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ABSTRACT
We analyse a set of collisionless disc galaxy simulations to study the consequences of bar
formation and evolution on the M•−σe relation of supermassive black holes (SMBHs). The
redistribution of angular momentum driven by bars leads to a mass increase within the central
region, raising the velocity dispersion of the bulge, σ e, on average by ∼12 per cent and as much
as ∼20 per cent. If a disc galaxy with an SMBH satisfying the M•−σe relation forms a bar,
and the SMBH does not grow in the process, then the increase in σ e moves the galaxy off the
M•−σe relation. We explore various effects that can affect this result including contamination
from the disc and anisotropy. The displacement from the M•−σe relation for individual model
barred galaxies correlates with both the bulge-to-total stellar mass ratio, M(B)/M(B + D), and
the 2D anisotropy, βφ(B + D), both measured within the effective radius of the bulge. Overall,
this process leads to an M•−σe for barred galaxies offset from that of unbarred galaxies,
as well as an increase in its scatter. We assemble samples of observed unbarred and barred
galaxies with classical bulges and find tentative hints of an offset between the two consistent
with the predicted. Including all barred galaxies, rather than just those with a classical bulge,
leads to a significantly larger offset, which is mostly driven by the significantly larger offset
of pseudo bulges.

Key words: black hole physics – galaxies: bulges – galaxies: evolution – galaxies: kinematics
and dynamics – galaxies: nuclei – galaxies: structure.

1 IN T RO D U C T I O N

One of the most striking results to emerge from Hubble Space
Telescope (HST) observations is that essentially every galaxy with
a significant stellar spheroid contains a supermassive black hole
(SMBH) whose mass is correlated with properties of the host galaxy.
For instance the masses of SMBHs, M•, are found to correlate with
the bulge luminosity, Lbul (Kormendy & Richstone 1995; McLure &
Dunlop 2002; Marconi & Hunt 2003; Graham 2007; Gültekin et al.
2009; Sani et al. 2011; McConnell et al. 2011; Beifiori et al. 2012;
Graham & Scott 2013), with the bulge mass, Mbul (Magorrian et al.
1998; Marconi & Hunt 2003; Häring & Rix 2004; Sani et al. 2011;
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Beifiori et al. 2012; Graham 2012), the bulge velocity dispersion,
σ e (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Merritt &
Ferrarese 2001; Tremaine et al. 2002; Ferrarese & Ford 2005;
Gültekin et al. 2009; Graham et al. 2011; McConnell et al. 2011;
Beifiori et al. 2012), with the mass of the galaxy (either stel-
lar or total), Mgal (Ferrarese 2002; Baes et al. 2003; Kormendy
& Bender 2011; Volonteri, Natarajan & Gültekin 2011; Beifiori
et al. 2012), with the Sérsic index of the surface brightness
profile, n (Graham et al. 2001; Graham & Driver 2007), with
the spiral pitch angle (Seigar et al. 2008; Berrier et al. 2013),
with the number of globular clusters (Burkert & Tremaine 2010;
Harris & Harris 2011; Rhode 2012), with the globular cluster sys-
tem velocity dispersion (Sadoun & Colin 2012; Pota et al. 2013)
and with the inner core radius, rγ (Lauer et al. 2007; Kormendy &
Bender 2009). Amongst these, the M•−σe relation with the form
log (M•/M�) = α + β log (σ/200 km s−1) (Ferrarese & Merritt
2000; Gebhardt et al. 2000) is one of the tightest (Gebhardt et al.
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Table 1. Published values for the zero-point, α, slope, β, and scatter
of the M•−σe relation from a number of studies. For the Graham
et al. (2011) and McConnell & Ma (2013) studies, we also present
the results found for different galaxy type.

α β ε0

Gebhardt et al. (2000) 8.08 ± 0.06 3.75 ± 0.3 0.3
Merritt & Ferrarese (2001) 8.11 ± 0.11 4.72 ± 0.36 0.35
Tremaine et al. (2002) 8.13 ± 0.06 4.02 ± 0.32 0.33
Ferrarese & Ford (2005) 8.22 ± 0.06 4.86 ± 0.43 0.34
Gültekin et al. (2009) 8.12 ± 0.08 4.24 ± 0.41 0.44
Graham et al. (2011) 8.13 ± 0.05 5.13 ± 0.34 0.43
Beifiori et al. (2012) 8.19 ± 0.07 4.17 ± 0.32 0.41
McConnell & Ma (2013) 8.32 ± 0.05 5.64 ± 0.32 0.38

Graham et al. (2011)
Barred 7.80 ± 0.10 4.34 ± 0.56 0.36
Unbarred 8.25 ± 0.06 4.57 ± 0.35 0.37
Elliptical 8.27 ± 0.06 4.43 ± 0.57 0.34

McConnell & Ma (2013)
Early type 8.39 ± 0.06 5.20 ± 0.36
Late type 8.07 ± 0.21 5.06 ± 1.16

2003; Marconi & Hunt 2003; Gültekin et al. 2009). The intrin-
sic scatter in this relation, ε0 has increased in recent studies (see
Table 1). Here, β is the slope and α is the zero-point of the re-
lation. Measurements of β have produced a variety of different
results (see Table 1). Early estimates varied from 3.75 ± 0.3
(Gebhardt et al. 2000) to 4.8 ± 0.5 (Ferrarese & Merritt 2000). More
recently, Gültekin et al. (2009) found β = 4.24 ± 0.41, whereas
McConnell & Ma (2013) found β = 5.64 ± 0.32 and Graham et al.
(2011) found β = 5.13 ± 0.34, demonstrating that the slope of
the relation remains imperfectly determined. Sources of this vari-
ation are the uncertainty in the data (see for example section 5 of
McConnell & Ma 2013), different linear regression techniques (e.g.
Graham et al. 2011) and different slopes in different galaxy types.
McConnell & Ma (2013) find different values of α and β for early-
and late-type galaxies (see Table 1) while Graham et al. (2011)
and Graham & Scott (2013) find different values of α and β for
barred and unbarred galaxies. Graham & Scott (2013) find a differ-
ent zero-point but common slope for barred and unbarred galaxies;
some of the difference in slope may therefore even be due just to
a difference in the fraction of barred galaxies in different samples.
Such differences must be explained by any model explaining the
link between SMBHs and their hosts.

SMBH scaling relations suggest that there is a connection be-
tween the growth of the SMBH and the bulge. However, the causal
basis of these scaling relations is still not fully understood. Does the
presence of an SMBH govern the bulge’s growth or is the growth
of the SMBH determined by the bulge it resides in? The vast en-
ergy available from an accreting SMBH during its phase as an active
galactic nucleus (AGN) can couple the SMBH to its host, since only
a small fraction of this energy is needed to alter the temperature and
structure of the surrounding interstellar medium (Silk & Rees 1998;
King 2003; Wyithe & Loeb 2003; Di Matteo, Springel & Hernquist
2005; Murray, Quataert & Thompson 2005; Sazonov et al. 2005;
Younger et al. 2008; Booth & Schaye 2009; Power et al. 2011).
Alternatively, the M•−σe relation could merely be a consequence
of the merger history in a hierarchical universe (Adams, Graff &
Richstone 2001; Adams et al. 2003; Volonteri & Natarajan 2009;
Shankar et al. 2012), as could be scaling relations with galaxy or

bulge mass (Peng 2007; Jahnke & Macciò 2011) and the tightening
of the relations with galaxy mass (Hirschmann et al. 2010).

Graham (2008b) and Graham & Li (2009) found that SMBHs in
barred galaxies have an offset from the M•−σe relation of ellipti-
cal galaxies (see also Graham et al. 2011; Graham & Scott 2013).
In addition, excluding barred galaxies from the M•−σe relation re-
duces the scatter ε0 from 0.47 to 0.41 (Graham & Li 2009). Both Hu
(2008) and Gadotti & Kauffmann (2009) point out that the presence
of bars could be responsible for the difference in these M•−σe rela-
tions. Graham (2008a) and Graham & Li (2009) obtained an M•−σe

relation for unbarred galaxies and Graham et al. (2011) showed that
barred galaxies have an offset of ∼0.5 dex from this relation. On the
other hand, amongst active galaxies with M• < 2 × 106 M�, Xiao
et al. (2011) found no significant offset of barred galaxies relative to
the M•−σe relation of unbarred galaxies. Likewise, in a sample of
galaxies with active nuclei for which they obtained upper limits on
M•, Beifiori et al. (2009) found no systematic difference between
barred and unbarred galaxies.

Bars, either weak or strong, are present in ∼65 per cent of local
luminous disc galaxies (Knapen 1999; Eskridge et al. 2000; Nair
& Abraham 2010; Masters et al. 2011). The fraction of strongly
barred galaxies rises from ∼20 per cent at z ∼ 1 to ∼30 per cent
at z = 0 (Elmegreen, Elmegreen & Hirst 2004; Jogee et al. 2004;
Sheth et al. 2008; Skibba et al. 2012). Thus, bars have had a long
time to drive evolution in disc galaxies (Courteau, de Jong & Broeils
1996; Debattista et al. 2004, 2006; Kormendy & Kennicutt 2004;
Jogee, Scoville & Kenney 2005). Bars lead to a redistribution of
angular momentum and an increase in the central mass density
(Hohl 1971). Therefore, they provide a possible mechanism for
fuelling central starbursts and AGN activity (Simkin, Su & Schwarz
1980; Athanassoula 1992; Shlosman, Frank & Begelman 1989;
Jogee, Scoville & Kenney 2005; Schawinski et al. 2011; Hicks
et al. 2013). While near-infrared surveys find no difference in the
fraction of barred galaxies between active and non-active galaxies
(McLeod & Rieke 1995; Mulchaey & Regan 1997; Cisternas et al.
2013), this could be due to the vastly disparate time-scales involved,
with AGN having an active phase of the order of 106 yr compared
to the ∼100 × longer quiescent phase (Shabala et al. 2008).

