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A novel computational technique is presented for embedding mass-loss due to burning into the ANSYS finite element modelling
code.The approaches employ a range of computationalmodellingmethods in order to providemore complete theoretical treatment
of thermoelasticity absent from the literature for over six decades. Techniques are employed to evaluate structural integrity (namely,
elastic moduli, Poisson’s ratios, and compressive brittle strength) of honeycomb systems known to approximate three-dimensional
cellular chars.That is, reducing the mass of diagonal ribs and both diagonal-plus-vertical ribs simultaneously show rapid decreases
in the structural integrity of both conventional and reentrant (auxetic, i.e., possessing a negative Poisson’s ratio) honeycombs.On the
other hand, reducing only the vertical ribs shows initially modest reductions in such properties, followed by catastrophic failure of
the material system. Calculations of thermal stress distributions indicate that in all cases the total stress is reduced in reentrant
(auxetic) cellular solids. This indicates that conventional cellular solids are expected to fail before their auxetic counterparts.
Furthermore, both analytical and FE modelling predictions of the brittle crush strength of both auxteic and conventional cellular
solids show a relationship with structural stiffness.

1. Introduction

Composite materials consist of two chemically distinct
component materials mechanically bonded such that the
overall amalgamate has more superior properties (in some
sense) than the individual constituents. For example fibre-
reinforced polymeric composites have a high strength and
stiff fibrous (or particulate) reinforcement phase embedded
within a matrix resin [1]. The matrix resin provides a uni-
form load distribution and environmental protection to the
embedded material, resulting in a lightweight heterogeneous
material. One major drawback is the relative ease with which
organic materials support combustion and produce large
amounts of smoke during burning.

An example where enhanced thermal effects may be
beneficial is in the fire retardant (FR) materials field. Here,
improved mechanical resilience, reduced oxygen permeabil-
ity, and reduced tendency to oxidation of very fragile or brittle
charred structures formed under heat or fire conditions are

desirable. Research has developed a barrier fabric containing
cellulosic fibres dispersed with an intumescent [2]. Under
heating conditions intumescent compounds (including phe-
nolic, epoxy, and polyester) are known to form foamed chars
which insulates the underlying material against heat and
flame [3]. These approaches involve changing the chemical
composition of either the matrix and/or reinforcement phase
of a suitable composite material [4].

In order for materials to be developed with enhanced
thermal and fire retardant properties, it is necessary to gain an
improved understanding of the relationship betweenmaterial
structure and both the mechanical and thermal behaviour of
the foamed charred structures formed by the aforementioned
intumescent compounds. Since typically, such components
are used in many structural applications, appreciation of
the mechanical and failure properties when subjected to
mass-loss is of particular interest especially from a design
viewpoint. The residual strength of the foamed intumescent
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is a salient characteristic, since fire presents threats to the
continued presence of the insulating and protective foam
through live loading from deposits, expansion of the under-
lying material, flame, buoyant flows, and impact of moving
debris.

Much of the recent literature is dedicated to the exper-
imental examination of structural integrity of combustible
composite materials during burning (e.g., [5]) though to date
there appears little dedicated to the modelling of such phe-
nomena. Therefore, in this paper we present computational
analytical and finite element models to evaluate the thermal
stresses in cellular solids, known to approximate charred
composites [2], with the view to developing materials with
improved thermal properties such as low thermal expansion
[6], enhanced thermal fatigue, and thermal shock resistance
[7]. The models discussed relate to the structural failure of
cellular materials and, in particular, the in-plane mechanical
properties, namely, the elastic (Young’s) moduli and Poisson’s
ratios, which in turn are related to thermal stress, induced
within these materials. For instance if a slab of an isotropic
medium is considered, then the two-dimensional thermal
stress is related to these mechanical properties; thus, [7, 8]

𝜎
𝑖
=

𝐸
𝑖
𝛼Δ𝑇

(1 − ])
. (1)

Equation (1) inherently presents criteria [9] in order to
minimize thermal stresses; namely, low elastic modulus
and/or a low magnitude of linear coefficients of thermal
expansion, with Poisson’s ratio assumed positive and constant
(] ∼ 0.3) for many materials. However, over the last couple
of decades a number of cellular solid materials have been
developed possessing negative Poisson’s ratios [10, 11]. To our
knowledge, these have not (yet) been creatively applied to the
development of microporous cellular intumescent systems,
but the potential properties (should they be so applied) are
worthy of investigation.

One model of such a two-dimensional cellular solid
structure is shown in Figure 1(a) and is formed by inverting
the diagonal ribs of the conventional honeycomb shown
in Figure 1(b). When exposed to tensile displacement,
Figure 1(a) also shows that it is accompanied by an expansion
transverse to the loading direction. That is, the structure
becomes fatter when it is stretched rather than thinner as it
would for the conventional honeycomb structure shown in
Figure 1(b). Since Poisson’s ratio is defined as the contractile
transverse strain to the tensile longitudinal strain for a
material under uniaxial tension (as shown in Figure 1(a)) in
the longitudinal direction, then Poisson’s ratio is negative.

Materials which exhibit this phenomenon of becoming
fatterwhen stretched and conversely reducing in cross section
when compressed are termed auxeticmaterials [12].Thus, the
reentrant honeycomb shown in Figure 1(a) is an example of
an auxetic structure which approximates to equivalent cellu-
lar solid foams [13]. Now turning our attention back to (1)
this indicates that auxetic materials will show lower thermal
stress over their nonauxetic (conventional) counterparts for
identical temperature changes.

