
Fault Tolerant Flight Control:
An Application of the Fully Connected

Cascade Neural Network

by

Saed Hussain

A thesis submitted in partial fulfilment for the requirements for the
degree of Doctor of Philosophy at the University of Central

Lancashire.

March 2015

Dedicated to my loving parents and beautiful sisters.

Declaration

I declare that whilst registered as a candidate for the research degree, I have not

been a registered candidate or enrolled student for another award of the University or

other academic or professional institution. No material contained in this thesis has

been used in any other submission for an academic award and is solely my own work.

Saed Hussain

March 2015

“If we knew what we were doing, it wouldn’t be called research.”
– Albert Einstein

Abstract

The endurance of an aircraft can be increased in the presence of failures by utilising

flight control systems that are tolerant to failures. Such systems are known as fault

tolerant flight control systems (FTFCS). FTFCS can be implemented by develop-

ing failure detection, identification and accommodation (FDIA) schemes. Two of

the major types of failures in an aircraft system are the sensor and actuator fail-

ures. In this research, a sensor failure detection, identification and accommodation

(SFDIA); and an actuator failure detection, identification and accommodation (AF-

DIA) schemes are developed. These schemes are developed using the artificial neural

network (ANN).

A number of techniques can be found in the literature that address FDIA in

aircraft systems. These techniques are, for example, Kalman filters, fuzzy logic and

ANN. This research uses the fully connected cascade (FCC) neural network (NN) for

the development of the SFDIA and AFDIA schemes. Based on the study presented

in the literature, this NN architecture is compact and efficient in comparison to the

multi-layer perceptron (MLP) NN, which is a popular choice for NN applications.

This is the first reported instance of the use of the FCC NN for fault tolerance

applications, especially in the aerospace domain.

For this research, the X-Plane 9 flight simulator is used for data collection and as

a test bed. This simulator is well known for its realistic simulations and is certified

by the Federal Aviation Administration (FAA) for pilot training. The developed

SFDIA scheme adds endurance to an aircraft in the presence of failures in the

aircraft pitch, roll and yaw rate gyro sensors. The SFDIA scheme is able to replace

a faulty gyro sensor with a FCC NN based estimate, with as few as 2 neurons. In

total, 105 failure experiments were conducted, out of which only 1 went undetected.

In the developed AFDIA scheme, a FCC NN based roll controller is employed,

i

which uses just 5 neurons. This controller can adapt on-line to the post failure

dynamics of the aircraft following a 66% loss of wing surface. With 66% of the

wing surface missing, the NN based roll controller is able to maintain flight. This

is a remarkable display of endurance by the AFDIA scheme, following such a severe

failure. The results presented in this research validate the use of FCC NNs for

SFDIA and AFDIA applications.

ii

Acknowledgement

I remember at the beginning of this research, someone once told me - “It’s over

before you know it!”. As I write these words, after 3 years of this journey, this

is how it feels. I have experienced lots of new things, faced different challenges,

learnt more about myself, made new friends and of course, did my research. Here

is my attempt to acknowledge those who have influenced me to make this journey

and helped me through it. This is not meant to be an exhaustive list. My sincere

apologies to anyone I have missed and thank you for everything.

Firstly, I would like to thank my director of studies, Prof. Joe Howe, for guiding

me through the PhD process. Your constant motivation, support and advice on

personal development is greatly appreciated. I would also like to express my deepest

gratitude to my supervisor, Dr. Maizura Mokhtar, for her incredible support and

constant motivation. You have done more than what anyone could ask of their

supervisor. Your kindness and moral support during various stages of this research,

is something that I will always remember.

Additionally, this research would not have been possible without the backing

of BAE Military, Air and Information (MAI). I would like to thank the wonderful

personnel at MAI who took special interest in my work and guided me at various

stages. In particular, I would like to thank Ian Harrington for all the support he has

provided me when I needed something from BAE. I greatly appreciate everything

you have done for me.

I decided to do this PhD at UCLan, due to the amazing experience I had in the

final year of my BEng, doing a double module research project. I owe a lot to every

member of the engineering department, who have constantly guided and supported

me throughout my BEng. I would specially like to thank Phil Tranter and Dr. Geoff

Hall for going beyond the role of a supervisor and taking personal interest in my life

iii

and well being. Both of you were always supportive of me, not just in the aspect

of my degree but also in terms of my personal and future ambitions. I will always

remember you both. Additionally, I would also like to thank Clare Altham from the

Graduate School Office, for her kindness and enthusiastic support. Clare, I cannot

thank you enough for every time you have helped me and especially towards the end

of my research.

Throughout my journey, I have been blessed to have come across many support-

ive and encouraging guides in my life, particularly a select few teachers to whom I

am indebted. Some of which include: Mr. Martin, Mrs. Lobo, Mrs. Kavita, Mr.

Deepak and Mr. Sanjay. I cannot thank you enough, you have been so greatly

influential in shaping my character, without you this would not have been possible.

Aside from fantastic guides, I have been privileged to have many sincere and

fun friends and colleagues. Particular mention must go to Ammar Majeed, Ajmal

Ashraf, Ekta Gupte, Rakib Hossain, Mohiuddin Rahman, Clemence Pisira, Aidan

Day, Larry Lei, Sarah Cherhabil, Funsho Adeolu, Kostas Papouis, Matt Timperley,

Vanaja Rao, Swati Kumar, Sneha Subramanian, Nikhil Mahajan, Temba Mudariki

and Rashed Alghafri. Matt, I must say, I am going to miss all the moments we

created jotting down crazy ideas on the white board, and the times we were, for a

lack of a better word, “lazy-busy”. Dr. Adam Bedford, thank you for being a good

friend and inspiration for crazy ideas. Furthermore, I would specially like to thank

Saanya Sequeira for the times she was there and for her support.

Life is an interesting journey, filled with ups and downs. Sometimes, its during

the downs, when you really need a good friend to help you walk out of it. I have

been fortunate enough to cross paths with Dr. Banu Abdallah, Iftikhar Khan, Sakib

Yousaf and Sasitaran Iyavoo. I am immensely grateful to have the privilege to call

you my friends. Without you guys, I would have never completed this thesis. Your

patience, support and constant motivation during my weakest moment, gave me the

strength to keep moving forward with my dreams and ambition. I would also like to

thank UCLan ISOC for giving me the opportunity to make great friends who made

me laugh during tough times. A special thank you to Yousuf Bhikha, Tasneem

iv

Vahed, Sana Iqbal, Aalisha Azam and Jowairiyah Shibli (Juju).

Finally, and most importantly, I would not be here doing this research without

the constant support and sacrifice of my family. I will always remember the hard-

ships and challenges we as a family had to face to get me to this point. Ammu and

Abbu, I cannot express in words how grateful I am for everything you have done for

me. Asma, Wafa and Rahma, I am lucky to have you lovely girls as my sisters. I

am thankful to Allah for everything and to have you guys as my family. I love you

all to bits.

v

Contents

Abstract i

Acknowledgement iii

List of Figures xii

List of Tables xiv

List of Acronyms xv

List of Symbols xviii

1 Introduction 2

1.1 Unmanned Aircraft Systems and Endurance 2

1.2 Research Overview . 3

1.3 Research Contribution . 6

1.4 Organisation of the Thesis . 6

1.5 Publications by the Author . 7

2 Literature Review: Fault Tolerant Flight Control 9

2.1 Overview . 9

2.2 Fault Tolerant Flight Control System 9

2.3 Related Work . 11

2.4 Industry Practice . 16

2.5 Conclusion . 17

3 Neural Network Architecture and Learning Algorithm 19

vi

3.1 Overview . 19

3.2 Brief Introduction to Artificial Neural Networks 20

3.3 Selecting a Neural Network Architecture 22

3.4 Selecting a Learning Algorithm . 24

3.5 Number of Neurons and Generalisation Ability 25

3.6 FCC NN architecture and NBN learning algorithm 29

3.7 The LM and The NBN Algorithm 30

3.8 Basic Concepts in Neural Network Training 33

3.9 Implementation of the NBN Algorithm 35

3.9.1 Forward Propagation . 35

3.9.2 Computation of the quasi-Hessian Matrix and Gradient Vector 36

3.10 The NBN Training Process . 38

3.11 Neural Network Settings . 40

3.12 Conclusion . 41

4 The SFDIA Scheme 43

4.1 Overview . 43

4.2 SFDIA Outline . 44

4.3 Aircraft Simulation and Sensor Suite 45

4.4 Estimator Development . 46

4.4.1 Estimator NN Inputs, Outputs and Structure 46

4.4.2 Training and Validation Data Sets 48

4.4.3 Estimator Training . 48

4.4.4 Simulation for Validation . 49

4.4.5 Results and Discussion . 49

4.5 The Pitch Rate Anomaly . 56

4.5.1 Sampling Frequency . 56

4.5.2 Training Data . 57

4.5.3 Inputs to Estimators . 57

4.6 Sensor Failure Experiments . 59

4.6.1 Failure Detection and Identification Experiment Setup 59

vii

4.6.2 Sensor Failure Types . 59

4.6.3 Residual Generation Technique 61

4.6.4 Experiment Results . 62

4.7 Summary of Results and Discussions 68

4.8 Conclusion . 71

5 Actuator Failures in the X-Plane Simulator 74

5.1 Overview . 74

5.2 Initial Actuator Failure Study Objectives 74

5.3 Failure Simulation Constraints in the X-Plane Simulator 75

5.4 A Severe Case of Failure . 80

5.5 Challenges Faced Using X-Plane . 83

5.6 Conclusion . 84

6 The AFDIA Scheme 86

6.1 Overview . 86

6.2 Loss of Wing Surface Failure . 87

6.2.1 Overview . 87

6.2.2 Detecting and Identifying Failure 91

6.3 Adaptive Neural Network Roll Controller 92

6.3.1 Balance the Moment . 92

6.3.2 Roll Controller Development Process 94

6.4 The AFDIA Scheme . 99

6.4.1 Overview . 99

6.4.2 AFDIA Operational Outline 99

6.5 AFDIA Experimental Setup . 104

6.5.1 AFDIA Implementation in X-Plane 104

6.5.2 Experimental Conditions . 104

6.5.3 Experiment Overview . 104

6.6 Results and Discussions . 105

6.6.1 Post Failure Aircraft Behaviour 105

viii

6.6.2 Flight Duration . 107

6.6.3 Failure Detection Time . 113

6.6.4 AFDIA Execution Time Analysis 115

6.7 Reflective Improvement of the AFDIA Scheme 118

6.7.1 Euler angle based error function 118

6.7.2 On-line Learning and Stopping Condition 119

6.7.3 Improved AFDIA Scheme Operational Overview 123

6.8 Improved AFDIA Experimental Setup and

Overview . 125

6.9 Results and Discussion . 125

6.9.1 Post Failure Aircraft Behaviour 125

6.9.2 AFDIA Execution and Adaptation Time 132

6.10 Endurance Post Failure . 134

6.11 To Learn or Not to Learn . 135

6.12 Conclusion . 137

7 Conclusions and Future Work 147

7.1 Research Overview . 147

7.2 Research Contribution . 148

7.3 Future Work . 151

7.4 Summary . 152

Bibliography 154

Appendix A Flight Duration Post Failure i

Appendix B Wing Loss Failure Detection Time xiv

Appendix C Controller Run Time xxi

Appendix D Publications by the Author xxxv

ix

List of Figures

2.1 Block diagram of hardware redundancy. 11

2.2 Block diagram of analytical redundancy. 11

2.3 A generic structure of the analytical redundancy based failure detec-

tion identification and accommodation (FDIA) scheme. 12

3.1 The multilayer perceptron (MLP) neural network (NN). 21

3.2 The Fully Connected Cascade (FCC) NN architecture. The presented

NN has 2 inputs, 1 output and the bias input. 23

3.3 The TSK fuzzy controller control surface with 8× 6 = 48 defuzzifica-

tion rules. 26

3.4 TSK Control Surface using 3 and 4 neuron FCC neural networks. . . 27

3.5 TSK Control Surface using 5 and 8 neuron FCC neural networks. . . 28

3.6 Jacobian Matrix J . 30

3.7 The Error Vector e . 31

3.8 Concept of a neuron. 33

3.9 The Pseudo-Code for the NBN algorithm. 39

3.10 The NBN Training Process. This figure is adapted from [1]. 40

4.1 SFDIA scheme layout for pitch, roll and yaw rate sensors. 45

4.2 The Cessna aircraft model in X-Plane 9. 46

4.3 Aircraft X, Y and Z axis. This figure is adapted from [2]. 47

4.4 Normalised yaw rate using equation (3.21). Results using 2 neurons

in scenario 3. 49

4.5 Normalised yaw rate using equation (3.21). Results using 2 neurons

in scenario 1. 51

x

4.6 Normalised pitch rate using equation (3.21). Results using 6 neurons

in scenario 4. 53

4.7 Normalised Pitch rate using equation (3.21). Results using 6 neurons

in scenario 3. 53

4.8 Normalised roll rate using equation (3.21). Results using 4 neurons

in scenario 3. 54

4.9 Normalised roll rate using equation (3.21). Results using 4 neurons

in scenario 5. 54

4.10 Normalised pitch rate using equation (3.21). Results using 5 neurons

estimator trained using 10 Hz sampling frequency data. 57

4.11 Sliding average window at time t. 62

4.12 Yaw sensor hard fault simulations. 64

4.13 Pitch sensor step fault simulations. 67

4.14 Roll sensor soft fault simulations. 69

5.1 Flying surface failure options menu in X-Plane 9. 76

5.2 Cessna 172SP in X-Plane with failure on the LEFT WING 1 part.

The left aileron is stuck at a deflection. 78

5.3 Airbus A320 in X-Plane with failure on the LEFT WING 2 part. The

WING 2 section of the aircraft appears to be removed or destroyed. . 79

5.4 F-15 aircraft landed safely by Israeli pilot with just one wing. Taken

from www.uss-bennington.org [3]. 81

5.5 Airbus A320 in Plane Maker. WING 1 part linked to the inner section

of the aircraft wing. 82

5.6 Airbus A320 in Plane Maker. WING 2 part linked to the outer section

of the aircraft wing. 82

6.1 Aircraft wings and lift force acting on them. 88

6.2 Aircraft attitude angles or Euler angles. This figure is adapted from [4].

88

6.3 Roll related sensor measurements from an aircraft following a left

wing surface loss failure. 89

xi

6.4 Roll related sensor measurements from an aircraft following a right

wing surface loss failure. 90

6.5 Training data for the neural network roll controller. 97

6.6 Validation results of 5 neuron based neural network roll controller on

dataset 2. 98

6.7 The AFDIA Scheme. 103

6.8 Aircraft Performance Results for Left Wing Failure. Window size n

= 10, scalar multiple c = 1. 108

6.9 Aircraft Performance Results for Right Wing Failure. Window size n

= 15, scalar multiple c = 4. 109

6.10 The relationship between the flight time and the parameters scalar

multiple and window size. 111

6.11 Pseudo code for the on-line adaptation stopping condition. 122

6.12 The Improved AFDIA Scheme. 124

6.13 Aircraft Performance Results for Left Wing Failure. 127

6.14 Aircraft Performance Results for Right Wing Failure. 128

6.15 Aircraft Performance Results for Right Wing Failure. 129

6.16 Aircraft flight data over 2 hours following left wing failure. 140

6.17 Aircraft flight data over 2 hours following left wing failure. 141

6.18 Aircraft flight data over 2 hours following left wing failure. 142

6.19 Aircraft flight data over 2 hours following right wing failure. 143

6.20 Aircraft flight data over 2 hours following right wing failure. 144

6.21 Aircraft flight data over 2 hours following right wing failure. 145

xii

List of Tables

1.1 Hardware specifications of the MacBook Pro laptop on which this

research was conducted. 5

3.1 Comparison of FCC and MLP architecture to solve the Parity-N prob-

lem. 23

3.2 Comparison of the averages of different algorithms to solve the parity-

4 problem using the MLP architecture. 25

4.1 Inputs to the sensor estimators. 47

4.2 Yaw rate estimator errors for the validation scenarios. 50

4.3 Pitch rate estimator errors for the validation scenarios. 52

4.4 Roll rate estimator errors for the validation scenarios. 55

4.5 Pitch rate estimator errors using training data sampled at 10 Hz. . . 58

4.6 Yaw FDI Results . 65

4.7 Pitch FDI Reults . 66

4.8 Roll FDI Results . 68

6.1 Maximum roll acceleration values immediately following a wing sur-

face loss failure for left and right wings. 92

6.2 Inputs/Output of the NN based roll controller. 93

6.3 Roll controller errors for the validation datasets. 96

6.4 Summary of the flight duration post wing surface loss failure. 110

6.5 Summary of the failure detection time. 114

6.6 Summary of AFDIA execution time before and after loss of left wing

surface. 116

xiii

6.7 Summary of AFDIA execution time before and after loss of right wing

surface. 117

6.8 Analysis of the improved AFDIA execution time over 20 seconds be-

fore the controller adaptation. 133

6.9 Analysis of the improved AFDIA scheme execution and adaptation

time following a loss of left wing surface. 134

6.10 Analysis of the improved AFDIA scheme execution and adaptation

time following a loss of right wing surface. 135

xiv

List of Acronyms

UAS Unmanned Aerial Systems

UAV Unmanned Aerial Vehicle

UCLan University of Central Lancashire

CEPM Centre for Energy and Power Management

FTFCS Fault Tolerant Flight Control Systems

FDIA Failure Detection, Identification and Accommodation scheme

FA Failure Accommodation

FDI Failure Detection and Identification

SFDIA Sensor Failure Detection, Identification and Accommodation scheme

AFDIA Actuator Failure Detection, Identification and Accommodation scheme

NN Neural Network

FCC Fully Connected Cascade

MLP Multi-Layer Perceptron

FAA Federal Aviation Administration

FTCS Fault Tolerant Control System

PFTCS Passive Fault Tolerant Control System

AFTCS Active Fault Tolerant Control System

xv

GLR Generalised Likelihood Ratio

CUSUM Cumulative Sum

SPRT Sequential Probability Ratio Test

MMAE Multiple Model Adaptive Estimation

IMM Interacting Multiple Model

MM Multiple Model

MMST Multiple Model Switching Tuning

TAFA Tailless Advanced Fighter Aircraft

VTOL Vertical Takeoff and Landing

PCA Propulsion Controlled Aircraft

EKF Extended Kalman Filter

SSME Space Shuttle Main Engine

EBP Error Back Propagation

EMRA Extended Minimal Resource Allocation

RBF Radial Basis Function

IFCS Intelligent Flight Control System

OFC Oscillatory Failure Case

BNN Biological Neural Network

ANN Artificial Neural Network

LM Levenberg-Marquardt

NBN Neuron by Neuron

SSE Sum Squared Error

xvi

FCS Flight Control System

AI Artificial Intelligence

AHRS Attitude/Heading Reference System

INS Initial Navigation System

MSL Mean Sea Level

xvii

List of Symbols

w Weight of neural network connection

f Activation function

sec Second(s)

n Index of the training iteration

wn+1 New weights vector

w Previous weights vector

J Jacobian matrix

I Identity matrix

e Error vector

µ Combination coefficient for LM and NBN algorithm

p Training pattern

j Index of the neuron

wj,x xth connection weight w to neuron j

m Index of the neural network output neuron

ep,m Error for training pattern p at neural network output neuron m

dp,m Desired output for pattern p at neural network output neuron m

op,m Actual output for pattern p at neural network output neuron m

M Number of neural network output

P Number of training patterns

C Number of weights in the neural network

yj Output node of neuron j

yj,i ith input node of neuron j

netj Sum of the weighted inputs to neuron j

xviii

sj Slope (or derivative) of the activation function fj

δm,j Signal gain between neuron j and output neuron m

k Neuron k

E Sum squared error

Q Quasi-Hessian matrix

g Gradient vector

qp,m Quasi-Hessian sub-matrix

ηp,m Gradient sub-vector for pattern p and output neuron m

jp,m Jacobian row for pattern p and output neuron m

xn Normalised value

xo Value to be normalised

a Minimum value of the range to be normalised to

b Maximum value of the range to be normalised to

xmin Minimum value of the range to be normalised from

xmax Maximum value of the range to be normalised from

FA Fault alarm

FS Fault switch

q Pitch rate (deg/sec)

p Roll rate (deg/sec)

r Yaw rate (deg/sec)

q Pitch acceleration (deg/sec2)

p Roll acceleration (deg/sec2)

r Yaw acceleration (deg/sec2)

ax Acceleration along the X axis of the aircraft (deg/sec2)

ay Acceleration along the Y axis of the aircraft (deg/sec2)

az Acceleration along the Z axis of the aircraft (deg/sec2)

δA Aileron demand (command)

δR Rudder demand (command)

δE Elevator demand (command)

gx Gravitational acceleration component along the aircraft X axis

xix

gy Gravitational acceleration component along the aircraft Y axis

gz Gravitational acceleration component along the aircraft Z axis

t Time

k Time instance k

xt Sensor signal at time t

rt Useful signal from the sensor at time t

nt Noise signal from the sensor at time t

ft Failure signal from the sensor at time t

b Constant bias

tf Time of failure

A Magnitude of the additive fault

TR Duration of the ramp

d Residual

n Size of sliding data window

D Residual

τ Fault threshold

φ Roll Euler angle (deg)

ψ Yaw Euler angle (deg)

θ Pitch Euler angle (deg)

c Scalar multiple

xx

“And, when you want something, all the universe conspires in helping you
to achieve it.”

– Paulo Coelho, The Alchemist

1

Chapter 1

Introduction

1.1 Unmanned Aircraft Systems and Endurance

Over the years, there has been a significant growth in the application of unmanned

aerial systems (UAS). UAS are also commonly known as unmanned aerial vehicles

(UAVs). UAS are used in applications such as border security, reconnaissance, aerial

survey, search and rescue, to name a few, and military and scientific research. The

growth in these types of aircraft systems can be attributed to a number of benefits,

such as low cost, lack of risk to a human pilot in dangerous missions and the ability

to conduct lengthy missions which may otherwise be cumbersome for a human pilot.

In 2009, a strategic research partnership agreement was signed between BAE

Systems and the University of Central Lancashire (UCLan). As part of this part-

nership, the Centre for Energy and Power Management (CEPM) was setup and one

of the research objectives of CEPM was to achieve longer endurance in UAS [5].

Long endurance is not just defined in terms of longer flight durations, such as con-

tinuous flights for days or months. Instead, the research also focused on achieving

endurance from the following aspects:

1. Intelligent Energy Management Systems

In this aspect, the research focused on the development of intelligent manage-

ment algorithms/systems that could turn different parts of aircraft systems on

or off to maintain the current state of the aircraft with minimum energy re-

quirement. The goal here was to save energy by turning off systems that were

2

Chapter 1. Introduction

otherwise not required during that time. The energy saved could later be used

to increase the duration of the flight, thereby adding endurance to the aircraft.

These algorithms/systems were to be designed for seamless integration with

existing aircraft systems.

2. Fault Tolerant Control

Aircraft systems like any other system are prone to failure. This aspect of

the research was to investigate the development of technology that can add

endurance to an aircraft in case of failure. For example, consider an extreme

case, where a section of an aircraft wing detaches from the aircraft body due

to structural failure or battle damage. In this case, endurance could be added

by developing systems that attempt to maintain flight following such a severe

failure. In general, the goal here was to increase the endurance of the aircraft

system in the presence of failures.

This thesis is part of the research effort by the CEPM in achieving longer en-

durance in UAS from the fault tolerant control aspect. To this end, this research

aims to add fault tolerance capabilities to flight control systems, in order to add

endurance to the aircraft in the presence of failures. In a nutshell, this research

investigates the development of technology to obtain fault tolerant flight control.

1.2 Research Overview

Fault tolerant flight control systems (FTFCS) have the ability to tolerate compo-

nent failures automatically while maintaining overall system stability and acceptable

performance in the event of failures [7–9]. Their purpose is to detect, identify and

accommodate any type of failure that may occur during flight [10,11]. Such systems

can be implemented by developing failure detection, identification and accommoda-

tion (FDIA) schemes. There are two parts to an FDIA scheme. The first part is the

failure detection and identification (FDI) and the second part is the failure accom-

modation (FA), where the necessary actions are taken to accommodate the failure.

Two of the major types of failure in an aircraft system are sensor and actuator

3

Chapter 1. Introduction

failures [10,12,13]. Therefore in this research, two schemes are developed:

• Sensor failure detection, identification and accommodation (SFDIA)

• Actuator failure detection, identification and accommodation (AFDIA)

A number of techniques exist in the literature that address fault tolerance issues

in manned and unmanned aircraft systems. These techniques are, for example,

Kalman filters [14], neural networks (NNs) [11], fuzzy logic [15] and a combination

of the previous techniques [16]. Over the past three decades there has been an

increasing interest in the application of NN for SFDIA and AFDIA [11,17–19]. This

can be attributed to the following two properties of the NN [11]:

• Learning ability and adaptation

NN can learn to represent a system using past data collected from the system.

This is very useful where the mathematical model of the system might be

limited. Furthermore, they have the added ability to adapt or learn on-line

using the current data of the system to improve its representation on-line [20–

22].

• Application to non-linear systems

An aircraft system can be significantly non-linear during various phases of

the flight. However, most of the solutions in the literature rely on a linearised

model of the aircraft for fault tolerant control applications [10]. NNs have been

shown to successfully represent highly non-linear systems, hence the suitability

for this research [12,23].

In this research, the developed SFDIA and AFDIA schemes are based on the

fully connected cascade (FCC) NN. In this NN architecture, all possible forward

connections are made, with the neurons arranged in a cascade. This architecture

has been studied extensively by Wilamowski [24–28]. Compared to the popular

NN architecture - the multi-layer perceptron (MLP) - the FCC architecture is more

powerful, compact and efficient. This thesis details the first attempts at exploit-

ing the benefits of the FCC NN architecture for SFDIA and AFDIA in aerospace

applications.

4

Chapter 1. Introduction

The SFDIA scheme developed in this research addresses failures in the pitch,

roll and yaw rate gyroscope sensors of an aircraft system. The endurance of an

aircraft can be increased during failures of these three sensors, using the SFDIA

scheme. In total, 7 failure cases are considered over 105 failure experiments. In this

scheme, FCC NN based pitch, roll and yaw rate sensor estimators are developed

which replace the faulty sensor, once a failure is detected.

The AFDIA scheme developed in this research, aims to increase the endurance

of an aircraft following a 66% loss of wing surface. The scheme employs a FCC

NN based roll controller, which adapts on-line to control the aircraft, and maintain

flight with the wing surface missing. Due to the quick adaptation of the FCC NN

based roll controller, the controller is able to adapt to the post failure dynamics of

the aircraft and maintain flight. Note that the percentage of wing surface loss is

defined by the aircraft model used in the simulator. Further discussion on this is

presented in Chapter 5.

Table 1.1: Hardware specifications of the MacBook Pro laptop on which this research
was conducted.

MacBook Pro Laptop Specifications

Processor 2.3 GHz intel Core i7 Quad Core

Memory 8 GB 1333 MHz DDR3

Graphics AMD Radeon HD 6750M 1024 MB

For this research, the X-Plane 9 flight simulator is used for data collection and as

a test bed. This simulator was the main framework for testing the systems developed

by the CEPM research team. This simulator produces realistic flight simulations due

to which its professional version is certified by the Federal Aviation Administration

(FAA) for pilot training [29, 30]. It is also used by the likes of NASA, Cessna

and Japan Airlines, to train pilots, develop concept designs and flight testing [30,

31]. This research was conducted on a MacBook Pro laptop, the specifications of

which are presented in Table 1.1. Additionally, the schemes developed here were

coded using the C programming language and the LAPACK library [32] was used

to implement the NN.

5

Chapter 1. Introduction

1.3 Research Contribution

The main contribution of this research can be summarised as follows:

1. The overall objective of this research is to add endurance to an aircraft system

in the presence of failures. This is achieved by developing the FCC NN based

SFDIA and AFDIA schemes, and is the first reported instance of FCC NN

being applied to fault tolerance applications, especially in aircraft systems.

2. An SFDIA scheme based on the FCC NN is developed to add fault tolerance

to an aircraft following a pitch, roll or yaw rate sensor failure. This scheme

can add endurance to an aircraft system suffering said failures.

3. In the AFDIA scheme, the FCC NN is used to control the roll of an aircraft

after a failure, which adds endurance to an aircraft following a 66% loss of

wing surface. This is a severe case of failure where a major section of the

aircraft wing breaks from the main structure, resulting in an extreme loss of

lift. The scheme succeeds in flying the aircraft following a 66% wing surface

loss.

1.4 Organisation of the Thesis

In this section, the structure of the thesis is outlined to provide an overview to the

reader.

Chapter 2 provides an overview of the literature on fault tolerant flight control

systems (FTCS). This covers the industry wide practice and various relevant meth-

ods presented in the open literature.

Chapter 3 reviews the literature behind the decision for the selection of the FCC

NN architecture and the neuron by neuron (NBN) learning algorithm for this re-

search.

Chapter 4 presents the development of the FCC NN based SFDIA scheme. It

discusses the development process, experiments and the results obtained from the

SFDIA scheme.

6

Chapter 1. Introduction

Chapter 5 discusses the challenges encountered while using the X-Plane simulator

for this research.

Chapter 6 presents the development of the FCC NN based AFDIA scheme. It

discusses the development process, experiments and the results obtained from the

AFDIA scheme.

Chapter 7 provides a conclusive summary of the research conducted followed by

proposed future work.

1.5 Publications by the Author

In this section, a list of articles published or submitted for publication is presented.

The articles are based on the research presented in this thesis.

1. “Sensor Failure Detection, Identification and Accommodation using Fully Con-

nected Cascade Neural Network”, Saed Hussain, Maizura Mokhtar, Joe M.

Howe. IEEE Transactions on Industrial Electronics (Impact: 6.5) (Accepted

for Publication on 6/09/2014, In Process for Publishing.)

2. “Aircraft Sensor Estimation for Fault Tolerant Flight Control System using

Fully Connected Cascade Neural Network”, Saed Hussain, Maizura Mokhtar,

Joe M. Howe, International Joint Conference on Neural Networks (IJCNN),

Aug 4-9, 2013.

3. “Adaptive and Online Health Monitoring System for Autonomous Aircraft”,

Maizura Mokhtar, Sergio Z. Bayo, Saed Hussain, Joe M. Howe, AIAA Guid-

ance, Navigation, and Control Conference, Aug 13, 2012.

7

“Your time is limited, so don’t waste it living someone else’s life.”
– Steve Jobs

8

Chapter 2

Literature Review: Fault Tolerant

Flight Control

2.1 Overview

The aim of this chapter is to provide the reader with the necessary background

knowledge for the research presented in this thesis. In Section 2.2, the concept

behind fault tolerant flight control systems (FTFCS) is introduced. In Section 2.3,

an overview of the literature on FTFCS is presented. The view of the author on the

current industry practice is presented in Section 2.4 and finally the chapter concludes

with Section 2.5.

2.2 Fault Tolerant Flight Control System

Fault tolerant flight control systems (FTFCS) are systems that have the ability to

tolerate component failures automatically while maintaining overall system stability

and acceptable performance in the event of failures [7–9]. Generally speaking, any

fault tolerant control system (FTCS) can be divided into two categories: passive

(PFTCS) and active (AFTCS). PFTCS are fixed controllers that are designed to be

robust against a class of failures. This category of controller has limited fault toler-

ant capability and lacks any mechanism to actively detect and identify developing

faults [7, 33, 34].