Besides fuelling the SMBH, bars may affect a galaxy’s position
on the M•−σe relation in other ways. Graham et al. (2011) pro-
posed that several bar driven effects can cause offsets in the M•−σe

relation, including velocity anisotropy, and the increase in σ e due
to mass inflows, and buckling. Bars can also lead to the growth of
pseudo-bulges by driving gas to the centre to fuel star formation
(Kormendy & Kennicutt 2004), changing σ e.

Another way in which bars can change the location of a galaxy
on the M•−σe relation is by transferring angular momentum out-
wards (Lynden-Bell & Kalnajs 1972; Tremaine & Weinberg 1984;
Debattista & Sellwood 2000; Athanassoula 2002, 2003; Sellwood
2006; Berentzen et al. 2007), increasing the central density of the
disc and raising the velocity dispersion of the bulge (Debattista
et al. 2005; Brown et al. 2013; Debattista, Kazantzidis & van den
Bosch 2013). This paper explores the effect of bar evolution on
the M•−σe relation of classical bulges, under the assumption that
galaxies form without a bar, but with an SMBH that satisfies the
M•−σe relation. The bar then forms via gravitational instabilities in
the disc. We show, using collisionless simulations, that as a result
of angular momentum redistribution, such an SMBH ends up offset
from the M•−σe relation. In a companion paper, Brown et al. (2013)
examine the effect of the growth of an SMBH on the nuclear stellar
kinematics in both pure disc systems, and in systems composed of
a disc and spheroidal bulge. They show that the presence of a bar
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enhances the effect that the growth of an SMBH has on the stellar
σ e. Their simulations show that the growth of an SMBH after the
formation of a bar also causes an offset in σ e, but one that is smaller
(∼7 per cent) than that resulting from the formation and evolu-
tion of a bar. Thus, the current paper and the Brown et al. (2013)
paper show that regardless of whether the SMBH exists prior to
bar formation or whether it grows after bar formation (with reality
being somewhere in between these two extremes), barred galax-
ies will have larger values of σ e than unbarred galaxies with the
same M•.

The paper is organized as follows: In Section 2, we describe the
simulations. In Section 3, we study what effect bar formation and
evolution have on the bulge and disc and how this might affect
the M•−σe relation. We discuss the consequences of bar evolution
for the M•−σe relation in Section 4 and compare our results with
the observed M•−σe relations of classical bulges in unbarred and
barred galaxies. Section 6 sums up our findings.

2 SI M U L AT I O N S

We use the set of 25 simulations from Widrow, Pym & Dubinski
(2008, hereafter W08), which represents the evolution of a Milky
Way-like galaxy from idealized initial conditions. The advantage of
using these simulations (aside from their high-quality setup) is that
they provide a range of possible evolutionary paths for at least one
galaxy. By restricting ourselves to models for a single galaxy we
underestimate the expected scatter in the evolution. Note that since
collisionless simulations can be rescaled in mass, size and velocity
subject to the condition G = 1, where G is the gravitational con-
stant, our results can be applied to a fairly broad set of galaxy mass.
Below we describe in brief the setup of the simulations and refer
the reader to W08 for a more detailed discussion. These simulations
are all collisionless, therefore here we are modelling just the gravi-
tational effects of bar evolution; we discuss the implications of gas
at the end of this paper. Simulations including gas will be presented
elsewhere.

2.1 Galaxy models

The initial conditions for the simulations are N-body realisations
of axisymmetric galaxy models that consist of a disc, a bulge and
a dark matter halo. The distribution function for the composite
system is

f (E, Lz, Ez) = fd (E, Lz, Ez) + fb (E) + fh (E) , (1)

where the energy E and the angular momentum about the symmetry
axis Lz are exact integrals of motion and Ez is an approximate third
integral corresponding to the vertical energy of stars in the disc
(Kuijken & Dubinski 1995; Widrow & Dubinski 2005). Since Ez

is very nearly conserved for orbits that are not far from circular,
the initial system will be close to equilibrium so long as the disc is
relatively ‘cold’, a condition met for the models considered in this
paper.

The distribution function for the disc is constructed to yield the
density distribution (Kuijken & Dubinski 1995)

ρd (R, z) = Md

2πR2
d

e−R/Rd sech2(z/zd) erfc

(
r − Rt

21/2δRt

)
, (2)

where R and z are the usual cylindrical coordinates, r the spheri-
cal radius, Rd the scalelength, zd the scaleheight and Md the total
mass of the disc. The disc is truncated at radius Rt = 10Rd with

a truncation sharpness of δRt = 1 kpc. The distribution function
is constructed so that the radial dispersion profile is exponential
σ 2

R(R) = σ 2
R0 exp (−R/Rd), where σ R is the radial velocity disper-

sion in cylindrical coordinates.
The bulge and halo distribution functions are designed so that

their respective density profiles approximate the user-specified func-
tions ρ̃b and ρ̃h. For the bulge, we assume a ‘target’ density profile

ρ̃b(r) = ρb

(
r

Reff

)−p

e−b(r/Reff )1/n

, (3)

which yields, on projection, the Sérsic law with p = 1 −
0.6097/n + 0.055 63/n2 (Prugniel & Simien 1997; Terzić & Gra-
ham 2005), where n is the Sérsic index and ρb is the central surface
density. The constant b is adjusted so that Reff contains half of the
total projected mass of the bulge. These models use

σb ≡ (
4πnbn(p−2)� (n (2 − p)) R2

effρb

)1/2
(4)

rather than ρb to parametrize the overall density scale of the bulge
models, where � is the gamma function.

The target halo density profile is

ρ̃halo(r) = 22−γ σ 2
h

4πa2
h

1

(r/ah)γ (1 + r/ah)3−γ
C (r; rh, δrh) , (5)

where γ = 1 is the central cusp strength, ah is the scalelength
and C(r; rh, δrh) is a truncation function that decreases smoothly
from unity to zero at r � rh within a radial range δrh. The models
considered here assume rh = 100 kpc and δrh = 5 kpc and use the
function C(r; rh, δrh) = 1

2 erfc((r − rh)/
√

2δrh).
The bulge and halo distribution functions, which, by assumption,

depend only on the energy, are found via an inverse Abel transform
(Binney & Tremaine 2008). Since this method assumes spherical
symmetry, we first calculate an approximate spherically averaged
total potential

�̃tot = �̃d + �̃b + �̃h, (6)

where �̃d is the monopole term of a spherical harmonic expansion
for the disc and �̃b,h are calculated from ρ̃b,h. We then evaluate

fb,h (E) = 1√
8π2

∫ 0

E

d2ρ̃b,h

d�̃2
tot

d�̃tot√
�̃tot − E

. (7)

Armed with the distribution functions for the three components, we
solve Poisson’s equation in axisymmetry using an iterative scheme
and Legendre polynomial expansion (Kuijken & Dubinski 1995;
Widrow & Dubinski 2005). Note that the bulge and halo are flattened
slightly due to the influence of the disc potential.

2.2 Model parameters

The models described above were tailored to satisfy observational
constraints for the Milky Way such as the inner and outer rotation
curve, the local vertical force, the line-of-sight velocity dispersion
towards Baade’s window and the circular speed at the position of
the Sun. A Bayesian/MCMC algorithm provided the probability
distribution function (PDF) of Milky Way models over the model
parameter space. Models from the PDF span a wide range of struc-
tural properties. For example, Md varies in the range 2–7 × 1010

M�, while Rd varies between 2.0 and 3.5 kpc.
The stability of a stellar disc is determined by the Toomre-Q and

swing amplification parameter X:

Q = σRκ

3.36G�
and X ≡ κ2R

2πG�m
, (8)
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Table 2. The sample of disc galaxy simulations used in this study. In the left-hand column, we list the run number and some of the initial parameters of
each simulation: the minimum of the Toomre Q, the minimum of the swing amplification parameter X, the disc-to-bulge ratio D/B and the halo-to-bulge
ratio H/B, within Reff (obtained by calculating the projected radius containing half the mass of the bulge), and the Sérsic index n of the bulge. In the right
part of the table, we show the parameters of the evolved system: the bar amplitude Abar at t1 and t2, Reff at t0 = 0, t1 and t2, the fractional change in mass
�M(B + D)/M(B + D)init within Reff at t1 and t2, the aperture velocity dispersion σ e of bulge+disc particles measured within a circular aperture at t0,
t1 and t2 and the dispersion scatter �σ e of bulge+disc particles at t2. Simulations 16 and 21 are very similar in their setup; coincidentally, the effects of
stochastically (Sellwood & Debattista 2009; Roškar et al. 2012) are weak in these two baryon-dominated simulations. t0, t1 and t2 are t = 0, 2.5 and 5 Gyr,
respectively.