The models developed in this paper take the form of
honeycomb systems shown in Figure 1, which are known to

approximate three dimensional foams [10, 13], resembling
intumescent foamed char. In addition honeycombs are suit-
able model systems for other cellular solids such as timber,
which are also known to be highly combustible and char
upon burning [14]. Another example is bituminous coal
which when charring can form a variety of ash structures,
with tenuinetwork char in particular favouring a thin-walled
honeycomb centre. Honeycombs are also representative of
idealized two-dimensional systems with which to investigate
the structural/property relationships of orthotropic materials
(e.g., composites). Thus, the models developed through
changes in the intrinsic material properties can be employed
to investigate the structural integrity of continuum and
cellular solids with and without heat. Indeed no models in
literature to date have appeared to evaluate the temperature
dependent mechanical properties of cellular solids, namely,
the elastic modulli and Poisson’s ratios. This archival lack of
attempt may be attributed to Allen and Maxwell [15] whom
state in their classic text:

“The variation of elasticity with temperature does
not yield readily to a theoretical treatment, but
experimental investigations show that in general
it decreases with rise in temperature. In 1899,
Shakespear (Phil. Mag. Vol 47, p 551, 1899) mea-
sured a percentage decrease in Young’s modulus
(E) for various metal wires when heated between
5∘C and 100∘C and found it to range from 3.6 for
copper to 1.65 for soft iron. . .For most substances
Young’s modulus is found to diminish slightly
with increase of temperature up to an absolute
temperature about half the absolute temperature
of the melting point of the material, then to
decrease more rapidly and tend to zero as the
melting point is approached.” Allen & Maxwell,
[15, page 92]

Whence the standpoint with regard to the theoretical
modelling of elasticity values has not really changed for
over seven decades. This paper will therefore show that with
the wide range of computational continuum (and cellular)
modelling methods now available a more complete theoret-
ical treatment of thermoelasticity can now be realistically
attempted. It should be noted however it is not the intention
of the work described herein to provide a detailed analysis
of particular mass-loss process in relation to burning of
polymers more to provide describe modelling procedures
once particular empirical data are available and or mod-
elling of such are available. That is, we will assume that
such charring in flame retarded resin components within a
composite always form an expanded or intumescent char.
It is therefore understood throughout the work that follows
that few polymers form intumescent chars when heated
alone under nitrogen or in air; the polyphenolics and, to
a lesser extent, the epoxies (both used as composite resin
components) are examples of significant char, forming resins
with some level of intumescent char formation occurring
under certain circumstances.Moroever, it is not our intention
to present detailedmodeeling procedures of the chemical and
physical processes taking place during charing, that is, to say
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Figure 1: (a) Reentrant (auxetic) honeycomb and (b) conventional honeycomb.
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reactions to consider when the IFR/polymer system is heated
in air there being numerous treatments in the literature (e.g.,
[2]).

2. Computational Modelling Methods

A number of models have been developed to predict the
mechanical properties of cellular solids, the most prevalent
being analytical and finite element methods or a combi-
nation of these two approaches. Analytical models for the
deformation of periodic regular honeycombs, model the
honeycomb cell walls (ribs) as beams, the deformations of
which are calculated using standard beam formulae [16].
Originally themodels assumed flexure of the honeycomb ribs
was the only deformation mechanism [10] though extended
modelling methods to these have also allowed rib hinging
(i.e., change in the angle between ribs) and stretching (i.e.,
change in the rib length) to occur concurrently with flexure
[12, 17, 18]. These models assume uniform rib thickness and
material properties, so that the mechanical properties of the
honeycomb are given exactly by those calculated for the
unit cell. Good agreement is generally achieved between
the predicted and observed elastic constants, compressive
strengths, and fracture toughness, for example.

Numerical approaches based on the finite element (FE)
method have been developed to predict the properties of
irregular and nonperiodic honeycombs [19, 20] and honey-
combs having nonuniform thickness along the length of each
rib [21] as well as regular periodic honeycombs [17]; the FE
approach also enables the effect of defects due to rib deletion
or thickness variations to be investigated [7, 20].

2.1. Analytical Modelling. As mentioned previously several
analytical models are evident in the literature, ranging from
single deformation mode models [10, 13] to the more sophis-
ticated which incorporate up to three modes of deformation,
including stretching of both diagonal and vertical ribs and
hinging of the diagonal ribs [12, 17, 18]. In general the
analytical models consist of mathematical descriptions of the
in-plane mechanical properties as a function of the intrinsic
material properties (the elastic modulus and Poisson’s ratios
of the rib material constructing the honeycomb) and the
geometry (length and thickness) of the ribs.

2.1.1.Mass-LossModels. In generalmass-loss is a complicated
chemical process consisting of four stages of pyrolysis ((1)
release of volatile products, (2) volatiles plus expanded char,
(3) char and volatiles, (4) intumescent char → aromatic
char plus some volatiles,) followed by a two-stage oxidation
(i.e., volatile oxidization follows be char oxidization). Since
the intension here was to evaluate the effective mechanical
properties of the material system using FE methods then
it was deemed inappropriate to consider the underlying
chemical principles, especially since there are a great deal
of treatments in the literature (with Staggs reviewing many
of these as early as 2001 [22]). Moreover as will become
apparent the methodology presented in this section is robust
so that any modelling or as in this case empirical data can

be used to describe the mass-loss properties of the intrinsic
material properties of the honeycomb system employed here.
To this end mass-loss from a real material was integrated
into the modelling scenarios by fitting two suitable functions
to empirical mass-loss data [23], for polystyrene [22]. The
selection of this polymer/intumescent system was due to the
experimental data being freely available to the authors at the
time of conducting this research.

