of 5%
(ANSYS) and 10% (CATIA©).

Further demonstration of the suitability of the analytical
elliptical shell beam model of the previous section is shown
via the calculations of the displacement field in Figure 8.
Here the displacement of the neutral axis of each the ellip-
tical shell models is plotted as a function of the distance
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Table 2: Predicted maxima strain values.

Model Formulation Maximum strain value (%) Distance from root (m) Proportion of length (%)
Analytical (antiderivative) Shell 0.28 1.97 47
ANSYS (FE) Shell 0.29 2.05 48
Runge-Kutta (FD) Solid 0.28 1.84 44
Runge-Kutta (FD) Shell 0.28 1.84 44

Figure 8: Calculated displacement field of a thin-wall elliptical
beam.

from the root (i.e., the span variable). Generally excellent
agreement is shown between all the modelling procedures
utilized in this work particularly with regard to the anti-
derivative and the Runge-Kutta FD calculations; ANSYS-
FE calculations though suffering from the aforementioned
overestimation of stiffness, as more clearly indicated in the
insert of Figure 8, these discrepancies are still well within the
model convergence tolerance. However, it must therefore be
inferred from the results presented in Figures 7 and 8 and
Table 1 that the analytical anti-derivative model predicts the
primary displacement field remarkably well; thus, implying
that (16), (15), (18), and (21) are components of amathematical
analytical model of the structural response of a tapering
elliptical beam shell which is offered for the first time in this
work.

3.1. Elliptical Beam Failure Predictions. Of particular interest
from a design viewpoint are the resulting strain-fields shown
in Figure 9. The analytical (anti-derivative) method strain-
field is being found from application of (22), while the Runge-
Kutta values were found from double numerical differen-
tiation of the numerical solutions shown in Figure 8. The
ANSYS-FE strain-field data were obtained from a path on the
top surface connecting an apex of the ellipse minor axis at the
root to an apex on the minor axis at the tip.Themodels show
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Figure 9: Elliptical shell beam strain field predictions.

more discrepancies than the predication of the displacement
field (Figure 8). In particular the data from ANSYS begins
to diverge from that obtained from the other modelling
procedures at about 1.6m from the root. Notwithstanding
the initial inaccuracies of the FE data at the root due to
Saint-Venant edge effects, the FE strain predictions remain
continuously higher than all other similarmodel calculations.
Both Runge-Kutta numerical finite difference calculations
remain in agreement with analytical anti-derivative model
over a greater distance from the root than the FE data,
with divergence occurring at a value of 1.85m. Saint-Venant
effects are much more prevalent at the tip of the FE model
where a difference of over 54% is evident when compared
to the FD shell formulation solutions. Significantly none
of the modelling procedures predict maxima strain values,
where one may expect, at the root of the beam as shown
in Table 2, which may indicate the position of delamination
and eventual failure of the structure. The positions shown
in Table 2 indicate potential failure of the beam just below
50% of the span. An apparent underapproximation from the
Runge-Kutta methods being explained by the lack of solution
points over the most significant changes in slope of the beam.

3.2. Idealized Blade Modelling. The normalized displacement
field as a function of proportion of span of the idealized
blade without and with a stiffening rib is shown, respectively,
in Figures 11(a) and 11(b). In absence of the the stiffening
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Figure 10: Idealized aerofoil displacement fields (a) without and (b) with stiffening web.
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Figure 11: Idealized aerofoil strain fields (a) without and (b) with stiffening rib.

component, Figure 10(a) is in good agreement up until about
40% of the span. Thereafter the agreement deteriorates the
ANSYS-FEmodels predicting smallestmagnitudes of the dis-
placement field which throughout are in close synergy with
the Runge-Kutta FD shell formulation model predictions.
The lower predictions of the displacement by the FE model
can again be attributed to the convergence tolerance together
with the overestimation of the stiffness of the numerical
method. The Runge-Kutta solution using the solid formu-
lation rendered the greatest magnitudes in displacement