9

Chapter 2. Literature Review: Fault Tolerant Flight Control

In contrast to this, AFTCS actively monitors the system for the presence of faults

and takes necessary actions to compensate for the failures [7, 33, 34]. The research

presented in this thesis falls under the AFTCS category of controller. In the liter-

ature, such systems are also known as self-repairing, reconfigurable, re-structurable

and self-designing control systems [7]. From the point of view of functionality, these

controllers are also known as failure, detection, identification and accommodation

(FDIA) schemes [7]. In this research, the FDIA schemes terminology is used to de-

fine the developed systems. Therefore, a FTFCS can be achieved by implementing

an FDIA scheme [11,13]. There are two part to an FDIA scheme [7,11]:

• Failure detection and identification (FDI), which detects significant ab-

normalities and identifies the cause.

• Failure accommodation (FA), which takes the necessary action to recon-

figure the control system to compensate for the impact of the failure.

Two of the major types of failure in an aircraft system are sensor and actuator

failures [10,12,13]. Therefore in this research, two schemes are developed:

• Sensor failure detection, identification and accommodation (SFDIA)

• Actuator failure detection, identification and accommodation (AF-

DIA)

The key ingredient in any FTFCS is the availability of redundancy in the system,

which plays an important role in the FDI stage [11, 34, 35]. There are two types of

redundancy: hardware and analytical [11, 35]. In hardware redundancy, identical

sensors are used to measure the same parameter. For example, consider an SFDIA

scheme using hardware redundancy as shown in Figure 2.1. A voting scheme is

employed to detect and identify any faulty sensor [12,36,37]. If the signal from one

sensor differs significantly from the remaining two sensors, the sensor is declared as

faulty. Sensor failure accommodation is achieved by replacing the faulty sensor with

one of the two remaining sensors.

In the aircraft industry, the state of the art practice to achieve FTFCS is to

implement high levels of hardware redundancy [7, 10, 11, 36]. For example, Airbus

10

Chapter 2. Literature Review: Fault Tolerant Flight Control

A320/330/340/380 has triple or quadruple redundant actuation, sensor and flight

control systems [36]. This is mainly because the failure detection and identification

(FDI) mechanism is quick and reliable; and fault accommodation (FA) is easily

achieved by switching to the fault free hardware. However, hardware redundancy

has serious cost, power and weight implications, especially for aircraft such as UAVs.

Due to these implications, analytical redundancy has become a far more appealing

approach for FTFCS [11].

Generally in analytical redundancy, a model of the monitored system is used

to generate signals that would otherwise be generated by redundant hardware (see

Figure 2.2). In its simplest form, the difference between the model estimate and

the measured reading is used to generate an error residual. This residual is then

monitored to detect and identify faults [37].

Sensor'1'

Sensor'2'

Sensor'3'

Pitch&(q)& Vo,ng'
Scheme'

Fault'Free'
Measurement' Flight'Controller'

Figure 2.1: Block diagram of hardware redundancy.

System'Model'

Sensor'

Residual'
Threshold)Logic)
(Residual'>'or'<''
than'threshold)'

Flight'Controller'
Fault'Free'Measurement'

Figure 2.2: Block diagram of analytical redundancy.

2.3 Related Work

In Figure 2.3, a generic structure of the analytical redundancy based FDIA scheme

for FTCS is presented. Based on this figure, the development of FTCS can be

11

Chapter 2. Literature Review: Fault Tolerant Flight Control

divided into 3 separate steps [35]. The first step is to generate the residual signal

using a mathematical model of the system. In some FDIA schemes, there are several

analytical models, each of which is sensitive to different types of fault. Once the

residual is generated, the next step is to evaluate the residual to decide if any

failure has occurred. This is the step where the failure is detected (FD) and the

source and type of failure are identified (FI). A simple way of implementing this

step is to use a constant residual threshold. When a residual crosses a threshold,

the fault corresponding to that residual is instantaneously detected and identified.

More sophisticated methods of residual evaluation may consist of adaptive residual

thresholds or based on statistical decision theories such as generalised likelihood ratio

(GLR), cumulative sum (CUSUM) or sequential probability ratio test (SPRT) [7,

11, 35]. As is obvious, the two steps discussed so far are collectively known as the

failure detection and identification (FDI) part of the FDIA scheme.

Figure 2.3: A generic structure of the analytical redundancy based failure detection
identification and accommodation (FDIA) scheme. Note that this figure is taken
from [35].

The final step to developing an FTCS is the failure accommodation (FA), where

the controller is reconfigured on-line in response to the faults. This step could in-

clude just swapping to a different controller that can handle the fault or adapting

the controller in response to the fault. In addition, the fault can be accommodated

by reconfiguring the input signals and/or the output control of the controller. For

example, a faulty sensor signal can be replaced by an analytical model and actu-

12

Chapter 2. Literature Review: Fault Tolerant Flight Control

ator failures can be compensated by distributing the actuation on the remaining

actuators.

Some of the popular approaches in the literature for the analytical models are

the use of Kalman filters, Luenberger observers, fault detection filters and neu-

ral networks, to name a few [7, 11, 17, 35, 38]. Kalman filters are usually used in

multiple model based FDI schemes. In these schemes, a bank of Kalman filters is

generated off-line. Of these models, one of them represents the normal mode of

the system, while the others are sensitive to different types of fault. Failure detec-

tion is achieved by using a hypothesis testing algorithm that monitors the residuals

from each Kalman filter and assigns a probability to each of the fault hypothe-

ses [13, 33, 35]. Some well known approaches to FDI schemes based on multiple

models of Kalman filters are multiple model adaptive estimation (MMAE) and in-

teracting multiple model (IMM) [7,35].

With inspiration from the multiple model based FDI schemes, several multiple

model (MM) based FDIA schemes for fault tolerant flight control systems have

been developed [7, 11, 13, 33, 35]. Generally in the MM method for FTFCS, a bank

of models is used to describe the system under normal operating mode and under

various fault conditions, such as sensor or actuator failures. There is a model for

every fault considered. For each of these models, a controller is designed (off-line)

that can be used to accommodate the failure. Failure detection and identification is

performed by using these fault models and, based on a suitable switching mechanism,

the corresponding controller is selected for failure accommodation.

There are a number of variants to the MM method [33]. For example, in [39],

Boskovic and Mehra applied the multiple model switching and tuning (MMST)

method to add fault tolerance to the flight control system of a tailless advanced

fighter aircraft (TAFA), in the presence of wing damage. As described earlier, in

their system, there is a model for each fault scenario, which they refer to as iden-

tification models. And for each fault model, there is a corresponding controller.

This formed a massively parallel architecture of identification models and their cor-

responding controllers. When a failure occurs, a switching mechanism quickly iden-

13

Chapter 2. Literature Review: Fault Tolerant Flight Control

tifies the model that is the closest to the current damage mode, and switches to its

corresponding controller. In addition, examples of IMM and MMAE based FDIA

schemes for FTFCS can be found in [40–44]. For instance, in [43] and [44], the

authors have developed an interacting multiple model (IMM) based FTFCS. They

demonstrated the effectiveness of the system on a longitudinal vertical takeoff and

landing (VTOL) aircraft model, which was subjected to single actuator, sensor and

component failure at a given time.

A special case of the MM based FTFCS is the propulsion controlled aircraft

(PCA). In this case, the only anticipated fault is complete hydraulic failure. The

only way to control the aircraft is using the engine throttles. In 1995, NASA Dryden

Flight Research Centre demonstrated the PCA method by successfully landing a

MD-11 and an F-15 aircraft using just propulsion only control, following a complete

hydraulic failure [33,45–47].

Most of the early work on analytical redundancy is based on observers and

Kalman filters [7, 11, 12, 18, 37, 48]. These techniques relied on the linear time in-

variant mathematical models of the systems. In aircraft systems, the assumption

that the system is linear is not often valid throughout the entirety of the flight en-

velope [13, 17, 48]. Therefore, these techniques might perform inadequately in the

non-linear regions of the flight envelope. In addition, these techniques can suffer from

modelling discrepancies between real and mathematical models of the system [17].

Recent literature has seen efforts made to address these issues, especially with the

linearity assumption of the Kalman filters [49]. Several improved versions of the

Kalman filter have been developed and applied to various fault tolerance and state

estimation problems in non-linear systems [14,16,17,35,50,51]. For example in [17],

an SFDIA scheme for the pitch rate sensor of the aircraft based on the extended

Kalman filter (EKF) is presented, due to its applicability to non-linear problems

and its popularity.

Over the past three decades, there has been an increasing interest in the appli-

cation of neural networks (NN) for FTFCS [10,11,17,18,52–54]. This is mainly due

to their innate ability to model both linear and non-linear systems [11, 52]. Unlike

14

Chapter 2. Literature Review: Fault Tolerant Flight Control

Kalman filters, they do not require a detailed mathematical description of the sys-

tem. They develop a structure based on training data instead. In addition, they

can also be made to adapt on-line, whilst the system is in use; in order to adapt

to the dynamic conditions of the environment and the system dynamics. On-line

adaptation is provided by the on-line learning algorithm.

In [17], two SFDIA schemes for the pitch rate sensor of the aircraft are compared.

Of the two schemes, one is based on an NN while the other uses EKF. From the

comparison results, the authors concluded that the NN based SFDIA scheme out-

performed the EKF based scheme. In [54], Guo and Musgrave presented a SFDIA

scheme for sensors in the space shuttle main engine (SSME). Their scheme is based

on the auto-associative multi-layer perceptron (MLP) NN, trained using the error

back propagation learning algorithm (EBP).

Napolitano et al. presented an SFDIA and an AFDIA scheme in [11], which are

based on the MLP NN. They studied the developed schemes using a mathematical

model of the B747-200 aircraft model. The SFDIA scheme is capable of accommo-

dating failures in the pitch, roll and yaw rate gyro sensors. In this scheme, MLP

NN based estimators replace the respective faulty sensors. The developed AFDIA

scheme is able to accommodate failures in the rudder, elevator and aileron control

surfaces. In this case, MLP NN based controllers (for pitch, roll and yaw) are used to

compensate for the failure by producing the appropriate control response. In [53], the

performance of an MLP NN and an extended minimal resource allocating (EMRA)

NN were evaluated for airspeed sensor failure. To evaluate the performance, real

data collected from the jet-powered WVU YF-22 research UAV was used. They

concluded that both the NNs were suitable to accommodate airspeed sensor failure,

as part of an SFDIA scheme.

Samy, Postlethwaite and Gu proposed a SFDIA scheme using the radial basis

function (RBF) NN in [10] and [37]. The scheme is aimed at accommodating failures

in the pitch rate, normal acceleration and angle of attack sensors. Out of the 30

SFDIA experiments conducted, only 2 faults went undetected. In [55], the MLP

NN was used again to develop an SFDIA scheme for the pitch, roll and yaw rate

15

Chapter 2. Literature Review: Fault Tolerant Flight Control

sensors of a model UAV. Liu et al. developed an FTFCS using the MLP NN which

is capable of handling an aircraft with primary control surfaces failures.

Additional examples of the application of NNs for FTFCS can be found in the

following references [20, 38, 56–58]. A notable project on the application of an NN

for flight control systems is the NASA Intelligent Flight Control System (IFCS)

flight research project at NASA Dryden Flight Research Centre [22, 59]. The aim

here is to use the learning ability of the NNs to develop software to aid the pilot

with controlling the aircraft following a failure of a control surface or damage to the

airframe. The developed NN based control systems were tested on a highly modified

F-15B aircraft.

When it comes to NN based applications, including FTFCS problems, the pop-

ular choice for the NN architecture is the MLP NN [11,24,48,60]. In this thesis, the

schemes are based on the fully connected cascade (FCC) NN. This architecture is far

more efficient than the MLP, as it requires fewer neurons to solve a problem [24,60].

Therefore the efficiency of any MLP based FTFCS can be improved by updating it

to use the FCC NN instead.

2.4 Industry Practice

To the knowledge of the author, the analytical redundancy based fault tolerant

approach is still an idea limited to the literature. The practice in the aircraft industry

is to use high levels of hardware redundancy [36]. However, an example of analytical

redundancy can be found in the Airbus A380 aircraft, for a case of a failure called the

oscillatory failure case (OFC) [36, 61]. One of the reasons for the limited use could

be that the hardware redundancy based approach is much simpler to implement

compared to developing an analytical redundancy based system.

The author believes that with the growing UAV sector of the aerospace industry,

analytical approaches will eventually be common practice in the industry. Analytical

redundancy will save cost, space, weight and power, which are especially limited in

UAVs.

16

Chapter 2. Literature Review: Fault Tolerant Flight Control

2.5 Conclusion

The aim of this chapter was to provide the reader with an overview of the literature

on fault tolerant flight control systems (FTFCS). For additional reviews of the lit-

erature, interested readers are advised to refer to the following survey/introductory

publications on FTFCS [7,9,33,62,63]. In the next chapter, a review of the literature

on neural networks (NNs) is provided, to select the NN architecture and learning

algorithm for this research.

17

“We must believe that we are gifted for something, and that this thing, at
whatever cost, must be attained.”

– Marie Curie

18

Chapter 3

Neural Network Architecture and

Learning Algorithm

3.1 Overview

The human brain is a complex and magnificent organ, stemming from millions of

years of evolution. Amongst other types of cell, the brain is comprised of ≈86

billion neurons, interconnected in a vast mesh [64,65], referred to as biological neural

networks (BNNs). Scientist, doctors and engineers alike, have been captivated with

comprehending the inner workings of the brain. This is not simply for the yielding of

psychological and medical benefits, but also from the desire to design and construct

machines which are essentially near human; or at the very minimum, possess the

human ability to learn and adapt. To this end, the field of artificial neural networks

(ANNs) was conceived, born and continues to grow. The research presented in this

thesis utilises ANNs.

In this chapter, a brief introduction to ANNs is presented in Section 3.2. The

ANN architecture used in this research is selected in Section 3.3 and in Section 3.4,

the learning algorithm to train the ANN is decided. An insight into the number

of neurons and the generalisation ability is presented in Section 3.5. A summary

of the reasons behind the selected ANN architecture and the learning algorithm is

presented in Section 3.6. In Section 3.7, a brief comparison between the neuron by

neuron (NBN) and the Levenberg-Marquardt (LM) learning algorithms is presented.

19

Chapter 3. Neural Network Architecture and Learning Algorithm

Sections 3.8 to 3.10 detail the implementation of the NBN algorithm and the training

steps it entails. The settings for the ANN used in this research are presented in

Section 3.11 and finally the chapter concludes with Section 3.12.

3.2 Brief Introduction to Artificial Neural Net-

works

ANN are simple mathematical representation of the BNN. Similar to the BNN,

the ANN consists of processing elements called neurons. These artificial neurons

are simplistic representation of the biological neurons. Unlike the BNN, where the

neurons are interconnected in a mesh, the neurons in the ANN are connected in an

organised manner based on the architecture of the ANN. From this point on, ANN

will be referred to as NN only. There are two main parts to consider when it comes

to NNs: NN architecture and learning algorithm.

One of the most popular NN architectures is the multilayer perceptron (MLP)

architecture [24, 60]. In this architecture, the neurons of the NN are arranged in

layers. In the MLP NN presented in Figure 3.1 there are three layers of neurons.

The first layer of neurons that receives the inputs to the NN is called the input layer.

The layer of neurons that emits the output of the NN is called the output layer.

And the layer between the input and output layers is referred to as the hidden layer.

The connections between these layers of neurons are weighted (w). Each of these

neurons sum up the incoming weighted signals from the neurons or NN inputs from

the previous layers and pass the sum through a function referred to as the activation

function (f). Based on the summation value and the activation function, the neuron

emits an output. It is these connection weights where the NN stores/learns its

functionality. These weights can be adapted using a suitable learning algorithm to

train the NN to perform a function. This learning can be off-line, when the NN is

not in use, or on-line while the NN is actively in use.

To train the NN for a function, data representing that function must be available.

For example, if the NN is to replicate a sensor, then input data along with the sensor

20

Chapter 3. Neural Network Architecture and Learning Algorithm

Input	 Output	

Input Layer
Output Layer

Hidden Layer

Figure 3.1: The multilayer perceptron (MLP) neural network (NN).

measurements are required to train the NN. The learning algorithm used in the

training process maps the inputs to the desired sensor measurement. The dataset

used by the NN for training is called the training dataset. The individual dataset (a

pair of inputs and output) is know as a training pattern. Once the NN is trained,

its functionality must be validated or verified. This is achieved by using a different

dataset, known as the validation dataset.

When it comes to learning algorithms for NNs, it could be said that the popular

choice is the error back-propagation algorithm (EBP) [60, 66]. This algorithm is

often used with the MLP network topology. The process of training a network for

a function using this algorithm, can be divided into two phases:

1. Forward propagation

2. Backward propagation

In the forward propagation phase, the input signal is propagated from the input

neuron layer to the output neuron layer. No weights are adapted, therefore no

learning takes place. The network generated outputs are compared against the

desired output for that pattern of inputs. The difference between the desired and

the actual NN output is the error. In the backward propagation phase, the errors

21

Chapter 3. Neural Network Architecture and Learning Algorithm

calculated are then propagated back from layer to layer and the weights connecting

them are adapted to minimise the error using the learning algorithm. It is in this

phase that the weights are adapted and learning takes place. The two phases are then

repeated using new patterns or old patterns until the error is within an acceptable

range. This is the process in which NNs learn their functionality.

Ever since the first NN model was proposed in 1943 by McCulloch and Pitts [67],

NNs have been used in wide range of applications. For example, NNs have been

used in forecasting weather in [68]. In [69], a review of NNs for pharmaceutical

applications is presented. In [70], Atiya reviews NNs for corporate bankruptcies and

developed a new NN based bankruptcy prediction model. NNs have also been used

in the field of power electronics. An introductory review of the NN applications for

power electronics is presented by Bose in [71]. These are just some of the examples

of the extensive field of NN applications.

In this research, NNs are used for estimating aircraft sensor measurements and

controlling aircraft attitude. In the remaining sections of this chapter, an NN archi-

tecture and learning algorithm is selected for the research presented in this thesis.

3.3 Selecting a Neural Network Architecture

Although the MLP architecture is the popular choice for NN applications, it is not

very efficient when compared against architectures with connections across layers.

The Fully Connected Cascade (FCC) architecture presented in Figure 3.2 is an

example of an architecture with connections across layers. In this architecture, all

possible forward connections are made with the neurons arranged in a cascade. This

architecture has been widely studied by Professor Bogdan M. Wilamowski and his

colleagues in [24,25,28,60,66,72–75]. They have shown that the FCC is more efficient

than the MLP, as it requires fewer neurons to solve a problem.

A common benchmarking problem for NNs is the parity-N problem. The parity-

N or N-bit parity function is a mapping defined on 2N binary vectors that indicates

whether the sum of the N elements of every binary vector is odd or even [75–77].

In its simplest form, the parity-2 is an exclusive-or (XOR) logic function, where

22

Chapter 3. Neural Network Architecture and Learning Algorithm

n3

n1

n2

Ϊͳ������ ������

Figure 3.2: The Fully Connected Cascade (FCC) NN architecture. The presented
NN has 2 inputs, 1 output and the bias input.

N represents the number of inputs. Depending on the NN architecture, different

numbers of neurons and weights are required to solve the same parity problem. The

larger the N, the more difficult it is to solve the problem.

Table 3.1: Comparison of FCC and MLP architecture to
solve the Parity-N problem.

Parity Architecture No. Neurons No. Weights

3 MLP 4 16

FCC 2 9

7 MLP 8 64

FCC 3 27

15 MLP 15 256

FCC 4 70

31 MLP 32 1024

FCC 5 170

63 MLP 64 4096

FCC 6 399

Note: This table is adapted from [25, 60]. The MLP architecture is made of 1
hidden layer.

In Table 3.1, the minimum number of neurons and weights required for different

parity problems using the FCC and MLP architectures are presented [25,60]. With

just 6 neurons and 399 weights, the FCC is able to solve the parity-63 problem. This

is in comparison to the MLP which requires 64 neurons and 4096 weights. Similarly,

to solve the parity-31 problem, the FCC requires 5 neurons and 170 weights, whereas

the MLP requires 32 neurons and 1024 weights. It is clearly evident from this table

23

Chapter 3. Neural Network Architecture and Learning Algorithm

that the FCC is far more efficient than the popular MLP architecture. It is able to

solve the same problem with significantly fewer neurons and weights.

In addition to the efficiency, another benefit of the FCC architecture is that it

is relatively easy to find an optimal size of the NN to solve a problem. With the

MLP architecture there is a large number of possibilities by varying the number of

neurons and hidden layers. The FCC on the other hand, simply requires a search

for the number of neurons in cascade.

Despite these benefits, the MLP architecture is far more popular. According to

Wilamowski, one of the reasons for the popularity is the easy availability [25]. The

MLP is one of the oldest architectures and is easy to write training software for. It

is also readily available on popular research platforms such as MATLAB.

3.4 Selecting a Learning Algorithm

When it comes to learning algorithms for NNs, the error back-propagation (EBP) al-

gorithm [60,78,79] is the most popular choice [25,27,60,80]. It is relatively simple to

implement and can handle problems with an unlimited number of patterns. This al-

gorithm is commonly used along with the popular MLP NN architecture. Due to its

simplicity, it is easy to adapt the EBP algorithm for more efficient NN architectures,

which allow connections across layers, such as the FCC NN. However, this algorithm

is known to be slow and ineffective, especially when compared against the Levenberg-

Marquardt (LM) or Neuron by Neuron (NBN) algorithm [25,26,60,73,74,80,81].

A comparison of the EBP, LM and NBN algorithms [60] is presented in Table 3.2.

These algorithms are used to train the parity-4 problem using the MLP architecture.

The MLP architecture has 1 hidden layer with 4 neurons. The maximum number of

training iterations is set to 100 for both the LM and NBN algorithm. In the case of

the EBP, this is set to 100000. The training process is repeated 100 times for each

of the algorithms, with randomly generated initial weights in the range of ±1. The

sum squared error (SSE) is used to evaluate the training process and the expected

SSE is set to 0.001.

From the results presented in Table 3.2, one can conclude that the LM and

24

Chapter 3. Neural Network Architecture and Learning Algorithm

Table 3.2: Comparison of the averages of different algorithms to solve the
parity-4 problem using the MLP architecture. This table is taken from [60].

Algorithms Success Rate (%) No. Iterations Training Time (msec)

EBP 68 12036.01 5348.52

LM 100 23.41 26.64

NBN 100 23.24 25.64

Note: For EBP momentum value: 0.5, learning constant: 1.

NBN algorithms require similar time and number of iterations to solve the parity-4

problem. However, the popular EBP algorithm requires 500 times more iterations

and 200 times longer in training time for the same problem. In addition, the success

rate of the EBP is 68% compared to 100% for the LM and NBN algorithms. The

success rate of the EBP can be improved by using additional neurons to solve the

problem. These results encapsulate how slow and inefficient the EBP algorithm is

compared to algorithms such as the LM and NBN algorithm.

In the next section it will be shown why it is desirable to have an NN solution

with a minimal number of neurons.

3.5 Number of Neurons and Generalisation Abil-

ity

It is quite often the case that too many neurons are used to solve a problem using

a NN. With an increasing number of neurons, the NN converges to a solution faster

and to smaller errors. However, this approach of increasing the number of neurons

to quickly converge to a solution does have some issues. With an increasing number

of neurons, the NN loses its generalisation ability [24, 25, 60, 73, 81]. This is the

ability of the NN to perform well on patterns it has never seen before. If too many

neurons are used, then the NN may overfit itself to the training patterns and respond

poorly to new patterns. On the other hand if fewer neurons are used, the training

error might not be very small, but the NN may produce much better results on new

patterns. Therefore, in order to have good generalisation ability, the NN should use

as few neurons as possible to obtain a reasonable training error [24, 25,60,73,81].

25

Chapter 3. Neural Network Architecture and Learning Algorithm

Figure 3.3: The TSK fuzzy controller control surface with 8×6 = 48 defuzzification
rules. Note that this figure is taken from [24].

To demonstrate this, Wilamowski presented the results of finding the best NN

solution to replace a fuzzy controller in [24, 25]. In Figure 3.3, the defuzzification

rules and the required control surface for the Takagi, Sugeno and Kang or TSK fuzzy

controller is illustrated. The defuzzification rules are used to train and develop the

NN controller. The controller is based on the FCC architecture and to find a good

solution to the controller, the number of neurons is varied. Figure 3.4 shows the

results of an FCC NN controller using 3 (12 weights) and 4 (18 weights) neurons. In

Figure 3.5, the results using 5 (25 weights) and 8 (52 weights) neurons are presented.

In the captions of these figures, the training error for each of these FCC neural

network controller designs is presented. As the number of neurons increases the

training error decreases. For example, with 3 neurons the training error is 0.21049,

whereas it is 1.118 × 10−5 using 8 neurons. However, it can be seen that with

increasing size of the NN, the results become worse. According to Wilamowski, the

best results were obtained using 4 neurons with a training error of 0.049061.

In conclusion, although with increasing number of neurons the training error can

be decreased, the NN will lose its generalisation ability. For optimal performance,

the NN must have as few neurons as possible.

26

Chapter 3. Neural Network Architecture and Learning Algorithm

(a) Using 3 neurons (12 weights). Training Error = 0.21049

(b) Using 4 neurons (18 weights). Training Error = 0.049061

Figure 3.4: TSK Control Surface using 3 and 4 neuron FCC neural networks. Note
that this figure is taken from [24].

27

Chapter 3. Neural Network Architecture and Learning Algorithm

(a) Using 5 neurons (25 weights). Training Error = 0.023973

(b) Using 8 neurons (52 weights). Training Error = 1.118× 10−5

Figure 3.5: TSK Control Surface using 5 and 8 neuron FCC neural networks. Note
that this figure is taken from [24].

28

Chapter 3. Neural Network Architecture and Learning Algorithm

3.6 FCC NN architecture and NBN learning al-

gorithm

In Section 1.3, the popular MLP NN architecture was compared against the FCC

architecture. It was summarised that the MLP architecture is not very efficient

when compared against the architecture with connections across layers, such as

the FCC. The MLP requires significantly more neurons to solve a problem when

compared against the FCC architecture. Therefore, using the FCC instead of the

popular MLP, will have added benefits in terms of processing overhead. In addition,

using the FCC can save development time when compared against the MLP. With

the MLP, there is large number of possibility of designs (by varying the number of

neurons and hidden layers) to experiment with. However, with the FCC, there is just

the number of neurons to experiment with and usually a suitable solution is found

within a couple of trials. Based on these conclusions, the FCC NN architecture is

used for this research.

In addition to the NN architecture, the popular EBP algorithm was compared

against the LM and NBN algorithm in Section 3.4. Table 3.2 shows that the EBP

is not only slow, but is ineffective when compared against algorithms such as LM

and NBN. It requires significantly more number of iteration to solve a problem

compared to LM and NBN. In addition to being slow and ineffective, the EBP is

not powerful enough to solve problems with limited neurons when compared against

the NBN [24,25,60].

From the discussion in Section 3.5, it was concluded that in order to retain the

generalisation ability of the NN, as few neurons as possible should be used. However,

this cannot be achieved using the EBP. The EBP requires more neurons to solve a

problem when compared against the NBN [24, 25, 60]. Therefore, in this research,

the NBN algorithm is used to train the FCC NN based applications.

29

Chapter 3. Neural Network Architecture and Learning Algorithm

3.7 The LM and The NBN Algorithm

It is known that the LM algorithm is more efficient compared to the EBP learning

algorithm [25, 27, 66, 80]. However, the LM algorithm does have some limitations

that limits its applicability to wide range of NN applications. The LM algorithm is

a combination of the gradient descent algorithm and the Gauss-Newton algorithm.

In the LM algorithm, the weights are updated using the following update rule [81]:

wn+1 = wn − (JTJ + µI)−1JTe (3.1)

where

n : is the index of the iteration

wn+1 : is the new weights vector

wn : is the previous weights vector

J : is the Jacobian matrix

I : is the identity matrix

e : is the error vector

µ : is the combination coefficient (always positive)

Aircraft Sensor Estimation for Fault Tolerant Flight
Control System using Fully Connected Cascade

Neural Network
Saed Hussain, Student Member, IEEE, Maizura Mokhtar, Member, IEEE, and Joe M. Howe

Abstract—Flight control systems that are tolerant to failures
can increase the endurance of an aircraft in case of a failure. The
two major types of failure are sensor and actuator failures. This
paper focuses on the failure of the gyro sensors in an aircraft.
The neuron by neuron (NBN) learning algorithm, which is an
improved version of the Levenberg-Marquardt (LM) algorithm is
combined with the fully connected cascade (FCC) neural network
(NN) architecture to estimate an aircraft’s sensor measurements.
Compared to other NN and learning algorithms, this combination
can produce good sensor estimates with relatively few neurons.
The estimators are developed and evaluated using flight data
collected from the X-Plane flight simulator. The developed sensor
estimators can replicate a sensor’s measurements with as little
as 2 neurons. The results reflect the combined power of the NBN
algorithm and the FCC NN architecture.

This is achieved by calculating the vector jp,m as the
patterns are applied. This vector is the Jacobian row for pattern
p and network output neuron m.

neuron1z }| { neuronjz }| {

J =

2
6666666666666666666664

�e1,1

�w1,1

�e1,1

�w1,2
· · · �e1,1

�wj,1
· · ·

�e1,2

�w1,1

�e1,2

�w1,2
· · · �e1,2

�wj,1
· · ·

· · · · · · · · · · · · · · ·
�e1,M

�w1,1

�e1,M

�w1,2
· · · �e1,M

�wj,1
· · ·

· · · · · · · · · · · · · · ·
�eP,1

�w1,1

�eP,1

�w1,2
· · · �eP,1

�wj,1
· · ·

�eP,1

�w1,1

�enp,2

�w1,2
· · · �eP,2

�wj,1
· · ·

· · · · · · · · · · · · · · ·
�eP,M

�w1,1

�eP,M

�w1,2
· · · �eP,M

�wj,1
· · ·

3
7777777777777777777775

m = 1

m = 2

· · ·
m = M

9
>>>>>=
>>>>>;

p = 1

· · ·

m = 1

m = 2

· · ·
m = M

9
>>>>>=
>>>>>;

p = P

(1)

S. Hussain, M. Mokhtar and J. M. Howe are with the School
of Computing, Engineering and Physical Sciences, University of Cen-
tral Lancashire (UCLan), Preston, PR1 2HE, United Kingdom. E-mail:
saed@ieee.org,{MMokhtar, JMHowe}@uclan.ac.uk.

J =

@e1,1

@w1,1

@e1,1

@w1,2
· · · @e1,1

@wj,1
· · ·

@e1,2

@w1,1

@e1,2

@w1,2
· · · @e1,2

@wj,1
· · ·

· · · · · · · · · · · · · · ·
@e1,M

�w1,1

@e1,M

@w1,2
· · · @e1,M

@wj,1
· · ·

· · · · · · · · · · · · · · ·
@eP,1

@w1,1

@eP,1

@w1,2
· · · @eP,1

@wj,1
· · ·

· · · · · · · · · · · · · · ·
@eP,M

@w1,1

@eP,M

@w1,2
· · · @eP,M

@wj,1
· · ·

2
66666666666666666666666664

3
77777777777777777777777775

m = 1

m = 2

· · ·

m = M

· · ·

m = 1

· · ·

m = M

8>>>>>>><>>>>>>>: neuron 1 8><>:neuron j

9
>>>>>>>>>=
>>>>>>>>>;

p = 1

9
>>>>>=
>>>>>;

p = P

Figure 3.6: Jacobian Matrix J

30

Chapter 3. Neural Network Architecture and Learning Algorithm

Figure 3.7: The Error Vector e

The key to this weight update rule is solving the matrix J . The Jacobian matrix

J is presented in Figure 3.6, where p is the training pattern; j is the index of the

neuron; wj,x is the xth connection weight w to neuron j; and m is the index of the

network output neuron. The error ep,m for training pattern p at network output

neuron m is calculated as follows:

ep,m = dp,m − op,m (3.2)

where dp,m is the desired output and op,m is the actual output for training pattern

p at network output neuron m.