The first function was a linear inverted saturation and
the other a hyperbolic tangent. In the latter case this can be
expressed thus [7]

𝑚
𝑙

𝑚
𝑜

= 𝐴
1
tanh (𝐴

2
𝑇
∗
) . (2)

In the case of (2), the mass-loss curves were obtained using
nonlinear squares method developed elsewhere [24], that is,
via numerical solution of
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these being derived from the minimization of the square of
the standard error. The solution method involved obtaining
a first approximation of the coefficient from the aforemen-
tioned linear inverted saturation function and then esti-
mating an intersection point of these two expressions by
plotting them using MathWorks MATLAB optimization tool
box, before finally utilizing a modified Newton-Raphson
method to obtain the values of the coefficients to a desired
order of accuracy. This method can also be exploited to find
expressions for the brittle collapse of cellular charred foams;
if it is assumed that during burning (hence charring) mass
is lost from all part of the material at the the same rate, the
conservation of mass renders

𝜌
𝑠
(ℎ𝑡
ℎ
+ 2𝑙𝑡
𝑙
) = 𝐴

1
𝜌
𝑠
𝑉
𝑜

𝑠
tanh (𝐴

2
𝑇
∗
) ; (4)

therefore under the restrictive assumption the thickness of
the ribs is equal, at a particular normalized temperature:

𝑡
𝑙
(𝑇
∗
) = 𝑡
ℎ
(𝑇
∗
) = 𝑡 (𝑇

∗
) =

𝐴
1
𝑉
𝑜

𝑠
tanh (𝐴

2
𝑇
∗
)

ℎ + 2𝑙

; (5)

we note that localized effects can also be incorporated into
the models by allowing the vertical to vary with temperature:

𝑡
ℎ
(𝑇
∗
) =

(𝑉
𝑜

𝑠
𝐴
1
tanh (𝐴

2
𝑇
∗
) − 2𝑙𝑡

𝑜

𝑙
)

ℎ

. (6)

Similarly restricting mass-loss form the diagonal ribs only
leads to:

𝑡
𝑙
(𝑇
∗
) =

𝑉
𝑜

𝑠
𝐴
1
tanh (𝐴

2
𝑇
∗
) − ℎ𝑡

𝑜

ℎ

2𝑙

. (7)

Equations (5) to (7) are employed in the following sub-
section in order to effectively couple mass-loss with strength
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and stiffness properties of generic honeycomb structures;
hence, approximate the structural integrity of chars known
to be three-dimensional foam analogues. The expressions in
this section must of course be taken in context as only few
polymers form intumescent chars when heated alone under
nitrogen or in air: the polyphenolics and to a lesser extent,
the epoxies (both used as composite resin components),
are examples of significant char-forming resins with some
level of intumescent char formation occurring under certain
circumstances. Inclusion of intumescent flame retardants
(IFRs) in polymers will obviously give rise to intumescent
char formation and polypropylene, while being nonchar-
forming generally.

2.1.2. Temperature Dependent Mechanical Property Models.
The majority of the analytical approaches used to date have
maintained the thickness of the ribs constant. However,
Whitty et al. [25] presented an analytical model where the
ribs of both the diagonal and vertical ribs can vary. Hence
here we introduce mass-loss into the cellular system (which
approximate cellular foams) using adaptations of analytical
and numerical modelling evident in the literature [18, 26].

Here, the salient expressions in order to calculate the
temperature dependent in-plane mechanical properties of
honeycomb systems are derived. We apply expressions for
elastic modulli, in the two principal orthogonal (𝑥, 𝑦) direc-
tions [7, 17] and neglect the presence hinging as the brittle
failure; hence, small displacements of the resulting char
structures render this mechanism redundant. Consider

𝐸
𝑥
=

cos 𝜃
𝑏 (ℎ/𝑙 + sin 𝜃)

[

sin2𝜃
𝐾
𝑓

+

cos2𝜃
𝐾
𝑙

𝑠

]

−1

,

𝐸
𝑦
=

(ℎ/𝑙 + sin 𝜃)

𝑏 cos 𝜃
[

cos2𝜃
𝐾
𝑓

+

sin2𝜃
𝐾
𝑙

𝑠

+

2

𝐾
ℎ

𝑠

]

−1

.

(8)

It should be noted that the𝑦-directed properties are functions
of both the diagonal and vertical rib temperature functions,
whereas the 𝑥-directed properties are independent of the
vertical rib temperature function. Moreover, since the force
constants are analogous to a stiffness corresponding to this
particular mode of deformation, then as the stretching force
constant approach infinity (i.e., 𝐾

𝑙

𝑠
→ ∞), the model

presented reverts to Gibson and Ashby’s flexural model
[10, 13]; this is because infinite stiffness implies a particular
deformation mode being redundant. Referring back to (8) it
is clear that as the stretching stiffness approaches this limit
then these terms vanish, rendering themechanical properties
functions of the flexural stiffness alone. The resulting formu-
lae obtained from this process are identical to those in [12, 18]
once the definition of the stretching stiffness is exploited.
Furthermore, reduction in the rib thickness corresponds to
mass-loss of the system; which by virtue of equation (2)
the mass loss from the polymeric char is 𝑎 function of
temperature. Whence we use the definitions of the flexural
and stretching stiffness together with the fact that thickness
of each of the ribs is a function of temperature, by virtue of

(5) to (7), gives the required temperature dependent principal
orthotropic elastic modulli functions:

𝐸
𝑥
(𝑇
∗
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𝐸
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Similarly Poisson’s ratios temperature dependent functions
are formulated from [17, 25]
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via substitution of (5) to (7) rendering
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These expressions allow mass-loss to be incorporated
into both the numerical and analytical modelling procedures
via rib thickness variations, which in turn are functions
of temperature. Poisson’s ratios and elastic moduli were
calculated for the following three scenarios: mass-loss from
(i) both vertical and diagonal ribs simultaneously; (ii) the
vertical ribs only; (iii) diagonal ribs only, via application of
(5) to (7).