Run Q X D/B H/B n Abar Abar Reff(t0) Reff(t1) Reff(t2) �M(B+D)
M(B+D)init

�M(B+D)
M(B+D)init

σ e(t0) σ e(t1) σ e(t2) �σ e(t2)

(t1) (t2) (pc) (pc) (pc) (t1) (t2) (km s−1) (km s−1) (km s−1) (km s−1)

1 1.02 2.58 5.8 0.02 1.0 0.140 0.134 593 489 494 0.31 0.34 102.0 142.0 144.4 7.1
2 1.01 2.98 4.8 0.05 1.3 0.176 0.180 659 570 572 0.24 0.29 102.5 137.4 142.0 9.4
3 1.00 3.41 4.5 0.04 1.7 0.117 0.167 649 599 599 0.21 0.28 108.9 136.7 144.8 9.6
4 1.04 3.71 3.8 0.06 1.5 0.177 0.247 751 682 665 0.19 0.27 103.7 129.6 140.8 10.9
5 1.13 4.41 3.6 0.11 1.7 0.116 0.219 780 748 727 0.12 0.21 105.9 120.1 133.0 9.5
6 1.27 2.61 5.9 0.02 1.2 0.222 0.270 649 561 552 0.25 0.34 103.7 135.8 145.3 12.5
7 1.25 2.99 5.0 0.03 1.6 0.138 0.212 610 542 541 0.23 0.30 105.3 133.5 140.9 9.6
8 1.25 3.51 4.8 0.15 1.3 0.149 0.220 596 537 536 0.18 0.26 107.4 129.8 140.9 10.3
9 1.24 3.95 3.6 0.08 1.7 0.111 0.178 738 726 704 0.10 0.21 107.2 116.2 131.1 7.8
10 1.26 4.46 3.7 0.18 1.8 0.006 0.139 752 774 748 0.02 0.12 108.9 108.0 120.9 7.1
11 1.41 2.51 6.3 0.02 1.4 0.121 0.137 456 440 440 0.17 0.25 115.2 132.8 142.7 6.9
12 1.50 3.03 4.8 0.03 1.3 0.164 0.134 531 495 498 0.14 0.18 109.4 128.2 131.9 6.2
13 1.50 3.51 6.4 0.20 1.0 0.260 0.265 727 656 633 0.21 0.29 94.6 117.4 126.4 11.0
14 1.50 4.00 5.5 0.26 1.0 0.176 0.267 841 732 721 0.25 0.31 95.9 120.4 129.0 11.4
15 1.49 4.49 5.4 0.33 1.1 0.246 0.308 841 783 745 0.16 0.27 97.6 115.7 130.2 12.6
16 1.55 2.77 5.6 0.02 1.4 0.138 0.137 600 551 549 0.18 0.22 106.3 124.6 128.9 7.5
17 1.70 3.06 5.0 0.03 1.3 0.175 0.213 646 591 582 0.16 0.22 104.4 122.3 129.4 9.4
18 1.76 3.49 5.3 0.13 1.2 0.233 0.303 744 685 658 0.18 0.29 100.2 119.1 131.5 12.1
19 1.75 4.00 3.6 0.09 1.6 0.060 0.165 700 715 695 0.05 0.15 109.0 111.4 125.1 7.7
20 1.76 4.50 4.2 0.14 1.2 0.109 0.290 690 685 656 0.06 0.19 104.9 111.0 129.9 13.2
21 1.55 2.77 5.6 0.02 1.4 0.138 0.137 600 551 549 0.18 0.22 106.3 124.6 128.9 7.5
22 1.76 3.18 5.1 0.05 1.4 0.184 0.274 686 623 613 0.19 0.28 103.9 123.1 133.2 11.3
23 1.95 3.59 4.6 0.06 1.5 0.138 0.239 644 620 599 0.11 0.21 105.3 116.2 128.9 10.4
24 2.01 4.01 3.6 0.07 1.5 0.135 0.224 645 627 607 0.10 0.17 108.2 117.4 129.2 9.5
25 1.99 4.52 3.8 0.15 1.4 0.006 0.051 589 615 635 0.03 0.05 111.2 110.8 112.5 3.0

where κ is the epicyclic radial frequency, G is the gravitational
constant, � is the surface density, R is the radius and m is the
azimuthal mode number of the perturbation (Toomre 1981, 1964;
Goldreich & Tremaine 1978, 1979). Here, we take m = 2 since we
are interested in bars. We select 25 models that span the region of
the Q−X plane where the PDF is non-negligible (1.0 � Q � 2.0
and 2.5 � X � 4.0) (see section 7 of W08). The properties of
the models are summarized in Table 2 while the symbols used to
represent each model are shown in Fig. 1. For instance, a plus (‘+’)
symbol is used to represent model 1 throughout the paper.

The models do not contain an SMBH since an initial SMBH
satisfying the M•−σe relation would have a mass of only ∼107 M�.
The influence radius of this SMBH would be GM•/σ 2 ≈ 10 pc,
which is smaller than the softening length used. We assume in our
analysis that the SMBH initially satisfies the M•−σe relation but
retains this mass as the bar evolution proceeds. With this assumption
we can compute the effect of bar evolution on the M•−σe relation;
comparing with observations then allows us to assess whether there
is evidence of SMBH growth along with the bar.

2.3 Numerical parameters

The bulge, disc and halo consist of 2 × 105, 6 × 105 and 1 ×
106 particles, respectively. Each population has equal mass parti-
cles, varying between simulations in the ranges 1.9-6.4 × 105M�
for the dark particles, 0.3-0.6 × 105M� for the bulge particles and

Figure 1. A grid of identifying symbols used to represent each model in
the various plots of this paper.

0.4–0.7 × 105M� for the disc particles. The range in mass resolu-
tion reflects the range in disc, halo and bulge masses across the 25
models considered here, see Table 2 and W08. The particle soft-
ening ε = 25 pc for all particles and the models were evolved for
104 equal time steps of length �t = 0.5 Myr. The 25 models were
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evolved for 5 Gyr using the parallel N-body tree code described in
Dubinski (1996).

3 E VO L U T I O N O F C E N T R A L D E N S I T Y A N D
VELOCITY DISPERSION

All the models formed bars. We measure the bar amplitude, Abar,
as the normalized amplitude of the m = 2 Fourier moment of the
surface density of disc particles:

Abar = N−1
d

∣∣∣∣∣∣
∑
j∈disc

e2iφj

∣∣∣∣∣∣ , (9)

where φj is the two-dimensional cylindrical polar angle in the equa-
torial plane of the disc for the jth particle, and Nd is the total number
of disc particles. We consider three different times in the simulations
t0 = 0, t1 = 2.5 Gyr and t2 = 5 Gyr and refer to these times through-
out the paper. In most simulations, the bar forms by 1 Gyr and
continues to grow until t2 (see fig. 17 in W08), while in simulations
1 and 12 the bar amplitude peaks at 0.5 and 2 Gyr, respectively, and
declines slightly thereafter. Simulation 10 does not form a bar by t1

but a bar grows by t2. The bar in simulation 25 also forms after t1

but it is still very weak at t2; thus, this simulation provides a control
showing that in the absence of a strong bar, velocity dispersions,
mass distributions, etc., do not evolve significantly. We have also
confirmed that the velocity dispersions did not evolve significantly
in an additional simulation generated with the same initial condi-
tions code and which remained unbarred for 5 Gyr. Values of Abar

at t1 and t2 are given in Table 2.
We obtain the bulge Reff by calculating the face-on projected

circular aperture containing half of the bulge particles. We also
measured Reff by fitting a Sérsic profile to the mass-weighted surface
density profile and found consistent values. We find Reff in the range
456 pc < Reff < 841 pc at t0, decreasing to 439 pc < Reff < 747 pc
at t2, except in simulation 25, where Reff increases slightly (see
Table 2). Throughout the paper all measurements, including those
for the disc (D) and bulge+disc (B + D), are computed within Reff

of the bulge (B).
The formation and growth of a bar leads to the outward transport

of angular momentum (Debattista & Sellwood 2000; Athanassoula
2002) resulting in an increase in the mass fraction of the disc in
the central region, as was originally shown by Hohl (1971). We
quantify the fractional change in the mass of the central region
by defining �M/Minit = (Mt − Minit)/Minit, where Mt is the mass
within Reff at either t1 or t2, and Minit is the mass within Reff at t0. The
contribution of the halo mass within r < Reff is less than 25 per cent
of the total mass; we therefore neglect the dark matter particles in our
analysis. We measure the change in angular momentum by defining
�Jz(D)/Jz,init(D) = (Jz, t(D) − Jz,init(D))/Jz,init(D), where Jz,t(D) is
the angular momentum at t1 or t2 of disc particles within Reff and
Jz,init(D) is the angular momentum at t0 of all disc particles within
Reff. We use Reff for bulge particles measured at t2 in order that the
changes plotted are due to a difference in angular momentum, rather
than different radial range. In Fig. 2, we show that the fractional
change of the total angular momentum leads to an increase in the
central mass of the disc and that the change in angular momentum
reaches ∼− 90 per cent by t2. The evolution driven by the bar results
in a transfer of angular momentum from small radii to large radii,
and a growth in the central disc mass.