fields; this can be attributed to the solid formulation stiffness
being less than that of the shell analogues. It should also be
noted that all modelling predictions are higher than the 10%
threshold dictated by a number of design codes (e.g., [7, 8]),
where the maximum values of the displacement are pre-
dicted as 11.2% (470mm), 12% (504mm), and 13% (564mm)
for the FE, FD-Shell, and FD-Solid models, respectively,
noting that the absolute difference between the modelling
predictions is as much as 94mm, that is an overall 20%
difference.
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Figure 11(b) shows the displacement results from each of
the models in the presence of a 16mm thick stiffening web,
where similar trends are observed as in Figure 10(a) with
the largest magnitude being predicted by the Runge-Kutta
solution to the solid formulation, followed, respectively, by
solution to the FD and ANSYS-FE shell formulations. The
web thickness is in fact an optimum value based on the
aforementioned deflexion design criterion of 10% of the span
obtained via successive bisection of themaximummagnitude
of the deflexion of all models that is the Runge-Kutta solution
to the solid formulation. It should be noted that the opti-
mization routine established the required thickness. It took
between three to five iterations to obtain and was very much
more efficient than the more generalized ANSYS equivalent
algorithm. Hence the modelling methods predict upper and
lower expectations of the displacement field and therefore the
maximum blade deflexion in the case of Figure 10(b) this is
between 355mm (8.46% of the span) and 420mm (10% of
the span).

The strain field and hence failure predictions of the
idealized blade, without the stiffening web, are shown in
Figure 11(a), while the equivalent field with the stiffening rib
is shown in Figure 11(b). In both cases the maximum strain
field values are predicted from the Runge-Kutta solution of
the solid formulation, which is expected as this particular
solution also predicted greater magnitude displacements as
shown earlier in Figure 10.

Very close agreement is observed for the strain field
predictions of both FE and FD solutions to the shell for-
mulation, for the aerofoil model without the stiffening rib,
neglecting the Saint-Venant effects evident in the ANSYS-
FE model data. In this case the field values being less than
the solid formulation by almost a constant amount of about
0.03% until maxima values are realized. As with the elliptical
tapering beam, Figure 8, the maximum strain and hence
possible failure position do not occur at the root. In fact the
maximum strain value of 0.42% is predicted by the Runge-
Kutta solution to the solid formulation and occurs at 54%
of the span (2.27m). The FE solution from the ANSYS code
predicts the maximum strain value of 0.39 at 52% of the
span (2.78m), while identical values were predicted from
the Runge-Kutta solution to the shell formulation. In the
presence of the stiffening rib, Figure 11(b), as expected the
magnitude of the strain field values is reduced by just under
0.1%. The maximum strain value of 0.32% is being predicted
by the Runge-Kutta solution to the solid formulation which
occurs at 56% of the span. The solution to the shell for-
mulation models predict very similar maxima of 0.30 and
0.31 for, respectively, the FE and FD, occurring at 52% and
56% of the span. We note here that according to the design
codes [8] these strain values are above the tensile 0.3% strain
and the compressive 0.2% strain. This implies that failure of
the structure will occur at about the halfway point not at
root. From a structural design viewpoint this implies that the
idealized blade is not fully stressed [11], or more correctly,
since the fibre-glass fails thoughmaximum strain, in this case
fully strained. In order tominimize theweight of the structure
it would be necessary to vary the dimensions of the cross
section so as to give a blade of constant strength. However,
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Figure 12: Model tip displacement comparisons with experimental
data.

this idealized blade is not in this favorable condition due
to the aforementioned aerodynamic considerations coupled
with the constant shell thickness. Nonetheless, especially
the FE modelling goal driven design optimization methods
employed throughout, the work presented in this paper could
be used to drive the idealized model toward this optimum
condition.

3.3. Experimental Verification. As a final verification of the
methods used calculations were compared with empirical
data from the reference [17]. Here a model was constructed
which approximated the FX 66-S-196 aerofoil at the root
and NACA 63-621 aerofoil at the tip. Here the chord and
thickness values at the root were, respectively, 600mm and
178mm, with tip dimension analogues being 200mm and
25mm. The modelling method of this work then naturally
matched the aerofoils; the average profile shell thickness and
mechanical properties are being employed, which guaranteed
the required smooth transition from the FX to NACA profile.
The loading conditions were amended to model the proof
load test detailed in the reference [17]. Here the blade is
in the usual flap-wise position (Figure 6) from the clamped
root flange to represent the vertical structural columns at the
factory building and loaded around 2/3 of its length from the
root. The experimental tip position was recorded first under
the blade’s own weight and then with the platform which
carried the load. The load was applied perpendicular to the
chord direction in increments of 270N until the 6.4 kN load
was reached making a total load of 7.4 kN with platform and
ropes.