2.1.3. Temperature Dependent Strength Models. It should be
noted at all the elastic moduli data also enable inference as
to the failure of these material systems. It is suggested in [13]
that brittle failure of a honeycomb is related to the fracture
strength of the intrinsic material by

𝜎
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𝜌
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𝑓
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Since the char structures are indeed brittle, the intrinsic
material fracture stress is simply proportional to a constant
failure strain and the intrinsic material elastic modulus. Fur-
thermore the finite element (FE)modelling of the proceeding
section indicates the diagonal ribs are in a much higher state
of stress than the vertical ribs [7]. Utilizing these conditions
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together with (14), followed by application of (9) and (10),
gives coupled strength and temperature expressions; thus,
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2.2. Finite Element Modelling. Numerical FE models were
used initially to validate the analytical procedures detailed
in the previous section since for the mass-loss scenarios
considered throughout this work could not be compared
directly with experiment. Homogenized FE methods are
evident in the literature (e.g., [27]) which are based on
two-scale FE spaces that are obtained by augmenting the
standard polynomial FE spaces with problem dependent,
nonpolynomial microshape functions that reflect the oscil-
latory behavior of the solution. These are used in the most
part for problems where the underlying coefficients of the
differential equation(s) and subsequent solutions have highly
oscillatory periodic patterns, which in turn induce multiple
scale behavior. In principle there is no reason why such an
approach could not be employed to predict the thermome-
chanical response of the material systems described in this
paper. This said, such routines are not yet readily available
with in commercial software [28] and therefore at this point
not yet considered in the literature as fully validated for the
solution of the problems described herein.

Indeed, the more classical FE models described in the
following subjections are able to predict other thermoelastic
properties of periodic honeycomb systems, which as far as
we are aware until now, analytical models do not exist in the
literature.These thermoelastic property predictive FEmodels
were solved using a two-stage modelling process in order to
investigate the thermal stress distributions throughout these
cellular systems. The details of the FE modelling procedures
will now be considered in turn.

2.2.1. Mechanical Property Models. FE calculations were per-
formed using two commercial preparatory finite element
codes [28, 29]. The code [29] being employed purely for
verification purposes. Each honeycomb cell rib wasmodelled
by one (diagonal rib) or two (vertical rib) linear elastic beam
elements (i.e., BEAM3 [28] and/or L.E.B.E. [29]). This is
consistent with previous FE studies in which it has been
shown that one beam element per cell wall is sufficient to
accurately model the linear elastic behaviour [17]. The ribs
were rigidly fixed to each other at the junctions. Arrays
ranging from 15 × 15 to 21 × 21 unit cells were gener-
ated. These are consistent with typical honeycombs used in
the previous theoretical and experimental studies [30], for
comparison and validation purposes, whilst also ensuring
that a sufficiently large number of cells were modelled to
enable the honeycombs to approximate infinite networks
amenable to modelling by analytical methods described in
the previous section. Periodic boundary conditions (PBC)
identical to those imposed by Silva and Gibson [20] were

applied, that is, by constraining the nodes on the edge of
the honeycomb opposite the edge to which force was applied
(Figure 2(a)). The nodes were constrained from moving in
the loading direction and from rotating in the plane of the
honeycomb. In order to gain ameasure of Poisson’s ratio these
constrained nodes were free to move perpendicular to the
loading direction (the transverse direction).

Strains were determined by calculating the fractional
change in distance between pairs of nodes aligned along the
direction of interest and offset from each of the opposing
edges of the honeycomb by one-unit cell. This was done
to minimize edge effects and is again consistent with the
previous theoretical and experimental works for comparison.
Forces were applied to the nodes of the free edge, opposite
the fixed edge, and in a direction perpendicular to the
fixed edge. The total force applied to the free edge was
obtained by summing all the applied nodal forces, which
then enabled the applied stress to be calculated by dividing
the total applied force by the area (i.e., the tributary area)
of the edge upon which the force was applied. Preliminary
calculations demonstrated linear stress-strain and transverse
strain-longitudinal strain behaviour, up to applied strains
of at least 0.02%, as also observed in the experimental
data and predicted by the analytical models [30]. Hence
in order to enable efficient calculation of the mechanical
properties of a large number of honeycombs, properties were
calculated for a strain of ∼0.02% in the loading direction
in all cases. Evaluation of these stains and stresses enabled
the in-plane mechanical properties to be calculated from
standard engineering definitions of the elastic modulus and
Poisson’s ratio [8, 16].

The effects of mass-loss were incorporated into both
the numerical and analytical modelling procedures via rib
thickness variations, which in turn are functions of the
temperature, that is, (2) and (13). Poisson’s ratios and elastic
moduli were calculated for the following three scenarios: (i)
mass-loss from both vertical and diagonal ribs simultane-
ously; (ii) mass-loss from the vertical ribs only; (iii) mass-loss
from only the diagonal ribs.

Thesemodels were also used to predict to the temperature
dependent compressive strengths by conducting a further
linear elastic bulking analysis and evaluating the maximum
stress of structure at the first mode of bulking.