In the top row of Fig. 3, we plot the fractional change in mass,
�M/Minit, versus the bar strength Abar. The increase in mass of
the disc particles (Fig. 3, top left) shows a large scatter, with many

Figure 2. The fractional change in mass of the disc within the bulge Reff

(at t2) plotted versus the changes in total angular momentum at t1 in red and
at t2 in green.

models increasing by a factor of 1.5–2 by t2. The top-right panel
shows that the fractional mass increase for disc+bulge particles
instead correlates with bar strength. The bulge-to-disc mass ratio
within Reff is 2.8 � B/D(R < Reff ) � 8.8 initially, decreasing to
1.2 � B/D(R < Reff ) � 7.7 by t2. Fig. 3 shows that for model 25,
the disc density and velocity dispersion at t1 (prior to bar formation)
are essential the same as they were initially. By t2, a weak bar has
formed and the disc concentration and velocity dispersion both rise
slightly.

3.1 Measuring velocity dispersions

The increase in the central density deepens the potential and raises
the velocity dispersion σ e (Debattista et al. 2013). We define σ e

as the mass-weighted aperture velocity dispersion within a circular
aperture of radius Reff:

σe
2 =

∫ Reff
0 I (R)

(
σ 2

los (R) + v̄2
los (R)

)
dR∫ Reff

0 I (R)dR
, (10)

where I(R) is the mass density, σ los is the standard deviation and
v̄los is the mean line-of-sight velocity of particles within Reff. For a
particle distribution, this becomes

σe
2 =

∑
ri≤Reff

miv
2
i,los∑

ri≤Reff
mi

, (11)

where ri is the radius, mi is the mass and vi,los is the line-of-sight
velocity of the ith particle and the sum is over all particles within
the circular aperture.

For each model, we measure σ e for four different bar position
angles PA = 0◦ (bar seen side-on), 30◦, 60◦ and 90◦ at four incli-
nations i = 0◦ (face-on), 30◦, 60◦, 90◦ (edge-on). We define 〈σ e〉
as the average of σ e measured over the various orientations. The
standard deviation of σ e over all viewing angles is defined as the
scatter �σ e. In Fig. 3 (bottom row), we plot the average ratio of
final to initial velocity dispersion, 〈σ e/σ e0〉, versus Abar, where σ e0

is σ e at t0. Generally, σ e increases with increasing bar strength,
with σ e(B + D) increasing by as much as ∼40 per cent. The models
evolve along the (relatively weak) correlation. We have verified that
in the absence of bar formation the central density does not evolve
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1248 M. Hartmann et al.

Figure 3. Top row: the fractional changes in the mass of the disc (left-hand panel) and bulge+disc (right-hand panel) within Reff of the bulge plotted versus
the bar amplitude Abar. Bottom row: the average ratio of final to initial velocity dispersion, 〈σ e/σ e0〉, for bulge particles (left-hand panel) and for bulge+disc
particles (right-hand panel) versus Abar. In all panels, values at t1 are shown in red, and at t2 in green.

substantially and σ e barely changes. We note also that bar formation
was delayed till after t1 in run 25 and the bar that forms is quite
weak (see W08). Fig. 3 shows that σ e and the mass distribution
barely change after 2.5 Gyr for this model without a bar confirming
that the initial conditions are in equilibrium.

3.2 The effect of disc contamination on velocity dispersions

Assuming that the fundamental parameter which determines M•
is σ e of the bulge only, disc contamination of σ e measurements
can lead to offsets in the M•−σe relation for any galaxy. Naively,
one way of reducing this contamination might seem to be to use
a smaller aperture since the ratio of bulge-to-disc mass within
a given aperture generally increases as the aperture is made
smaller. For instance, within Reff/8, the initial B/D of the mod-
els is 3.3 � B/D(R < Reff/8) � 47.9 becoming 1.4 � B/D(R <

Reff/8) � 13.4 at t2, which can be compared with the smaller val-
ues discussed above. We therefore test whether the effect of disc
contamination to the dispersion can be reduced by using σ e/8.

In Fig. 4, we compare σ e(B) with σ e(B + D) within Reff (left-hand
column) and σ e/8(B) with σ e/8(B + D) within Reff/8 (right-hand

column) for four different inclinations. In all cases, the general ef-
fect of disc contamination is to increase the dispersion. This is, on
average, a 10 per cent effect in face-on galaxies becoming ∼25
per cent for edge-on systems, in good agreement with Debattista
et al. (2013). This is true for both σ e and for σ e/8. Surprisingly, the
effect of disc contamination on σ e/8 is about the same as on σ e. In
Fig. 5, we plot the cumulative distribution of σ e/8(B + D)/σ e/8(B)
and of σ e(B + D)/σ e(B). The two distributions are very similar
and the median of both distributions is ∼1.13. A Kolmogorov–
Smirnov (K–S) test shows that the probability that the two distri-
butions are identical is 0.88 showing that the aperture within which
the velocity dispersion is measured has little effect on reducing
the contamination from the disc. We also plot the distributions of
�σ e/8(B + D)/σ e/8(B) and of �σ e(B + D)/σ e(B), which show that
the scatter in σ e/8(B + D) is slightly larger than in σ e(B + D): the me-
dian of �σ e/8(B + D)/σ e/8(B) is 0.084 while for �σ e(B + D)/σ e(B)
it is 0.077. The K–S test now finds that the probability that both
distributions are identical is only 0.41.

We conclude that σ e/8 does not provide any notable reduction in
the amount of contamination by the disc, while increasing slightly
the scatter in the measured dispersion. Moreover, smaller apertures
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The effect of bars on the M•−σe relation 1249

Figure 4. Mean σ e(B + D) versus mean σ e(B) (left-hand panels) and mean σ e/8(B + D) versus mean σ e/8(B) (right-hand panels). Black, red and green points
represent the models at t0, t1 and t2, respectively. We average over PA=0◦, 30◦, 60◦ and 90◦ and plot σ for inclinations i = 0◦, 30◦, 60◦ and 90◦ from top to
bottom. Dotted lines have constant slope, as indicated along each line.
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1250 M. Hartmann et al.

Figure 5. Left-hand panel: the cumulative distribution of
σ e/8(B + D)/σ e/8(B) (red dashed line) and σ e(B + D)/σ e(B)
(black solid line). Right-hand panel: the cumulative distribution of
�σ e/8(B + D)/σ e/8(B) and �σ e(B + D)/σ e(B). The dotted lines show the
median of each cumulative distribution. All distributions are shown at t2.

are more likely to be contaminated by other nuclear components
(e.g. Graham et al. 2011; McConnell & Ma 2013).

3.3 The effect of angular momentum redistribution on velocity
dispersions

In Fig. 6, we plot 〈σ e/σ e0〉 versus �M(B + D)/M(B + D)init, which
now shows a strong correlation. For the correlation using σ e(B + D),
we find a positive Spearman’s rank correlation coefficient rs = 0.91
which is statistically significant at more than 6σ while using σ e(B)
we find an even stronger correlation with rs = 0.95 corresponding to
more than 7σ . This result is consistent with the findings of Debattista
et al. (2013) who showed that an increase in disc mass within the
bulge effective radius raises its velocity dispersion. The dotted lines
in Fig. 6 indicate different values of (σ e/σ e0)β , where β = 4.24
comes from the M•−σe relation of Gültekin et al. (2009). These
lines indicate the factor by which SMBHs must grow in order to
remain on the M•−σe relation. The factors get to be as large as 2–3.
A steeper M•−σe relation (such as those of Graham et al. 2011 and
McConnell & Ma 2013) would require even larger growth factors.

The presence of a bar inherently leads to an anisotropic veloc-
ity ellipsoid, which however cannot become too anisotropic before
provoking bending instabilities, which drive the velocity ellipsoid
closer to isotropy. We measure the velocity dispersions in cylindrical
coordinates σ u, σ v , σw and obtain the anisotropies βφ = 1 − σ 2

v /σ 2
u

and βz = 1 − σ 2
w/σ 2

u . A positive value of βφ or βz implies that the
radial velocity dispersion is larger than the tangential or vertical
one. The initial bulge in all the models is isotropic by construction
(classical bulges being well described by flattened isotropic rota-
tors; Kormendy & Illingworth 1982; Davies & Illingworth 1983).
Fig. 7 shows that following the formation of the bar, the veloc-
ity distributions of both the bulge and the disc particles become
anisotropic, with the degree of anisotropy depending very weakly
on the bar strength. When only the bulge is considered (left-hand
panel) all runs show only a slight tangential anisotropy at t2. There
is a small amount of angular momentum transfer from the disc to
the bulge, which explains why the bulge dispersion is skewed to
slightly tangential velocities.

Figure 6. Average ratio of final to initial velocity dispersion at t1 (red) and
t2 (green) for the bulge (top) and for the bulge+disc (bottom) versus the
fractional change in mass of the bulge+disc within Reff. In both panels,
the dotted lines indicate contours of constant (σ e/σ e0)β for β = 4.24, with
the values given above each line.

However, when both the bulge and disc are considered together,
we measure a radial anisotropy up to βφ(B + D) ∼ 0.1 and βz(B + D)
reaching to ∼0.35. Bars being disc phenomena, it is disc stars which
must support the bar, not bulge ones. Thus, the growth of a bar
entails disc orbits becoming. Fig. 7 also shows that βφ(B + D)
is uncorrelated with Abar, while βz(B + D) shows a very weak
correlation with Abar. The lack of dependence of βφ and βz on
bar strength is probably a result of the buckling instability. As the
degree of radial anisotropy increases the bar becomes unstable to
the buckling instability, which results in a redistribution of kinetic
energy and a decrease in anisotropy (Araki 1987; Raha et al. 1991;
Merritt & Sellwood 1994).