In the Jacobian matrix, notice that for every pattern p, there are M rows, where

M is the number of the NN output. Therefore, there are M×P rows in the Jacobian

matrix, where P is the number of training patterns. The elements in a row of the

Jacobian matrix can be organised in terms of the neurons in the NN. For every

neuron j, the number of elements corresponds to the number of weights connected

to the neuron. In other words, there are C columns in the Jacobian matrix, where

C is the number of weights in the NN. Therefore, the size of the Jacobian matrix

can be described as (P ×M) × C. The error vector e is presented in Figure 3.7,

where for every pattern p there are M rows in the vector, therefore a total of M ×P

elements in the vector. Each of the elements in the error vector e is calculated using

equation (3.2).

31

Chapter 3. Neural Network Architecture and Learning Algorithm

Usually the Jacobian matrix is calculated and stored for updating the weights

using equation (3.1). For small to medium size training patters, the LM algorithm

will work smoothly. However, if large training pattern sets are used, there will be

a huge cost in terms of storage memory and computation time. This is because

the number of elements in the Jacobian matrix J is proportional to the number of

patterns P . This is one of the reasons why the LM algorithm is not always preferred

for NN applications [25,26,66].

Apart from the memory requirement, the LM algorithm has several other lim-

itations when compared against the NBN algorithm. The NBN algorithm is an

improved version of the LM algorithm. The main advantages of the NBN algorithm

over the LM algorithm can be summarised as follows [24,82]:

1. Train Neural Network with Connections Across Layers

The LM algorithm as presented in [83], can only handle the MLP architecture.

As discussed in the previous sections, this architecture is inefficient when com-

pared against architectures with connections across layers, such as the FCC.

The NBN algorithm on the other hand can handle both the MLP and the

efficient FCC NN architecture [74].

2. Forward Propagation Only

In the LM algorithm, just like the popular EBP algorithm, there are two stages

to training an NN, namely, forward propagation and backward propagation.

In the LM algorithm [83], for a given pattern, the backward propagation has

to be repeated for every output in the NN. Therefore, calculating the Jaco-

bian matrix rows for those outputs. In the NBN algorithm, there is no need

for backward propagation. All the information required is computed in the

forward propagation phase of the NN training [80]. With a single forward

propagation , all the Jacobian matrix rows corresponding to the NN outputs

can be calculated. This makes the NBN algorithm efficient compared to LM,

especially when an NN with multiple outputs is used [80].

3. No Jacobian Matrix Calculation

Unlike the LM algorithm, with the NBN algorithm, there is no need to compute

32

Chapter 3. Neural Network Architecture and Learning Algorithm

and store the Jacobian matrix with a size that is proportional to the number

of training patterns. This essentially means that the NBN algorithm can be

applied to problems with unlimited patterns [66].

In the next section some basic concepts in NN training are presented, which will

be used to describe the implementation of the NBN algorithm.

3.8 Basic Concepts in Neural Network Training

Figure 3.8: Concept of a neuron.

In Figure 3.8, a neuron j with ni inputs is depicted. If the neuron is in the first

layer of the NN, all its inputs will be connected to the inputs of the NN. Otherwise,

its inputs can be connected to the outputs of other neurons and to the NN inputs.

In this figure, node y is used flexibly either side of the neuron j. It can be used with

one index, yj, to define the output node of neuron j. If two indices are used, yj,i, it

describes the ith input node of neuron j. The output node of neuron j is calculated

using

yj = fj(netj) (3.3)

where fj it the activation function of neuron j and netj is the sum of the weighted

33

Chapter 3. Neural Network Architecture and Learning Algorithm

input nodes (net input) of neuron j. The value of netj is calculated as follows

netj =
ni∑

i=1

wj,iyj,i + wj,0 (3.4)

where yj,i is the ith input of neuron j, weighted by wj,i; and wj,0 is the bias weight

of neuron j. The slope sj or the derivative of the activation function fj is

sj =
∂yj
∂netj

=
∂fj(netj)

∂netj
(3.5)

The elements of the Jacobian matrix can be calculated by

∂em
∂wm,j

= −yj,iδm,j (3.6)

where δm,j is the signal gain between output neuron m and neuron j. In general,

the signal gain between two neurons k and j, can be calculated as

δk,j = δk,k

k−1∑

i=j

wi,kδi,j (3.7)

where k ≥ j, δk,k = sk is the slope of the activation function of neuron k, wj,k is the

weight between neurons j and k, δk,j is the signal gain through wj,k and other part

of the network connected to wj,k.

Note that the training process of the NN is evaluated using the sum squared error

(SSE) E. For all training patterns and network outputs, the SSE can be calculated

using

E =
1

2

P∑

p=1

M∑

m=1

e2p,m (3.8)

where ep,m is error at the neural network output m and is calculated using equa-

tion (3.2). In the next section, the implementation of the NBN algorithm is dis-

cussed.

34

Chapter 3. Neural Network Architecture and Learning Algorithm

3.9 Implementation of the NBN Algorithm

The implementation of the NBN algorithm can be divided into two main sec-

tions: forward propagation and quasi-Hessian matrix and gradient vector calcu-

lation. These sections are discussed below. Note that the derivation of the NBN

algorithm is not presented in this chapter. Only the details required to implement

the NBN for the FCC NN architecture are presented. Interested readers are recom-

mended to read [1] for an introduction to the LM algorithm and [82] for the complete

derivation of the NBN algorithm from the LM algorithm.

3.9.1 Forward Propagation

In forward propagation, for a pattern p, for each neuron in the NN, do the following:

1. Calculate the net input to the neuron using equation (3.4).

2. Calculate the output of the neuron using equation (3.3).

3. Calculate the slope of the neuron using equation (3.5).

4. Set the current slope of the neuron as the delta (i.e. δk,k = sj).

5. For simplicity, implement equation (3.7) in two steps:

i. Multiply previous deltas through weights and sum.

xk,j =
k−1∑

i=j

wi,jδi,j (3.9)

ii. Multiply this sum by the slope of the neuron.

δk,j = δk,kxk,j = skxk,j (3.10)

At the end of this forward propagation process, the following variables will have

been computed:

35

Chapter 3. Neural Network Architecture and Learning Algorithm

1. Output node values of each neuron. These output nodes are input to other

neurons. Therefore, the output node values are stored in a vector y, which

stores the inputs to each of the neurons of the NN.

2. The slope of each of the neurons.

3. The delta values for the neurons in the NN. For example, in case of the NN

presented in Figure 3.2, at the end of the forward propagation, the delta values

for each of the neurons are:

i. Neuron 1 (n1): δ1,1

ii. Neuron 2 (n2): δ2,2, δ2,1

iii. Neuron 3 (n3): δ3,3, δ3,2, δ3,1

Note that for a pattern p and output neuron n3 in Figure 3.2, the row elements

of the Jacobian matrix can be calculated using the neuron 3 delta values and the y

vector in equation (3.6). For example, the Jacobian row for pattern p and output

neuron m can be described as

jp,m =

[
∂ep,1
∂w1,1

∂ep,1
∂w1,2

· · · ∂ep,1
∂wj,1

∂ep,1
∂wj,2

· · ·
]

(3.11)

Therefore using equation (3.6) and the delta values for neuron 3, the Jacobian

row can be written as

jp,m =

[
δ3,1 × y1 δ3,2 × y2 δ3,3 × y3

]
(3.12)

where, y1, y2 and y3 are the neuron 1, 2 and 3 input vectors respectively.

3.9.2 Computation of the quasi-Hessian Matrix and Gradi-

ent Vector

In the LM algorithm, the entire Jacobian matrix must be calculated over all the

patterns before the weights can be updated using equation (3.1). This has serious

memory limitations, as the size of the Jacobian matrix increases with the number

36

Chapter 3. Neural Network Architecture and Learning Algorithm

of patterns (P). As mentioned earlier, the NBN algorithm is an improved version

of the LM algorithm. It avoids the need to calculate and store the entire Jacobian

matrix over all the patterns. To achieve this, the weight update rule for the NBN

algorithm is as follows:

wn+1 = wn − (Q+ µI)−1g (3.13)

where Q is the quasi-Hessian matrix and g is the gradient vector. This is just

another form of the LM update rule [82] where

Q = JTJ (3.14)

g = JTe (3.15)

The matrix Q is calculated by summing the quasi-Hessian sub-matrix qp,m for

pattern p and network output neuron m:

Q =
P∑

p=1

M∑

m=1

qp,m (3.16)

The gradient vector g is calculated by summing the gradient sub-vector ηp,m for

pattern p and network output neuron m:

g =
P∑

p=1

M∑

m=1

ηp,m (3.17)

The size of the matrix Q is C ×C and is independent of the number of patterns

and outputs. Compared to the LM algorithm, the NBN algorithm calculates the

matrix Q and vector g directly as the patterns are applied, there by removing

the need to compute and store the Jacobian matrix (J) [82]. This is achieved by

calculating the vector jp,m as the patterns are applied. This vector is the Jacobian

row for pattern p and network output neuron m. Using this vector, the matrix Q

37

Chapter 3. Neural Network Architecture and Learning Algorithm

and vector g can be updated as each pattern is applied using the following equations:

qp,m = jTp,mjp,m (3.18)

ηp,m = jp,mep,m (3.19)

In essence, the entire computation of the quasi-Hessian matrix Q and gradient

vector g is reduced to computing a vector jp,m with C elements. The calculation of

the jp,m using equation (3.6) was shown in the forward propagation section. The

matrix Q and vector g is directly calculated as the patterns are applied, without

the need to store and multiply the Jacobian matrix J . The NBN algorithm with

its forward propagation and the calculation of matrix Q and gradient vector g is

presented in Figure 3.9.

3.10 The NBN Training Process

In the previous section, the implementation of the NBN algorithm was presented.

This showed the calculations required to solve the weights update rule presented in

equation (3.13). In this section, the NBN algorithm is organised into a repeatable

training process which could be used to train the NN off-line (batch training) or

on-line. This is similar to the LM training process. In general, the training process

can be described as follows [1]:

1. Note that the NN is first initialised with the randomly generated weights.

2. Propagate the NN forward and calculate the total SSE E using equation (3.8).

3. Update the weights of the NN as directed by equation (3.13).

4. With the new weights, re-evaluate the total SSE E.

5. If the current SSE has increased compared to the previous SSE as a result of

the weight update, then reset the weights to the previous values. Also, increase

the combination coefficient µ by a factor of 10. Then repeat the process from

step 3.

38

Chapter 3. Neural Network Architecture and Learning Algorithm

1: procedure INITIALIZATION(Q, g)
2: Q 0
3: g 0
4: end procedure
5:
6: for all patterns (p = 1 to p = P) do
7: procedure FORWARD COMPUTATION
8: for all neurons (nn) do
9: for all weights of current neuron (j) do

10: calculate net input (netj)
11: end for
12: calculate neuron output
13: calculate neuron slope (sj)
14: sj =

@Outj(netj)
@netj

15: set current slope as delta
16: for weights to previous neurons (ny) do
17: for previous neurons (nz) do
18: multiply delta through weights
19: then sum
20: end for
21: multiply sum by the slope
22: end for
23: end for
24: for all outputs (m = 1 to m = M) do
25: calculate error
26: end for
27: end procedure
28:
29: procedure UPDATE(Q, g)
30: for all outputs (m = 1 to m = M) do
31: calculate vector jp,m

32: calculate sub matrix qp,m

33: calculate sub vector ⌘p,m

34: Q = Q + qp,m

35: g = g + ⌘p,m

36: end for
37: end procedure
38: end for
39:
40: procedure IMPROVED LM TRAINING
41: follow the LM algorithm training process
42: update rule: Wn+1 = Wn � (Q + µI)�1g
43: end procedure

Fig. 3. NBN Algorithm Pseudo Code

The initial value of combination coefficient (µ), used in the
weights update rule of the NBN algorithm, is set to 0.01. The
factor by which to increase or decrease this value of µ is 10.

IV. AIRCRAFT SIMULATOR AND SENSORS

Aircraft data is collected using the X-Plane flight simulator
[26]. This simulator produces realistic flight simulations due
to which its professional version is certified by FAA (Federal

Aviation Administration) for pilot training [27], [28]. It is
also used by leading defence contractors, air forces and space
agencies for applications of flight training, concept design and
testing [28].

For this research, the Cessna 172SP aircraft model in X-
Plane is used to collect the flight data. Since the main emphasis
of the work is on sensor estimation, the aircraft is flown by
the provided AI pilot in X-Plane.

It is assumed that the aircraft is equipped with 6 inertial
sensors without any hardware redundancy. The inertial sensors
are 3 gyroscopes (gyros) and 3 accelerometers. They are
mounted along the x, y and z axis of the aircraft. These sensors
are essential components of the attitude/heading reference
system (AHRS) and the inertial navigation system (INS) found
in today’s aircrafts [29], [30].

The outputs of these sensors are as follows:
1) Gyros: pitch (q), roll (p) and yaw (r) rates.
2) Accelerometers: accelerations along the x (ax), y (ay)

and z (az) axis.

V. ESTIMATOR DEVELOPMENT

A. Estimator Neural Network Input/Output and Structure

The paper concentrates on the gyro sensors of the aircraft.
Therefore three gyro sensor estimators are developed, one each
for the (i) pitch, (ii) roll and (iii) yaw rate gyro sensors. The
outputs of these estimators are their respected estimated sensor
rates.

The inputs to the estimators are other sensors’ measure-
ments (excluding the one it is estimating) and the commanded
control values provided by flight control computers. Inputs
to each of these estimators and their respected outputs are
presented in Table I. These inputs are taken at t� 1, where t
is the current sample time.

These inputs are chosen because they can have an effect
or cause an effect on the parameter that the sensor is mea-
suring. The relationship between the measured accelerations
and the gyro rates can be derived from the linear acceleration
equations [31] defined as follows:

ax = U̇ � rV + qW

ay = V̇ � pW + rU (12)

az = Ẇ � qU + pV

where (U, V, W) are the velocity along the X, Y and Z
axes, given in body fixed reference frame. The relationships
between the control inputs and the gyro rates can be derived
from the aircraft’s linearized equations of motion [31]. From
the aircraft’s longitudinal equations of motion, the equation
relevant to this paper is as follows [31]:

⇥
q̇
⇤

=
h

Mw

Iy

Mq

Iy

i"w

q

#
+
h

M�E

Iy

i⇥
�E

⇤
(13)

where, q̇ is the rate of change of q, w is the vertical velocity
increment and �E is the elevator demand. Mw, M�E

and
Mq are the pitching moment derivatives due to w, �E and

Figure 3.9: The Pseudo-Code for the NBN algorithm.

39

Chapter 3. Neural Network Architecture and Learning Algorithm

Figure 3.10: The NBN Training Process. This figure is adapted from [1].

6. If the current SSE has decreased compared to the previous SSE, due to the

weights update, then keep the current weights and decrease the combination

coefficient µ by a factor of 10.

7. Repeat the process from step 2 with the new weights, until the current total

SSE is smaller than the required value.

In Figure 3.10, a flow chart for the training process is presented. In the next

section, the general settings used for the development of the NN applications in this

research is presented.

3.11 Neural Network Settings

In the research presented in this thesis, the NNs are initialised with random weights

in the range of ±1.5. The initial value of combination coefficient (µ), used in the

weights update rule of the NBN algorithm, is set to 0.01. The activation function

used by the neurons is the bipolar sigmoid [84], defined as follows:

Outj =
2

1 + e−netj
− 1 (3.20)

40

Chapter 3. Neural Network Architecture and Learning Algorithm

where netj is the sum of the weighted inputs to neuron j and Outj is the output of

neuron j. This activation function produces an output in the range of ±1.

Note that in the schemes presented in this research, the required output of the

NNs developed might not be in the range of ±1. In such cases, the required output

is normalised to the range of ±1 using the following

xn = (b− a)× xo − xmin

xmax − xmin

+ a (3.21)

where xn is the normalised value and xo is the value to be normalised. a and b are

the minimum and maximum value of the range to be normalised to, which in this

case is ±1. xmax and xmin are the maximum and minimum values of the range from

which xo is been normalised.

3.12 Conclusion

The aim of this chapter was to provide an overview of the reasons behind choosing

the FCC NN architecture and the NBN learning algorithm for the research. From

the literature presented, it is clear that the FCC NN architecture is far more efficient

than the popular MLP NN architecture. In addition, the NBN learning algorithm is

an improved version of the LM algorithm. This algorithm is more effective compared

to the popular EBP learning algorithm. Therefore, in the research presented in this

thesis, the FCC NN trained using the NBN algorithm is used for the developed

SFDIA and AFDIA schemes. In the next chapter, the developed SFDIA scheme is

presented.

41

“A person who never made a mistake never tried anything new.”
– Albert Einstein

42

Chapter 4

The SFDIA Scheme

4.1 Overview

Sensors are vital components for any control systems. They inform the controller

about its environment and the state of the system. Any failure of the sensor could

degrade the system’s performance and possibly lead to total system failure. An

aircraft system that can tolerate sensor failures would have added endurance in

the presence of such failures. This chapter presents the development of the sensor

failure, detection, identification and accommodation (SFDIA) scheme. The scheme

utilises the fully connected cascade (FCC) neural network (NN). As described in

Chapter 2, the SFDIA scheme can be divided into two stages:

• Failure detection and identification (FDI): In this stage, a failure occur-

ring or that has occurred is detected. Once the failure is detected, the failed

sensor is then identified.

• Failure accommodation (FA): In this stage, the failed sensor is replaced

with a reliable alternative. In the case of the NN based SFDIA, the failed

sensor is replaced with an NN based estimate.

The SFDIA scheme presented here can accommodate failure in the pitch, roll

and yaw rate gyro sensors of an aircraft. This chapter is organised as follows: the

outline of the developed SFDIA scheme is presented in Section 4.2. In Section 4.3,

the aircraft simulation model and the sensor suite considered for this research are

43

Chapter 4. The SFDIA Scheme

presented. The development of the FCC NN based sensor estimators for the SFDIA

is discussed in Section 4.4. During the development of the sensor estimators, some

anomaly was observed with the pitch rate sensor, which is examined in Section 4.5.

The setup of the SFDIA experiments and the results from the conducted experiments

are discussed in Section 4.6. In Section 4.7, a summary of the results and related

discussion is presented. Finally the chapter concludes in Section 4.8.

4.2 SFDIA Outline

A block diagram of the developed SFDIA scheme for the pitch, roll and yaw rate

sensor is presented in Figure. 4.1. In this scheme, for every sensor considered, there

is an NN based sensor estimator. As the name suggest, the output of this estimator

is the sensor measurement it is estimating. Also associated with each sensor is a

fault alarm signal (FA), which could either be 0 or 1: where FA = 1 indicates a fault

and FA = 0 if otherwise. Failure detection (FD) is performed by evaluating the

residual between each sensor and its associated NN estimate. If the residual exceeds

a certain threshold, the failure alarm for that sensor is triggered (FA = 1). Failure

identification (FI) is performed by identifying which sensor fault alarm is triggered.

Once the failed sensor is identified, it remains in the failed state throughout the

process. In other words, the sensor is assumed to remain faulty throughout. It does

not recover from the fault.

In addition, the proposed scheme consists of a fault switch (FS) for every sensor.

The inputs to the fault switch are the fault alarm signal (FA), sensor output and

estimator output. This switch is controlled by the FA signal. In fault free conditions

(FA = 0), the output of FS is the sensor output. However, in the event of failure

(FA = 1), the FS switches to the estimator output. This output is then used by the

flight control system (FCS) to operate in a fault free state.

44

Chapter 4. The SFDIA Scheme

Pitch Sensor

NN Pitch
Estimate

Roll Sensor

NN Roll
Estimate

Yaw Sensor

NN Yaw
Estimate

Residual
Evaluation

Residual
Evaluation

Residual
Evaluation

Fault
Switch

Fault
Switch

Fault
Switch

Fault Alarm
Signal

Fault Alarm
Signal

Fault Alarm
Signal

Fault Free
Pitch Rate

Fault Free
Roll Rate

Fault Free
Yaw Rate

Figure 4.1: SFDIA scheme layout for pitch, roll and yaw rate sensors.

4.3 Aircraft Simulation and Sensor Suite

Aircraft data is collected using the X-Plane flight simulator [85]. For this research,

the Cessna 172SP aircraft model in X-Plane is used to collect the flight data. This

aircraft is flown by the artificial intelligence (AI) pilot in X-Plane. The aircraft is

assumed to be equipped with six inertial sensors without any hardware redundancy.

The inertial sensors are three gyroscopes (gyros) and three accelerometers. They

are mounted along the x, y and z axis of the aircraft. These sensors are essential

components of the attitude/heading reference system (AHRS) and the initial navi-

gation system (INS) found in modern aircraft [86,87]. The outputs of these sensors

are as follows:

1. Gyros: pitch (q), roll (p) and yaw (r) rates.

2. Accelerometers: accelerations along the x (ax), y (ay) and z (az) axis.

45

Chapter 4. The SFDIA Scheme

Figure 4.2: The Cessna aircraft model in X-Plane 9.

4.4 Estimator Development

In this section, the structure of the NN based sensor estimators is presented. This

is followed by the development of the NN based pitch, roll and yaw rate estimators.

4.4.1 Estimator NN Inputs, Outputs and Structure

The conducted research concentrates on the SFDIA of the gyro sensors. Therefore,

three gyro sensor estimators are developed, one for each of the pitch, roll and yaw

rate gyros. The outputs of these estimators are their respective estimated sensor

rates. The inputs to the estimators are measurements from other sensors, excluding

the one it is estimating. In addition, commanded control outputs by the flight

control computer are also used as inputs. These inputs are taken at the current

sample time t. Inputs to each of these estimators and their respective outputs are

presented in Table 4.1.

These inputs are chosen because they can have an effect or can cause an effect

on the parameter that the sensor is measuring. The relationship between the mea-

sured accelerations and the gyro rates can be derived from the linear acceleration

46

Chapter 4. The SFDIA Scheme

Table 4.1: Inputs to the sensor estimators.

Sensor Estimator Inputs

Pitch (q) az - Normal Acceleration
ax - Longitudinal Acceleration
δE - Elevator Demand

Roll (p) r - Yaw Rate
δA - Aileron Demand
δR - Rudder Demand

Yaw (r) ay - Lateral Acceleration
δA - Aileron Demand
δR - Rudder Demand

Figure 4.3: Aircraft X, Y and Z axis. This figure is adapted from [2].

equations [88], defined as follows:

ax = U̇ − rV + qW + gx

ay = V̇ − pW + rU + gy (4.1)

az = Ẇ − qU + pV + gz

where (U, V,W) and (gx, gy, gz) are the velocity and gravitational acceleration com-

47

Chapter 4. The SFDIA Scheme

ponents respectively, along the X, Y and Z axes, given in body fixed reference frame.

The relationships between the remaining inputs and outputs of the estimators can

be derived analytically from the aircraft’s equations of motion described in [88].

To select the best structure (topology) for the FCC NN based sensor estimators,

the number of neurons in each estimator is first explored experimentally; varying

from 2 to 12 neurons. These estimators with different numbers of neurons are trained

and validated using the process described in the following sections.

4.4.2 Training and Validation Data Sets

To train and evaluate the estimators, flight data from the Cessna 172SP aircraft in

X-Plane is recorded for six different flight scenarios. In these scenarios, the aircraft

takes off from different airports to capture different manoeuvres performed by the

AI pilot in X-Plane. The manoeuvres include take-off, straight flight and randomly

changing flight heading. These scenarios were simulated in turbulence-free weather

conditions. Flight data was recorded once the aircraft reached its cruise altitude.

These flight data contain various sensor readings and control inputs, recorded at

every second.

In a practical system, sensor readings are updated at a higher frequency. In

this case however, recording the flight data at every second allows the training data

to capture more dynamic flight characteristics between each training sample. This

helps prevent the NN estimator from over-fitting to less dynamic training data.

Out of the six scenarios, one of them is randomly selected to train the NN based

estimators for each of the three sensors. The remaining five are used for validating

the estimators.

4.4.3 Estimator Training

For each sensor considered, estimators with 2 to 12 neurons are trained off-line

(batch learning) using a fixed set of training data extracted from the training flight

data mentioned in the previous section. The training set consists of data collected

during the steady and transient states of flight. This ensures that the estimators

48

Chapter 4. The SFDIA Scheme

can produce good estimates during any state of flight. The estimators are trained

until the Sum Squared Error (SSE) of the epoch is ≤ 0.01 or a maximum of 101

epochs is reached.

4.4.4 Simulation for Validation

Once trained, each of the estimators (ranging from 2 to 12 neurons) for a sensor is

validated on the five different flight scenarios. These scenarios last for 1500 seconds,

therefore containing 1500 samples. To assess the performance of the estimator on the

scenario, the total SSE of all the samples in the scenarios is computed. Finally, the

best estimator for a sensor is selected by calculating the average and the standard

deviation of the SSE for all the scenarios.

4.4.5 Results and Discussion

Yaw Rate Estimator

The SSEs of the yaw rate estimators using different neurons on the five validation

scenarios are presented in Table 4.2. From the average SSE, estimator networks

with 2 and 5 neurons produced the least errors. For the estimator with 2 neurons,

the SSE is 0.03290, while the SSE with 5 neurons is 0.03637. Using the standard

deviation (σ), it is clear that the estimator with 2 neurons is best of the two, with

σ = 0.01979. The output of this estimator on its best and worst scenarios are

presented in Figure 4.4 and Figure 4.5 respectively. The best scenario is scenario 3

and the worst is scenario 1.

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

Sample Time (sec)

N
o

r
m

a
li

z
e

d
 Y

a
w

 R
a

te

Sensor Output

Estimator Output

500Figure 4.4: Normalised yaw rate using equation (3.21). Results using 2 neurons in
scenario 3.

49

Chapter 4. The SFDIA Scheme

T
ab

le
4.

2:
Y

aw
ra

te
es

ti
m

at
or

er
ro

rs
fo

r
th

e
va

li
d
at

io
n

sc
en

ar
io

s.

S
U

M
S
Q

U
A

R
E

D
E

R
R

O
R

S
(S

S
E

)

N
eu

ro
n
s

2
3

4
5

6
7

8
9

10
11

12

S
ce

n
ar

io
1

0
.0

5
4
0
3

0.
05

79
0

0.
05

77
5

0.
04

91
6

0.
14

77
0

1.
08

82
0

0.
08

81
8

0.
14

52
0

0.
41

49
4

0.
22

53
1

0.
74

18
5

S
ce

n
ar

io
2

0
.0

1
6
7
8

0.
03

42
8

0.
02

44
3

0.
02

18
3

0.
23

91
0

2.
11

59
6

0.
13

17
1

0.
29

88
6

1.
26

39
0

0.
36

81
7

1.
23

90
7

S
ce

n
ar

io
3

0
.0

0
9
2
3

0.
04

65
0

0.
03

63
8

0.
01

69
2

0.
25

24
9

5.
99

46
0

0.
25

25
2

0.
91

54
0

2.
30

97
3

0.
99

68
8

3.
57

60
1

S
ce

n
ar

io
4

0
.0

5
0
1
7

0.
10

00
1

0.
04

89
5

0.
06

14
4

0.
11

77
0

0.
69

71
6

0.
08

02
2

0.
05

96
9

0.
27

66
2

0.
07

50
0

0.
47

78
9

S
ce

n
ar

io
5

0
.0

3
4
2
8

0.
05

79
9

0.
04

08
2

0.
03

25
0

0.
44

97
1

3.
44

61
5

0.
35

20
3

0.
39

36
9

2.
05

50
1

0.
39

98
4

2.
04

60
9

A
ve

ra
ge

E
rr

or
0
.0

3
2
9
0

0.
05

93
4

0.
04

16
7

0.
03

63
7

0.
24

13
4

2.
66

84
1

0.
18

09
3

0.
36

25
7

1.
26

40
4

0.
41

30
4

1.
61

61
8

S
D

(σ
)

0
.0

1
9
7
9

0.
02

47
5

0.
01

26
2

0.
01

86
9

0.
13

00
0

2.
14

22
2

0.
11

78
6

0.
33

52
8

0.
92

39
9

0.
35

09
1

1.
24

78
1

50

Chapter 4. The SFDIA Scheme

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

Sample Time (sec)

N
o

r
m

a
li

z
e

d
 Y

a
w

 R
a

te

Sensor Output

Estimator Output

500 1000

Time (sec)

Figure 4.5: Normalised yaw rate using equation (3.21). Results using 2 neurons in
scenario 1.

Pitch Rate Estimator

Table 4.3 presents the validation results for the pitch rate estimators. The estimator

using 6 neurons has the least SSE among them, with SSE = 1.15978. The output

of this estimator on its best and worst scenarios are presented in Figure 4.6 and

Figure 4.7 respectively. The best scenario is scenario 4 and the worst is scenario 3.

As can be seen from Figure 4.6 and Figure 4.7, the output of the pitch rate

sensor seems to oscillate rapidly over certain time frames. This is due to the aircraft

being disturbed from its equilibrium state. These disturbances could be initiated

by pilot control inputs, change in power settings and atmospheric influences such

as gust and turbulence [89]. Since the scenarios were simulated in turbulence free

weather conditions, in this case, the oscillations are caused by the control outputs

from the AI pilot in X-Plane.

For a certain time frame, the oscillations are neither increasing nor decreasing in

magnitude (see Figure 4.7). Once the aircraft is disturbed, it continues to oscillate

without a significant increase or decrease in magnitude. The aircraft is said to be in

a state of neutral dynamic stability [88, 90]. The magnitude and duration of these

oscillations depends on the aircraft’s aerodynamics and stability. The estimator

follows these oscillations but does not follow the magnitude. This anomaly is further

investigated in Section 4.5.

51

Chapter 4. The SFDIA Scheme

T
ab

le
4.

3:
P

it
ch

ra
te

es
ti

m
at

or
er

ro
rs

fo
r

th
e

va
li
d
at

io
n

sc
en

ar
io

s.