2.2.2. Thermal Stress Models. Thermal stress can be induced
as a result of a uniform temperature change in the solid or as a
result of a temperature gradient; in this work we investigated
both phenomena via application of a structural analysis and
a coupled thermal-structural analysis.

Structural Thermal Stress Analysis. This is the simplest form
of thermal stress analysis; here a reference temperature of
20∘C was set and all the nodes were raised to an elevated
temperature of 120∘C in steps of 10∘C. All the nodes at the
edges of the model were restrained from movement in all
degrees of freedom, hence clamping the outside of the model
and therefore inducing the required thermal stress. These
boundary conditions are depicted in Figure 2(b).
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Figure 2: Honeycomb models: (a) mechanical and (b) thermal boundary conditions (temperature difference for most simulations being
100K).

Coupled Thermal-Structural Analysis. This process involved
the solution of a steady state heat conduction equation (i.e.,
Laplace’s equation [31]) followed by a static solution with all
temperatures applied as body loads at the element nodes.
In the thermal analysis, the beam elements were replaced
by two-dimensional conductive bar elements (i.e., ANSYS—
LINK32 [28]). In the solution phase a thermal gradient was
applied by holding the nodes of one edge at temperature and
the nodes of the opposing edge at a higher temperature, and
a standard steady-state thermal solution was then sought. In
the static analysis the nodes on each edge of the honeycomb
were clamped from movement in any direction and from
rotation in the (𝑥, 𝑦) plane as shown in Figure 2(b). This
model therefore approximates a three-dimensional foam
being heated on the outside with the inner portion at an
ambient temperature.

3. Results and Observations

The modelling techniques were initially verified with other
models evident in the literature [7, 25] as well as experimental
data. The FE and analytical models showed good agreement
with the experimental data [30], with the rib flexure model
showing the best correlation [17] with elasticmoduli, whereas
the more general models showed improved agreement for
Poisson’s ratios [7, 25].The FE calculations are consistent with
the analytical models and the experimental data, indicating
that the additional constraint of precluding rib hinging in
the FE models is acceptable for the honeycombs studied here
[7, 17, 20]. In almost all cases the analytical and numerical
models consistently underestimate the experimental elastic
moduli for both honeycombs. All the data (experimental
and theoretical) confirmed that the reentrant honeycomb is
indeed auxetic (i.e., possesses a negative Poisson’s ratio).

Excellent agreement was shown between the empirical
mass-loss data [32] and the suggested model functions as

shown in Figure 3. Here the best correlation is between the
hyperbolic tangent function and the experimental data [23].
This is probably due to this function being more akin to the
shape of these data. Additionally, a nonlinear least square
approachhas been employedhere in order to fit the data to the
function (which employs a higher order numerical scheme).

The hyperbolic tangent curve shows the classic trend.
Initially there is very little change in themass of the substance,
and up until a temperature of about 400∘C (the onset of
combustion) the mass-loss is mainly due to off-gassing alone;
then a rapid increase in the next 100∘C as combustion
generates charring and both convective and radiant heating of
thematerial from hot surfaces and flame. It is not the purpose
of this paper to consider complex ignition processes. The
mass-loss continues at an almost constant highly increased
rate until 10% of the mass of the substance is remaining,
after which the rest of the mass dies away slowly until a
temperature of 800∘C at which the substance has completely
decomposed. Note that this model is being applied to fabric
material, rather than solid. Moreover, the complex insulating
properties of the char and real-world external effects that
might dislodge the char are neglected.

3.1. Effects of Mass-Loss on Mechanical Properties. The cal-
culated elastic moduli for the 𝑥-direction and 𝑦-direction
are shown in Figures 4(a) and 4(b) for a conventional
honeycomb (resp.). Equivalent calculations for a reentrant
honeycomb structure are shown in Figures 5(a) and 5(b),
with the calculated elastic modulus shown as a function of
temperature.

These are given for the aforementioned three types of
mass-loss scenarios (using geometrical and intrinsic material
properties as the reference [17, 30]); open symbols are the
FE model calculations. Also shown are curves calculated
from the general analytical model presented in the previous
section.
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Figure 3: Comparisons between assumed mass-loss functions and
empirical mass-loss data.

All three mass-loss scenarios lead to a decrease in 𝐸
𝑥

with temperature as evidenced in Figures 4(a) and 5(a), with
similar trends being exhibitedwhenmass is lost globally from
the whole structure (i.e., the diagonal-plus-vertical ribs) and
locally from the only the diagonal ribs, which is expected
due to flexure being the dominate deformation mechanism
in particularly brittle cellular structures [7]. This said, the
reduction in this mechanical property due to local mass-loss
from the vertical ribs is insignificant when compared to the
other two mass-loss scenarios. In fact the elastic modulus in
this orthogonal direction is maintained over a wide range of
temperatures (40∘C < 𝑇 ∼ 450

∘C).This of course implies that
ifmass is only lost from these ribs during burning the stiffness
of structure is not compromised.