Fig. 8 plots the orientation-averaged 〈σ e/σ e0〉 versus βφ (top
panels) and βz (bottom panels). No correlation is present for bulge
particles only (left-hand panels). However, a very strong correlation
is present for bulge+disc particles and is stronger for βφ(B + D)
than for βz(B + D). The increase in σ e is largest when βφ(B + D) is
largest, implying that the orbits contributing to the increased veloc-
ity dispersion are more radially biased. Since the correlation is ab-
sent when only bulge particles are considered the disc particles must
be primarily responsible for the increased anisotropy (e.g. Saha,
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The effect of bars on the M•−σe relation 1251

Figure 7. The anisotropies βφ (top panels) and βz (bottom panels) at t0 (black) and t2 (green) for bulge particles only (left-hand panels) and for the bulge+disc
particles (right-hand panels) versus Abar(t2). Note that the initial disc has no bar, so Abar is zero; in order to show the evolution of the anisotropy, we plot the
initial anisotropies versus Abar(t2).

Figure 8. The ratio of final to initial velocity dispersion, 〈σ e/σ e0〉, versus anisotropy βφ (top panels) and βz (bottom panels) for the bulge particles only
(left-hand panels) and for the bulge+disc particles (right-hand panels). In all panels, values at t1 are red and at t2 are green.
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1252 M. Hartmann et al.

Figure 9. βφ (B + D) versus the fractional changes in mass of the
bulge+disc at t1 (red) and t2 (green).

Martinez-Valpuesta & Gerhard 2012). Fig. 8 also shows a temporal
evolution, with the central regions becoming more anisotropic and
σ e increasing with time. Model 25 again stands out as barely evolv-
ing during this period, with the bulge remaining nearly isotropic.

In Fig. 9, we plot βφ(B + D) versus the fractional change in
mass which shows a strong correlation but with βφ(B + D) sat-
urating at ∼0.1 by t2. The Spearman coefficient is rs = 0.67;
thus, this correlation is weaker than the correlation between
〈σ e/σ e0〉 and �M(B + D)/M(B + D)init, which is presumably
more fundamental.

3.4 Effect of viewing orientation

Anisotropy increases the scatter in σ e, �σ e (Graham et al. 2011).
In Fig. 10, we show the scatter in σ e by averaging it over position
angles at fixed inclinations, 〈�σ e〉PA. We present results at t1 which
produces more fractional scatter than at t2 in most cases (the excep-
tion being in model 10 in which the bar is still very weak at t1). For
bulge particles, �σ e is ∼6 per cent but can be as large as ∼13 per
cent for bulge+disc particles. The scatter increases with inclination
and, at fixed inclination, with bar strength. In the face-on case, since
we are measuring σ e within circular apertures, �σ e = 0. A typical
strong bar is therefore likely to have an ∼10 per cent effect on the
scatter in σ e, which will in turn lead to an increased scatter in the
M•−σe relation.

4 PR E D I C T E D E VO L U T I O N O F T H E M•−σe

R E L AT I O N

We have shown that the angular momentum redistribution of Fig. 2
is a driver of major change in σ e. Changes in σ e can lead to dis-
placements of an SMBH in the M•−σe relation. In this section, we
estimate the effects of this σ e evolution on the M•−σe relation of
barred galaxies. Since the models we use do not contain an SMBH
we simply assume that M• before the bar forms satisfies the M•−σe

relation and explore what happens if M• does not change after the
bar forms. Moreover, in the absence of satellite accretion and star
formation, our bulges do not grow in mass.

An increased σ e moves a SMBH to the right of the M•−σe rela-
tion. If the average fractional change in σ e is 〈σ e/σ e0〉, then we can
write the M•−σe relation, assuming no M• growth and that 〈σ e/σ e0〉

Figure 10. The scatter in the velocity dispersion averaged over PA at fixed
inclination, 〈�σ e〉PA, plotted versus bar amplitude at t1. 〈�σ e〉 is measured
within Reff for bulge (top panel) and bulge+disc particles (bottom panel).

is independent of σ e0, as log M• = α + βlog σ e − βlog 〈σ e/σ e0〉.
Thus, the slope of the M•−σe relation remains β, but the zero-point
changes by

δα = −β log 〈σe/σe0〉 (12)

(see also Debattista et al. 2013). Since 〈σ e/σ e0〉 > 1, the resulting
δα < 0, i.e. the new M•−σe relation will be offset below the M•−σe

relation of unbarred galaxies. We measure 〈σ e/σ e0〉 = 1.12 ± 0.05
for bulge particles only (〈σ e/σ e0〉 = 1.27 ± 0.12 for bulge+disc
particles). This value of 〈σ e/σ e0〉 would result in offsets in the range
−δα = 0.17–0.27 (bulge particles only) or 0.36–0.57 (bulge+disc
particles) for β = 3.5−5.5 if SMBHs do not grow further.

In Fig. 11, we plot the models in the M•−σe plane, adopting
β = 4.24 from Gültekin et al. (2009), at t0 (before the bars form)
as black symbols and at t2 (at the end of the simulation) as green
points. We obtain M• using σ e(B) at t0. As expected, bar evolution
without M• growth shifts the models to the right. We measure the
bar-induced offset by fitting the M•−σe relation using MPFITEXY,1

which implements the algorithm MPFIT (Markwardt 2009), to obtain

1 http://purl.org/mike/mpfitexy
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The effect of bars on the M•−σe relation 1253

Figure 11. Using the M•−σe relation of Gültekin et al. (2009, solid black
line, with dashed lines indicating the one σ uncertainty), we show the initial
σ e and the corresponding M• (black symbols) for the simulations. Then
assuming that M• does not change, we plot σ e at t2 ( green symbols). The
green solid line shows a fit to the green points using MPFITEXY with slope fixed
to β = 4.24 to match the solid black line. The top panel uses σ e(B) while
the bottom panel uses σ e(B + D). Note the different scale of the abscissa.
In both cases, we find a substantial offset from the M•−σe relation.

a linear regression by minimizing

χ2 =
N∑

i=1

(yi − α − βxi)
2

ε2
xi

+ (
ε2
yi

+ ε0
2
) , (13)

where ε0 is the intrinsic scatter, which is determined such that the
χ̃2 � 1 (Tremaine et al. 2002). We fit the M•−σe relation for σ e at
t2 assuming that M• remains unchanged from t0. For the errors on
individual σ e values we use �σ e. The errors in M• are obtained from
σ e ± �σ e at t0. We assume in these fits that the M•−σe relation of
barred galaxies has the same β = 4.24 as do the unbarred galaxies,
and therefore hold β fixed. A significant offset develops regardless
of whether we measure σ e(B) or σ e(B + D). We find an offset
δα � −0.20 (see Table 3). Since the scatter in the observed M•−σe

relation is generally estimated at ε0 = 0.3 − 0.45 (see Table 1), an
offset of this magnitude is likely to be hard to measure.

We find a scatter of ε0 � 0.1 in the simulations due to the differ-
ent relative increases in central mass in the different models. The
full scatter predicted by the models includes that from viewing ori-

Table 3. Results of fitting the M•−σe relation of
the simulations assuming no M• growth from a
relation with β = 4.24 (Gültekin et al. 2009) at
t0. The offset is the difference between the zero-
point of unbarred disc galaxies and from the fit
to the barred models at t2. The scatter is ε0 of
equation (13).

Component α Offset Scatter
(δα) (ε0)

Bulge 7.92 ± 0.03 −0.20 0.09
Bulge+Disc 7.91 ± 0.03 −0.21 0.11

entation, which from the top-right panel of Fig. 10 we estimate at
0.05–0.09. Thus, together with the scatter due to viewing orienta-
tion the predicted total increase in scatter relative to the intrinsic
scatter in the M•−σe relation of unbarred galaxies is 0.15–0.16,
which must be added in quadrature to the intrinsic scatter to obtain
the predicted scatter in the M•−σe under our assumptions.

4.1 Residuals correlations

The main parameter that governs how much σ e increases, and
thus how far a barred galaxy strays from the M•−σe relation, is
the fractional change of total mass within the bulge effective ra-
dius (Debattista et al. 2013, and Fig. 6 here). Unfortunately, this
is not directly observable because we can never know what any
galaxy looked like before the bar formed. We have searched for
observationally accessible structural parameters that correlate with
�M(B + D)/M(B + D)init. It seems not unreasonable to expect
that M(B)/M(B + D) within Reff (note, this is not the usual bulge-
to-total ratio, B/T) correlates with �M(B + D)/M(B + D)init. The
top panel of Fig. 12 therefore plots the M•−σe residuals, δlog M•,
as a function of M(B)/M(B + D). A clear correlation is evident, with
the Spearman coefficient rs = 0.91 at t1 and rs = 0.90 at t2. Jointly,
t1 + t2 produce a correlation with rs = 0.89, which is statistically
significant at more than 6σ .