S
U

M
S
Q

U
A

R
E

D
E

R
R

O
R

S
(S

S
E

)

N
eu

ro
n
s

2
3

4
5

6
7

8
9

10
11

12

S
ce

n
ar

io
1

0.
87

54
9

1.
07

20
4

0.
77

15
2

0.
75

68
6

0
.6

2
6
6
4

8.
31

57
9

1.
07

37
5

1.
73

60
2

1.
60

93
3

1.
80

45
6

4.
34

39
5

S
ce

n
ar

io
2

1.
30

50
9

1.
19

66
3

1.
06

82
7

0.
97

03
9

0
.9

2
6
2
8

5.
95

50
1

1.
15

03
8

1.
79

25
0

2.
21

79
5

2.
63

00
0

6.
52

51
9

S
ce

n
ar

io
3

3.
09

02
3

2.
83

35
2

2.
80

38
3

2.
70

44
0

2
.7

4
8
3
5

8.
32

02
4

2.
88

54
6

2.
97

33
6

3.
03

03
4

4.
02

90
7

6.
08

80
9

S
ce

n
ar

io
4

0.
64

40
7

0.
58

85
8

0.
46

33
7

0.
37

71
0

0
.3

4
4
5
2

8.
91

34
6

0.
50

09
2

1.
05

71
6

1.
20

74
0

3.
24

78
2

4.
86

67
0

S
ce

n
ar

io
5

1.
78

65
7

1.
59

82
0

1.
35

88
2

1.
32

64
4

1
.1

5
3
0
8

13
.4

39
23

1.
87

37
1

2.
78

34
4

2.
85

94
5

2.
95

25
3

7.
94

09
2

A
ve

ra
ge

E
rr

or
1.

54
02

9
1.

45
77

9
1.

29
31

6
1.

22
70

4
1
.1

5
9
7
8

8.
98

87
4

1.
49

68
4

2.
06

85
0

2.
18

48
9

2.
93

28
0

5.
95

29
7

S
D

(σ
)

0.
96

99
8

0.
84

92
5

0.
90

79
7

0.
89

46
8

0
.9

3
9
0
1

2.
73

47
7

0.
91

66
8

0.
79

67
8

0.
78

38
5

0.
81

64
0

1.
42

00
8

52

Chapter 4. The SFDIA Scheme

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

Sample Time (sec)

N
o

r
m

a
li

z
e

d
 P

it
c

h
 R

a
te

Sensor Output

Estimator Output

Figure 4.6: Normalised pitch rate using equation (3.21). Results using 6 neurons in
scenario 4.

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

Sample Time (sec)

N
o

r
m

a
li

z
e

d
 P

it
c

h
 R

a
te

Sensor Output

Estimator Output

500Figure 4.7: Normalised Pitch rate using equation (3.21). Results using 6 neurons in
scenario 3.

53

Chapter 4. The SFDIA Scheme

Roll Rate Estimator

In Table 4.4, the results for the roll rate estimators are presented. As can be seen

from the average SSE, there is a close tie between 2, 4 and 12 neurons, with SSE =

0.83437, 0.83610 and 0.83129, respectively. Using the standard deviations of their

SSE, the estimator with 12 neurons has the best normal distribution among them

(σ = 0.25250). However, it was decided to select the estimator with 4 neurons,

keeping in line with the low neuron count of the previous gyro sensor estimators.

The output of this estimator on its best and worst scenarios is presented in Figure 4.8

and Figure 4.9 respectively. The best scenario for this estimator is scenario 3 and

the worst is scenario 5.

0 500 1000 1500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Sample Time (sec)

N
o

r
m

a
li

z
e

d
 R

o
ll

 R
a

te

Sensor Output

Estimator Output

Figure 4.8: Normalised roll rate using equation (3.21). Results using 4 neurons in
scenario 3.

0 500 1000 1500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Sample Time (sec)

N
o

r
m

a
li

z
e

d
 R

o
ll

 R
a

te

Sensor Output

Estimator Output

0 500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

R
o

ll
 R

a
te

 (
d

e
g

/
s
e

c
)

Figure 4.9: Normalised roll rate using equation (3.21). Results using 4 neurons in
scenario 5.

54

Chapter 4. The SFDIA Scheme

T
ab

le
4.

4:
R

ol
l

ra
te

es
ti

m
at

or
er

ro
rs

fo
r

th
e

va
li
d
at

io
n

sc
en

ar
io

s.

S
U

M
S
Q

U
A

R
E

D
E

R
R

O
R

S
(S

S
E

)

N
eu

ro
n
s

2
3

4
5

6
7

8
9

10
11

12

S
ce

n
ar

io
1

1.
03

86
1

1.
71

94
2

0
.9

9
1
8
8

1.
26

80
6

1.
17

93
7

1.
23

31
4

1.
33

95
1

1.
06

15
9

1.
12

75
6

1.
03

99
6

0.
95

75
1

S
ce

n
ar

io
2

0.
87

18
9

0.
71

65
5

0
.6

2
9
5
0

0.
74

55
7

0.
73

81
7

0.
80

79
3

0.
83

96
2

0.
90

88
3

1.
00

08
3

0.
75

33
5

0.
72

13
9

S
ce

n
ar

io
3

0.
33

53
4

0.
48

92
5

0
.4

1
0
1
2

0.
44

70
0

0.
42

92
2

0.
43

20
7

0.
45

47
8

0.
64

60
3

0.
68

60
7

0.
56

29
3

0.
44

61
3

S
ce

n
ar

io
4

0.
50

07
0

0.
92

34
4

0
.8

2
0
8
4

1.
07

41
9

0.
98

54
2

1.
01

21
4

1.
05

37
8

1.
36

04
0

1.
40

73
4

1.
21

94
2

0.
94

27
9

S
ce

n
ar

io
5

1.
42

53
3

1.
46

55
2

1
.3

2
8
1
8

1.
53

93
2

1.
41

90
8

1.
58

00
2

1.
60

26
1

1.
20

00
4

1.
22

84
1

1.
27

56
7

1.
08

86
4

A
ve

ra
ge

E
rr

or
0.

83
43

7
1.

06
28

4
0
.8

3
6
1
0

1.
01

48
3

0.
95

02
5

1.
01

30
6

1.
05

80
6

1.
03

53
8

1.
09

00
4

0.
97

02
7

0.
83

12
9

S
D

(σ
)

0.
43

38
0

0.
51

51
7

0
.3

5
0
2
8

0.
42

94
4

0.
38

40
5

0.
43

28
7

0.
44

36
9

0.
27

43
4

0.
27

03
6

0.
30

54
4

0.
25

25
0

55

Chapter 4. The SFDIA Scheme

4.5 The Pitch Rate Anomaly

As mentioned in Section 4.4.5, there is an anomaly with the pitch rate estimator.

Although for the majority of the validation datasets, the pitch estimator with 6

neurons follows the oscillatory phase of the sensor output, the estimator it is not

estimating the correct magnitudes. To address this anomaly, three main factors

were considered:

• Sampling frequency

• Training data

• Estimator inputs

These factors are investigated below.

4.5.1 Sampling Frequency

With a sampling frequency of 1 Hz, it is possible that during the pitch rate oscilla-

tions important data could have been lost between samples. These lost data points

could have helped train the estimators in matching the oscillation magnitude.

To investigate this cause, the validation dataset in scenario 3 was examined

closely. Scenario 3 was chosen because, as indicated in Section 4.4.5 and Table 4.3,

this scenario provides the worst results among the five scenarios. It was noted that

the period of the pitch rate oscillation was ≈ 9 sec. If the period of the oscillations

was less than 1 sec, it is possible for important information to be lost during training.

Therefore, it is fair to conclude that increasing the sampling frequency would not

have captured valuable data, which could have helped during the training of the

estimators.

To confirm this further and rule out sampling frequency as a cause for the pitch

rate anomaly, two flight datasets were collected from X-Plane at a sampling fre-

quency of 10 Hz. One of the datasets was used to train the pitch rate estimators

and the other to validate it. An experiment, similar to the one in Section 4.4, was

conducted. However in this case, there is only one validation scenario.

56

Chapter 4. The SFDIA Scheme

From the results (see Figure 4.10), it is concluded that increasing the sampling

frequency from 1 Hz to 10 Hz would not resolve the pitch rate anomaly.

4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000
−0.4

−0.2

0

0.2

0.4

Sample Time (sec)

N
or

m
al

iz
ed

 P
itc

h
R

at
e

Sensor Output
Estimator Output

Figure 4.10: Normalised pitch rate using equation (3.21). Results using 5 neurons
estimator trained using 10 Hz sampling frequency data.

4.5.2 Training Data

Training data that is incomplete or an insufficient representation of the problem

could also be a good reason for the pitch rate anomaly. To eliminate training data as

a cause of the pitch rate anomaly, the estimators must be trained using new training

data, as conducted in Section 4.5.1. The new training data, collected at 10 Hz

sampling frequency, is used to train the pitch rate estimators. These estimators are

then validated on a scenario. As evident from Figure 4.10 and Table 4.5, changing

the training data cannot resolve the anomaly observed in the pitch rate estimator.

It is concluded that the training data is not the cause of the pitch rate estimator

failing to match the magnitude of the oscillatory pitch sensor output.

4.5.3 Inputs to Estimators

With the previous two factors excluded, it is concluded that the inputs to the pitch

rate estimators are the cause for the anomaly. Having different and/or additional

inputs could help capture additional information. This additional information could

help in matching the magnitude of the oscillations.

Future work would focus on identifying other sensor suites that could be used

to correct the anomaly observed in the pitch rate estimator. At the present stage,

57

Chapter 4. The SFDIA Scheme

T
ab

le
4.

5:
P

it
ch

ra
te

es
ti

m
at

or
er

ro
rs

u
si

n
g

tr
ai

n
in

g
d
at

a
sa

m
p
le

d
at

10
H

z.

S
U

M
S
Q

U
A

R
E

D
E

R
R

O
R

S
(S

S
E

)

N
eu

ro
n
s

2
3

4
5

6
7

8
9

10
11

12

S
ce

n
ar

io
1

6.
77

26
8

20
.4

35
85

6.
64

96
3

6.
21

71
9

11
.4

62
68

7.
35

26
4

12
.7

49
87

9.
56

27
5

9.
01

35
3

15
01

.1
25

53
12

.1
64

50

58

Chapter 4. The SFDIA Scheme

since the majority of the pitch rate estimator outputs follows the pitch rate sensor

values, the estimator is used as part of the SFDIA scheme. The pitch rate estimator

anomaly can be accommodated in the failure detection stage, using a high residual

threshold. This is discussed in greater detail in Section 4.6.3.

4.6 Sensor Failure Experiments

With the NN based sensor estimators developed, the next objective is the application

of the estimators for SFDIA. In this section, the setup of the SFDIA experiments,

the types of failures and the results from the experiments are presented.

4.6.1 Failure Detection and Identification Experiment Setup

The X-Plane 9 flight simulator does not support simulation of sensor faults. There-

fore, faults have to be introduced manually once the flight data for a simulation

is collected. To examine the performance of the proposed SFDIA scheme, the five

validation scenarios used in Section 4.4 are reused. Faults are introduced manually

at random locations into these five scenarios.

For every fault type considered, the faults are simulated on each of the scenarios

for every sensor. This would allow the examination of the performance of the SFDIA

scheme for each of the fault types in each sensor. The fault types considered in this

research are discussed in the following section.

4.6.2 Sensor Failure Types

Aircraft sensors can fail in several ways. Some failures are specific to a sensor, while

others are general. The signal from a sensor could be described as follows [48,91,92]:

xt = rt + nt + ft (4.2)

where at time t, x is the signal from the sensor, r is the useful signal, n is the noise

and f is the sensor failure. The sensor data collected from X-Plane provides the

59

Chapter 4. The SFDIA Scheme

values for r and n. The f signal is injected manually for each fault type. In this

research, the following fault types are considered [12,92–94]:

• Stuck constant bias failure: At a given time, the sensor output gets stuck and

outputs a constant bias (b).

xt = b (4.3)

• Additive (drift) failure: This type of failure is very common. It is usually

caused by temperature changes or calibration problems. In this fault, a con-

stant term (drift value) is added to the sensor output. An additive fault can

be modelled by the ramp function, as follows [12,48,93]:

f(t) =

0 t < tf

A(t− tf)/TR tf ≤ t < tf + TR

A t ≥ tf + TR

(4.4)

where tf is the time when the fault is introduced, TR is the duration of the

ramp and A is the fault magnitude. The magnitude (A) of the additive fault

can either be large or small. Depending on the duration of the ramp (TR), the

fault can be a step (TR ≈ 0 sec), soft (TR = 4 sec) or hard (TR = 1 sec) in

nature [37,93].

In this research, the outputs of the gyro sensors are assumed to be in the range

of +10 deg/sec to −10 deg/sec. In the case of the additive fault type, large and

small fault magnitudes are modelled using 30% and 15% of the maximum sensor

value, respectively. In other words, for large faults, A = 3 deg/sec and for small

faults, A = 1.5 deg/sec. In total, seven failure cases are considered, which can be

summarised as follows:

1. Constant Bias

2. Hard Additive Large (TR = 1 sec , A = 3 deg/sec)

60

Chapter 4. The SFDIA Scheme

3. Hard Additive Small (TR = 1 sec , A = 1.5 deg/sec)

4. Soft Additive Large (TR = 4 s , A = 3 deg/sec)

5. Soft Additive Small (TR = 4 sec , A = 1.5 deg/sec)

6. Step Additive Large (TR = 0 sec , A = 3 deg/sec)

7. Step Additive Small (TR = 0 sec , A = 1.5 deg/sec)

In the next section, the technique to generate the sensor residual is discussed.

4.6.3 Residual Generation Technique

As described earlier, the SFDIA scheme presented here uses residuals d to detect and

identify sensor failures. Generally, residuals are generated by squaring the difference

between the real sensor measurement and the measurement from its model [37] as

shown in equation (4.5). In equation (4.5), d is the residual at time t where x is the

real sensor measurement and x is the estimator (model) measurement at time t.

dt = (xt − xt)2 (4.5)

Failure is detected when the residual d goes over a threshold (τ). Ideally the

sensor measurement and the estimator output should be equal, therefore generating

a residual d = 0, and d 6= 0 in case of failure. When the residual d crosses τ , the

failure alarm is triggered. In this ideal condition, τ should be kept close to 0 for

quick detection (τ ≈ 0).

However, in a practical system the sensor measurements are not equal to the

estimator output due to sensor noise and modelling inaccuracies. This means that

the residual d is not equal to 0 in fault free conditions. For this reason, in the

absence of any faults, a false alarm (FA = 1) could occur frequently when threshold

τ ≈ 0. This could be resolved by raising the value of τ , but this risks not detecting

the faults. Because of this, a balance between false alarms and fault detection is

required.

61

Chapter 4. The SFDIA Scheme

In the proposed SFDIA scheme, the residual (d) is generated using a sliding

window mechanism [37, 95]. In this mechanism, a window of size n data points

keeps moving (sliding) with time. The window calculates the moving average of the

n residuals calculated using equation (4.5). The result of the sliding average win-

dow is then weighted to produce the current residual [37]. The residual generation

mechanism can therefore be described as follows:

Dt =
$

n

t∑

i=t−n−1

(xi − xi)2 (4.6)

where D is the residual at time instant t and $ is the weight. Notice how equa-

tion (4.5) is utilised in equation (4.6). The sliding average window filters the resid-

uals using equation (4.5) from noise and modelling inaccuracies. The weight allows

us to magnify the residuals and have a high fault threshold (τ). In this research, the

size of the sliding window is set to 5 (n = 5) and the weight is set to 40 ($ = 40).

For the pitch, roll and yaw rate sensors, the threshold is set to τ = 0.8, τ = 0.8 and

τ = 0.2, respectively.

In the next section, the results of the sensor failure detection and identification

for accommodation experiments are presented.

n

n

Time
t t - 1 t - n + 1 t - n

Figure 4.11: Sliding average window at time t.

4.6.4 Experiment Results

Yaw Sensor Failures

The results for the yaw rate sensor fault detection time are presented in Table 4.6.

Generally, large magnitude faults are quicker to detect than small magnitude faults.

62

Chapter 4. The SFDIA Scheme

The greater the magnitude of the fault, the sooner the residual generated using

equation (4.6) will cross the threshold τ . This observation is reflected in the results

presented in Table 4.6, which compares the results for a sudden step fault of large

and small magnitude. On average, the step fault of large magnitude is detected

instantaneously compared to an average of 0.8 sec in sample time for the small

magnitude step fault.

Similar results can be observed with the hard additive type faults with a ramp

duration of TR = 1 sec (see Section 4.6.2). Although the detection time is affected by

the magnitude of the fault, it is also affected by the transient phase (ramp duration

TR) of the developing fault. Due to this, the detection time for hard faults is greater

than that for step type additive faults.

In comparison to the step and hard additive type faults, soft faults have the

longest detection time. These faults have the highest ramp duration (TR = 4 sec)

amongst the three types of additive fault. On average, the detection time for soft

faults of large magnitude is 2.6 sec, in comparison to an average of 4 sec (sample

time) for small magnitude fault. In the case of the constant bias fault, the average

detection time is 1.6 sec.

In Figure 4.12, the signals associated with the yaw rate sensor during the oc-

currence of a hard fault are presented. Figure 4.12a shows the response of various

signals during the occurrence of a hard fault of large magnitude in scenario 1. In

Figure 4.12b, the responses of various signals during a hard fault of small magnitude

in scenario 4 are shown. Notice the response of the fault signal FA in both cases

after the occurrence of the fault. The time of fault is marked by the vertical green

line running across the three plots.

Pitch Sensor Failures

The results for the pitch rate sensor fault detection time are presented in Table 4.7.

The results reflect the observations made in the yaw rate sensor results. Large mag-

nitude faults are quick to detect and additive faults with a ramp duration TR > 0 sec

take a longer time to detect. On average, the hard additive faults with small mag-

63

Chapter 4. The SFDIA Scheme

390 392 394 396 398 400 402 404 406 408 410
0

2

4

6

R
es

id
ua

l

390 392 394 396 398 400 402 404 406 408 410
-0.5

0

0.5

1
N

or
m

. Y
aw

 R
at

e

390 392 394 396 398 400 402 404 406 408 410
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
S

ig
na

l

Expected
Sensor
Estimator

Residual
Threshold

Fault Signal

(a) Scenario: 1, Magnitude: Large, Fault Occurrence: 400 sec

425 430 435 440 445 450 455 460
-0.4

-0.2

0

0.2

0.4

N
or

m
. Y

aw
 R

at
e

425 430 435 440 445 450 455 460
0

0.5

1

R
es

id
ua

l

425 430 435 440 445 450 455 460
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
S

ig
na

l

Expected
Sensor
Estimator

Fault Signal

Residual
Threshold

(b) Scenario: 4, Magnitude: Small, Fault Occurrence: 430 sec

Figure 4.12: Yaw sensor hard fault simulations.

64

Chapter 4. The SFDIA Scheme

Table 4.6: Yaw FDI Results

Detection Time for Fault Types in Sample Time (sec)

Scenario Const.Bias Hard Step Soft

- - L S L S L S

1 1 1 1 0 0 2 3

2 1 1 2 0 1 3 5

3 1 1 2 0 1 2 3

4 2 1 3 0 2 3 5

5 3 1 2 0 0 3 4

Average 1.6 1 2 0 0.8 2.6 4

− : No Fault Detected, Threshold (τ) : 0.2, L : Large, S : Small

nitude are detected in 3 sec. In comparison, the hard faults with small magnitude

are detected in an average of 1.4 sec.

Compared to the hard faults, the soft additive faults take on average 3 sec and

5.2 sec in sample time, for large and small magnitude respectively. Notice that

the average detection time of soft faults is longer than that of hard faults. This

is because the ramp duration is greater for soft faults, which is set at TR = 4 sec,

instead of TR = 1 sec for hard faults. The step fault type has the lowest average of

the additive fault types due to the ramp duration of TR = 0 sec. Step faults with

small and large magnitude have an average of 0.8 sec and 2.6 sec respectively. The

constant bias fault type has an average of 0.8 sec.

Comparing Table 4.6 and Table 4.7 shows how the average detection time for

the pitch rate sensor is greater than that of the yaw rate sensor, especially for the

additive fault types. This is due to the higher fault residual threshold τ used for the

pitch rate sensor. In comparison to the yaw rate sensor, the pitch rate estimator has

a higher modelling error, as discussed in Section 4.5, therefore requiring a higher

value for τ . The threshold τ is set to 0.8 for the pitch sensor whereas for the yaw

sensor, τ = 0.2. The modelling errors are reflected on the average SSE of the pitch

and yaw rate estimators presented in Table 4.3 and Table 4.2 respectively.

In Figure 4.13, the signals associated with the pitch rate sensor during the occur-

rence of a step fault are presented. Figure 4.13a and Figure 4.13b show the response

65

Chapter 4. The SFDIA Scheme

of various signals during the occurrence of a step failure of large and small magni-

tude respectively. Note that Figure 4.13a presents the response of various signals in

scenario 3 during a step fault. This is the scenario in which the pitch rate anomaly

is significant. Although the anomaly between the sensor and estimator is significant,

there is no false fault detection.

Table 4.7: Pitch FDI Reults

Detection Time for Fault Types in Sample Time (sec)

Scenario Const.Bias Hard Step Soft

- - L S L S L S

1 1 2 5 1 4 4 7

2 1 1 3 1 3 4 7

3 1 1 1 0 0 1 2

4 1 2 4 1 2 4 7

5 0 1 2 1 4 2 3

Average 0.8 1.4 3 0.8 2.6 3 5.2

− : No Fault Detected, Threshold (τ) = 0.8, L : Large, S : Small

Roll Sensor Failures

In Table 4.8, the results for the roll rate sensor fault detection are presented. Similar

to the pitch rate sensors, τ is set at a higher value: τ = 0.8. This is to accommodate

the difference between the estimator value and the sensor value. The least detection

time is taken by the constant bias fault type with an average of 1 sec in sample time.

For hard fault types the average is 2 sec and 4.6 sec in sample time for large and

small magnitude. As expected, due to higher residual threshold, the fault detection

time is longer.

The soft fault types take the most amount of time to be detected. For large

magnitude soft faults, the average detection time is 4 sec in sample time. The

average detection time is even higher for small magnitude soft failures, standing at

an average of 7 sec in sample time. These results are considerably higher than the

detection time in the yaw rate sensor. The longer detection time is caused by the

higher residual threshold.

66

Chapter 4. The SFDIA Scheme

370 380 390 400 410 420 430
-0.2

0

0.2

0.4

0.6

N
or

m
. P

itc
h

R
at

e

370 380 390 400 410 420 430
0

2

4

6

R
es

id
ua

l

370 380 390 400 410 420 430
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
S

ig
na

l

Expected
Sensor
Estimator

Residual
Threshold

Fault Signal

(a) Scenario: 3, Magnitude: Large, Fault Occurrence: 400 sec

270 280 290 300 310 320 330
-0.1

0

0.1

0.2

0.3

N
or

m
. P

itc
h

R
at

e

270 280 290 300 310 320 330
0

0.5

1

R
es

id
ua

l

270 280 290 300 310 320 330
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
S

ig
na

l

Expected
Sensor
Estimator

Residual
Threshold

Fault Signal

(b) Scenario: 1, Magnitude: Small, Fault Occurrence: 300 sec

Figure 4.13: Pitch sensor step fault simulations.

67

Chapter 4. The SFDIA Scheme

In the case of the step type failures, the average is at 1.2 sec in sample time

for large magnitude. However for the small magnitude, the average is at 3.75 sec

with a fault going undetected in scenario 1. This is quite possible in scenarios

where the magnitude of the fault is relatively small. The fault went undetected

because the residual failed to trigger the threshold. This could be solved by reducing

the threshold τ , but this risks false fault detection. Future work would consider

additional inputs to the roll rate estimator to improve the estimate, and therefore

improve the chances for detection.

In Figure 4.14, the signals associated with the roll rate sensor during the oc-

currence of a soft failure are presented. Figure 4.14a and Figure 4.14b, shows the

response of various signals during the occurrence of soft failures of large and small

magnitude respectively. Notice how the residual signal slowly rises over the thresh-

old. This causes a delay in fault detection, as is evident from the fault signal

response.

Table 4.8: Roll FDI Results

Detection Time for Fault Types in Sample Time (sec)

Scenario Const.Bias Hard Step Soft

- - L S L S L S

1 1 2 5 2 − 4 7

2 1 2 4 1 4 4 7

3 1 2 4 1 3 4 7

4 1 2 5 1 4 4 7

5 1 2 5 1 4 4 7

Average 1 2 4.6 1.2 3.75 4 7

− : No Fault Detected, Threshold (τ) : 0.8, L : Large, S : Small

4.7 Summary of Results and Discussions

The FCC NN based SFDIA scheme is evaluated for failures in pitch, roll and yaw rate

gyro sensors. Each sensor is manually injected with seven different faults at random

locations on five different flight scenarios. The observations of the experiments can

68

Chapter 4. The SFDIA Scheme

970 980 990 1000 1010 1020 1030
-0.1

0

0.1

0.2

0.3

N
or

m
. R

ol
l R

at
e

970 980 990 1000 1010 1020 1030
0

1

2

3

4

R
es

id
ua

l

970 980 990 1000 1010 1020 1030
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
S

ig
na

l

Expected
Sensor
Estimator

Residual
Threshold

Fault Signal

(a) Scenario: 3, Magnitude: Large, Fault Occurrence: 1000 sec

120 130 140 150 160 170 180
-0.1

0

0.1

0.2

N
or

m
. R

ol
l R

at
e

120 130 140 150 160 170 180
0

0.5

1

R
es

id
ua

l

120 130 140 150 160 170 180
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
S

ig
na

l

Expected
Sensor
Estimator

Residual
Threshold

Fault Signal

(b) Scenario: 1, Magnitude: Small, Fault Occurrence: 150 sec

Figure 4.14: Roll sensor soft fault simulations.

69

Chapter 4. The SFDIA Scheme

be summarised as follows:

• Sudden fault types such as constant bias, hard additive and step additive are

quicker to detect than faults that develop over time (e.g. soft additive faults).

• Faults with large magnitude are more easily detected than faults with small

magnitude.

• Higher fault residual threshold to accommodate sensor estimator modelling

errors and noise can increase the fault detection time.

These observations are consistent across the three gyro sensors. All faults were

detected by the presented SFDIA scheme, except for one in the roll rate sensor. This

undetected fault is a step fault with small magnitude. In this case, the fault went

undetected because the residual failed to trigger the threshold. Due to the modelling

inaccuracies of the developed pitch and roll estimators, the residual threshold for

these estimators is set to τ = 0.8, which is 4 times higher than the yaw residual

threshold. This resulted in higher detection time as well as the roll fault going

undetected. Nonetheless, the SFDIA scheme detected 104 faults out of the 105

cases evaluated.

The FDI results presented here can be compared to the SFDIA scheme presented

in [37]. The scheme presented in [37] is based on the extended minimum resource

allocating radial basis function (EMRAN-RBF) NN. The authors of [37], evaluated

their SFDIA scheme on the pitch rate sensor for large magnitude (A = 2.4 deg/sec)

additive faults. With their SFDIA scheme, pitch rate faults were detected in 1.24 sec,

1 sec and 1.86 sec for hard, step and soft faults respectively. In comparison, the SF-

DIA scheme presented here, detected the large magnitude (A = 3 deg/sec) faults in

an average time of 1.4 sec, 0.8 sec and 3 sec for hard, step and soft faults respectively.

The results are fairly comparable, except for the case of soft failure, where the

presented SFDIA scheme took 1.14 sec longer. This difference in performance can be

accounted for by the fact that the SFDIA scheme presented in [37] uses a sampling

time of 20 msec, compared to the 1 sec sampling time used in the scheme presented

70

Chapter 4. The SFDIA Scheme

here. The higher the sampling frequency, the quicker the faults are detected. Be-

sides the sampling frequency, the SFDIA scheme presented here just uses 3 inputs

compared to 4 inputs in [37].

One of the drawbacks of the presented SFDIA scheme is the fixed threshold based

detection mechanism. Selecting a fixed fault threshold is a challenging task, espe-

cially in a dynamic system which is susceptible to noise and modelling inaccuracy.

If the threshold is too high, the fault might take longer to be detected or worse, go

undetected. Having a low threshold on the other hand might increase the rate of

false alarms. The sliding averaging window mechanism does help reduce the effect of

noise and modelling inaccuracy. However, if the dynamics of the system changes in

the future, the thresholds would have to be evaluated and fixed again. An alterna-

tive to the fixed threshold based detection mechanism is an adaptive threshold. In

this mechanism, the fault threshold adapts to the changes in the system dynamics

with time. Such a mechanism, as presented in the [50] and [96], would increase the

robustness of the SFDIA scheme presented here.

4.8 Conclusion

In this chapter, a FCC NN based SFDIA scheme was presented. The scheme was

developed to address failures in the pitch, roll and yaw rate gyro sensors of an

aircraft. This chapter presented the development of the FCC NN based pitch, roll

and yaw rate gyro sensors. These estimators were used in the SFDIA scheme to

replace the faulty sensors.

The results show that the FCC NN based estimators can produce good estimates

of the sensor measurements, with as few as 2 neurons (see yaw rate results in Sec-

tion 4.4.5). The pitch and roll rate estimators were able to produce good estimates

with just 6 and 4 neurons respectively. However, the pitch rate estimator presented

some anomaly. Upon further investigation it was conclude that the anomaly is due

to the inputs to the estimator. Since the assumption made was that the aircraft

is equipped with just the accelerometers and rate gyros, additional inputs to the

estimator cannot be examined. Therefore the pitch estimator is limited by this as-

71

Chapter 4. The SFDIA Scheme

sumption. Further work needs to be conducted to identify additional sensor suites

that could be used to correctly estimate the pitch sensor.

The SFDIA experiments covered 7 different failures over 105 experiments. Out

of these experiments, only 1 failure went undetected. One of the shortcoming of the

presented scheme is the detection mechanism. The scheme uses a fixed threshold

based detection mechanism. While selecting a fault detection threshold, care must be

taken to balance between the risk of false failure detection and no failure detection.

The SFDIA scheme could be improved by implementing an adaptive fault detection

threshold, which adapts with time.

To conclude, the results presented in this chapter show that the FCC NN can

be used for SFDIA schemes. With as few as 2 neurons, the FCC NN was able to

replicate the yaw rate sensor measurements. In the developed scheme, a faulty pitch,

roll and yaw rate sensor is replaced by its respective NN estimators. Therefore, the

scheme can add endurance to an aircraft system in the presence of failures in these

sensors.

72

“Nothing is impossible, the word itself says ‘I’m possible!”
– Audrey Hepburn

73

Chapter 5

Actuator Failures in the X-Plane

Simulator

5.1 Overview

The next stage of the research is to develop the AFDIA scheme. Similar to the

SFDIA, the X-Plane flight simulator is used. This is because of its realistic sim-

ulations of the aircraft dynamics, which is important for the AFDIA experiments.

However, many challenges were faced while using this simulator for this research.

This chapter attempts to highlight these challenges and explain how it affected the

intended actuator failure research.

5.2 Initial Actuator Failure Study Objectives

In the initial stages of this research, the objective was to study actuator failures

in the elevator, aileron and rudder flying control surfaces. The types of failure

considered for the study are as follows:

1. Stuck at failure: where one of the flying control surface is stuck at a deflec-

tion angle.

2. Loss of control surface: where one of the flying control surface detaches

from the aircraft.

74

Chapter 5. Actuator Failures in the X-Plane Simulator

3. Combined stuck at failure: where two different control surfaces are stuck

at a deflection angle. For example a combination of elevator and aileron or

aileron and rudder, stuck at a deflection angle.

The aim was to develop an actuator failure detection, identification and accom-

modation scheme (AFDIA) that can add endurance to an aircraft in the presence

of the said failures.

5.3 Failure Simulation Constraints in the X-Plane

Simulator

The X-Plane simulator is capable of simulating various types of failure, amongst

which is the flying surface failure. This can be seen in Figure 5.1 which shows

the X-Plane System Failures menu, with the Flying Surfaces failure tab selected.