Initial decrease in 𝐸
𝑦
is also shown in Figures 4(b) and

5(b), which is much less pronounced for local mass-loss from
the vertical ribs than from the diagonal ribs. Local mass-loss
from the vertical ribs results reveals a very small reduction
in 𝐸
𝑦
over the temperature range 40∘C < 𝑇 < 400∘C; this is

accompanied then by a rapid reductionwhen the temperature
is increased by a further 50∘C. Only as themass of the vertical
ribs tends to zero (corresponding𝑇 ∼ 450

∘C–455∘C) does the
𝐸
𝑦
curve assume a lower value for vertical rib mass-loss than

for the same temperature of the diagonal ribs, which extends
until a temperature of 𝑇 ∼ 460

∘C; mass-loss from diagonal
only also rapidly tends to zero after this temperature. For the
global mass-loss (i.e., where mass is lost from both types of
ribs simultaneously), then 𝐸

𝑦
→ 0 as 𝑇 → 525

∘C.Themost
rapid reduction in the value of 𝐸

𝑦
is found via local mass-loss

from the diagonal ribs. Global reduction of the diagonal-plus-
vertical ribs simultaneously results in a similar reduction in
𝐸
𝑦
but to less of an extent than mass-loss from the vertical

ribs only.
The variation of Poisson’s ratio ]

𝑥𝑦
as a function of tem-

perature inducedmass-loss is shown in Figures 6(a) and 7(a).
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Figure 4: Conventional honeycomb in-plane normalized elastic
moduli values as functions of temperature.

As for 𝐸
𝑥
, the variation of vertical rib mass has no effect on

]
𝑥𝑦
; reducing the mass of both types of rib simultaneously or

locally from the diagonal ribs only leads to the magnitude of
]
𝑥𝑦

increasing for both honeycombs.
Figures 6(b) and 7(b) show the variations in ]

𝑦𝑥
with

temperature due to temperature dependent mass-loss for
the conventional and reentrant honeycombs, respectively.
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Figure 5: Reentrant (auxetic) honeycomb in-plane normalized elas-
tic moduli values as functions of temperature. Auxetic honeycomb
rib reducion data.

For both honeycombs, mass-loss from the vertical ribs leads
to a reduction in the magnitude of ]

𝑦𝑥
(i.e., this becomes

less negative where the auxetic honeycomb is concerned),
whereas local mass-loss from the diagonal or (global) mass-
loss from simultaneously both ribs leads to an increase in the
magnitude of ]

𝑦𝑥
(which implies it becomes more negative

for the reentrant honeycomb).
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Figure 6: Conventional honeycomb in-plane Poisson’s ratio varia-
tions with temperature.

It should be noted that in all cases the FE and analytical
models are in excellent agreement for all calculations of these
mechanical properties.

3.2. Thermal Stresses. Preliminary FE calculations showed
that the rib stresses were all negative (i.e., compressive) if a
positive temperature gradient (heating) was applied; and for
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Figure 7: Reentrant (auxetic) honeycomb in-plane Poisson’s ratio
variations with temperature.

negative temperature gradients (cooling) the converse was
observed.

3.2.1. Structural Analysis. Figure 8(a) shows a plot of the
stresses in equivalent ribs of conventional and reentrant
honeycombs (using the Alderson et al. geometry employed
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Figure 8: Thermal stress distributions due to (a) constant tempera-
ture change of 100∘C and (b) temperature gradient of 100∘C.

previously [17, 30]) when subjected to a total temperature
change of 100∘C; that is, all the nodes in the model were set
to 120∘C and the calculations performed with reference to an
ambient temperature (in this case 20∘C). Here the data lie
below the equality line, indicating a higher stress buildup in
the conventional geometry. Also evident are three regions of
stress: one of high stress (diagonal ribs), low stress (vertical
ribs) and an intermediate level corresponding to the model
boundaries. The data at the model boundaries are therefore
affected by model boundary conditions. That is, the model
edge effects are giving inaccurate estimates of the true stress
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Figure 9: Thermal stress comparisons between the auxetic and
conventional honeycombs subjected to a 100∘C/m temperature
gradient.

level. It should also be noted that this area is also subdivided
into two stress levels; these yet again correspond to high
diagonal rib stresses and low vertical rib stresses.

Figure 8(b) shows a graph of the maximum (diagonal
ribs) and minimum (vertical ribs) stress values in the central
unit cell of the honeycomb (here a regular honeycomb was
employed [7, 17, 20] and only the rib angle changed from
+23∘ to−23∘, thus ensuring that both systemswere of identical
mass) via the FE modelling described in Section 2.1 Here the
temperature of all the nodes was initially set to 20∘C then
increased up to a value of 120∘C (in steps of 10∘C where
the FE calculations were concerned). Good agreement can
be observed between the modelling techniques. A perfectly
correlated regression coefficients exists between all the FE
and analytical modelling for all data sets as shown in Table 1.
The strong linear relation is expected since a temperature
independent linear CTE was used in the underlying FE
materialsmodel.Moreover a linear relationship between both

Table 1: Regression coefficient data.

Honeycomb Model Regression Constant Correlation
coefficient(MPa/K) (MPa)

Conventional Diagonal 0.0517 −1.035 1.000
Reentrant Diagonal 0.0465 −0.931 1.000
Conventional Vertical 0.0329 −0.658 1.000
Reentrant Vertical 0.0151 −0.3017 1.000

honeycomb rib stresses and the uniform temperature of the
solid has been demonstrated previously [7].

The linear regression here is most informative showing
that conventional honeycomb increases with temperature at
a greater rate than the reentrant. The negative values for the
constant can be explained by extrapolation of the graph in
Figure 8(b), to zero with its magnitude being ameasure of the
increase in residual stress at ambient temperature. Therefore
these data together with those presented in Figure 8(b)
suggests that the auxetic honeycomb has lower stress buildup
than the conventional honeycomb when subjected to uni-
form temperature changes. In fact, it is evident that the
auxetic diagonal rib stress is lower than even the conventional
vertical ribs’ stresses.Therefore, the conventional honeycomb
would be expected to fail before the auxetic honeycombwhen
subjected to uniform temperature changes.