Alternatively, we have already shown in Figs 8 and 9 that the
anisotropies correlate with the change in σ e and with the fractional
mass change. Thus, rather than a structural parameter, a kinematic
one may provide an alternative indication of the offset of a barred
galaxy from the M•−σe relation. Note however that Fig. 7 shows that
the anisotropy of the bulge component only is not much changed by
the bar, and Fig. 8 shows that βφ(B) and βz(B) do not correlate with
〈σ e/σ e0〉. It is therefore the anisotropy of the bulge+disc that must
be measured to determine the offset. The bottom panel of Fig. 12
plots δlog M• as a function of βφ(B + D); we find a Spearman
coefficient rs = −0.89 at t1 and rs = −0.82 at t2, with a joint
(t1 + t2) rs = −0.85 corresponding to almost 6σ significance. The
strength of the correlation between δlog M• and βz(B + D), instead,
has rs = −0.66 at t1 and rs = −0.61 at t2, with a joint rs = −0.64
corresponding to more than 4σ significance.

A concern with the correlation between M(B)/M(B + D) and
�M(B + D)/M(B + D)init is that it could be weakened if models
with a larger range of B/D at t0 were included. Moreover, while
we can easily compute M(B)/M(B + D) in the simulations, the
same quantities may be non-trivial in observations because once
the bar forms the density profile of the disc need no longer be an
exponential extending to small radii (e.g. Debattista et al. 2006). The
main limitation of using βφ(B + D) to measure the residuals instead
is that it tends to saturate, at least in these collisionless simulations.
In addition, in a companion paper, Brown et al. (2013) show that the
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Figure 12. The residuals of the simulations from the M•−σe relation.
Values are indicated in red at t1 and in green at t2. Top: plotted as a function
of M(B)/M(B + D). Bottom: plotted as a function of βφ (B + D).

growth of a central massive object inside a barred galaxy will tend to
isotropize the velocity distribution. Star formation will also change
the velocity distribution but it is still unknown how. Nonetheless,
we propose that modelling the velocity anisotropy is worthwhile in
order to understand the offsets of barred galaxies from the M•−σe

relation.

5 C OMPARISON W ITH O BSERVATIONS

Observational evidence for an offset in the M•−σe relation of barred
galaxies has been presented by a number of authors (Hu 2008;
Graham 2008a; Graham et al. 2011). Guided by the results above,
in this section we test for an offset in the observational data by fixing
the slope of the barred M•−σe relation to that of unbarred galaxies
and measuring the zero-point.

5.1 Sample selection

We have assumed that SMBHs are present in bulges and satisfy the
M•−σe relation before the bar forms, and that the bulges do not grow
any further once the bar forms. Both these assumptions imply that
classical bulges are more suited to compare with the simulations.
Classical bulges share structural and kinematical properties with

elliptical galaxies (e.g. Wyse, Gilmore & Franx 1997; Kormendy
& Kennicutt 2004; Gadotti 2009), with both types of spheroids
appearing in similar positions on the Fundamental Plane defined
by the central velocity dispersion, the central surface brightness
and the effective radius (Bender, Burstein & Faber 1992). Pseudo-
bulges instead are more closely related to the discs of their host
galaxy (see Kormendy & Kennicutt 2004 for a review). While el-
liptical galaxies and classical bulges are believed to form via merg-
ers of galaxies and accretion (Eggen & Sandage 1962; Tremaine,
Ostriker & Spitzer 1975; Searle & Zinn 1978; Kauffmann, White &
Guiderdoni 1993; Baugh, Cole & Frenk 1996; van den Bosch 1998;
Naab et al. 2007), pseudo-bulges are thought to form via secular
processes in the disc which are driven by non-axisymmetric struc-
tures such as bars and spirals (Combes & Sanders 1981; Combes
et al. 1990; Raha et al. 1991; Courteau et al. 1996; Norman, Sell-
wood & Hasan 1996; Bureau & Athanassoula 1999; Debattista et al.
2004; Athanassoula 2005; Drory & Fisher 2007). The difference be-
tween classical- and pseudo-bulges is reflected also in their SMBH
scaling relations. Hu (2008) and Debattista et al. (2013) found that
SMBHs in elliptical galaxies and in classical bulges follow a simi-
lar M•−σe relation. Pseudo-bulges instead either have a significant
offset from this M•−σe relation (Hu 2008; Graham 2008b) or no
M•−σe relation at all (Kormendy, Bender & Cornell 2011).

In this work, we therefore distinguish observed galaxies by
whether they contain a classical- or a pseudo-bulge. We use data
from the literature to compile samples of unbarred classical bulges
and barred classical bulges with M• measurements. Purely for the
sake of comparison, we also compile a sample of barred pseudo-
bulges. The final sample of galaxies is listed in Table 4. Our sample
of M• and σ e measurements is primarily drawn from the compi-
lation of McConnell & Ma (2013), with one galaxy (NGC 7457)
from Gültekin et al. (2009) and another (NGC 3414) from Graham
& Scott (2013). We correct the value of σ e for NGC 1300 found
in McConnell & Ma (2013), who list σe = 218 ± 10 km s−1; the
correct value is σe = 87 ± 5 km s−1 (Batcheldor et al. 2005). We
largely rely on the morphological classification of Fisher & Drory
(2008, 2010, 2011). For some bulges, our classification is based
solely on Sérsic index n > 2 of a bulge+disc decomposition. For
these cases, we use unpublished fits provided to us by David Fisher
supplemented by fits by Beletsky et al. (2011), Rusli et al. (2011),
Fabricius et al. (2012) and Krajnović et al. (2013). We classify
the Milky Way as having a pseudo-bulge although this is contro-
versial; the bulge+disc decomposition is based on the model of
Bissantz & Gerhard (2002). From the sample of disc galaxies in
McConnell & Ma (2013), we exclude those where the bulge clas-
sification is unknown or where the galaxy is unbarred and hosts
a pseudo-bulge. We exclude NGC 4826 from our sample because
of confusion over its bulge type (Fabricius et al. 2012), and NGC
2549 because the only available profile fit uses only a single Sérsic
(Krajnović et al. 2013). We exclude another 10 barred galaxies be-
cause no bulge+disc fits are available but include them in a separate
unclassified bulge barred galaxy sample. Table 4 presents our sam-
ples of galaxies, consisting of 12 unbarred galaxies with classical
bulges, 5 barred galaxies with classical bulges and 9 barred galaxies
with pseudo-bulges.

5.2 The M•−σe relation of unbarred classical bulges

Using MPFITEXY, we first fit the M•−σe relation for the unbarred
classical bulges. The full parameters of the fit are listed in Table 5;
we obtain a slope β = 3.78 ± 0.31. Remarkably, this sample of
12 galaxies chosen purely by their morphology have a quite small
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Table 4. Published values for the black hole mass and bulge velocity dispersion for the galaxies plotted in Fig. 13.

Galaxy Type Bulge Sérsic B/D M• σ e

classificationa index n (108 M�) (km s−1)