Comparisons between Runge-Kutta FD solutions and the
solid and shell formulations with the experimental data of
[17] are shown in Figure 12, where a linear static response is
evident.
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Considering the amount of engineering and geometri-
cal assumptions the agreement between the modelling and
experimental data is quite remarkable. At low forces the solu-
tion to the shell formulation underestimates the structural
stiffness when compared to the empirical data as evidenced
by larger displacement being predicted by the model for
identical forces. Moreover, there appears to be evidence to
support that this structural stiffness of the shell is load
dependent since after a load of about 5.8 kN this modelling
formulation begins to underestimate the experimental data
for any given load. Though this possible phenomenon is also
present, to less of an extent in the solid formulation data, this
model appears to always overestimate the structural stiffness
when compared to the experimental data presented.

All the empirical data fall within the 95% error bars of
themodelling data.These error bars being evaluated from the
average sample standard deviations of the Runge-Kutta and
ANSYS-FE displacement-fields for each of the given loads
andmultiplying the result by the relevant 𝑡-value (𝑡(0.95, 2) =
2.92). The results therefore demonstrate that modelling
methods can predict the static performance of aerodynamic
components such as wind-turbine blades to within 5%
of real manufactured components. This implies that the
small discrepancies between geometrical and/or intrinsic
material properties enforced by the engineering modelling
assumptions are insignificant. This can be explained in part
by inconsistencies in geometry (e.g., twist), lay-up and/or
fibre/matrix volume fractions, and/or changes in intrinsic
constituents of the compositematerials used for construction.

4. Conclusions

Mathematical solid and shell formulations of composite
aerodynamic components have been presented and solved
using analytical, finite difference, and finite elementmethods.
Thesemodels were shown to predict the displacement, strain-
fields, and hence failure of real wind-turbine blades in service.
Though the models presented throughout allow only for
changes in cross-section, their robust formulations allow
for the variation of many other relevant parameters. Noting
that the FD Runge-Kutta solution codes are freely available
(e.g., via the freeware SciLab: https://www.scilab.org/) the
models presented throughout this work can be employed
as the basis of an expert system type design code; indeed,
with relatively minor amendments, even fatigue and modal
analyses being possible. The more specific conclusions from
the work presented in this paper being as follows.

(i) Solution to an elliptical shell beam has been offered
for the first time as a response to a lack of treatment
in the literature. The solution has served as a salient
benchmark in order to compare with well-established
FD methods and commercial ANSYS and CATIAŚ

design evaluation codes.

(ii) All model calculations of strain fields indicate that
failure does not occur at the root of the beam/blade
for all of the geometries investigated, meaning that
the components under investigation were not fully

strained (stressed) and therefore not yet optimized
from a purely structural viewpoint.

(iii) In order to conform to a 10% displacement design
criterion the aerofoil section approximations investi-
gated that NACA 63-621 with average shell thickness
of 5mm requires a stiffening rib that is required in
all cases. Based on this criterion a successive bisection
optimizationmethod reveals that the thickness of this
web should be not less than 16mm.

(iv) Solution and optimization protocols obtained via
analytical method and/or Runge-Kutta methods pre-
sented throughout this work are generally orders of
magnitude faster than commercial FE optimization
routines employed by ANSYS. We note here that
the ANSYS design optimization routines are general
purpose while the one presented in this paper is
specific to this problem and hence no generality is
inferred.

(v) Though modelling of idealized turbine blades can
show up to 20% difference with regard to predictions
of the maximum displacement values, these methods
show remarkable agreement with empirical data con-
sidering the underlying assumptions.

Further work in now progressing to use the modelling
methods presented here in order to investigate variations in
compositematerial lay-up, hencemechanical properties, shell
thickness, and loading conditions (from CFD and empirical
data), with position.
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