The 𝑥-directed mechanical properties (𝐸
𝑥
and ]
𝑥𝑦
) were

predicted to be independent of mass-loss of the vertical
ribs. As noted previously, the analytical expressions [7, 17]
(equations (9) and (12)) do not contain terms (𝐾ℎ

𝑠
) relating

to the mass of this particular rib. For loading in the 𝑥-
direction the vertical ribs do not hinge or flex and do not
have a component of force to cause stretching, and so they are
redundant with respect to the 𝑥-directed mechanical prop-
erties. The 𝑦-directed mechanical properties do, however,
depend on the stretching stiffness of the vertical ribs and
become particularly sensitive to vertical rib mass-loss at high
temperatures.

Additionally, vertical rib stretching becomes dominate
only at higher temperatures (and hence beamswith extremely
thin vertical ribs), inwhich case the use of elastic beam theory
to describe the deformation may become inappropriate.
Mass-loss of the diagonal rib leads to a rapid reduction in
the elastic moduli (i.e., 𝐸

𝑥
and 𝐸

𝑦
) of the honeycombs as

the temperature of the solid (intrinsic) material increases. It
has also been noted that honeycombs deform primarily via
rib flexure [10, 13] when the diagonal and vertical ribs are of
comparable thickness. In the flexural limit of the analytical
model expressions, that is, (9) and (10), imply the elastic
moduli are proportional to 𝐾

𝑓
and, therefore, to 𝑡

3

𝑙
(𝑇
∗
) this

explains the rapid decrease in the moduli with temperature
as mass is lost from the diagonal ribs.

3.2.2. Coupled Structural-Thermal Field Analysis. Figures
9(a) and 9(b) show the comparison between the calculated
maximum stress values in the equivalent ribs of the conven-
tional and reentrant honeycombs, with both subject to an
identical temperature gradient in the 𝑥-direction. Almost all
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Figure 10: (a) Conventional and (b) auxetic honeycomb residual strength predictions.

the rib stresses lie below the equality line, Figure 9(a), indicat-
ing that more stress buildup is observed in the conventional
honeycomb. The phenomemum is shown much more clearly
in Figure 9(b) where all data pooints fall below the equality
line (i.e., where the calculated stresses for the honeycombs are
equal). This can be understood qualitatively by considering
the schematic inserts in Figure 9 which show the expected
thermal stress build up at the rib junctions in the two types
of honeycomb. For the conventional honeycomb, thermal
expansion of the ribs causes a buildup of stress at the junction
as a consequence of the fact that the ribs are expanding
against each other, leading to eventual failure at the junction.
For the reentrant honeycomb, on the other hand, the ribs are
able to expand into free space at the junction, that is, they are
not acting against each other to the same extent, leading to
reduced thermal stress build up and therefore the junction
will be expected to remain intact to greater thermal loads.

The FE and analytical models indicate that reentrant
honeycombs will have enhanced thermal properties, such
as reduced thermal stress by virtue of (1). Moreover, other
thermal properties will be enhanced [7, 25], such as the
cellular solids’ thermal shock resistance; and the maximum
material heating rate. From standard expressions [9] the
thermal shock resistance, Δ𝑇

𝑐
, of an isotropic material is

related to Poisson’s ratio, ], by

Δ𝑇
𝑐
∝ (1 − ]) . (16)

This expression illustrates that the thermal shock resistance
of a material is predicted to be enhanced when is negative
(i.e., an auxetic material) compared to when it is positive (a
nonauxetic material), consistent with the FE model calcula-
tions for the honeycombs presented in this paper.

Strength predictions due to the temperature and hence
mass-loss are shown in Figures 10(a) and 10(b) for the
conventional and auxetic honeycombs, respectively. Here all
curves exhibit analogous trends to the original empirical
mass-loss curve (5). That is, the strength properties though
significantly anisotropic initially retrain their strength for the
first 300∘C. Due to the on set of combustion the crushing
strength of the materials reduce as the temperature is raised a
further 200∘C; thereafter, this property reduces at a similar
rate to which it began. It should also be noted that in
general the analytical and FE predictions are in remarkable
agreement especially with respect to the auxetic honeycomb
though in both cases the analytical model predicts lower
values of these normalized strength values. This agreement
deteriorates at higher temperature which coincides with a
rapid reduction in slope of the analytical modelling predic-
tions. Interestingly, for both honeycombs investigated here
the brittle failure of these structures appears related to the
elasticity anisotropy. In essence this implies a link (though
this may be indirect) between the crush strength and the
elastic modulus (stiffness). Such a phenomena is not general
in continuummaterials, with a salient counterexample being
the strength-stiffness (elastic modulus) relationships for steel
and titanium. Moreover, in both principal orthogonal cases
the trends of the strength (Figure 10) and moduli (Figures
4 and 5) are related to the underlying mass loss from the
material systems under investigation. That is the collapse
strength and elastic moduli values are maintained until a
temperature of about 300–335∘C for the intrinsic material
of this particular investigation. Over the next 150∘C both
the strength and stiffness rapidly reduce with the temper-
ature increase by an average of 87%. Additionally, due to
mainly this loss of stiffness there is a significant reduction
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in the anisotropy of the cellular solids. These phenomena
are presumably attributed to the the decomposition of the
material at the monocular level due to the breaking of the
primary covalent bonds which make up the cross-linking of
the thermosetting polymer. If this is the case, this provides
further validation of the choice of cellular solid modelling
systememployed thoughout thework described in this paper.
Whence, the generality of these phenomena are well worthy
of much further future investigation.