Using this menu, failures can be induced at any time during the simulation. To

study the flying surfaces failure options, similar to the SFDIA scheme, the Cessna

172SP aircraft model in X-Plane 9 was used. Figure 5.1 shows that there is a drop

down menu next to each of the aircraft parts simulated in X-Plane. These parts

are linked to the various flying surfaces of the aircraft. The drop down menu gives

the option of inducing a failure to its respective aircraft part. It does not however

enable the specification of the type of failure being induced. The parts of interest

to this research are listed in the first column of the menu in Figure 5.1.

VERT STAB stands for vertical stabiliser, which in this case is the rudder of the

Cessna. Notice there are two parts to VERT STAB. Depending on the modelling of

the aircraft, the rudder can be divided into two separate parts. In the case of the

Cessna aircraft model, only the VERT STAB 1 is linked to an actual flying surface

of the aircraft model. H STAB stands for horizontal stabiliser or the elevator of

the aircraft. There are two of them, one each for the left and right elevators. The

remaining parts in the first column are the four sections of the left and right wing

of the aircraft. Once again, the number of sections, length of each section and how

they link to the actual flying surfaces, depends on the modelling of the considered

75

Chapter 5. Actuator Failures in the X-Plane Simulator

Figure 5.1: Flying surface failure options menu in X-Plane 9.

aircraft. Note that if an aircraft modelled in X-Plane just has two sections to a wing,

LEFT/RIGHT WING 1 and 2, inducing failure on the remaining two parts option,

LEFT/RIGHT WING 3 and 4, will have no effect in the simulation. This applies

to all the flying surface parts listed in Figure 5.1. If one of these parts option is not

modelled/linked in the aircraft model, inducing failure will have no effect at all. As

part of the X-Plane simulator package, Laminar Research provides an application

called the Plane Maker, which is used to develop or modify aircraft models for X-

Plane. This application can be used to examine which parts of the modelled aircraft

are actually linked to the flying surface parts listed in Figure 5.1.

Using the failure simulation menu in Figure 5.1, if a failure is simulated on

the LEFT/RIGHT WING 1 parts, the ailerons on the Cessna visually appear to

be stuck at the current deflection in the X-Plane simulation. This is because the

ailerons of the Cessna are modelled on the WING 1 section of the aircraft. If a

failure is simulated on VERT STAB 1, the rudder of Cessna visually appears to be

stuck on the current deflection in X-Plane. Similarly, the left and right elevators of

the Cessna aircraft model appear to be stuck at their current deflection if a failure is

simulated on the respective H STAB. From these observations, it is concluded that

76

Chapter 5. Actuator Failures in the X-Plane Simulator

the only type of failure that can be simulated on the flying surfaces of an aircraft

in X-Plane is the ‘stuck at’ type failure. Selecting the fail option in the drop down

menu associate with the parts listed in Figure 5.1 simulates ‘stuck-at’ type failure.

There is no option to simulate the loss of control surface type failure. Hence, it

was decided to exclude the study of loss of control surface failure from the intended

research.

Once the type of actuator failure simulated by X-Plane was identified, the effects

of the ‘stuck-at’ type failure on the Cessna was investigated prior to the development

of the AFDIA scheme. Failure simulations were conducted at random times during

the flight of the Cessna. During the simulation it was observed that the aircraft

did not behave as expected following the introduction of the failure. For example,

during straight level flight of the aircraft, failure is simulated on the elevators of

the Cessna. This should result in the Cessna elevators remaining stuck at about 0

degrees and the straight level flight should be maintained. Instead of maintaining

flight, the aircraft pitches down and eventually crashes. It behaves as if the elevators

were removed from the aircraft and affected the aerodynamics, which consequently

resulted in the crash. Due to this observation, it was decided to try to simulate the

flying surface failure available in X-Plane using a different aircraft model. Hence,

the Airbus A320 model in X-Plane was selected to observe the failure simulated by

X-Plane.

When a flying surface failure is simulated on the Airbus A320 using the menu in

Figure 5.1, very different results are observed. For example, simulating the elevator

failure on the Airbus A320 results in the disappearance or removal of the elevator

from the aircraft in X-Plane. Simulating the failure on the WING 1 or WING 2 part,

results in sections of the aircraft wing being removed. This is very different from

the observations in the Cessna failures, where the elevator or ailerons appeared

to be stuck at their most recent deflection. Unfortunately there is no published

documentation of the X-Plane simulator that details the type of failure simulated

by X-Plane through its built in features. Nonetheless, there is a web page to help

developers and a forum for technical/non-technical discussions [97, 98]. The forum

77

Chapter 5. Actuator Failures in the X-Plane Simulator

Figure 5.2: Cessna 172SP in X-Plane with failure on the LEFT WING 1 part. The
left aileron is stuck at a deflection.

is the only reliable way to clarify any problem in X-Plane by communicating with

other engineers working with X-Plane and the X-Plane developers themselves.

After discussing this difference in observations with other developers and engi-

neers in the forum, it was concluded that the only type of flying surface failure the

simulator is capable of simulating is the loss or removal of the selected flying surface.

Therefore, if left or right H STAB is put in a failed state, the respective elevator

would be removed from the aircraft model, simulating a loss of the entire elevator

surface. Similarly, with the WING part failure, the entire surface of a section of the

wing is lost. The extent of the surface loss depends on the modelling of the aircraft.

Each WING part (i.e. LEFT/RIGHT WING 1/2/3/4) may or may not be linked

to different sections of the aircraft wings. In the case of the Airbus A320, the inner

wing or the part of the wing that attaches to the aircraft body is linked to WING

1. The outer part of the wing, where the aileron is situated is linked to WING 2.

In the case of the Cessna 172SP, flying surface failure simulation also results in the

loss of the flying surface of the aircraft. Although the failed surface remains visible

and appears to be simulating the ‘stuck-at’ failure, the simulator is performing the

aerodynamic calculations without the failed surface and is simulating the loss of the

flying surface. The failed surface remains visible during the simulation in X-Plane

78

Chapter 5. Actuator Failures in the X-Plane Simulator

Figure 5.3: Airbus A320 in X-Plane with failure on the LEFT WING 2 part. The
WING 2 section of the aircraft appears to be removed or destroyed.

because of the method used to develop the aircraft animation model. Due to the

way the Cessna 172SP model is created, the animation of the failed surface remains

visible following a failure. The Airbus A320 model on the other hand, was created

using a method that ensures that the animation of the failed surface disappears

when the failure is simulated. Therefore as soon as the failure is simulated using

the menu in Figure 5.1, the wing surface disappears as expected. Nevertheless, in

both cases the simulator is performing the aerodynamic calculations for an aircraft

with the missing failed flying surface.

Since the X-Plane simulator is limited to simulating the loss of flying surface, the

‘stuck at’ type failure had to be excluded from the actuator failure study. However,

attempts were made to explore whether the failure could be simulated using the

X-Plane datarefs [99]. Datarefs are variables that publish information about the

X-Plane simulation. They can be used to develop X-Plane plug-ins to manipulate

the simulation.

Among the extensive list of datarefs available for X-Plane 9, the one of interest is

the control surface override dataref : sim/operation/override/override control surfaces.

This dataref allows the user to override the control surface deflections of any of the

moving flying surfaces (e.g. the elevator, rudder and aileron) on the aircraft. The

79

Chapter 5. Actuator Failures in the X-Plane Simulator

aim was to use this dataref to override the deflection of the intended failed control

surface and keep it stuck at a deflection angle, using their respective dataref. When

this control surface deflection override dataref was set to ON, all the control sur-

faces on the aircraft were disabled. This means that the deflection values for each of

the control surfaces must be individually programmed, including the intended failed

surface, throughout the simulation.

In addition, there is no possibility in X-Plane, either built-in or through dataref,

that would allow the simulator’s calculations of each of the control surface deflections

to be manually written to the respective surfaces, with the override dataref turned

ON. This leaves just one option where each of the control surface deflections is

calculated (using a control algorithm) manually and a ‘stuck at’ failure is simulated

on the intended failed surface by programming a fixed deflection value throughout

the simulation. In other words, flight control algorithms have to be developed to

implement the ‘stuck at’ failures, which contradicts the need to use the X-Plane

simulator. Due to these X-Plane limitations, the actuator failure study for this

research is limited to the ‘loss of flying surface’ type of failure.

5.4 A Severe Case of Failure

As concluded earlier, the only type of failure simulated by X-Plane is the ‘loss of

flying surface’. Due to this limitation of the simulator, the objectives for the actuator

failure research is revised to only address this type of failure. To that end, the aim

is to develop an AFDIA scheme that can detect such a failure and accommodate

it. Furthermore, it is decided to use the Airbus A320 instead of the Cessna 172SP

model for the actuator failure simulations.

Note that there is a difference between a ‘loss of control surface’ and ‘loss of flying

surface’ failure. The ‘loss of flying surface’ is a far more severe case of a failure in

an aircraft. In such a failure you may not only lose a part of your control surface,

but the entire flying surface. For example, simulating a loss of flying surface failure

on the WING 2 part of the Airbus A320 results in an entire section of the wing

surface being removed, including the aileron (control surface) on that wing. This

80

Chapter 5. Actuator Failures in the X-Plane Simulator

Figure 5.4: F-15 aircraft landed safely by Israeli pilot with just one wing. Taken
from www.uss-bennington.org [3].

may not be a common type of failure, but such a failure was previously experienced.

A well known case of such a failure was that encountered by the Israeli F-15 fighter

pilot Ziv Nedivi in 1983 [3, 100]. During a training exercise, the F-15 had a mid

air collision and lost an entire wing. Following this failure the aircraft went into

an uncontrollable spin and headed for the ground. Fortunately, due to the quick

thinking and experience of the pilot, the aircraft was bought under acceptable control

and landed safely, using just one wing.

Due to the extreme nature of the failure and time limitations, the actuator

failure studied in this research is limited to the loss of wing surface (which includes

the aileron control surface) of the Airbus A320. This is an extreme case of a failure,

similar to the F-15 incident. If this failure can be accommodated using an NN

based AFDIA scheme, it is conceivable that the ‘stuck at’ type of failure can also

be accommodated using an NN based AFDIA scheme.

In the conducted actuator failure research, the WING 2 part of the Airbus A320

is set to a failed state in Figure 5.1. This will result in the loss of wing surface for

the entire section of the wing which is linked to WING 2. Using the Plane Maker

81

Chapter 5. Actuator Failures in the X-Plane Simulator

Figure 5.5: Airbus A320 in Plane Maker. WING 1 part linked to the inner section
of the aircraft wing.

Figure 5.6: Airbus A320 in Plane Maker. WING 2 part linked to the outer section
of the aircraft wing.

82

Chapter 5. Actuator Failures in the X-Plane Simulator

application, the length of each section of the wing linked to parts WING 1 and WING

2 can be determined. In Figures 5.5 and 5.6, a screenshot of the WING 1 and WING

2 section of the A320 aircraft wing in Plane Maker is presented, respectively. The

length of each of the sections is marked in red. Notice that different sections of the

wing are coloured in black based on which WING part is selected from the menu.

The length of the wing of the modelled Airbus A320 is 59 meters, of which WING

2 represents a section of 39 meters. Therefore a loss of wing surface failure using

WING 2 would result in about 66 % wing surface loss.

5.5 Challenges Faced Using X-Plane

X-Plane is well known for its almost realistic aircraft dynamics simulation due to

which it is certified by the FAA for pilot training [29, 31, 97]. Due to its realistic

simulations, it is used by the likes of NASA, Cessna and Japan Airlines, to train

pilots, develop concept designs and flight testing [30, 31]. However, as is evident

from the previous sections, there are certain challenges faced when using X-Plane

for specific research purposes.

Although a manual is provided on using X-Plane [30], it is aimed at users who are

interested in learning to fly. The technical information as to how the systems on the

aircraft are implemented, what types of failures are simulated, amongst others, are

not readily available. Information like this is only available through the forum [98].

In addition, the datarefs that can be used to manipulate the simulator to implement

the AFDIA scheme are not well documented. There are occasions where the same

property of the simulator can be manipulated using multiple datarefs, without any

clear distinction. Therefore, one must experiment with the datarefs in order to find

a suitable one for the intended purpose.

Such examples, among others, are some of the challenges faced while using the

X-Plane simulator for this research.

83

Chapter 5. Actuator Failures in the X-Plane Simulator

5.6 Conclusion

In this chapter, a brief overview was given of how the actuator failure study and

the development of the AFDIA scheme evolved during the course of this research.

One of the objectives of this chapter was to highlight the challenges faced while

using X-Plane for specific research purposes. The simulator is well known for its

realistic simulations of the aircraft dynamics and therefore used for training pilots.

However when it comes to a specific research study, the limited documentation can

be challenging. The X-Plane technical forum is very helpful in such cases. But it can

take a while before a solution is found. This is especially true if the simulator was

rarely used in such a way, which is the case with this research; or in other research

and development works where the simulator was used with proprietary information,

therefore resulting in limited publicly available documentations.

Due to the limitation of the simulator, the actuator failure study is limited to

the loss of flying surface type of failure. In the next chapter, the loss of the wing

surface failure is studied and a AFDIA scheme is developed.

84

“There is only one thing that makes a dream impossible to achieve: the
fear of failure.”

– Paulo Coelho, The Alchemist

85

Chapter 6

The AFDIA Scheme

6.1 Overview

In this chapter, an actuator failure detection, identification and accommodation

(AFDIA) scheme is presented. The aim of the scheme is to increase the endurance

of the aircraft following a loss of 66% of the wing surface. To achieve this, a fully

connected cascade (FCC) neural network (NN) based roll controller is implemented.

This NN based roll controller has the ability to adapt on-line to the post failure

dynamics of the aircraft. In the presented AFDIA scheme, the FCC NN based roll

controller is used to control the aircraft in the case of failure. The AFDIA scheme

is divided into two main stages:

1. Failure detection and identification (FDI)

The purpose of this stage is to first detect a failure that has occurred or is

occurring. Following a successful detection, the source of the failure needs to

be identified.

2. Failure accommodation (FA)

The objective of this stage is to take action to compensate for the failure. In

this research, this action happens to be adapting the roll controller to try to

bring the aircraft back to equilibrium by compensating for the rolling moment

induced by the loss of wing surface.

86

Chapter 6. The AFDIA Scheme

This chapter begins with Section 6.2, which explores what happens to an air-

craft following a loss of 66% of the wing surface. In Section 6.3, the concept behind

the development of the NN based roll controller and its development process is pre-

sented. The AFDIA scheme is presented in Section 6.4. The setup for the AFDIA

experiments is presented in Section 6.5. In Section 6.6, the results of the AFDIA

experiments are presented and discussed. Based on the results of the conducted

AFDIA experiments, improvements are made to the AFDIA scheme in Section 6.7.

In Section 6.8, the setup and overview of the experiments conducted using the im-

proved AFDIA scheme are explained. The results of the improved AFDIA scheme

experiments are discussed in Section 6.9. Finally, the chapter concludes with Sec-

tion 6.12.

6.2 Loss of Wing Surface Failure

In this section, an overview of what happens to an aircraft following a loss of wing

surface is presented. This is followed by the discussion on how to detect and identify

this failure.

6.2.1 Overview

Wings are crucial to an aircraft as they provide most of the lift required to maintain

flight. Any structural failure to the wing during flight will result in the decrease

in lift. Such a failure can unbalance the lift distribution across the aircraft, which

can create a prominent rolling moment. The magnitude of the rolling moment will

depend on the extent of the damage. If the damage is significant and not quickly ac-

commodated, the aircraft will go into an uncontrollable spin. The proposed AFDIA

scheme aims to accommodate this severe case of failure.

The X-Plane 9 simulator has the ability to simulate the loss of wing surface

failure. The simulator can simulate complete loss of wing or loss of a section of wing,

depending on how the model was made in X-Plane. For the purpose of this research,

loss of a section of the wing on an Airbus A320 is simulated, which accounts for about

66% of the wing. To study the behaviour of the aircraft and investigate sensor

87

Chapter 6. The AFDIA Scheme

Lift Lift

(a) Before Failure

Lift

(b) At Failure

Lift

(c) After Failure

Figure 6.1: Aircraft wings and lift force acting on them.

Figure 6.2: Aircraft attitude angles or Euler angles. This figure is adapted from [4].

88

Chapter 6. The AFDIA Scheme

185 190 195 200 205 210 215 220

−150

−100

−50

0

Time (sec)

(d
e

g
/s

e
c)

Roll Rate

(a) Roll Rate

185 190 195 200 205 210 215 220
−200

−150

−100

−50

0

50

Time (sec)

(d
eg

/s
ec

²)

Roll Acc

(b) Roll Acceleration

185 190 195 200 205 210 215 220
−200

−100

0

100

200

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler Angle

Figure 6.3: Roll related sensor measurements from an aircraft following a left wing
surface loss failure.

measurements following this failure, simulations are conducted with the aircraft

under the control of the built-in autopilot. Some of the signals of interest from

these simulations are presented in Figures 6.3 and 6.4.

Figure 6.3 shows the roll rate (p), acceleration (ṗ) and Euler angle (φ), 20 sec

before and after the loss of left wing surface. The time of failure is denoted by the

red vertical line. As expected, the aircraft goes into an uncontrollable spin following

such a failure. This is clearly depicted by the fluctuating roll Euler angle, which

represents the roll attitude of the aircraft. The roll Euler angle changes from one

maximum end (φ = 180 deg) to the other (φ = −180 deg), depicting a continuous

spin along the roll axis of the aircraft. Similar results can be seen following a right

wing surface loss failure in Figure 6.4.

In both cases, the autopilot controller is unable to stop the aircraft from going

89

Chapter 6. The AFDIA Scheme

125 130 135 140 145 150 155 160

0

50

100

150

Time (sec)

(
d
e
g
/
s
e
c
)

Roll Rate

(a) Roll Rate

125 130 135 140 145 150 155 160
−100

0

100

200

Time (sec)

(d
eg

/s
ec

²)

Roll Acc

(b) Roll Acceleration

125 130 135 140 145 150 155 160
−200

−100

0

100

200

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler Angle

Figure 6.4: Roll related sensor measurements from an aircraft following a right wing
surface loss failure.

90

Chapter 6. The AFDIA Scheme

into an uncontrollable spin. The controller does resist the spin for a while, which can

be seen from the gradual change of the Euler angle following the failure. However,

once the aircraft reaches one maximum end of the roll Euler angle, the uncontrollable

spin begins. This can be attributed to the fact that the autopilot controller is

working under the fault free model assumption of the aircraft, which it was designed

for. Following a loss of wing surface failure, the dynamics of the aircraft change and

the autopilot controller is unaware of such an occurrence. Therefore, there is a need

for a controller that can adapt to the new dynamics of the aircraft following such

a failure. This is the motivation for the development and application of the NN

based flight controllers. The NN is incorporated with on-line learning capabilities

to enable the adaptation.

6.2.2 Detecting and Identifying Failure

As can be seen from Figures 6.3 and 6.4, at the time of failure, there is a sudden

significant fluctuation from the norm in the roll acceleration measurements. This

sudden fluctuation can be used to detect the loss of wing surface type of failure.

Since the fluctuation in the roll acceleration is significant compared to the norm, this

failure can simply be detected by a fixed threshold mechanism. In this mechanism,

the failure is detected when the roll acceleration crosses a fixed threshold, similar to

the SFDIA scheme.

In Table 6.1, the maximum roll acceleration following a wing surface loss failure

is presented. The table presents the results from 5 separate simulations, for left and

right wings each. The average maximum roll acceleration is above 50 deg/sec2, for

both left and right wing failure. The failure threshold could be set to this, but as

can be seen from the first experiment for the right wing failure, the maximum roll

acceleration is at 44.8 deg/sec2.

While selecting a fixed threshold, two points need to be considered: false detec-

tion and detection time. If the threshold is too low (close to normal measurements),

failure might be triggered in the absence of one. And if the threshold is set too high,

it might take a while for the failure to be detected, or worse, go undetected. In this

91

Chapter 6. The AFDIA Scheme

research, after experimenting with various thresholds, it is decided to set the fixed

threshold at τ = 35 deg/sec2.

Table 6.1: Maximum roll acceleration values immediately following a wing surface
loss failure for left and right wings. Results from 5 different X-Plane simulations for
each left and right wing are presented.

Max. Roll Acc (deg/sec2)

Exp No. Left Wing Right Wing

1 -56.2557 44.8520

2 -57.4426 52.8902

3 -64.3698 49.7127

4 -47.8023 59.1092

5 -49.7121 52.3656

Average -55.1165 51.7859

SD (σ) 6.6151 5.1856

Another important observation from Figures 6.3 and 6.4 is the direction of the

sudden fluctuation in the roll acceleration immediately following a failure. The roll

acceleration is negative (‘−ve’) if the failure is on left wing and positive (‘+ve’) if it

is on the right wing. This can also be seen from the maximum roll acceleration mea-

surements immediately following a failure; as presented in Table 6.1. This finding

can therefore be used to identify the failed wing. In the next section, the concept

behind the design of the NN based roll controller and its development process are

presented.

6.3 Adaptive Neural Network Roll Controller

In this section, the concept behind the development of the roll controller is presented.

This is followed by the development of the roll controller.

6.3.1 Balance the Moment

As discussed in the previous section, following a wing surface loss failure the aircraft

goes into an uncontrollable spin. This is due to the rolling moment induced by

92

Chapter 6. The AFDIA Scheme

the imbalance of the lift force across the aircraft. The aircraft autopilot controller

is unable to stop this spin, as it is still operating under the assumption that the

aircraft is fault free, which is what it was designed for. It is unaware of the change

in the aircraft dynamics following the failure. Therefore, to increase the endurance

of the aircraft in case of such a failure, a controller with an adaptive capability is

required.

In this case, an NN based roll controller is developed which can adapt to the

new dynamics of the aircraft following a failure. Under normal conditions, the NN

based adaptive roll controller must emulate the output of the autopilot roll control.

Following a loss of wing surface, the objective of the adaptive controller is to adapt

the use of the aileron on the healthy wing. This is to attempt to produce the

compensating moment required to cancel the failure induced rolling moment and

bring the aircraft back to equilibrium.

It must be noted that the failure induced rolling moment that needs to be can-

celled can vary throughout the duration of the flight. The aircraft is flying in a

dynamic environment, simulated by the X-Plane weather system. Environment fac-

tors such as the direction and speed of the wind, amongst others, will affect the

moment forces acting on the aircraft. With a loss of 66% of the wing surface, it is

conceivable that the aircraft will be highly unstable in these dynamic conditions.

Table 6.2: Inputs/Output of the NN based roll controller.

Output Inputs

Roll control command (δ̂A) Roll rate (p)

Actual roll Euler angle (φact)

Demanded roll Euler angle (φdem)

The NN based roll controller has three inputs, namely: roll rate (p), actual roll

Euler angle (φact) and demanded roll Euler angle (φdem). The actual and demanded

Euler angles inform the controller about the error in the aircraft roll attitude, which

is the difference between the two Euler angles (φact − φdem). The roll rate gives the

controller a sense of the current roll motion. These inputs are chosen to provide

the controller with all the information it needs to generate the roll command, in the

93

Chapter 6. The AFDIA Scheme

absence or presence of failure. The output of the NN based roll controller is the roll

command denoted by δ̂A. The output is a normalised value in the range of ±1. The

list of the inputs to the NN based roll controller is presented in Table 6.2.

In the next section, the roll controller development process is discussed. The

aim of this is to identify the right number of neurons required to generate the roll

command.

6.3.2 Roll Controller Development Process

The roll controller development process is similar to that of the NN based sensor

estimator described in Section 4.4. This process is as follows:

1. Training and Validation Data

The development of the controller can be divided into two main phases: the

training and the validation phases. In the training phase, the controller is

trained on a dataset to learn its functionality. Once the training process is

completed, the functionality of the controller is validated over several datasets.

These datasets are generated using flight data collected from X-Plane simula-

tions. The X-Plane simulator is used to collect flight data for the Airbus A320

aircraft, recorded at 50 Hz (i.e. 0.02 sec). In total, 16 X-Plane simulations are

conducted to collect data for the controller development. In these simulations,

the aircraft takes off from various airports and is controlled by the aircraft

autopilot system in X-Plane.

Out of the 16 flight simulations, 1 is selected at random to generate the training

dataset. The training dataset is generated such that it starts from the flight

data recorded just after take-off. The dataset spans over 4 minutes, during

which the aircraft climbs to the requested cruise altitude and keeps changing its

heading as commanded at random times. This helps to encapsulate the steady

and transient state behaviour of the aircraft autopilot roll controller. Since the

data was recorded at 50 Hz (every 0.02 sec) and the training dataset spans

over 4 minutes, there are 12000 individual samples in the training dataset.

94

Chapter 6. The AFDIA Scheme

The remaining 15 flight simulations are used to generate 15 validation datasets,

each covering 10 minutes of flight data. These validation datasets help to verify

and assess the functionality of the trained controller. Since the validation

dataset spans over 10 minutes, there are 30000 individual samples in each

validation dataset.

2. Training the Controller

The controller is trained using the 12000 samples in the training dataset. This

training dataset is used to train 10 different controller designs, ranging from

2 to 12 neurons. Each of these controllers is trained until the Sum Squared

Error (SSE) of the training epoch is ≤ 0.001 or a maximum of 1000 epochs is

reached. The training dataset is presented in Figure 6.5.

3. Validating the Controller

Once trained, each controller design (ranging from 2 to 12 neurons) is validated

on the 15 validation datasets. These datasets are 10 minutes long, containing

30000 samples. The performance of the different controller designs are assessed

for each dataset by calculating the total SSE of all the samples in the dataset.

The best controller design is then selected by calculating the average and the

standard deviation of the SSE for all the datasets. The results of this validation

process is presented in Table 6.3. From the table, the design with 5 neurons

is the best option for the roll controller. The NN controller with 5 neurons

has the lowest SSE standard deviation (5.161340) and average SSE as low as

9.77061. Note that the individual SSE presented in Table 6.3 is the total SSE

of the 30000 samples. An example of the validation result using the 5 neuron

based NN roll controller is presented in Figure 6.6.

With the controller developed, the AFDIA scheme is presented in the next sec-

tion.

95

Chapter 6. The AFDIA Scheme

T
ab

le
6.

3:
R

ol
l

co
n
tr

ol
le

r
er

ro
rs

fo
r

th
e

va
li
d
at

io
n

d
at

as
et

s.

S
U

M
S
Q

U
A

R
E

D
E

R
R

O
R

S
(S

S
E

)

N
eu

ro
n
s

2
3

4
5

6
7

8
9

10
11

12

D
at

a
01

1.
86

78
0

2.
00

09
0

1.
78

75
0

1
.7

5
7
0
0

1.
99

71
0

1.
83

03
0

1.
87

10
0

1.
81

31
0

1.
75

45
0

1.
67

26
0

1.
91

32
0

D
at

a
02

0.
83

99
0

1.
22

52
0

0.
89

15
0

1
.3

9
1
0
0

1.
07

50
0

1.
61

21
0

1.
26

47
0

1.
50

03
0

1.
42

28
0

1.
67

71
0

1.
36

84
0

D
at

a
03

13
.8

82
70

12
.3

33
40

13
.6

99
40

1
1
.6

9
8
2
0

13
.0

50
50

11
.1

55
10

11
.4

86
40

11
.3

57
80

10
.3

17
70

11
.4

80
50

11
.3

86
20

D
at

a
04

12
.1

98
50

13
.5

09
50

11
.1

99
70

1
0
.0

4
4
9
0

13
.5

06
60

10
.6

25
90

12
.6

13
50

10
.7

90
10

11
.6

67
70

9.
53

40
0

12
.6

29
80

D
at

a
05

9.
96

10
0

11
.1

57
50

9.
82

13
0

9
.0

3
7
3
0

9.
67

26
0

9.
59

51
0

10
.3

05
10

9.
37

17
0

10
.2

10
10

9.
34

52
0

9.
35

62
0

D
at

a
06

11
.9

52
80

12
.4

69
80

11
.6

89
20

1
0
.3

9
9
8
0

11
.7

13
30

10
.0

91
50

10
.6

20
50

9.
87

17
0

9.
66

06
0

9.
84

64
0

10
.7

15
30

D
at

a
07

19
.5

94
20

20
.2

24
70

19
.2

37
00

1
7
.8

0
8
4
0

18
.8

08
70

16
.5

64
90

16
.6

74
90

16
.5

64
90

15
.4

62
20

16
.1

85
50

17
.6

65
40

D
at

a
08

20
.1

20
00

22
.4

93
60

19
.1

46
40

1
7
.7

8
3
8
0

22
.4

43
40

19
.0

90
80

20
.8

09
10

18
.7

02
00

20
.8

01
10

19
.6

36
10

21
.4

95
60

D
at

a
09

14
.7

75
30

14
.8

26
60

13
.9

07
90

1
2
.7

0
9
2
0

14
.8

64
80

12
.9

94
40

14
.5

47
10

13
.7

99
20

13
.6

64
80

12
.3

23
00

14
.8

07
90

D
at

a
10

15
.6

00
90

16
.3

28
40

14
.7

09
70

1
2
.8

0
4
6
0

16
.3

01
10

12
.2

97
70

14
.4

98
10

14
.6

45
00

13
.2

78
30

13
.4

29
80

14
.1

51
50

D
at

a
11

16
.5

87
30

16
.9

11
40

15
.0

04
10

1
3
.5

3
7
5
0

16
.8

06
60

13
.7

26
70

16
.2

20
20

15
.3

94
70

14
.2

77
10

12
.6

15
80

15
.8

86
20

D
at

a
12

5.
33

47
0

4.
87

92
0

5.
11

51
0

4
.2

2
5
3
0

4.
69

76
0

3.
63

85
0

3.
65

96
0

3.
92

10
0

3.
45

36
0

3.
57

42
0

4.
43

24
0

D
at

a
13

15
.0

18
50

15
.7

68
70

13
.6

74
60

1
2
.1

7
0
9
0

15
.4

86
10

13
.1

96
60

14
.9

22
70

13
.4

50
50

13
.7

92
20

12
.2

76
10

14
.7

97
80

D
at

a
14

6.
47

85
0

6.
16

71
0

6.
22

11
0

4
.7

0
9
1
0

5.
46

93
0

3.
67

83
0

4.
15

09
0

4.
08

97
0

3.
62

25
0

3.
40

87
0

4.
82

57
0

D
at

a
15

8.
52

83
0

8.
79

13
0

8.
25

77
0

6
.4

8
2
1
0

7.
96

04
0

6.
02

09
0

6.
52

04
0

6.
01

90
0

5.
87

36
0

5.
14

96
0

6.
81

42
0

A
ve

ra
ge

11
.5

16
03

11
.9

39
15

10
.9

57
48

9
.7

7
0
6
1

11
.5

90
21

9.
74

12
5

10
.6

77
61

10
.0

86
05

9.
95

05
9

9.
47

69
7

10
.8

16
39

S
D

(σ
)

5.
93

31
7

6.
30

86
0

5.
61

13
5

5
.1

6
1
3
4

6.
29

87
9

5.
33

42
1

5.
95

67
5

5.
51

37
1

5.
65

98
1

5.
38

47
3

5.
95

52
6

96

Chapter 6. The AFDIA Scheme

0 2000 4000 6000 8000 10000 12000
−0.2

−0.1

0

0.1

0.2

Sample No.

R
ol

l C
m

d
R

at
io

(a) Actual roll command

0 2000 4000 6000 8000 10000 12000
−10

−5

0

5

10

Sample No.