Unbarred

NGC 13321,7,13 S0 C 2.36 0.79 15 ± 2 328 ± 16

M81 (NGC 3031)1,4b Sb C 3.88 ± 0.23 0.59 0.8+0.2
−0.11 143 ± 7

NGC 31151,4a S0 C 3.89 ± 0.32 1.63 8.9+5.1
−2.7 230 ± 11

NGC 32451,4a S0 C 3.82 ± 0.34 1.44 2.1+0.5
−0.6 205 ± 10

NGC 34142,6,10,13 S0 C 2.3 ± 0.9 0.52 2.4 ± 0.3 236.8 ± 7.5

NGC 35851,4d, 13 S0 C 3.49 2.23 3.3+1.5
−0.6 213 ± 10

NGC 39981,4d, 8,13 S0 C 4.1 1.38 8.5 ± 0.7 272 ± 14

NGC 40261,4d, 8,13 S0 C 2.46 0.47 1.8+0.6
−0.3 180 ± 9

NGC 43421,4d, 8,13 S0 C 4.84 1.63 4.6+2.6
−1.5 225 ± 11

NGC 45641,4a S0 C 3.70 ± 0.66 1.5 0.88 ± 0.24 162 ± 8

NGC 45941,4c Sa C 6.2 ± 0.6 1.04 6.7+0.5
−0.4 230 ± 12

NGC 74573,4b S0 C 2.72 ± 0.4 0.15 0.041+0.012
−0.017 67 ± 3

Barred

M31 (NGC 224)1,4c, 12 SBb C 2.1 ± 0.5 0.92 1.4+0.8
−0.3 160 ± 8

NGC 10231,4b SB0 C 2.47 ± 0.34 0.54 0.4 ± 0.04 205 ± 10

NGC 13161,5,13 SB0 C 2.9 0.59 1.7 ± 0.3 226 ± 11

NGC 42581,4c, 11 SABbc C 2.80 ± 0.28 0.12 0.367 ± 0.001 115 ± 10

NGC 45961,4d, 13 SB0 C 3.61 1.04 0.84+0.36
−0.25 136 ± 6

MW1 SBbc P 1.0 0.12 0.041 ± 0.006 103 ± 20

NGC 10682,15 SBb P - - 0.084 ± 0.003 151 ± 7

NGC 13001,4a SB(rs)bc P 1.61 ± 0.39 0.09 0.71+0.34
−0.18 87 ± 5

NGC 27871,4c, 15 SB0 P 2.6 ± 0.5 1.38 0.41+0.04
−0.05 189 ± 9

NGC 32271,4d, 15 SBa P 2.49 0.18 0.15+0.05
−0.08 133 ± 12

NGC 33681,4b, 9 SBab P 1.63 ± 0.18 0.35 0.076+0.016
−0.015 122+28

−24

NGC 33841,4b SB0 P 1.42 ± 0.2 0.49 0.11+0.05
−0.05 143 ± 7

NGC 34891,4b SAB0 P 1.47 ± 0.28 1.45 0.06+0.008
−0.009 100+15

−11

NGC 75821,4d, 13 SBab P 0.91 0.10 0.55+0.16
−0.11 156 ± 19

Barred galaxies with no bulge classification

IC25602,14 SBb – – – 0.044+0.044
−0.022 144

NGC 2532,10 SBc – – – 0.10+0.10
−0.05 109 ± 20

NGC 22731 SBa – – – 0.078 ± 0.004 144+18
−15

NGC 25491 SB0 – – – 0.14+0.01
−0.04 145 ± 7

NGC 27782,10 SB0 – – – 0.15+0.09
−0.1 161.7 ± 3.2

NGC 33931 SBa – – – 0.33 ± 0.02 148 ± 10

NGC 41512,15 SBab – – – 0.65 ± 0.07 119 ± 26

NGC 49452,10 SBcd – – – 0.014+0.014
−0.007 127.9 ± 19.1

NGC 63231 SBab – – – 0.098 ± 0.001 158+28
−23

UGC37891 SBab – – – 0.108+0.006
−0.005 107+13

−12

aC = classical, P = pseudo. Classifications take into account Sérsic index as well as bulge morphology except where indicated.
1Black hole masses and velocity dispersion data from McConnell & Ma (2013).
2Black hole masses and velocity dispersion data from Graham & Scott (2013).
3Black hole masses and velocity dispersion data from Gültekin et al. (2009).
4aBulge/disc decompositions from Fisher & Drory (2008).
4bBulge/disc decompositions from Fisher & Drory (2010).
4cBulge/disc decompositions from Fisher & Drory (2011).
4dBulge/disc decompositions from David Fisher (private communication).
5Bulge/disc decompositions from Beletsky et al. (2011).
6Bulge/disc decompositions from Krajnović et al. (2013).
7Bulge/disc decompositions from Rusli et al. (2011).
8Sérsic indices found by Krajnović et al. (2013) are <2. Those from Fisher & Drory (2010) are preferred because their data is based on HST observations
which are of higher resolution than those of Krajnović et al. (2013) which are based on SDSS data and from imaging with the Wide Field Camera (WFC)
mounted on the 2.5-m Isaac Newton Telescope. Bulge/disc decompositions based on lower resolution observations tend to give lower values of n therefore the
value of n given for NGC 3414 may be trusted to classify its bulge as any error will tend to lower the value of n but it is still >2.
9Sérsic index found by Fabricius et al. (2012) is 2.46 ± 0.77 but morphologically classified as pseudo-bulge.
10Source data from HyperLeda (Paturel et al. 2003).
11Described as pseudo-bulge (possibly classical) in Fisher & Drory (2010) but we use the updated classification of Fisher & Drory (2011).
12For barred classification see Athanassoula & Beaton (2006).
13Classified only on basis of Sérsic index. n > 2 implies a classical bulge, n < 2 implies a pseudo-bulge.
14Velocity dispersion from Cid Fernandes et al. (2004); for fitting purposes we assume an uncertainty of ±20 km s−1.
15Bulge classification (and σ e for NGC 1068) from Kormendy et al. (2011).
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Table 5. Fit results: using the data of Table 4 to fit the M•−σe relation
of only classical bulges in unbarred galaxies. We then fix the resulting
slope and fit only the zero-point to obtain the offset of classical bulges
and pseudo-bulges in barred galaxies. N is the number of galaxies in each
sample.

Sample N β α ε0

(dex)

Unbarred classical bulges 12 3.78 ± 0.31 8.39 ± 0.05 0.11
Barred classical bulges 5 3.78 8.21 ± 0.19 0.41
Barred pseudo-bulges 9 3.78 7.91 ± 0.18 0.50
Barred classical bulges+

unclassifieds 15 3.78 7.89 ± 0.14 0.46

Figure 13. The M•−σe relations of classical bulges in unbarred galaxies,
and of classical- and pseudo-bulges in barred galaxies from Table 4. The
solid black line shows the linear regression of the unbarred classical bulges,
while the shaded region bounded by the dashed black lines shows the one
σ uncertainty. The solid red and blue lines show fits for the classical- and
pseudo-bulges, respectively, in barred galaxies with slope fixed to that for
unbarred classical bulges.

scatter of only 0.11 dex, as can be seen in Fig. 13. While this
can merely be due to small number statistics, the wide range of
σ e considered, 67 ≤ σ e ≤ 328 km s−1, hints that our approach of
selecting sub-samples based on bulge type is reasonable.

The fit we obtain for unbarred classical bulges is in fairly good
agreement with the fit to elliptical galaxies (excluding brightest
cluster galaxies) of Debattista et al. (2013): (α, β) = (8.21 ± 0.07,
4.06 ± 0.40). If we fix β = 4.06 and refit these 12 unbarred galaxies
with classical bulges, we obtain α = 8.41 ± 0.05, which confirms the
lack of an offset between ellipticals and unbarred classical bulges.
Debattista et al. (2013) used this result to argue for the need of
SMBHs in classical bulges to grow along with the discs.

5.3 The M•−σe relations of barred galaxies

We then fix β = 3.78, the value we obtained for unbarred clas-
sical bulges, and fit the M•−σe relation of barred galaxies with

classical bulges. We obtain (α, ε0) = (8.21 ± 0.19, 0.41), or
δα = −0.18 ± 0.20 dex. This offset, which is visible in Fig. 13, is
smaller than the δα = −0.5 dex found by Graham et al. (2011) (who
however considered all barred galaxies, not just those with classical
bulges). The offset we find is consistent with the one predicted by
the models (see Table 3). However, with this small sample it is also
consistent with no offset. The offset is largely driven by NGC 1023,
while NGC 1316 also falls below the unbarred M•−σe relation.
Therefore, the main limitation of our comparison to observations
is the small sample size for barred classical bulges. The observed
scatter in the M•−σe relation of barred classical bulges is more than
twice as large as that predicted by adding in quadrature the intrinsic
scatter of unbarred classical bulges (0.11) to the scatter induced by
bars in our models (0.16). The main reason for this discrepancy is
very likely the narrow range of models we have considered, which
reduces the predicted scatter. Moreover, if some SMBHs in barred
galaxies are able to grow again, returning to the fiducial M•−σe

relation, then this would further increase the scatter relative to the
offset relation. Indeed, M31, NGC 4258 and NGC 4596 are all close
to the M•−σe relation of unbarred classical bulges. Of these, M31
and NGC 4258 both have gas. NGC 4258 is also the only galaxy in
this sample with a weak bar. Finally, the observed scatter for barred
galaxies may be enhanced by modelling uncertainties. For instance,
in the presence of a bar, the growth of an SMBH results in a larger
increase in σ e than it would in an axisymmetric galaxy. However,
the kinematics of stars associated with the bar results in a smaller
and frequently negative Gauss–Hermite coefficient h4. Brown et al.
(2013) argue that using an axisymmetric stellar dynamical mod-
elling to measure SMBH masses in barred galaxies could result
in an overestimate of the derived M• since low/negative h4 values
primarily result from a large fraction of stars on tangential orbits,
which in turn requires a larger enclosed mass to fit the large velocity
dispersion.

The fit for the pseudo-bulge barred sample gives (α, ε0) =
(7.91 ± 0.18, 0.50). The offset, also seen in Fig. 13, is
δα = −0.48 ± 0.19 dex, which is considerably larger than in
the simulations. It is unclear whether compression of the bulge
by bar evolution is the main cause for the offset in the case of
pseudo-bulges. The Milky Way, which has a bar and which we have
classified as having a pseudo-bulge, is right in the middle of the
M•−σe relation of barred galaxies with pseudo-bulges.

6 D I S C U S S I O N A N D C O N C L U S I O N S

6.1 Offset and scatter in the M•−σe relation

We have studied the consequences of angular momentum redistri-
bution driven by bars on the evolution of the velocity dispersion,
σ e, of the bulge and the implications for the M•−σe relation. We
showed that if M• does not grow during the formation and evolution
of bars, then the increase in σ e results in an offset below the M•−σe

relation. The simulations predict an offset δα ∼ −0.2.
Defining a sample of observed classical bulges from the literature,

we fit the M•−σe relation of unbarred galaxies. Then, fixing the
slope of the relation, we fit the relation for the classical bulges
in barred galaxies, and find an offset from the unbarred galaxies
of δα = −0.18 ± 0.20, consistent with the prediction but also
consistent with no offset.

Contamination of the bulge velocity dispersion by the kinematics
of the disc can lead to changes in σ e by as much as 25 per cent,
equivalent to an offset in the M•−σe relation as large as δα ∼ −0.4
(for β = 4). However, this contamination should also be present in
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the sample of unbarred galaxies relative to which we measure the
offset for the barred galaxies. Thus, contamination by the disc is
very unlikely to cause an offset.