4. Conclusions

Analytical and FEmethods have been employed to investigate
the effects ofmass-loss on the structural integrity and thermal
stress distributions of cellular solids known to take the
form of a char [7], during burning. The mass-loss was
integrated into the modelling procedures using an analytical
hyperbolic tangent function [7] and employing an established
nonlinear least squares method [24] to evaluate two shaping
constants necessary to fit the function to empirical mass-loss
data [23, 32], which theoretically can be evaluated for any
polymeric material. The paper has also attempted to provide
an acceptable analytical computational theoretical treatment
of thermoelasticity. Moreover for the limited honeycombs
investigated here, a link between the stiffness and crushing
strength at elevated temperatures was established. We do
submit however that underlining causal mechanisms are
worth further investigation, which is now progressing. We
nowfinally summarize themajor findings from themodelling
techniques which have been outlined in the work presented
throughout this paper.

(i) The mechanical properties of polymeric honeycombs
have been shown to be functions of temperature and
hence the relative densities of these cellular systems.
In principle this technique can be employed to predict
the structural integrity and resulting thermal stress
distributions for any foamed polymeric cellular solid
undergoing mass-loss.

(ii) Mass-loss from the vertical ribs only leads to a
reduction in the magnitude of 𝐸

𝑦
and ]
𝑦𝑥
.

(iii) 𝐸
𝑥
and ]
𝑥𝑦

are almost independent of mass-loss from
the vertical ribs.This is because there is no component
of an applied 𝑥-directed load with which to cause
stretching, hinging, or flexing of vertical ribs.

(iv) Mass-loss from only the diagonal ribs leads to a
decrease in both 𝐸

𝑦
and 𝐸

𝑥
, but leads to an increase

in the magnitude of both Poisson’s ratios.
(v) When exposed to constant temperature changes,

cellular auxetic materials show less stress buildup
than conventional solids. Thus it may be concluded
that related properties such as thermal shock will be
increased.

(vi) For all of the mass-loss scenarios investigated the
thermal stress has been shown to rapidly increase
as mass is lost from cellular systems. Moreover the
brittle collapse of the structure appears related to the

stiffness in that particular principal orthogonal direc-
tion under consideration, which differs significantly
with what is observed in many continuum material
analogues.

It is however noted that current empirical evidence from
many sources suggests that typical polymer-based intumes-
cent chars comprise spherical or distorted spherical voids
commensurate with a normal foam cellular structure not
an auextic one as investigated here. The paper therefore
provides an appropriate computational models to determine
the mechanical properties of char structures if and only if the
variation in the underlining properties of the intrinsicmateri-
als is known from (as in this case) empirical data and/or other
chemical/mathematical modelling methods [22].

The novelty of this research therfore is determination of
a porous (intumescent) char has improved strength retention
properties when exposed to an intense heat source if it has an
auxetic property as opposed to one which has a conventional.
However, the validity of the research hypothesis could be
increased if there was evidence that actual intumescent
chars had an auxetic structure or the potential to form one.
Current empirical evidence from many sources suggests that
typical polymer-based intumescent chars comprise spherical
or distorted spherical voids commensurate with a normal
foam cellular structure. With the advancement made in the
production of auxetic composite materials [25] and rein-
forcement fibres [30] this work has been successful in only
presenting favourable microstructures in order to maximize
the structural integrity of chars under fire conditions which
include mass-loss. It also noted that with the rapid increase
of the use of the so-called gFEM method [27] now renders
a further avenue of validation of the approaches described
throughout this paper.

Nomenclature

𝑏: Honeycomb breadth
ℎ: Length of vertical rib
𝑙: Length of diagonal rib
𝑚
𝑜
: Original mass of cellular solid

𝑚
𝑙
: Mass-lost from cellular solid

𝑡
=(ℎ,𝑙)

: Current thickness of vertical
or diagonal rib

𝑡
𝑜

=(ℎ,𝑙)
: Original thickness of vertical
or diagonal rib

𝐸
𝑖
: Elastic modulus in the 𝑖th

direction
𝐸
𝑠
: Elastic modulus of solid

continuum isotropic material
𝐾
𝑓
: Flexural stiffness of a diagonal

rib
𝐾
ℎ
: Hinging stiffness of a diagonal

rib
𝐾
𝑙

𝑠
: Stretching stiffness of

diagonal rib
𝐾
ℎ

𝑠
: Stretching stiffness of vertical

rib
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𝑁
𝑥
: Number of unit cells parallel

to the abscissa
𝑁
𝑦
: Numbers of unit cells parallel

to the ordinate
Δ𝑇: Temperature change
Δ𝑇
𝑐
: Thermal shock

𝑇
∗
= ((𝑇 − 𝑇

𝑜
)/(𝑇
0
− 𝑇
𝑓
)): Dimensionless temperature

𝑇
𝑜
: Original (ambient)

temperature
𝑇
𝑓
: Final (burning) temperature

𝛼: Linear coefficient of thermal
expansion (CTE)

𝜀
𝑓

𝑖=(𝑥,𝑦,𝑧)
: Fracture strain of

honeycomb/intrinsic material
𝜃: Orientation angle of diagonal

rib
]: Poisson’s ratio of solid

continuum isotropic material
]
𝑖=(𝑥,𝑦),𝑗=(𝑥,𝑦),𝑖 ̸=𝑗

: Orthotropic longitudinal (𝑗)
and transverse (𝑖) Poisson’s
ratio.

𝜌
𝑠
: Solid intrinsic material

density
𝜌: Honeycomb material density
𝜌
∗: Normalized residual relative

density
𝜎
𝑖=(1,2,3)

: Principal stress
𝜎
𝑓

𝑖=(𝑥,𝑦,𝑠)
: Fracture strength of

honeycomb/intrinsic
material.
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