R
ol

l R
at

e
(d

eg
/s

ec
)

(b) Roll rate

0 2000 4000 6000 8000 10000 12000
−40

−20

0

20

40

Sample No.

R
ol

l E
ul

er
 (

de
g)

Actual
Comanded

(c) Actual and commanded roll Euler angle

Figure 6.5: Training data for the neural network roll controller.

97

Chapter 6. The AFDIA Scheme

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.2

−0.1

0

0.1

0.2

Sample No.

R
ol

l C
m

d
R

at
io

Desired
Actual

(a) NN controller output (actual) and the desired controller output.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2
x 10

−3

Sample No.

S
um

 S
qu

ar
ed

 E
rr

or

(b) Sum squared error (SSE) between the NN controller output and actual output.

Figure 6.6: Validation results of 5 neuron based neural network roll controller on
dataset 2.

98

Chapter 6. The AFDIA Scheme

6.4 The AFDIA Scheme

6.4.1 Overview

As mentioned at the beginning of the chapter, the developed AFDIA scheme can be

divided into two main stages:

1. Failure detection and identification (FDI)

The purpose of this stage is to first detect a failure that has occurred or is

occurring. Following a successful detection, the source of the failure needs to

be identified.

2. Failure accommodation (FA)

The objective of this stage is to take action to compensate for the failure. In

this research, this action happens to be adapting the roll controller to try to

bring the aircraft back to equilibrium by compensating for the rolling moment

induced by the loss of wing type of failure.

With this in mind, the operational outline of the developed AFDIA scheme is

presented in the following section.

6.4.2 AFDIA Operational Outline

A flow chart for the AFDIA scheme is presented in Figure 6.7. The first stage of

the scheme is the failure detection and identification (FDI). In this stage, the roll

acceleration (ṗ) sensor measurements are monitored for detecting actuator failure

and identifying its source. A fixed threshold based mechanism is used to detect the

loss of wing surface. A failure is detected when the roll acceleration measurements

cross a fixed threshold of τ = 35 deg/sec2. Once the failure is detected, the failed

wing is identified using the direction of the fluctuation in the roll acceleration (ṗ)

measurements. A negative fluctuation would indicate a left wing failure, while a

positive fluctuation would indicate a right wing failure. The AFDIA scheme has

two failure flags, FL and FR, for the left and right wing failure, respectively. If a

failure is detected, the FL/R flag is set to 1, otherwise the flag remains at the default

99

Chapter 6. The AFDIA Scheme

value of 0. Therefore, the FDI stage of the AFDIA scheme can be as summarised

as follows:

FL =

1, if ṗ ≤ −τ

0, otherwise

(6.1)

FR =

1, if ṗ ≥ +τ

0, otherwise

(6.2)

If the failure flag FL/R is set in the FDI stage, the next stage would be failure

accommodation (FA). However, the presented scheme has an additional step, where

a sliding data window is updated, regardless of the outcome of the FDI stage. This

data window stores the previous n (window size) time steps of flight data variables

which will be used to adapt the NN roll controller in case of failure. At each time

step, the data window discards the oldest time step variables from the window and

adds the current time step variables; effectively sliding the window through the data

with time (t). Therefore, at time instance k, the sliding data window updates by

storing the variables at time k and discarding the oldest variables from time instance

(k − n).

The purpose of this data window is to store data that will be used to adapt

the NN roll controller in case of failure. Since the controller has 3 inputs and 1

output, at each time step (k), 4 variables are stored. At time k, the values of the

NN controller inputs, namely, the roll rate (p), measured roll Euler angle (φact) and

the demanded roll Euler angle (φdem), are stored in the data window regardless of

the outcome in the FDI stage (i.e. FL/R = 0/1).

The fourth variable (Jroll) depends on the FDI stage outcome. If no failure is

detected in the FDI stage (i.e. FL/R = 0), then the fourth variable stored in the

window is the roll control command (Jroll = δA) from the flight computer. Since

no failure is detected, there is no need for adapting the NN roll controller. Hence,

the data in the sliding window is not used. However, if a failure is detected in the

FDI stage (i.e. FL/R = 1), then a different variable is stored in the window, which

100

Chapter 6. The AFDIA Scheme

is used by the failure accommodation (FA) stage of the scheme. The variable stored

is generated as follows:

Jroll = c×m(pref − p) (6.3)

where:

c : is a scalar multiple

p : is the roll rate in deg/sec

pref : is the desired roll rate in deg/sec

m(x) : 2 × x + 10
20

− 1

In the FA stage, the NN roll controller needs to adapt to the post failure dynamics

of the aircraft and try to achieve equilibrium. Following a loss of left or right wing

surface, the aircraft goes into an uncontrollable spin induced by the rolling moment

due to the failure. Therefore, the objective of the AFDIA scheme is to stabilise

the aircraft by using the aileron on the healthy wing to compensate for the failure

induced moment. This objective is achieved by adapting the NN roll controller.

To guide the on-line adaptation process of the NN roll controller, the function

presented in equation (6.3) is used. The resultant J value from this function is

considered as the desired output roll command by the on-line implementation of

the NBN algorithm. The on-line implementation of the NBN algorithm is basically

the NBN training process presented in Section 3.10, with the data in the sliding

window considered as the training data. This training process is repeated once the

sliding data window is updated, at every time step k (see Figure 6.7). At time k, the

training process is executed only once (i.e. 1 epoch), using the data in the sliding

window.

The guiding function presented in equation (6.3) uses the difference in the roll

rate (pref − p) of the aircraft to guide the adaptation of the NN roll controller,

based on the following assumption:

Assumption: If the aircraft achieves an equilibrium state and stops spinning, the

roll rate (p) of the aircraft must be approximately 0 deg/sec.

101

Chapter 6. The AFDIA Scheme

Using this assumption, the desired roll rate of the aircraft (pref) in equation (6.3)

is set to pref = 0 deg/sec. Following a failure, this difference in roll rate (i.e. pref − p)

would be large compared to the controller output ratio that is in the range of ±1.

This range also happens to be the output range of the output neuron of the NN

roll controller. If this difference is fed directly to the controller on-line learning

algorithm, the controller might change more dramatically than required. Therefore,

this difference is scaled using a scalar multiple (c) and the scaling equation (3.21),

reproduced here:

m(xo) = xn = (b− a)× xo − xmin

xmax − xmin

+ a (6.4)

Equation (3.21) scales the difference to the range of ± 1, assuming that the

maximum and minimum value of the roll rate will be in the ± 10 deg/sec range. If

the roll rate exceeds this range, then the equation will scale it accordingly. Notice

when these range values are substituted in equation (3.21), it changes to m(x) in

equation (6.3).

In the case of a failure at time step (k), the fourth value stored in the sliding

data window is the guiding function value Jroll, calculated using equation (6.3). The

detection of the failure results in the on-line learning of the NN roll control being

triggered. The data stored in the sliding window is then used by the on-line learning

algorithm for adapting the controller. Once the learning is completed for the time

step (k), the adapted NN roll controller is used to generate a new roll command.

This command is then used by the flight control system to control the aircraft.

Note that the presented AFDIA scheme just has an NN roll controller. Due to

time constraints on the research, the pitch and yaw controllers were not developed.

Therefore, the control for pitch and yaw is set to 0 following a failure. This has the

added benefit of just studying the behaviour of the NN roll controller.

102

Chapter 6. The AFDIA Scheme

Fa
ilu

re
 D

et
ec

ti
o

n
 &

Id

en
ti

fi
ca

ti
o

n
 (

FD
I)

Fa
ilu

re
 A

cc
o

m
m

o
d

at
io

n
 (

FA
)

Initial State of Variables

Start

Left Wing FDI

Is roll acceleration ≥
-τ ?

Right Wing FDI

Is roll acceleration ≥
+τ ?

False

True (FL = 1)

True (FR = 1)

Update Sliding Data Window
 For fault free (FL/R = 0) time-step (k)

 Save:
Roll Rate (p)

Actual Euler Angle (φ)
Demanded Euler Angle (φdem)

Jroll = Auto Pilot Roll Command (δA)

Update Sliding Data Window
 For faulty (FL/R = 1) time-step (k)

 Save:
Roll Rate (p)

Actual Euler Angle (φ)
Demanded Euler Angle (φdem)

Jroll = c x m(pref - p)

False

Roll Controller Online Learning
Adapt the NN roll controller using

the sliding data window

Neural Network Aircraft Control
Use NN roll controller output to

control the aircraft roll.

Note: since no NN pitch or yaw
controller is used, both these control

values are set to output 0.

k = k + 1 k = k + 1

Name Value
Left wing fail flag (FL) 0
Right wing fail flag (FR) 0
Fault Detection Threshold (τ) 35 °/s²
Time (t) k

Figure 6.7: The AFDIA Scheme.

103

Chapter 6. The AFDIA Scheme

6.5 AFDIA Experimental Setup

In this section, an overview of the implementation of the AFDIA scheme in X-Plane,

experiment conditions and overview are presented.

6.5.1 AFDIA Implementation in X-Plane

The AFDIA scheme is implemented in the X-Plane simulator as a plug-in. This

plug-in contains a control window which allows the user to trigger the failure and

display information about the state of the AFDIA scheme. During the development

of the NN controller, the controller was trained and validated on datasets with a

sampling frequency of 50 Hz. This was the intended frequency at which the AFDIA

scheme was to be executed. Due to timing constraints imposed by X-Plane simulator

execution demands and the need to log various simulation data for analysis, the

execution frequency of the AFDIA scheme is decreased to 25 Hz. It will be shown

later that the AFDIA scheme is capable of executing at 50 Hz.

6.5.2 Experimental Conditions

The X-Plane simulator is setup to simulate the flight of the aircraft under normal

weather conditions. The Airbus A320 is controlled by the autopilot of the aircraft.

The autopilot is programmed to maintain straight and level flight, to a set heading.

The aircraft altitude is approximately 3000 ft (i.e. 941.4 m) above mean sea level

(MSL), maintaining a speed of approximately 450 kn (i.e 833.4 km/h).

The wing surface loss failure is triggered at random times during the simulation.

Following a failure, the autopilot of the aircraft is turned off to ensure that it does

not interfere with the controller output from the AFDIA scheme.

6.5.3 Experiment Overview

Two main parameters of the AFDIA scheme, the sliding data window size (n) and

the scalar multiple (c) in equation (6.3), are varied to perform a comparative study

of the performance of the scheme. There are 3 different window sizes, namely, n =

104

Chapter 6. The AFDIA Scheme

5, 10 and 15. For each of the window sizes n, the scalar multiple varies from c = 1

to c = 4. For each combination of the window size n and scalar multiple c, 20 loss

of wing surface failure experiments are conducted, 10 each for the left and the right

wing. Therefore, in total 240 separate experiments are conducted as described by

the equation below:

No.Experiments = n× c× (10 Left + 10 Right) Failures

240 = 3× 4× 20 (6.5)

The results from these experiments are analysed in the context of the following

aspects:

i. Post Failure Aircraft Behaviour: The response of the NN controller and

the behaviour of the aircraft following the failure are discussed.

ii. Flight Duration: The flight duration is used to quantify the endurance of the

aircraft following a failure.

iii. Failure Detection Time: The time taken by the AFDIA scheme to detect

the loss of wing surface is analysed.

iv. AFDIA Scheme Execution Time: The time taken by the NN based AFDIA

scheme to execute in the presence or absence of failure is assessed.

In the next section, the results of the AFDIA scheme experiments are presented

and discussed.

6.6 Results and Discussions

6.6.1 Post Failure Aircraft Behaviour

The AFDIA scheme is designed to accommodate the loss of 66% wing surface failure.

The aim of the scheme following this failure is to try to control the aircraft and bring

it back to a state where the moments are in equilibrium. If this is achieved, the

105

Chapter 6. The AFDIA Scheme

aircraft would maintain flight and therefore increase the endurance of the aircraft in

the presence of such a severe failure. As discussed in the beginning of the chapter,

under the control of the X-Plane autopilot, such a failure would cause the aircraft

to spin uncontrollably along its roll axis and eventually crash. An ideal result for

the AFDIA scheme would be if the aircraft manages to maintain flight following the

failure.

Figures 6.8 and 6.9 present two of the simulation results from the AFDIA exper-

iments conducted. Figure 6.8 represents the loss of left wing surface, while the loss

of right wing surface is represented by Figure 6.9. These figures depict the roll accel-

eration (ṗ), roll rate (p), roll Euler angle (φ), both the NN controller and autopilot

roll commands (δ̂A and δA respectively); and the altitude of the aircraft above mean

sea level (MSL). These figures are plotted from 20 sec before the failure, where the

time of failure is marked by the vertical red line. From the altitude plots in both

the figures, it is clear that following a failure, the aircraft gradually looses altitude.

The plots in these figures end when the aircraft crashes. Thus, the ideal result for

the AFDIA scheme is not achieved. However, the aircraft does avoid going into an

uncontrollable spin, as can be seen from the Euler angles. These observations are

consistent in all the 240 experiments conducted.

In Figures 6.8 and 6.9, almost immediately after the failure, the roll acceleration

crosses the fault detection threshold. The NN roll controller immediately adapts

and responds to compensate for the induced rolling moment. In Figure 6.8, the

NN roll controller output jumps to about + 0.7 in response to the failure. Notice

that this is in the opposite direction to the jump in roll rate and Euler angle, where

the measurements are negative. In an attempt to balance the rolling moment, the

NN roll controller is trying to pull the aircraft in the opposite direction to which

it is rolling. Similar behaviour can be observed in the case of right wing failure in

Figure 6.9.

In both the figures, within seconds of the failure, the Euler angle gradually starts

to change, indicating that the aircraft is gradually rolling to a side. In contrast to

this, the altitude of the aircraft remains almost steady following a failure. The

106

Chapter 6. The AFDIA Scheme

altitude gradually climbs for a while before it starts to fall. The climb in altitude is

due to the minor upward pitching of the aircraft following the failure. Eventually the

aircraft cannot climb any further due to the extent of the aircraft roll attitude and

the decrease in lift. At this point the aircraft starts to loose altitude and eventually

crashes.

Notice the difference in the Euler angle plots using the AFDIA scheme in Fig-

ures 6.8 and 6.9, compared against the X-Plane autopilot only control in Figures 6.3

and 6.4. The aircraft avoids an uncontrollable spin in the presence of the AFDIA

scheme. Using the AFDIA scheme, the aircraft behaves like it is resisting the rota-

tion along the roll axis after the loss of wing surface. The end result of this resistance

is the gradual turn of the aircraft along its roll axis, which increases the flight dura-

tion following failure when compared against the X-Plane autopilot. Although the

ideal results for the AFDIA scheme is not achieved, the scheme managed to perform

better than the X-Plane autopilot, by avoiding an uncontrollable spin.

The scheme successfully managed to increase the duration of the flight after the

failure, therefore adding endurance to the aircraft. For the purpose of this discussion,

the flight duration between the time of failure and crash of the aircraft is used to

quantify the endurance following failure.

6.6.2 Flight Duration

As mentioned earlier, in the experiments conducted two parameters of the AFDIA

scheme are varied to understand the effects on the performance of the scheme. The

performance of the scheme is evaluated in terms of the flight duration following

the failure. Flight duration is used as a measure of endurance added to aircraft

following the failure. The parameters varied are namely, the scalar multiple (c) in

equation (6.3) and the size (n) of the sliding data window used to store data for

on-line adaptation of the NN roll controller. From the experiments conducted, it is

clear that depending on the value of these parameters, the flight duration following

failure can vary.

Table 6.4 presents a summary of the flight duration following failure for the

107

Chapter 6. The AFDIA Scheme

65 70 75 80 85 90 95 100 105 110 115 120

−40

−20

0

20

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

65 70 75 80 85 90 95 100 105
−8

−6

−4

−2

0

Time (sec)

(d
e

g
/s

e
c)

Roll Rate

(b) Roll Rate

65 70 75 80 85 90 95 100 105

−100

−50

0

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler

65 70 75 80 85 90 95 100 105

0

0.2

0.4

0.6

0.8

Time (sec)

R
a
t
i
o

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

65 70 75 80 85 90 95 100 105
200
400
600
800
1000
1200
1400

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(e) Mean Sea Level (MSL) Altitude

Figure 6.8: Aircraft Performance Results for Left Wing Failure. Window size n =
10, scalar multiple c = 1. The Red line marks when the failure was injected.

108

Chapter 6. The AFDIA Scheme

120 130 140 150 160 170 180 190 200

−100

0

100

200

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

120 130 140 150 160 170 180

0

5

10

Time (sec)

(
d
e
g
/
s
e
c
)

Roll Rate

(b) Roll Rate

120 130 140 150 160 170 180

0

20

40

60

80

Time (sec)

(
d
e
g
)

Roll Euler

(c) Roll Euler

120 130 140 150 160 170 180
−1

−0.5

0

0.5

Time (sec)

R
a

tio

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

120 130 140 150 160 170 180
0

500

1000

1500

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(e) Mean Sea Level (MSL) Altitude

Figure 6.9: Aircraft Performance Results for Right Wing Failure. Window size n =
15, scalar multiple c = 4. The Red line marks the time of failure.

109

Chapter 6. The AFDIA Scheme

T
ab

le
6.

4:
S
u
m

m
ar

y
of

th
e

fl
ig

h
t

d
u
ra

ti
on

p
os

t
w

in
g

su
rf

ac
e

lo
ss

fa
il
u
re

.
E

ac
h

m
ea

n
an

d
st

an
d
ar

d
d
ev

ia
ti

on
va

lu
e

p
re

se
n
te

d
h
er

e
fo

r
th

e
le

ft
an

d
ri

gh
t

w
in

g
fa

il
u
re

is
th

e
av

er
ag

e
of

10
ex

p
er

im
en

ts
fo

r
th

e
se

t
co

m
b
in

at
io

n
of

th
e

w
in

d
ow

si
ze

(n
)

an
d

sc
al

ar
m

u
lt

ip
le

(c
).

N
ot

e
th

at
th

e
co

lo
u
r

co
d
in

g
h
ig

h
li
gh

ts
th

e
va

lu
es

p
lo

tt
ed

in
F

ig
u
re

6.
10

.

D
u
ra

ti
on

of
F

li
gh

t
(s

ec
)

L
ef

t
W

in
g

F
ai

l
R

ig
h
t

W
in

g
F

ai
l

A
ve

ra
ge

of
B

ot
h

W
in

gs

W
in

.
S
iz

e
S
ca

la
r

M
ea

n
S
D

M
ea

n
S
D

M
ea

n
S
D

5
1

26
.7

32
8

0.
71

57
26

.6
20

2
0.

95
46

26
.6

76
5

0.
83

51
2

35
.6

70
7

1.
25

59
36

.3
32

3
0.

74
29

36
.0

01
5

0.
99

94
3

42
.1

95
9

1.
88

44
45

.3
08

8
0.

48
02

43
.7

52
3

1.
18

23
4

45
.9

34
4

1.
14

83
50

.2
32

5
1.

18
66

48
.0

83
5

1.
16

75

A
ve

ra
ge

37
.6

33
4

1.
25

11
39

.6
23

4
0.

84
11

38
.6

28
4

1.
04

61

10
1

25
.1

77
4

0.
43

96
27

.0
79

4
0.

46
72

26
.1

28
4

0.
45

34
2

33
.6

24
5

0.
49

30
36

.2
68

7
0.

38
38

34
.9

46
6

0.
43

84
3

41
.2

44
3

0.
57

74
44

.0
46

9
0.

49
48

42
.6

45
6

0.
53

61
4

46
.8

33
2

0.
57

94
49

.9
79

4
0.

55
23

48
.4

06
3

0.
56

58

A
ve

ra
ge

36
.7

19
8

0.
52

23
39

.3
43

6
0.

47
45

38
.0

31
7

0.
49

84

15
1

25
.1

75
4

0.
28

99
27

.0
28

5
0.

33
25

26
.1

01
9

0.
31

12
2

34
.3

54
3

0.
37

00
36

.1
69

6
0.

64
46

35
.2

62
0

0.
50

73
3

41
.9

60
1

0.
47

27
44

.6
86

6
0.

61
55

43
.3

23
3

0.
54

41
4

46
.6

22
2

0.
97

46
50

.0
91

9
0.

89
63

48
.3

57
0

0.
93

55

A
ve

ra
ge

37
.0

28
0

0.
52

68
39

.4
94

1
0.

62
22

38
.2

61
1

0.
57

45

110

Chapter 6. The AFDIA Scheme

0 1 2 3 4 5
25

30

35

40

45

50

Scalar Multiple (c)

C
o
m
b
i
n
e
d

M
e
a
n

F
l
i
g
h
t

T
i
m
e

(
s
e
c
)

Window 5
Window 10
Window 15

Figure 6.10: The relationship between the flight time and the parameters scalar
multiple and window size.

experiments conducted. In this table, the mean and standard deviation of flight

duration after the failure is organised based on the change in the scalar multiple (c)

for every sliding data window size (n). Note that each mean and standard deviation

value presented in the table is the average of 10 experiments for every combination

of sliding data window size (n) and scalar multiple (c). The individual results of the

240 experiments are presented in Appendix A.

From the results in Table 6.4, it is clear that for a set combination of n and c

parameters, the flight duration is almost similar regardless of the side of the failure.

For example, for n = 5 and c = 1, the flight duration post failure is 26.7 sec and

26.6 sec, for left and right wing surface loss, respectively. Similarly, for n = 15 and

c = 3, the flight duration post failure is 41.9 sec and 44.7 sec, for left and right wing

surface loss, respectively. This is expected as both the wings lose the same amount

of wing section in the failure simulation. Since the amount of surface loss is the

same, both the wings experience similar loss of lift force and therefore similar failure

induced rolling moment. The minor differences in the flight duration between the

two wings can be attributed to environmental factors, such as the direction of the

111

Chapter 6. The AFDIA Scheme

wind.

Examining the results further reveals the extent of influence the c and n pa-

rameters have on the flight duration post failure. If the scalar multiple c is kept

constant and the window size n is varied, the change in the flight duration is almost

negligible. For example, for c = 1 and n = {5, 10, 15}, the combined average (left

and right wing) flight durations are {26.8, 26.1, 26.1} sec, respectively. However,

if the window size n remains constant and the scalar multiple c is varied, there is

a significant increase in the flight duration from c = 1 to c = 4. For n = 5, the

combined average (left and right wing) flight durations are {26.7, 36 , 43.7, 48} sec,

for scalar multiple c = {1, 2, 3, 4} respectively. As the scalar multiple increases,

the flight duration increases. The durations are almost similar for the same scalar

multiple across different window sizes. These observations are clearly represented

in Figure 6.10. For different window sizes the flight duration remains almost the

same, when the scalar multiple is constant. However, with the window size constant,

increasing the scalar multiple results in an increase in the flight duration.

The sliding data window stores variables for n time steps, which is used to adapt

the NN controller on-line following a failure. The mechanism enables the use of

historical data in the on-line adaptation process which could benefit the adapting

controller. From the results presented in Table 6.4 and Figure 6.10, it is clear that

changing the number of historical data points (i.e window size n), has negligible

effect on the flight duration following the failure.

The purpose of the scalar multiple c is to magnify the error that is used to guide

the on-line adaptation of the roll controller following failure. From Table 6.4 and

especially from Figure 6.10, it can be seen that the flight duration following the

failure is directly proportional to the scalar multiple c. In equation (6.3), the scalar

multiple c is used to multiply the difference between the desired and actual roll

rate (pref − p), to generate the Jroll value used to guide the adaptation of the roll

controller on-line. For a set difference between the desired and actual roll rate, as

the scalar multiple c increases, the value of Jroll increases. The output of the NN roll

controller is proportional to the Jroll value. Therefore, the NN roll controller output

112

Chapter 6. The AFDIA Scheme

will increase proportionally to the value of the scalar multiple c. This is observable

from the Figures 6.8 and 6.9.

In Figures 6.8 and 6.9, the scalar multiple c is 1 and 4, respectively. In both these

figures, notice the maximum output generated by the NN roll controller immediately

after the failure. In case of Figure 6.8, where c = 1, the maximum output is in the

range of + 0.7. In comparison, in Figure 6.9, where c = 4, the output reaches the

maximum possible controller output value of − 1. With the increase in the value

of c, the maximum output of the NN roll controller increases. This increase in the

controller output means that the aileron in the healthy wing is deflected further in

Figure 6.9 than in Figure 6.8, to generate a greater resisting rolling moment. The

result of this greater resistance is an increase in the flight duration following failure.

Therefore, with increasing value of the scalar multiple c, the flight duration after

failure increases.

6.6.3 Failure Detection Time

Failure detection is one of the important stages of any fault tolerant system. In case

of severe failure such as the loss of wing surface, quick detection is very important.

The sooner the failure is detected, the quicker the system can respond to compensate

for the failure. In the presented AFDIA scheme, failure is detected when the roll ac-

celeration (ṗ) measurements crosses a fixed threshold τ = 35 deg/sec2. In Table 6.5,

the detection time for each of the 240 experiments conducted is summarised. Each

mean and standard deviation value is the average of 10 experiments for a set window

size (n) and scalar multiple (c). The results for each of the individual experiments

is presented in Appendix B for reference.

Since the failure detection stage is independent from the failure accommodation

(FA) stage, the detection time is not affected by the changing c and n values. From

Table 6.5, it can be said that the combined average mean failure detection time

of both the wings is around 0.04 sec In some instances, the mean detection time is

slightly greater than 0.04 sec and less in others. Overall, the detection time is within

1 or 2 time steps of the AFDIA execution, which is set to execute every 0.04 sec or

113

Chapter 6. The AFDIA Scheme

T
ab

le
6.

5:
S
u
m

m
ar

y
of

th
e

fa
il
u
re

d
et

ec
ti

on
ti

m
e.

F
ai

lu
re

D
et

ec
ti

on
T

im
e

(s
ec

)

L
ef

t
R

ig
h
t

A
ve

ra
ge

of
B

ot
h

W
in

gs

W
in

d
ow

S
ca

le
M

ea
n

S
D

M
ea

n
S
D

M
ea

n
S
D

5
1

0.
04

06
0.

01
45

0.
04

15
0.

01
94

0.
04

10
0.

01
70

2
0.

04
15

0.
01

76
0.

03
89

0.
01

43
0.

04
02

0.
01

60
3

0.
03

89
0.

01
12

0.
03

72
0.

01
42

0.
03

81
0.

01
27

4
0.

04
77

0.
01

52
0.

04
68

0.
01

42
0.

04
73

0.
01

47

A
ve

ra
ge

0.
04

22
0.

01
46

0.
04

11
0.

01
55

0.
04

16
0.

01
51

10
1

0.
04

57
0.

01
40

0.
04

10
0.

01
00

0.
04

34
0.

01
20

2
0.

04
90

0.
01

05
0.

04
74

0.
01

54
0.

04
82

0.
01

30
3

0.
04

52
0.

01
33

0.
03

91
0.

01
52

0.
04

21
0.

01
43

4
0.

04
37

0.
01

38
0.

04
23

0.
01

26
0.

04
30

0.
01

32

A
ve

ra
ge

0.
04

59
0.

01
29

0.
04

25
0.

01
33

0.
04

42
0.

01
31

15
1

0.
03

17
0.

00
95

0.
03

46
0.

01
28

0.
03

32
0.

01
11

2
0.

04
57

0.
01

80
0.

04
38

0.
01

41
0.

04
48

0.
01

61
3

0.
04

32
0.

01
20

0.
03

89
0.

01
22

0.
04

10
0.

01
21

4
0.

04
30

0.
01

57
0.

04
41

0.
01

31
0.

04
36

0.
01

44

A
ve

ra
ge

0.
04

09
0.

01
38

0.
04

03
0.

01
31

0.
04

06
0.

01
34

114

Chapter 6. The AFDIA Scheme

25 Hz.

In all the 240 experiments conducted, the loss of wing surface failure was quickly

and successfully detected, using the simple fixed threshold based fault detection

mechanism. However, the fault detection mechanism employed in the AFDIA does

have some limitations. As with any fixed threshold based mechanism, the challenge

is to identify a good fault detection threshold. If the threshold is too low (i.e. too

close to the norm), the probability of false failure detection increases. On the other

hand, if the threshold is too high, the failure might take longer to be detected or

worse, go undetected. The failure detection threshold (τ) for the AFDIA scheme

presented here is set to τ = 35 deg/sec, based on the discussion in Section 6.2.2.

Additionally, in the experiments conducted, the failure was simulated when the

aircraft was maintaining a straight and level flight. This limitation of the experiment

is a good reason why no false failure detection was triggered in the 240 experiments

conducted. For example the roll acceleration measurements (ṗ) could have crossed

the failure threshold τ when the aircraft was making a steep turn or pitch or was

affected by environmental factors. Crossing the threshold τ would result in a failure

detection, in the absence of a failure.

Further study needs to be conducted to develop a robust mechanism to detect

loss of wing surface failure during any phase of the flight. One possible solution is

to develop a adapting threshold, which will adapt to the phase of the flight with

time. Another approach could be the use of multiple thresholds monitoring various

signals (not just ṗ) to identify a loss of wing surface failure.

6.6.4 AFDIA Execution Time Analysis

One of the important aspects to consider for an AFDIA scheme is the time it takes to

execute. In Tables 6.6 and 6.7, the execution time of the AFDIA scheme for left and

right wing failures respectively, are summarised. The tables compare the execution

time before and after failure. To enable the comparison, the results are based on

data 20 sec before and after failure. Each of the results presented is the average

of 10 experiments for a set combination of window size (n) and scalar multiple (c).

115

Chapter 6. The AFDIA Scheme

The results for the individual experiments are presented in Appendix C.

From the results presented in these tables, it can be said that on average the

execution time of the AFIDA scheme before failure is about 7.36 µsec. Following

a failure, the execution time increases to about an average of 0.455 msec. This

increase in execution time is due to the on-line adaptation of the NN roll controller.

It is expected that the execution time will increase with increasing window size (n).

This is because there are more data with increasing window size (n) that would

need to be processed for adapting the controller. However, at these time resolution

(around 0.1 msec), their differences are insignificant.

Table 6.6: Summary of AFDIA execution time before and after loss of left wing
surface. Each mean and standard deviation value presented here is based on the
average of 10 experiments for the set combination of window size (n) and scalar
multiple (c).

Before Fail (sec) After Fail (sec)

Window Scalar Mean SD Mean SD

5 1 7.41 µ 4.62 µ 0.477 m 0.455 m

2 7.69 µ 3.11 µ 0.599 m 0.403 m

3 7.03 µ 2.89 µ 0.396 m 0.239 m

4 7.65 µ 1.30 µ 0.463 m 0.261 m

Average 7.45 µ 2.43 µ 0.484 m 0.340 m

10 1 7.41 µ 5.50 µ 0.432 m 0.388 m

2 7.32 µ 0.379 m 0.497 m 0.404 m

3 7.21 µ 3.64 µ 0.389 m 0.197 m

4 7.07 µ 3.68 µ 0.392 m 0.185 m

Average 7.25 µ 0.0980 m 0.428 m 0.294 m

15 1 7.27 µ 5.67 µ 0.440 m 0.376 m

2 7.24 µ 4.41 µ 0.414 m 0.334 m

3 7.33 µ 3.24 µ 0.450 m 0.204 m

4 7.49 µ 5.06 µ 0.416 m 0.230 m

Average 7.33 µ 4.60 µ 0.430 m 0.286 m

116

Chapter 6. The AFDIA Scheme

At the beginning of the AFDIA experiment setup section (see Section 6.5.1), it

was mentioned that the AFDIA scheme was set to execute at 25 Hz, although the

NN roll controller was developed based on data collected at 50 Hz. This limit was

applied due to the timing constrains imposed by the X-Plane simulator execution

demands and the need to log various simulation data. From the results it is clear

that the scheme can comfortability be implemented within 50 Hz (0.04 sec), even

when the NN controller is adapting post failure.