The models imply that the scatter should increase (in quadrature)
by ∼0.16; we measure a scatter for unbarred galaxies of 0.11 and
for barred classical bulges of 0.41. This is larger than the predicted
scatter, but our prediction is based on a narrow range of models
and does not take into account the possibility that SMBHs can
grow back on to the M•−σe relation, both of which would increase
the scatter. In addition, our models cover only a narrow range of
bulge-to-disc ratios. Moreover, the dynamical measurements of M•
probably include systematic errors that arise from modelling barred
galaxies as axisymmetric galaxies (Brown et al. 2013), adding to
the scatter in the M•−σe relationship.

6.2 The black hole Fundamental Plane

Several studies have suggested that departures from the M•−σe

relation correlate with a third, structural, parameter, such as Reff

or the stellar mass of the bulge Mbul (Marconi & Hunt 2003;
de Francesco, Capetti & Marconi 2006; Aller & Richstone 2007;
Barway & Kembhavi 2007; Hopkins et al. 2007a). This has come to
be known as the black hole Fundamental Plane (BHFP), and both
its existence and origin have been a subject of uncertainty. This
is because the BHFP, if it exists, is strongly dominated by σ e (e.g.
Beifiori et al. 2012). Hopkins et al. (2007b) proposed that the BHFP
may arise from the higher gas mass fraction of merger progenitors
at high redshift. Graham (2008a) instead argued that barred galax-
ies may wholly account for the BHFP, given the current data. We
have shown that the residuals in the M•−σe relation caused by bar
evolution correlate with structural and kinematic properties of the
system. In the former case, this can account for the weak BHFP mea-
sured thus far. For the models, we find a strong correlation between
δlog M• and M(B)/M(B + D); observationally however, the BHFP
is much weaker, and this perhaps reflects the fact that the models
we have considered here have a relatively narrow range of B/D ini-
tially, leading to a strong correlation between M(B)/M(B + D) and
�M(B + D)/M(B + D)init. A wider range of initial bulge-to-disc
ratios is likely to blur the correlation between M(B)/M(B + D) and
�M(B + D)/M(B + D)init, making for a weaker structural BHFP.
In addition, we are able to fully disentangle bulges from discs in
the simulations, allowing us to compute M(B)/M(B + D). Obser-
vationally, disentangling the bulge mass at small radii, where the
disc profile may no longer follow an inward extrapolation of an
exponential profile, may present difficulties.

We have also shown that δlog M• strongly correlates with
βφ(B + D) and βz(B + D), which potentially present new ver-
sions of the BHFP where the third parameter is a kinematic one.
This correlation is unlikely to be as sensitive to a wider range of
initial conditions, but this still needs to be tested further.

6.3 The role of gas

Using HST Space Telescope Imaging Spectrograph spectra to mea-
sure upper limits on M• in 105 low-luminosity AGN, Beifiori et al.
(2009) found no offset between the M•−σe relations of barred and
unbarred galaxies. Likewise, in a study of 76 active galaxies, Xiao
et al. (2011) also found no difference between barred and unbarred
galaxies. The main difference between these observations and our
results is the presence of gas. The simulations presented here are
all collisionless. As the bar grows, σ e increases and SMBHs fall
below the M•−σe relation. This offset can be reversed if the SMBH

can grow, which they can best do by accreting gas. It is now clear
that low-to-medium luminosity AGN are overwhelmingly resident
in disc galaxies. Thus, secular processes in disc galaxies must play
an important role in the growth of SMBHs (Cisternas et al. 2011;
Schawinski et al. 2011, 2012; Araya Salvo et al. 2012; Kocevski
et al. 2012; Simmons et al. 2012; Treister et al. 2012; Debattista
et al. 2013). It seems likely that, after a bar forms, an SMBH will
drop below the M•−σe relation, but, once gas is driven to the centre,
the SMBH can grow again. If SMBH growth is governed by AGN
feedback, then it would be able to return to the M•−σe relation.
This path to returning to the M•−σe relation is however not avail-
able to galaxies without gas to trickle down to the SMBH. The fact
that galaxy samples with ongoing AGN activity, such as those of
Beifiori et al. (2009) and Xiao et al. (2011), do not show an offset
suggests that bars are efficient at feeding SMBHs.

6.4 Future observational prospects

The sample of observed barred galaxies with classical bulges we
have used here includes just five galaxies. The most immediate way
of extending our results will come from careful bulge classification
of the remaining barred sample. We explored what would happen if
the sample of unclassified bulge barred galaxies in Table 4 all hosted
classical bulges, which is very unlikely but gives us an indication
of how the offset is likely to vary. Fitting the M•−σe relation with
β = 3.78 gives a larger offset δα = −0.50 ± 0.14 (see Table 5
for full fit). Curiously, other than NGC 4151, all the rest of these
galaxies are either on (within the error) or offset below the M•−σe

relation, suggesting that a large offset is likely. Thus, the presence
of an offset between unbarred and barred galaxies with classical
bulges may get stronger.

6.5 Caveats

Two important caveats need to be borne in mind about our results.
First of all the models considered in this paper have been drawn from
a probability distribution appropriate for properties of the Milky
Way. At best only one of these models is an accurate representation
of the Milky Way. It is unlikely that a distribution of models of a
single galaxy is a reasonable representation of the intrinsic variety
of galaxies in general, even at fixed galaxy mass. For example, the
bulge-to-disc ratio in the models takes on a narrow range of values
0.15 ≤ B/D ≤ 0.28, whereas the barred sample in Table 4 has an
order of magnitude larger variation in B/D. This may bias the values
of the offset in the M•−σe relation to larger values while decreasing
the scatter of the models.

In addition, all the models as constructed are already bar unstable
from the start. We note in particular that about half the models have
a minimum Toomre-Q between 1.0 and 1.5. Thus, many of the
models need to shed a significant amount of angular momentum
in order to form a bar. Whether nature forms disc galaxies that are
this unstable is unclear; for instance the high-resolution models of
Roškar et al. (2012), in which the stars all formed out of cooling
gas, rather than put in ab initio as here, tend to evolve at constant
Q slightly lower than 2. Indeed, the values in Table 2 show that
smaller values of minimum Q produce larger values of 〈σ e/σ e0〉.
We note that the correlation of Q with 〈σ e/σ e0〉 (rs = −0.57) is
stronger than with Abar (rs = 0.19) or with �M/Minit (rs = −0.44).
Thus, these models may shed more angular momentum from the
disc centre than in nature, leading to a larger increase in the disc
mass at the centre, a larger increase in σ e and thus a larger offset in
the M•−σe relation.
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6.6 Summary

We have studied the consequences of bar formation and evolution on
the M•−σe relation of SMBHs. Our main results can be summarized
as follows.

(i) Models show that bars cause an increase in the central mass
density of a galaxy, altering the kinematics of the bulge and of
the disc. Of particular importance for the M•−σe relation is the
increase in σ e. We find a strong correlation between the ratio of
final to initial dispersion, 〈σ e/σ e0〉, and the fractional change in
mass of the bulge+disc within Reff of the bulge, in good agreement
with Debattista et al. (2013). The simulations show that σ e(B) can
increase by as much ∼20 per cent for a slope β = 4. An SMBH in
such a galaxy would need to grow by a factor of ∼2 to remain on
the M•−σe relation. The average fractional increase of σ e(B) in the
simulations is 〈σ e/σ e0〉 = 1.12 ± 0.05.

(ii) The simulations show that while σ (B + D) correlates with
σ (B), the two are not equal; thus, the disc contaminates the mea-
surement of the bulge velocity dispersion. In the edge-on view,
σ e(B + D) and σ e/8(B + D) are up to 25 per cent larger than σ e(B)
and σ e/8(B). σ e/8(B + D)/σ e/8(B) and σ e(B + D)/σ e(B) follow the
same distribution, but the scatter in σ e/8(B + D) is slightly larger
than the scatter in σ e(B + D). Thus, σ e is a better quantity for
studying SMBH scaling relations.

(iii) We use the M•−σe relation of Gültekin et al. (2009) and the
models to estimate the offset of barred galaxies in the absence of
SMBH growth. We predict an offset δα ∼ −0.2 for a slope of β = 4
and an increase in quadrature of the scatter by ε0 ∼ 0.16.

(iv) We showed that the tangential anisotropy, βφ(B + D) corre-
lates very strongly with the change in mass within Reff. Since this in
turn correlates with the change in σ e, this suggests that residuals of
galaxies from the M•−σe relation may also correlate very strongly
with βφ(B + D), which is the case for the simulations. This may
provide a new version of the BHFP, where the third parameter is a
kinematic one.

(v) From published samples of observed galaxies, we obtain
a sample of twelve galaxies to measure the M•−σe relation
of unbarred disc galaxies with classical bulges. We find (α,
β) = (8.39 ± 0.05, 3.78 ± 0.31). Then, fixing the slope β, we
fit the M•−σe relation for five barred galaxies with classical bulges.
We find δα = −0.18 ± 0.20, comparable to the prediction from
the models but also consistent with no offset. The same exer-
cise for nine pseudo-bulges in barred galaxies yields an offset
δα = −0.48 ± 0.19. The scatter in the M•−σe relation of the
barred classical bulges is larger than the one for unbarred classical-
bulged galaxies by an amount larger than predicted. This may be
because the scatter in the models underestimates the real scatter
and because SMBHs in barred galaxies are able to grow again, re-
turning to the fiducial M•−σe relation. SMBH mass measurements
in barred galaxies may also be more uncertain than in unbarred
galaxies (Brown et al. 2013).
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