Table 6.7: Summary of AFDIA execution time before and after loss of right wing
surface. Each mean and standard deviation value presented here is based on the
average of 10 experiments for the set combination of window size (n) and scalar
multiple (c).

Before Fail (sec) After Fail (sec)

Window Scalar Mean SD Mean SD

5 1 7.49 µ 3.12 µ 0.387 m 0.321 m

2 6.91 µ 2.24 µ 0.398 m 0.275 m

3 7.44 µ 2.90 µ 0.527 m 0.279 m

4 7.76 µ 1.91 µ 0.521 m 0.259 m

Average 7.40 µ 2.54 µ 0.458 m 0.284 m

10 1 7.41 µ 6.51 µ 0.367 m 0.205 m

2 7.59 µ 3.10 µ 0.501 m 0.188 m

3 7.66 µ 2.63 µ 0.552 m 0.302 m

4 7.01 µ 2.65 µ 0.406 m 0.180 m

Average 7.42 µ 3.72 µ 0.457 m 0.219 m

15 1 7.54 µ 4.70 µ 0.570 m 0.328 m

2 7.15 µ 2.22 µ 0.445 m 0.241 m

3 7.37 µ 3.44 µ 0.473 m 0.195 m

4 7.21 µ 3.18 µ 0.415 m 0.158 m

Average 7.32 µ 3.39 µ 0.476 m 0.231 m

117

Chapter 6. The AFDIA Scheme

6.7 Reflective Improvement of the AFDIA Scheme

Based on the observations made from the results of the 240 experiments conducted,

improvements are made to the AFDIA scheme. These improvements are discussed

in this section.

6.7.1 Euler angle based error function

In the AFDIA scheme, the Jroll function (see equation (6.3)) used to guide the on-

line adaptation of the NN roll controller is based on the roll rate (p) of the aircraft.

Following the loss of wing surface, the aircraft will go into an uncontrollable spin.

The roll rate is used based on the assumption that if the aircraft stops spinning and

is in equilibrium, the roll rate would be approximately 0 deg/sec. However, there

are certain disadvantages of using the roll rate for guiding the adaptation process.

To understand the downside of using the roll rate, consider the roll rate and NN

roll command (δ̂) plots in Figures 6.8 and 6.9. Notice that in Figure 6.8, for small

fluctuations in the roll rate, the Jroll value would fluctuate accordingly, resulting in

small fluctuations in the adapting NN roll controller output. When the fluctuations

are small, the NN controller adaptation process fluctuates accordingly within small

ranges. What happens if the fluctuations are large?

Such a case is observable in Figure 6.9, where the value of the scalar multiple

c is 4. The scalar multiple c magnifies the fluctuations in the roll rate, resulting

in large fluctuations in the Jroll value calculated using equation (6.3). These large

changes in the Jroll value result in the adaptation process of the NN roll controller

fluctuating significantly, resulting in significant fluctuations in the NN roll controller

output. The significant fluctuation in adapting controller output produces propor-

tional fluctuations in the roll rate, which then feeds back to the Jroll function and

the outcome repeats. These fluctuations in the Jroll value (driven by the roll rate)

are counter productive to the NN adaptation process and could further destabilise

the aircraft. The importance of the scalar multiple c in the Jroll function was shown

in the results discussion in Section 6.6.2 where, with increasing value of c, the flight

duration following failure increased. However, from the discussion in this section, it

118

Chapter 6. The AFDIA Scheme

is clear that use of roll rate in the Jroll function could be counter productive to the

objective of the AFDIA scheme.

Reflecting on these observations from the AFDIA experiments conducted, the

Jroll function to guide the adaptation of the NN roll controller is modified to use

the roll Euler angle (φ) instead. A Jroll function using the Euler angle (φ) is linear

compared to one based on the roll rate (p). Following a loss of wing surface, the ob-

jective of the AFDIA scheme is to use the aileron on the healthy wing to compensate

for the failure induced rolling moment and try to stabilise the aircraft. To achieve

this using the Euler angle based Jroll function, the NN roll controller is adapted to

try to level the aircraft where the roll Euler angle is 0 deg. Therefore the adaptation

guiding function in equation (6.3) can be written as follows:

Jroll = c×m(φref − φ) (6.6)

where:

c : is a scalar multiple

φ : is the roll Euler angle in deg

φref : is the desired roll Euler angle, which is 0 deg in level flight

m(x) : 2 × x + 30
60

− 1

The m(x) function as described in equation (3.21) scales the difference between

the desired and actual roll Euler angle (φref −φ) to the range of ± 1. This function

assumes that the maximum and minimum value of the roll Euler angle will in the

± 30 deg range. If the Euler angle exceeds this range, then the function will scale

it accordingly.

6.7.2 On-line Learning and Stopping Condition

The FCC NN based roll controller is adapted on-line using the NBN learning algo-

rithm and sliding data window technique. The on-line adaptation of the controller

is similar to the off-line training. In the case of the off-line training, a large dataset

is used to train the controller. Similarly in on-line learning, a sliding data window

119

Chapter 6. The AFDIA Scheme

is used to adapt the controller. However, the size of the sliding data window is

significantly smaller than the dataset used to train the controller off-line.

When the controller is trained off-line, the error to guide the training process of

the controller is derived as follows:

esum =

p∑
dp − op (6.7)

where esum is the error calculated by summing the error between the desired (d)

and actual output (o), for every pattern (p) or samples in the dataset. In the

off-line training phase, the NN controller is learning to mimic the output of the

flight controller roll command. This is the desired output (d) and the NN controller

output (o) is the actual output. However in the presented AFDIA scheme, when the

controller is adapting on-line following a failure, the flight controller roll command

cannot be used as the desired output (d), since the dynamics of the system have

changed. Instead a desired value is derived from the post failure system using

equation (6.3). Hence, equation (6.7) can be rewritten as

esum =
n∑
Jrolln − on (6.8)

where esum is the error calculated by summing the error between the function (Jroll)

and actual output (o) of the NN controller, for every pattern or number of time

steps (n) in the sliding data window. As mentioned earlier, Jroll is the guiding

function for on-line adaptation of the NN controller. In the AFDIA experiments

presented in Section 6.6, this function derived its value from the error between the

reference (pref) and actual (p) roll rate. This function has since been updated in the

previous section to derive its value from the difference between the desired (φref)

and actual (φ) roll Euler angle (see equation (6.6)).

In the Jroll function, what happens if the difference approaches 0, as the controller

adapts to bring the aircraft to equilibrium? The guiding error function Jroll tends

towards 0 and if the adaptation continues, the on-line training error value could be

approximated as

120

Chapter 6. The AFDIA Scheme

esum ≈
n∑
− o (6.9)

essentially feeding the adapted NN controller output as the error itself. This would

degrade the adapting NN controller from the adapted controller state. Therefore

a stopping condition is introduced in the AFDIA scheme to stop the adaptation

at some point. To stop the adaptation process, the NN controller output (δ̂A) is

continuously monitored. The condition for stopping the adaptation process can be

stated as follows:

“Stopping Condition: If the controller output (δ̂A) converges to a value and

remains within a tolerance range for a set period of time (t), the adaptation process

can be terminated.”

In essence, this condition checks if the controller output has converged to a value

and therefore stop any further adaptation of the NN controller. In the improved

AFDIA scheme, the time period for this condition to be satisfied is set to t = 1 sec.

Since the scheme executes at 25 Hz, this condition has to be satisfied 25 times

continuously before the adaptation is terminated.

This stopping condition is implemented by using an error value, SCONerr and

error tolerance range γ . To check if the controller output has converged and is within

a tolerance error range, the error value SCONerr is calculated after every adaptation

of the controller, by subtracting the current output (δ̂A) after adaptation from the

average of the previous consecutive outputs when the condition was satisfied. For

example, at time k, where k > time of failure (Tfail), the error value SCONerr is

calculated as follows:

SCONerr = δ̂(k)−

m∑
i=1

δ̂(k − i)

i
(6.10)

where i is a counter value that tracks the number of consecutive times the value of

SCONerr was within the tolerance range γ. Based on limited experiments conducted

121

Chapter 6. The AFDIA Scheme

to find a suitable value for the tolerance range, γ is set to 0.1. The maximum value of

i is m = 25, as the stopping condition has to be satisfied 25 times. If the difference

between the two are within the defined tolerance range γ, the counter value i is

incremented. If the count i reaches the maximum value, i = m = 25, indicating

that the stopping condition is satisfied for the stated time period, the adaptation

is terminated. However, if the error SCONerr is not within the γ range, the count

value (i) is reset to 1, and the sum of the previous output values is reset to the

current output. This stopping condition process can also be described in a pseudo

code form as presented in Figure 6.11.

Chapter 6. The AFDIA Scheme

to find a suitable value for the tolerance range, γ is set to 0.1. The maximum value of

i is m = 25, as the stopping condition has to be satisfied 25 times. If the difference

between the two are within the defined tolerance range γ, the counter value i is

incremented. If the count i reaches the maximum value, i = m = 25, indicating

that the stopping condition is satisfied for the stated time period, the adaptation

is terminated. However, if the error SCONerr is not within the γ range, the count

value (i) is reset to 1, and the sum of the previous output values is reset to the

current output. This stopping condition process can also be described in a pseudo

code form as presented in Figure 6.11.

Algorithm 1: Pseudo Code for the On-line Adaptation Stopping Condition

1 if first time of execution then
2 i = 1;
3 sum of previous output = current output;

4 else
5 calculate the error between the current output and average of the previous

output SCONerr = δ̂(k)−
m∑
i=1

δ̂(k−i)

i

6 if SCONerr <= γ then
7 i = i+ 1;
8 if i = m then
9 Stop Adaptation;

10 Adapt = 2;

11 end

12 else
13 Reset the count;
14 i = 1

15 end

16 end

Figure 6.11: Pseudo code for the on-line adaptation stopping condition.

In the improved AFDIA scheme, a state flag called ‘Adapt’ is used to implement

the stopping condition. This state indicator flag has 3 possible values, namely, 0, 1

and 2. When no failure is detected by the FDI stage of the AFDIA scheme, Adapt

is set to 0, indicating that there is no need for adapting the controller. If a failure is

detected in the FDI stage (FL/R = 1), the Adapt flag is set to 1 to indicate that the

NN controller is adapting on-line following a failure. Once the stopping condition

116

Figure 6.11: Pseudo code for the on-line adaptation stopping condition.

In the improved AFDIA scheme, a state flag called ‘Adapt’ is used to implement

the stopping condition. This state indicator flag has 3 possible values, namely, 0, 1

and 2. When no failure is detected by the FDI stage of the AFDIA scheme, Adapt

is set to 0, indicating that there is no need for adapting the controller. If a failure is

detected in the FDI stage (FL/R = 1), the Adapt flag is set to 1 to indicate that the

NN controller is adapting on-line following a failure. Once the stopping condition

for terminating the adaptation process is satisfied, the state of the Adapt is set to

2.

122

Chapter 6. The AFDIA Scheme

In the next section, the operational outline of the improved AFDIA scheme is

presented.

6.7.3 Improved AFDIA Scheme Operational Overview

In Figure 6.12 the flow chart for the improved AFDIA scheme is presented. As with

the original scheme, the first step is failure detection and identification (FDI), where

the roll acceleration (ṗ) sensor measurements are monitored. Failure is detected

when the roll acceleration measurement crosses a fixed threshold of τ = 35 deg/sec2.

Once the failure is detected, the failed wing is identified using the direction of the

fluctuation in the roll acceleration (ṗ) measurements.

The AFDIA scheme has two failure flags, FL and FR, for the left and right wing

failure, respectively. If a failure is detected, the FL/R flag sets to 1, otherwise the flag

remains at the default value of 0. In addition, the scheme has a Adapt flag, which

helps to implement the stopping condition. If no failure is detected, there is no need

for the NN controller to adapt, therefore Adapt = 0. If a failure is detected, the

need for adapting the NN controller is indicated by setting Adapt = 1. Therefore

the FDI stage of the AFDIA scheme can be summarised as follows:

FL, Adapt =

1, if ṗ ≤ −τ

0, otherwise

(6.11)

FR, Adapt =

1, if ṗ ≥ +τ

0, otherwise

(6.12)

After the FDI stage of the scheme, the sliding data window is updated with the

variables of the current time step. Similar to the original scheme, the fourth variable

stored in the data window depends on the outcome of the FDI stage. If no failure is

detected, (i.e. FL/R = 0), then the fourth variable stored in the window is the roll

control command (Jroll = δA). However, if a failure is detected (i.e. FL/R = 1),

then the fourth variable stored is the Jroll value calculated using equation (6.6).

In the failure accommodation (FA) stage, the NN roll controller adapts to the

123

Chapter 6. The AFDIA Scheme

F
a

il
u

re
 D

e
te

ct
io

n
 &

Id

e
n

ti
fi

ca
ti

o
n

 (
F

D
I)

F
a

il
u

re
 A

cc
o

m
m

o
d

a
ti

o
n

 (
F

A
)

Initial State of Variables

Start

Left Wing FDI

Is roll acceleration ≥
-τ ?

Right Wing FDI

Is roll acceleration ≥
+τ ?

False

True (FL = 1)
Adapt = 1

True (FR = 1)
Adapt = 1

Update Sliding Data Window
 For fault free (FL/R = 0) time-step (k)

 Save:
Roll Rate (p)

Actual Euler Angle (φ)
Demanded Euler Angle (φdem)

Jroll = Auto Pilot Roll Command (δA)

Update Sliding Data Window
 For faulty (FL/R = 1) time-step (k)

 Save:
Roll Rate (p)

Actual Euler Angle (φ)
Demanded Euler Angle (φdem)

Jroll = c x m(φref - φ)

False

Roll Controller Online Learning
Adapt the NN roll controller using

the sliding data window

Adaptation Stopping Condition

Is the stopping condition satisfied?

Neural Network Aircraft Control
Use NN roll controller output to

control the aircraft roll.

Note: since no NN pitch or yaw
controller is used, both these control

values are set to output 0.

False
Adapt = 1
 k = k + 1

True
Adapt = 2
 k = k + 1

 k = k + 1

Name Value
Left wing fail flag (FL) 0
Right wing fail flag (FR) 0
Fault Detection Threshold (τ) 35
Adapt falg 0
Time (t) k

Figure 6.12: The Improved AFDIA Scheme.

post failure dynamics of the aircraft. The objective is to adapt to use the aileron

on the healthy wing to balance the failure induced rolling moment and stabilise the

aircraft. To achieve this objective the controller aims to return the aircraft to level

flight condition, where φ = 0 deg. The adaptation of the roll controller is indicated

by Adapt = 1. Once the stopping condition is satisfied, the adaptation process is

terminated, indicated by Adapt = 2.

124

Chapter 6. The AFDIA Scheme

6.8 Improved AFDIA Experimental Setup and

Overview

The implementation of the improved AFDIA scheme in X-Plane and the simulation

conditions are the same as the experiments for the original design of the AFDIA

scheme. For the improved AFDIA scheme, only 20 experiments are conducted, 10

each for the loss of left and right wing surface. In these experiments, the sliding

data window size (n) and the scalar multiple (c) are kept constant at 15 and 4,

respectively. Each of these experiments were conducted for a duration of 5 minutes

each.

6.9 Results and Discussion

6.9.1 Post Failure Aircraft Behaviour

Following the loss of wing surface, the AFDIA scheme attempts to bring the aircraft

back to equilibrium and maintain flight. To do this the scheme uses the remaining

aileron on the healthy wing and tries to achieve level flight (where φ = 0 deg), to

produce the required moment to compensate for the failure induced rolling moment.

As mentioned during the development of the original AFDIA scheme, an ideal sce-

nario would be if the aircraft maintains flight following the loss of wing surface.

Using the improved AFDIA scheme, this ideal scenario is achieved.

Figure 6.13 presents one of the AFDIA scheme results following the loss of left

wing surface failure. Note that the plots in figure starts from 20 sec before failure

and ends 60 sec after failure. The time of failure is indicated by the red vertical

line. Immediately after the failure, the roll Euler angle starts to change rapidly,

indicating a rapid turn along the roll axis of the aircraft. As is obvious, the aircraft

rolls to the left side following the failure. The rapid turn along the roll axis would

generate significant acceleration, which is visible from the roll acceleration plot.

This significant jump in the roll acceleration crosses the fault detection threshold

immediately after the failure. Notice the change in the Adapt flag from state 0 to 1,

125

Chapter 6. The AFDIA Scheme

confirming the detection of the failure and therefore the need to adapt the NN roll

controller.

The NN controller adapts immediately following the failure, resulting in an in-

creasing output command (output increases towards +1), until it settles at about

+0.8. Notice the change in the state of the Adapt flag, which changes from 1 to 2,

indicating that the NN controller has adapted to control the aircraft with the post

failure dynamics. The result of the swift reaction from the NN controller is that

the aircraft achieves a steady attitude and avoids an uncontrollable spin. This is

observable from the roll Euler plot following the failure in Figure 6.13. From the

roll Euler plot it is clear that although the roll attitude remains steady, the aircraft

has not achieved level flight, where the roll Euler angle would be 0 deg. Instead, the

aircraft maintains an almost steady roll attitude of about −6 deg.

The roll attitude stabilises when the failure induced rolling moment is balanced

by the moment generated by the aileron on the healthy wing. In Figure 6.13,

this is achieved when the roll Euler angle is about −6 deg. It must be mentioned

that the aircraft is flying in a dynamic environment, simulated by the X-Plane

weather system, where it is constantly effected by environmental conditions such

as wind direction and speed among other weather phenomenon. With 66% of the

wing surface missing, the aircraft is highly unstable to these dynamic changes in

environmental forces which effect the rolling moment.

From the roll Euler plot in Figure 6.13, notice that after a while the Euler

angle slowly drifts away from about −6 deg. To counteract this drift, the NN roll

controller output slowly increases from about +0.8. At 120 sec, the Euler angle

starts to gradually slide away, until a maximum of about −14 deg is achieved at

approximately 135 sec. By 120 sec, the NN controller output is already at the

maximum output value of +1, to counteract the change in Euler angle. This drift

in the aircraft attitude and the subsequent changes are due to the change in the

rolling moment that needs to be balanced. The dynamic environmental conditions

are affecting the rolling moment that needs to be balanced to maintain a steady

roll attitude. The NN controller deflects the aileron on the healthy wing to the

126

Chapter 6. The AFDIA Scheme

70 80 90 100 110 120 130 140
−60

−40

−20

0

20

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

70 80 90 100 110 120 130 140

−4

−2

0

2

Time (sec)

(d
e

g
/s

e
c)

Roll Rate

(b) Roll Rate

70 80 90 100 110 120 130 140
−15

−10

−5

0

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler

70 80 90 100 110 120 130 140

0

0.5

1

Time (sec)

R
a
t
i
o

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

70 80 90 100 110 120 130 140
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

70 80 90 100 110 120 130 140

1400

1600

1800

2000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.13: Aircraft Performance Results for Left Wing Failure. The Red line
marks when the failure was injected.

127

Chapter 6. The AFDIA Scheme

60 70 80 90 100 110 120 130
−200

−100

0

100

200

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

60 70 80 90 100 110 120 130

0

10

20

30

40

Time (sec)

(
d
e
g
/
s
e
c
)

Roll Rate

(b) Roll Rate

60 70 80 90 100 110 120 130
−5

0

5

10

15

20

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler

60 70 80 90 100 110 120 130
−1

−0.5

0

0.5

1

Time (sec)

R
a

tio

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

60 70 80 90 100 110 120 130
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

60 70 80 90 100 110 120 130

1400

1600

1800

2000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.14: Aircraft Performance Results for Right Wing Failure. The Red line
marks when the failure was injected.

128

Chapter 6. The AFDIA Scheme

80 90 100 110 120 130 140 150

0

50

100

Time (sec)

(
d
e
g
/
s
e
c
2
)

Roll Acc.
Threshold

(a) Roll Acceleration

80 90 100 110 120 130 140 150
−5

0

5

10

15

20

Time (sec)

(d
e

g
/s

e
c)

Roll Rate

(b) Roll Rate

80 90 100 110 120 130 140 150

0

10

20

Time (sec)

(
d
e
g
)

Roll Euler

(c) Roll Euler Angle

80 90 100 110 120 130 140 150
−1

−0.5

0

0.5

Time (sec)

R
a

tio

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

80 90 100 110 120 130 140 150

1400

1600

1800

2000

2200

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.15: Aircraft Performance Results for Right Wing Failure. The Red line
marks when the failure was injected.

129

Chapter 6. The AFDIA Scheme

maximum, in order to compensate for the change in rolling moment. Eventually,

the rolling moment that needs to be balanced changes and at about 140 sec, the

Euler angle starts to return back towards the post failure steady state and settles

at about −6 sec again.

In Figure 6.14 the simulation result following a loss of right wing surface is

presented. In many ways the result is similar to the left wing failure in Figure 6.13.

However, it does display some interesting behaviour, not present in Figure 6.13.

In Figure 6.14, the roll acceleration crosses the fault detection threshold (τ)

and triggers the adaptation of the controller (Adapt = 1) immediately following the

failure. The NN controller output rapidly increases to the maximum output of −1 in

order to compensate for the failure induced rolling moment. Within a few seconds,

the NN controller is adapted and any further adaptation is terminated, by setting

Adapt = 2, as can be seen from the adapt flag plot.

From the Euler angle plot in Figure 6.14, notice that immediately following a

failure, the Euler angle changes rapidly. Due to the response of the controller, the

Euler angle peaks at about 8 deg, before returning towards level flight, where the

roll Euler angle is 0 deg. Unlike the results presented in Figure 6.13, the aircraft

approaches 0 deg roll attitude or level flight. However, an interesting behaviour is

observed when the Euler angle approaches 0 deg.

Notice from the NN roll controller command plot in Figure 6.14 that as soon

as roll attitude approaches 0 deg (at about 80 sec), the controller output flips to

the maximum output of +1. This results in the Euler angle rapidly changing to a

maximum of 17 deg, indicating a sudden rolling of the aircraft. The NN controller

returns to the desirable output of −1, shortly after the flip. This results in the

aircraft returning towards a level flight attitude. Once again, when the Euler angle

approaches 0 deg (at about 93 sec), the NN controller outputs flips and the Euler

angle changes rapidly.

This behaviour where the NN roll controller output flips when the Euler angle

approaches 0 deg is what the stopping condition discussed in Section 6.7.2 was

designed to avoid. This behaviour is a sign of the NN controller degradation from

130

Chapter 6. The AFDIA Scheme

the ideal adapted state of the controller. The degradation is the result of the on-line

learning mechanism used to adapt the NN roll controller.

As described in Section 6.7.2, the on-line learning mechanism works on using

the difference in the desired and the actual Euler angle (i.e. φref − φ) in the Jroll

function presented in equation (6.6). The NN roll controller is adapted on-line by

using the difference between the Jroll value and the NN controller output as the

learning error. After a failure, when the aircraft roll attitude approaches the Euler

angle of 0 deg, the value of Jroll approaches 0. Around this time, if the on-line

learning process continues, the output of the NN controller would be greater than

Jroll and eventually feed itself as the learning error as described in equation (6.9).

This would result in the degradation of the adapted controller that managed to

bring the aircraft back to an Euler angle of 0 deg following a failure. Therefore

a stopping condition was introduced (see Section 6.7.2) to terminate the learning

process around this time. However, from the results presented in Figure 6.14, it is

clear that the stopping condition was not effective in stopping the controller degra-

dation. Although throughout the simulation the aircraft maintains flight following

the failure, the ideal controller has been degraded to an extent.

Note that such a behaviour of controller degradation was not observed in the

results presented in Figure 6.13 because the Euler angle never approached 0 deg.

There are examples in the conducted experiments where the stopping condition

was very effective in preventing the degradation of the adapted controller. As an

example, consider the results presented in Figure 6.15 following a loss of right wing

surface. At around 98 sec, the NN roll controller manages to bring the aircraft roll

attitude to 0 deg, after the failure. Note that there are some signs of controller

degradation from the fluctuations in the controller output. But these fluctuations

are minor compared to the degradation in the results presented in Figure 6.14. In

addition, the Euler angle remains steady at 0 deg during these minor fluctuations

in controller output.

Figures 6.13, 6.14 and 6.15 are some of the results from the 20 experiments con-

ducted using the improved AFDIA scheme. These results encapsulate the observed

131

Chapter 6. The AFDIA Scheme

behaviour of the aircraft post failure in all 20 experiments. Using the improved AF-

DIA scheme, during the duration of the experiments, the aircraft was able to main-

tain flight following about 66% loss of wing surface. This is a remarkable achievement

compared to the original AFDIA scheme results presented in Section 6.6.

The improved AFDIA scheme implements a stopping mechanism to terminate

the on-line adaptation of the NN roll controller, post failure. This has contributed

to the success of the improved scheme. However, issues with this were highlighted

in the above results discussion. Further study needs to be conducted to identify a

better guiding function for the on-line adaptation of the controller. In conjunction

with this, other mechanisms to terminate the on-line adaptation of the NN roll

controller must be explored.

Although mentioned earlier, note that the AFDIA scheme only implements an

NN roll controller. Following a failure, the pitch and yaw command output is set

to 0. This decision was made due to the timing constraints on the research. In

addition, implementing just the NN roll controller would enable the understanding

of the behaviour of the aircraft post failure with just the adapting NN roll control.

This knowledge could then be used in future work while developing the NN pitch

and yaw controller.

As is obvious, setting the pitch and yaw control command output to 0 post

failure does effect the behaviour of the aircraft following a failure. The aircraft does

not maintain a fixed altitude or heading following a failure. Based on the effects of

the environmental factors (e.g. wind direction) and with 66 % of the wing surface

missing, the aircraft changes altitude and heading randomly. However, the NN roll

controller keeps control of the aircraft roll post failure and avoids going into an

uncontrollable spin.

6.9.2 AFDIA Execution and Adaptation Time

In the original AFDIA scheme presented in Section 6.4, the execution time was

compared based on data 20 sec before and after failure. Such a comparison cannot be

made here due to the addition of the stopping condition to terminate the adaptation

132

Chapter 6. The AFDIA Scheme

process following the failure. However, a fair comparison between the two AFDIA

schemes can be made based on data before failure.

In Table 6.8, analysis of the AFDIA scheme execution time is presented based

on 20 sec of data before the controller adaptation (i.e. before failure). This table

presents the results for the 20 experiments conducted, 10 each for the left and right

wing surface loss failure. On average, the execution time of the improved AFDIA

scheme is about 7.45 µsec. This is not very different from the execution times of the

original AFIDA scheme. At this time resolution, the change in the execution time

based on the addition of the simple stopping condition is negligible.

Table 6.8: Analysis of the improved AFDIA execution time over 20 seconds before
the controller adaptation.

Left Wing Right Wing

Exp.No. Mean SD Mean SD

(sec) (sec) (sec) (sec)

1 7.00 µ 5.00 µ 7.00 µ 1.00 µ

2 7.00 µ 2.00 µ 7.00 µ 1.00 µ

3 8.00 µ 9.00 µ 7.00 µ 2.00 µ

4 7.00 µ 1.00 µ 7.00 µ 1.00 µ

5 0.0120 m 0.130 m 7.00 µ 6.00 µ

6 7.00 µ 2.00 µ 7.00 µ 6.00 µ

7 7.00 µ 6.00 µ 7.00 µ 1.00 µ

8 8.00 µ 6.00 µ 7.00 µ 6.00 µ

9 7.00 µ 1.00 µ 7.00 µ 7.00 µ

10 8.00 µ 9.00 µ 8.00 µ 6.00 µ

Average 7.80 µ 0.0171 m 7.10 µ 3.70 µ

Tables 6.9 and 6.10 present the time taken for the controller to adapt following

failure and the mean execution time of the AFDIA scheme during the adaptation

period, for left and right wing respectively. It can be said that on average the

controller adapts within 2.21 sec. The average execution time of the improved

AFDIA scheme during this adaptation period is about 0.403 msec. This is very

similar to the results of the original AFDIA scheme, following the failure. Once

133

Chapter 6. The AFDIA Scheme

again, these result confirm that the improved AFDIA scheme can execute at 50 Hz

if necessary.

Table 6.9: Analysis of the improved AFDIA scheme execution and adaptation time
following a loss of left wing surface.

Exp. No. Mean Exe. Time SD Adaptation Time

(sec) (sec) (sec)

1 0.415 m 0.208 m 3.475

2 0.412 m 0.136 m 1.857

3 0.419 m 0.177 m 1.843

4 0.443 m 0.185 m 1.989

5 0.355 m 0.190 m 1.822

6 0.425 m 0.197 m 2.194

7 0.427 m 0.167 m 2.404

8 0.490 m 0.395 m 2.147

9 0.431 m 0.143 m 1.850

10 0.433 m 0.199 m 2.017

Average 0.425 m 0.200 m 2.160

SD 0.499

6.10 Endurance Post Failure

In the original AFDIA scheme, evidence of endurance could be seen from the increase

in flight duration post failure when compared against the X-Plane autopilot. The

experiments conducted using the original scheme were terminated when the aircraft

eventually crashed. With the improved AFDIA scheme, the aircraft managed to

achieve the ideal goal of not crashing following a failure. With 66% of the wing

surface missing, the aircraft maintained flight, which is a significant improvement

in endurance when compared to the original AFDIA scheme.

In the interests of time, the 20 experiments conducted using the improved AF-

DIA scheme were limited to the duration of 5 minutes. During this duration the

aircraft avoided going into an uncontrollable spin and crashing. In addition to the

134

Chapter 6. The AFDIA Scheme

Table 6.10: Analysis of the improved AFDIA scheme execution and adaptation time
following a loss of right wing surface.

Exp. No. Mean Exe. Time SD Adaptation Time

(sec) (sec) (sec)

1 0.382 m 0.166 m 2.096

2 0.277 m 0.225 m 2.814

3 0.360 m 0.226 m 2.314

4 0.435 m 0.390 m 2.364

5 0.390 m 0.331 m 2.268

6 0.416 m 0.298 m 2.164

7 0.371 m 0.428 m 2.157

8 0.380 m 0.335 m 2.263

9 0.375 m 0.152 m 1.975

10 0.419E m 0.290 m 2.200

Average 0.381 m 0.284 m 2.262

SD 0.224

20 experiments conducted, 6 additional experiments were conducted using the im-

proved AFDIA scheme.

In these experiments, 3 each are conducted for the loss of left and right wing

surface. The aim of these experiments was to demonstrate the added endurance

using the improved AFDIA scheme, following a 66% loss of wing surface. The

results from these experiments are presented in Figures 6.16 through to 6.21.

In these additional experiments, the X-Plane simulation using the improved AF-

DIA scheme was left to run for a minimum of 2 hours following a failure. During this

duration, the aircraft maintained flight with 66% of the wing surface missing. Hence,

demonstrating the endurance added by the improved AFDIA over long duration, in

the presence of severe loss of wing surface.

6.11 To Learn or Not to Learn

This section is independent of the results presented in this chapter. Instead, the aim

here is to express the view of the author on how the schemes (SFDIA and AFDIA)

135

Chapter 6. The AFDIA Scheme

developed in this thesis could be considered for industrial implementation. These

implementation issues are discussed from the perspective of the need to learn (or

adapt on-line).

Before an aircraft system is in service, it has to be certified to add confidence

in the system and meet strict safety requirements. This certification also applies

to the control software on-board the aircraft systems. Certification is provided by

authorities such as the Federal Aviation Administration (FAA) in the US or the

Civil Aviation Authority (CAA) in the UK. The main document used as a guideline

for the certification process is the DO-178 [101].

In accordance with this document, it is challenging to certify control software

that is adaptive in nature. One of the major obstacles here is that adaptive control

systems, such as the AFDIA scheme presented here, are considered non deterministic

in nature and therefore it is harder to verify the stability of the control software. Due

to this, the aerospace industry in general is reluctant to use such adaptive systems

in practice. However, an argument can be made to use such systems, by considering

when the system learns or adapts on-line.

In [37], the authors present an SFDIA scheme using NNs. Another NN based

SFDIA is presented by the authors in [11]. In both of these schemes, the NN

sensor estimators adapt on-line, even in the absence of failure. The main reasoning

here is that the estimators improve their estimations by adapting to the dynamic

environment of the aircraft. When a sensor failure occurs, the on-line learning is

terminated to avoid degrading the sensor estimations. However, the question has to

be raised on the necessity to learn in the absence of failure.

The SFDIA scheme presented in this thesis does not learn in the presence or

absence of failure. Once the NN based estimators are developed, their structure

remains fixed (i.e. no change in the weights or the number of neurons) through-

out their lifetime. The reasoning for this is that if the NN based sensor estimators

produce good estimates of the hardware sensors, there is no need to adapt the esti-

mators on-line to the changing dynamics of the aircraft environment. The hardware

sensors have already been certified and are implemented in practical systems, with-

136

Chapter 6. The AFDIA Scheme

out any need to adapt to the environment dynamics. Therefore, if the structure

of the NN based sensor estimations are fixed, they can be classed as deterministic

software and considered for certification using the existing practices.

Additionally in [11], the AFDIA scheme implements NN based pitch, roll and

yaw controllers that adapt in the absence of failures. Once again, the argument

here is to improve the controller estimation with the changing aircraft dynamics.

Once a failure occurs, the NN controllers adapt using different guiding functions to

accommodate the failures. Similar to the SFDIA scheme, an argument can be made

that, if the NN controllers produce good estimates of the normal controls that have

already been certified and which do not adapt on-line, there is no need to adapt (or

learn) the NN based controllers in the absence of failures. Therefore, the NN based

controllers with fixed structure can be certified using existing practices. The NN

controllers will only adapt on-line when there is a failure (i.e. a need to learn the

new dynamics of the aircraft).

In conclusion, although NNs have learning capabilities, one should consider when

this is beneficial to the intended application.

6.12 Conclusion

In this chapter, an FCC NN based actuator failure detection, identification and

accommodation (AFDIA) scheme was presented. The aim of this scheme was to add

endurance to an aircraft following 66% loss of wing surface. This chapter presented

the development of an FCC NN based roll controller, which was used by the AFDIA

scheme. This FCC NN roll controller uses only 5 neurons to control the roll attitude

of an aircraft.

The experiments were conducted using the Airbus A320 aircraft model in X-

Plane. Following a 66% loss of wing surface, the aircraft under the control of X-

Plane built-in autopilot would go into an uncontrollable spin and crash. This can

be attributed to the fact that the autopilot is unaware of the change in dynamics of

the aircraft following such a sever failure. An ideal scenario for the AFDIA scheme

would be to maintain flight following a loss of the wing surface.

137

Chapter 6. The AFDIA Scheme

Initially, an AFDIA scheme was developed and studied on 240 experiments.

Based on the observations from these experiments (Section 6.6), an improved version

of the AFDIA scheme was developed. In the original AFDIA scheme (Section 6.4),

the aircraft avoided going into an uncontrollable spin, like the results from the

X-Plane built-in autopilot (Section 6.2). The aircraft did eventually crash, but

the scheme increased the duration of the flight following a failure, when compared

against the X-Plane autopilot results. Hence, adding endurance to the aircraft in

presence of the failure. However, the ideal scenario of maintaining flight following

failure was not achieved.

With the improved AFDIA scheme (Section 6.7.3), not only did the aircraft

manage to avoid an uncontrollable spin, but also maintained flight following such a

severe failure. This is remarkable, considering the fact that the aircraft maintains

flight with 66% of the wing surface missing. Therefore, with the improved AFDIA

scheme, the ideal scenario of maintaining flight following this failure is achieved.

This is an exceptional addition of endurance to the aircraft system in the presence

of such an extreme failure. Due to timing constraints on the research, the improved

AFDIA scheme was evaluated on 20 experiments only, each for 5 minutes duration.

During the duration of these experiments, the aircraft did not crash following the

failure. However, to highlight the endurance added by the improved AFDIA scheme,

6 experiments were conducted, each of which spanned a duration of 2 hours. Dur-

ing these experiments, the aircraft maintained flight with 66% of the wing surface

missing. This demonstrated the endurance added by the improved AFDIA scheme

over long duration flight.

One of the drawbacks of the scheme was the use of the fixed threshold based

mechanism for fault detection. The threshold must be predetermined, taking into

account the probability of false detection and longer detection time. It must be

noted that, in all the experiments conducted in this chapter, the failure was promptly

detected and there was no false detection. However, this 100 % detection of failure

can be attributed to the fact that the failure simulations were limited to the straight

level flight manoeuvre phase of the aircraft. Further work needs to be conducted to

138

Chapter 6. The AFDIA Scheme

improve on the detection mechanism.

In conclusion, an AFDIA scheme is presented in this chapter that can add en-

durance to an aircraft with 66% of the wing surface missing. The AFIDA scheme

manages to maintain flight in the presence of such a severe failure. The results pre-

sented in this chapter also validate the use of an FCC NN for AFDIA applications.

The AFDIA scheme is able to add such remarkable endurance with just 5 neurons

in the FCC NN based roll controller.

139

Chapter 6. The AFDIA Scheme

1000 2000 3000 4000 5000 6000 7000

−40

−20

0

20

40

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

1000 2000 3000 4000 5000 6000 7000

−6

−4

−2

0

2

Time (sec)

(d
e

g
/s

e
c)

Roll Rate

(b) Roll Rate

1000 2000 3000 4000 5000 6000 7000
−15

−10

−5

0

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler Angle

1000 2000 3000 4000 5000 6000 7000

0

0.5

1

Time (sec)

R
a
t
i
o

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

1000 2000 3000 4000 5000 6000 7000

1500

2000

2500

3000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.16: Aircraft flight data over 2 hours following left wing failure. The Red
line marks when the failure was injected.

140

Chapter 6. The AFDIA Scheme

1000 2000 3000 4000 5000 6000 7000
−60

−40

−20

0

20

40

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

1000 2000 3000 4000 5000 6000 7000
−6

−4

−2

0

2

Time (sec)

(d
e

g
/s

e
c)

Roll Rate

(b) Roll Rate

1000 2000 3000 4000 5000 6000 7000

−15

−10

−5

0

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler Angle

1000 2000 3000 4000 5000 6000 7000

0

0.5

1

Time (sec)

R
a
t
i
o

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

1000 2000 3000 4000 5000 6000 7000
1000

2000

3000

4000

5000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.17: Aircraft flight data over 2 hours following left wing failure. The Red
line marks when the failure was injected.

141

Chapter 6. The AFDIA Scheme

1000 2000 3000 4000 5000 6000 7000
−60

−40

−20

0

20

40

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

1000 2000 3000 4000 5000 6000 7000
−4

−2

0

2

Time (sec)

(d
e

g
/s

e
c)

Roll Rate

(b) Roll Rate

1000 2000 3000 4000 5000 6000 7000

−20

−10

0

Time (sec)

(d
e

g
)

Roll Euler

(c) Roll Euler Angle

1000 2000 3000 4000 5000 6000 7000

0

0.5

1

Time (sec)

R
a
t
i
o

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

1000 2000 3000 4000 5000 6000 7000
1000

2000

3000

4000

5000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.18: Aircraft flight data over 2 hours following left wing failure. The Red
line marks when the failure was injected.

142

Chapter 6. The AFDIA Scheme

1000 2000 3000 4000 5000 6000 7000
−100

0

100

200

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

1000 2000 3000 4000 5000 6000 7000

0

5

10

15

Time (sec)

(
d
e
g
/
s
e
c
)

Roll Rate

(b) Roll Rate

1000 2000 3000 4000 5000 6000 7000

0

10

20

30

Time (sec)

(
d
e
g
)

Roll Euler

(c) Roll Euler Angle

1000 2000 3000 4000 5000 6000 7000
−1

−0.5

0

0.5

1

Time (sec)

R
a

tio

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

1000 2000 3000 4000 5000 6000 7000
1000

2000

3000

4000

5000

6000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.19: Aircraft flight data over 2 hours following right wing failure. The Red
line marks when the failure was injected.

143

Chapter 6. The AFDIA Scheme

1000 2000 3000 4000 5000 6000 7000

0

100

200

Time (sec)

(
d
e
g
/
s
e
c
2
)

Roll Acc.
Threshold

(a) Roll Acceleration

1000 2000 3000 4000 5000 6000 7000

0

5

10

Time (sec)

(
d
e
g
/
s
e
c
)

Roll Rate

(b) Roll Rate

1000 2000 3000 4000 5000 6000 7000

0

10

20

Time (sec)

(
d
e
g
)

Roll Euler

(c) Roll Euler Angle

1000 2000 3000 4000 5000 6000 7000
−1

−0.5

0

0.5

1

Time (sec)

R
a

tio

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

1000 2000 3000 4000 5000 6000 7000
1000

2000

3000

4000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.20: Aircraft flight data over 2 hours following right wing failure. The Red
line marks when the failure was injected.

144

Chapter 6. The AFDIA Scheme

1000 2000 3000 4000 5000 6000 7000
−20

0

20

40

60

80

Time (sec)

(d
e

g
/s

e
c

2
)

Roll Acc.
Threshold

(a) Roll Acceleration

1000 2000 3000 4000 5000 6000 7000

0

5

10

Time (sec)

(
d
e
g
/
s
e
c
)

Roll Rate

(b) Roll Rate

1000 2000 3000 4000 5000 6000 7000

0

5

10

15

Time (sec)

(
d
e
g
)

Roll Euler

(c) Roll Euler Angle

1000 2000 3000 4000 5000 6000 7000
−1

−0.5

0

Time (sec)

R
a

tio

NN Roll Cmd
AP Roll Cmd

(d) Roll Command

1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

Time (sec)

F
l
a
g

Adapt

(e) Adapt Flag

1000 2000 3000 4000 5000 6000 7000
1000

2000

3000

4000

5000

Time (sec)

(
m
e
t
r
e
s
)

Altitude MSL

(f) Altitude

Figure 6.21: Aircraft flight data over 2 hours following right wing failure. The Red
line marks when the failure was injected.

145

“Success is going from failure to failure without losing your enthusiasm.”
– Winston Churchill

146

Chapter 7

Conclusions and Future Work

7.1 Research Overview

The endurance of an aircraft in presence of failures can be improved if the flight

control system is tolerant to failures. Two of the major types of failure in aircraft

systems are sensor and actuator failures. In this research, schemes for fault tolerant

flight control systems (FTFCS) were developed to add endurance to an aircraft in

the presence of failures. To that end, two schemes were developed:

1. Sensor failure, detection, identification and accommodation scheme (SFDIA)

2. Actuator failure, detection, identification and accommodations scheme (AF-

DIA)

These schemes are based on the fully connected cascade (FCC) neural network

(NN). The FCC NN architecture has been shown to be far more efficient and powerful

compared to the popular multilayer perceptron (MLP) NN architecture [25,60]. To

the best knowledge of the author, this is first time the benefits of the FCC NN

are harnessed for SFDIA and AFDIA in aircraft systems. The SFDIA and AFDIA

scheme developed are discussed in the following section, where the contributions of

this research are summarised.

147

Chapter 7. Conclusions and Future Work

7.2 Research Contribution

From the research conducted in this thesis, 3 main contributions can be identified.

These are as follows:

1. FCC NN for SFDIA and AFDIA

This research presented the development and application of SFDIA and AF-

DIA scheme based on the FCC NN. This is the first time the FCC NN archi-

tecture has been used for such application. Usually the popular choice for NN

applications is the MLP NN architecture [25,60]. However, this architecture is

not efficient and powerful when compared with the FCC NN. For example in

the results presented by the authors in [60] and [25], to solve a parity-15 prob-

lem, the MLP NN with 1 hidden layer required 15 neurons. In comparison,

the FCC NN was able to solve the problem using just 5 neurons. Additionally,

to solve a party-63 problem the FCC NN required 6 neurons compared to 63

by the MLP architecture.

In this research, FCC NN based pitch, roll and yaw rate sensor estimators

were developed. These estimators are part of the SFDIA scheme. Following a

failure in these sensors, the FCC NN based estimators replace the fault sensor

measurements. With as few as 2 neurons, the FCC NN was able to estimate

the yaw sensor measurements. The developed AFDIA scheme depends on an

FCC NN based roll controller. This controller is able to mimic the output

of the aircraft roll controller with 5 neurons. Following a severe loss of wing

surface, the FCC controller adapts to maintain flight. The results achieved

in this thesis validate the use of this NN architecture for SFDIA and AFDIA

applications in aircraft systems.

2. The SFDIA Scheme

One of the major types of failure in an aircraft system is sensor failure. The

endurance of an aircraft can be increased in the presence of sensor failure if

the aircraft system is capable of tolerating or accommodating it. This added

tolerance can be achieved by implementing a sensor failure detection, iden-

148

Chapter 7. Conclusions and Future Work

tification and accommodation (SFDIA) scheme. In this research an SFDIA

scheme based on an FCC NN was developed.

In this scheme, FCC NN based pitch, roll and yaw rate sensor estimators were

developed. These estimators could replace the faulty physical sensor in case

of a failure. One notable outcome of the SFDIA scheme development was

the ability of the FCC NN to accurately estimate the yaw sensor measure-

ments with just 2 neurons. In total, 105 failure experiments were conducted

to analyse the developed SFDIA scheme. In these experiments, only 1 failure

went undetected. These results validate the use of the FCC NN based SFDIA

scheme, however, the scheme does have some shortcomings. These shortcom-

ings were explored in the relevant sections and solutions were proposed as part

of further work on improving the scheme.

One noteworthy limitation of the presented SFDIA scheme is the fixed thresh-

old based failure detection mechanism. Selecting a fixed fault threshold is a

challenging task especially in a dynamic system which is susceptible to noise

and modelling inaccuracy. If the threshold is too high, the fault might take

longer to be detected or worse, go undetected. Having a low threshold on

the other hand might increase the rate of false detection. Additionally, if the

dynamics of the system change in the future, the thresholds would have to

be evaluated and fixed again. An alternative to the fixed threshold based

detection mechanism is an adaptive threshold. In this mechanism, the fault

threshold adapts to the changes in the system dynamics with time. Such a

mechanism, as presented in the [50] and [96], would increase the robustness of

the SFDIA scheme developed in this research.

3. The AFDIA Scheme

Another major type of failure in an aircraft system is the failure of the ac-

tuators. In this research an FCC NN based actuator failure detection, iden-

tification and accommodation (AFDIA) scheme was developed. This scheme

aimed at accommodating a severe case of failure, where about 66% of the

wing surface is lost during flight. Successfully accommodating this would re-

149

Chapter 7. Conclusions and Future Work

sult in a remarkable addition of endurance to an aircraft system. An ideal

scenario would be if the aircraft maintains flight with the loss of 66% of the

wing surface. To achieve this scenario, the scheme implemented a an FCC NN

based roll controller that could adapt on-line following a failure in order to

accommodate the failure.

Initially, 240 AFDIA experiments were conducted based on which the final

AFDIA scheme was proposed. The final AFDIA scheme was able to success-

fully accommodate such a severe failure, and achieved the ideal scenario of

maintaining flight following a 66% loss of wing surface. 6 simulation results

covering 2 hours of flight following the failure were presented to highlight the

remarkable display of added endurance using the final design of the AFDIA

scheme. The aircraft maintained flight over the 2 hours of simulation following

a 66% loss of wing surface.

Regardless of this success, the scheme does have some limitations which were

discussed in the relevant sections. One noteworthy limitation of the AFDIA

scheme was the use of fixed threshold based fault detection mechanism. This is

similar to the limitation of the SFDIA scheme discussed earlier, and a possible

alternative to this is the use of the adaptive threshold based mechanism. In

addition to this, in all the AFDIA experiments conducted the failure was

successfully detected.

However, theses results could have been favoured by the limitation of the exper-

iments to straight level flight. If the aircraft was making a turning manoeuvre

and/or was in a turbulent environment, it is possible that the roll accelera-

tion (ṗ) signal monitored for fault detection would cross the fixed threshold.

This would result in false failure detection. Additional study needs to be con-

ducted to develop detection mechanisms, that would take into account the

flight phase of the aircraft, to ensure no false alarms are triggered. One pos-

sible solution is to monitor multiple signals to ensure the robustness of the

detection mechanism.

150

Chapter 7. Conclusions and Future Work

7.3 Future Work

In this section, future work based on the research presented in this thesis is pro-

posed. Note that future work specific to improving the presented SFDIA and AFDIA

schemes has been discussed in the relevant sections of the thesis. The aim of this

section is to provide the reader with some possible future work to expand on the

research presented here.

1. Multiple Sensor Failure

The SFDIA scheme developed addressed failures in pitch, roll and yaw rate

sensors. The scheme however was limited to single sensor failure at a time.

Future work could focus on extending the scheme to addresses multiple sensor

failure at a time, similar to the research conducted by Samy [37].

2. Complete AFDIA Scheme

The developed AFDIA scheme added endurance to an aircraft in the presence

of 66% loss of wing surface. Due to timing constraints on the research, the

scheme only implemented an FCC NN based roll controller. Future work could

focus on developing an NN based pitch and yaw controller. These controllers

could further enhance the results achieved using just the roll controller. For

example, following a 66% loss of wing surface, the aircraft is able to maintain

flight using the NN based roll controller which is part of the AFDIA scheme.

Although the aircraft maintains flight following such a severe failure, it does

not maintain a fixed altitude or heading. This is due to the lack of pitch or

yaw control which is set to 0 following a failure.

The AFDIA scheme could be expanded to implement an FCC NN based pitch

and yaw controller, similar to the roll controller. This would further enhance

the capability of the AFDIA scheme by enabling the ability to control the pitch

and yaw attitude of the aircraft following a failure. In addition, implementing

the pitch and yaw controller could allow the AFDIA scheme to accommodate

loss of surface failures in the elevators and rudder of the aircraft.

3. Integration of the AFDIA and SFDIA Scheme

151

Chapter 7. Conclusions and Future Work

The SFDIA and the AFDIA scheme presented were developed independently

of each other. However in practical applications one must consider how these

two schemes will interact with each other. This problem was not addressed in

this body of research. Future work needs to consider how these two schemes

could be integrated to function together in a harmonious fashion.

4. Using a Different Simulator

As mentioned earlier, the X-Plane simulator which is well known for its re-

alistic simulations was used for this research. However, some challenges were

encountered while using the simulator. These challenges and the intended

research for different types of actuator failures were discussed in Chapter 5.

Since the simulator only simulates loss of flying surface failures, additional

control actuator failures could not be explored. This is a key limitation of the

research presented here.

Changing the simulator would allow the exploration of the further develop-

ment of the AFDIA scheme, which accommodates a wide range of actuator

failures. In addition, the FCC NN could be used to develop a robust detection

mechanism that can detect a wide range of failures.

7.4 Summary

To conclude, the endurance of an aircraft can be increased in the presence of failures

if the aircraft implements a fault tolerant flight control system (FTFCS). FTFCS

can be achieved by implementing a failure detection, identification and accommo-

dation (FDIA) schemes. In this research a sensor failure detection, identification

and accommodation (SFDIA) and an actuator failure detection, identification and

accommodation (AFDIA) schemes were developed. These schemes are based on the

fully connected cascade (FCC) neural network (NN) architecture.

The SFDIA scheme can add endurance to an aircraft, following a pitch, roll

or yaw rate sensor failure. The AFDIA scheme only addresses a severe failure of

66% loss of wing surface. The scheme manages to add endurance to an aircraft by

152

Chapter 7. Conclusions and Future Work

maintaining flight following a 66% loss of wing surface. The results presented in

this research validate the use of the FCC NN for SFDIA and AFDIA applications,

especially in aircraft systems.

153

“If you’re absent during my struggle, don’t expect to be present during my
success.”

– Will Smith

154

Bibliography

[1] H. Yu and B. Wilamowski, “Levenberg-Marquardt Training,” in Intelligent

Systems, ser. Electrical Engineering Handbook. CRC Press, Feb. 2011, pp.

1–16.

[2] R. Collinson, Introduction to Avionics Systems. Dordrecht: Springer Nether-

lands, 2011.

[3] U. BENNINGTON, “USS Bennington - crew stories - No Wing F15.”

[Online]. Available: http://www.uss-bennington.org/phz-nowing-f15.html

[4] CHRobotics, “Understanding Euler Angles,” 2014. [Online]. Available:

http://www.chrobotics.com/library/understanding-euler-angles

[5] UCLan, “Centre For Energy and Power Management.” [Online]. Avail-

able: http://www.uclan.ac.uk/research/explore/groups/centre\ for\ energy\

and\ power\ management.php

[6] S. Hussain, M. Mokhtar, and J. M. Howe, “Aircraft sensor estimation for fault

tolerant flight control system using fully connected cascade neural network,”

in The 2013 International Joint Conference on Neural Networks (IJCNN).

IEEE, Aug. 2013, pp. 1–8.

[7] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant

control systems,” Annual Reviews in Control, vol. 32, no. 2, pp. 229–252, Dec.

2008.

155

BIBLIOGRAPHY

[8] F. Bateman, H. Noura, and M. Ouladsine, “Fault Diagnosis and Fault-Tolerant

Control Strategy for the Aerosonde UAV,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 47, no. 3, pp. 2119–2137, Jul. 2011.

[9] M. Steinberg, “Historical Overview of Research in Reconfigurable Flight Con-

trol,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal

of Aerospace Engineering, vol. 219, no. 4, pp. 263–275, Jun. 2005.

[10] I. Samy, I. Postlethwaite, and D. Gu, “Neural network based sensor validation

scheme demonstrated on an unmanned air vehicle (UAV) model,” in 2008 47th

IEEE Conference on Decision and Control. IEEE, 2008, pp. 1237–1242.

[11] M. R. Napolitano, Y. An, and B. A. Seanor, “A fault tolerant flight con-

trol system for sensor and actuator failures using neural networks,” Aircraft

Design, vol. 3, no. 2, pp. 103–128, Jun. 2000.

[12] G. Campa, M. Fravolini, M. Napolitano, and B. Seanor, “Neural networks-

based sensor validation for the flight control system of a B777 research

model,” in Proceedings of the 2002 American Control Conference (IEEE Cat.

No.CH37301), vol. 1. American Automatic Control Council, 2002, pp. 412–

417.

[13] Y. An, “A design of fault tolerant flight control systems for sensor and actuator

failures using on-line learning neural network,” PhD Thesis, West Virginia

University, US, 1998.

[14] G. Heredia and A. Ollero, “Sensor fault detection in small autonomous heli-

copters using observer/Kalman filter identification,” in 2009 IEEE Interna-

tional Conference on Mechatronics, vol. 00, no. April. IEEE, 2009, pp. 1–6.

[15] H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran, “Fuzzy

Fault Tolerant Controller for Actuator Failures during Aircraft Autolanding,”

in 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006, pp.

1200–1204.

156

BIBLIOGRAPHY

[16] S. Kim, J. Choi, and Y. Kim, “Fault detection and diagnosis of aircraft ac-

tuators using fuzzy-tuning IMM filter,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 44, no. 3, pp. 940–952, Jul. 2008.

[17] I. Samy, I. Postlethwaite, and D.-W. Gu, “Detection and accommodation of

sensor faults in UAVs- a comparison of NN and EKF based approaches,” in

49th IEEE Conference on Decision and Control (CDC). IEEE, Dec. 2010,

pp. 4365–4372.

[18] R. Isermann and P. Ballé, “Trends in the application of model-based fault

detection and diagnosis of technical processes,” Control Engineering Practice,

vol. 5, no. 5, pp. 709–719, May 1997.

[19] M. R. Khosravani, “Application of Neural Network on Flight Control,”

International Journal of Machine Learning and Computing, vol. 2, no. 6, pp.

882–885, 2012. [Online]. Available: http://www.ijmlc.org/show-34-378-1.html

[20] G. Chowdhary and E. Johnson, “Adaptive Neural Network Flight Control

Using both Current and Recorded Data,” in AIAA Guidance, Navigation and

Control Conference and Exhibit, ser. Guidance, Navigation, and Control and

Co-located Conferences. American Institute of Aeronautics and Astronautics,

Aug. 2007.

[21] M. Innocenti and M. Napolitano, “Neural Networks and other Techniques for

Fault Identification and Isolation of Aircraft Systems,” PISA UNIV (ITALY)

DEPT OF ELECTRICAL SYSTEMS AND AUTOMATION, Tech. Rep. May,

2003.

[22] Craig R. Bomben, J. W. Smolka, J. T. Bosworth, P. S. Williams-Hayes, J. J.

Burken, R. R. Larson, Mark J. Buschbacher, and Heather A. Maliska, “Devel-

opment and Flight Testing of a Neural Network Based Flight Control System

on the NF-15B Aircraft,” NASA, 2006.

157

BIBLIOGRAPHY

[23] M.-Y. Chow, R. Sharpe, and J. Hung, “On the application and design of

artificial neural networks for motor fault detection. I,” IEEE Transactions on

Industrial Electronics, vol. 40, no. 2, pp. 181–188, Apr. 1993.

[24] B. M. Wilamowski, “How to not get frustrated with neural networks,” 2011

IEEE International Conference on Industrial Technology, pp. 5–11, Mar. 2011.

[25] B. Wilamowski, “Neural network architectures and learning algorithms,”

IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 56–63, Dec. 2009.

[26] H. Yu and W. Auburn, “Fast and efficient and training of neural networks,”

in 3rd International Conference on Human System Interaction. IEEE, May

2010, pp. 175–181.

[27] B. M. Wilamowski, N. Cotton, J. Hewlett, and O. Kaynak, “Neural Network

Trainer with Second Order Learning Algorithms,” in Intelligent Engineering

Systems, 2007 International Conference on. IEEE, Jun. 2007, pp. 127–132.

[28] B. Wilamowski, D. Hunter, and A. Mabnowski, “Solving parity-N problems

with feedforward neural networks,” in Proceedings of the International Joint

Conference on Neural Networks, 2003., vol. 4. IEEE, 2003, pp. 2546–2551.

[29] Laminar Research, “FAA-Certified X-Plane.” [Online]. Available: http:

//www.x-plane.com/pro/certified/

[30] ——, “X-Plane 10 Manual,” 2012. [Online]. Available: http://www.x-plane.

com/files/manuals/X-Plane\ 10\ Desktop\ manual.pdf

[31] ——, “X-Plane Pro Website.” [Online]. Available: http://www.x-plane.com/

pro/landing/

[32] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,

LAPACK Users’ Guide, 3rd ed. Philadelphia, PA: Society for Industrial and

Applied Mathematics, 1999.

158

BIBLIOGRAPHY

[33] M. Verhaegen, S. Kanev, R. Hallouzi, C. Jones, J. Maciejowski, and H. Smail,

“Fault tolerant flight control-a survey,” in Fault Tolerant Flight Control.

Springer, 2010, pp. 47–89.

[34] J. Jiang, “Fault-tolerant control systems-an introductory overview,” Acta Au-

tomatica Sinica, vol. 31, no. 1, pp. 161–174, 2005.

[35] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault Detection, Iso-

lation, and Reconfiguration Methods,” IEEE Transactions on Control Systems

Technology, vol. 18, no. 3, pp. 636–653, May 2010.

[36] P. Goupil, “AIRBUS state of the art and practices on FDI and FTC in flight

control system,” Control Engineering Practice, vol. 19, no. 6, pp. 524–539,

Jun. 2011.

[37] I. Samy, I. Postlethwaite, and D.-W. Gu, “Survey and application of sensor

fault detection and isolation schemes,” Control Engineering Practice, vol. 19,

no. 7, pp. 658–674, Jul. 2011.

[38] C. Lin and C. Liu, “Failure detection and adaptive compensation for fault

tolerable flight control systems,” Industrial Informatics, IEEE Transactions

on, vol. 3, no. 4, pp. 322–331, Nov. 2007.

[39] J. Boskovic and R. Mehra, “A multiple model-based reconfigurable flight con-

trol system design,” in Proceedings of the 37th IEEE Conference on Decision

and Control (Cat. No.98CH36171), vol. 4, no. December. IEEE, 1998, pp.

4503–4508.

[40] P. Maybeck and R. Stevens, “Reconfigurable flight control via multiple model

adaptive control methods,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 27, no. 3, pp. 470–480, May 1991.

[41] T. Menke and P. Maybeck, “Sensor/actuator failure detection in the Vista F-

16 by multiple model adaptive estimation,” Aerospace and Electronic Systems,

. . . , vol. 31, no. 4, pp. 1218–1229, Oct. 1995.

159

BIBLIOGRAPHY

[42] P. Maybeck and D. Pogoda, “Multiple model adaptive controller for the STOL

F-15 with sensor/actuator failures,” in Proceedings of the 28th IEEE Confer-

ence on Decision and Control. IEEE, 1989, pp. 1566–1572. [Online]. Avail-

able: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

70412http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=70412

[43] Y. Zhang and J. Jiang, “Integrated active fault-tolerant control using IMM

approach,” Aerospace and Electronic Systems, IEEE . . . , vol. 37, no. 4, pp.

1221–1235, 2001.

[44] ——, “An interacting multiple-model based fault detection, diagnosis and

fault-tolerant control approach,” in Proceedings of the 38th IEEE Conference

on Decision and Control (Cat. No.99CH36304), vol. 4, no. December. IEEE,

1999, pp. 3593–3598.

[45] NASA, “NASA Dryden Past Projects: Propulsion Controlled Aircraft

(PCA),” 2009. [Online]. Available: http://www.nasa.gov/centers/dryden/

history/pastprojects/PCA/\#.U-0cDvldVEI

[46] J. J. Burken and F. W. Burcham, “Flight-Test Results of Propulsion-Only

Emergency Control System on MD-11 Airplane,” Journal of Guidance, Con-

trol, and Dynamics, vol. 20, no. 5, pp. 980–987, Sep. 1997.

[47] F. Burcham, J. Burken, T. Maine, and J. Bull, “Emergency flight

control using only engine thrust and lateral center-of-gravity offset:

A first look,” NASA, Tech. Rep. July, 1997. [Online]. Available:

http://arc.aiaa.org/doi/abs/10.2514/6.1997-3189

[48] G. Campa, M. L. Fravolini, B. Seanor, M. R. Napolitano, D. D. Gobbo, G. Yu,

and S. Gururajan, “On-line learning neural networks for sensor validation for

the flight control system of a B777 research scale model,” International Journal

of Robust and Nonlinear Control, vol. 12, no. 11, pp. 987–1007, Sep. 2002.

[49] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to nonlinear

systems,” Int. symp. aerospace/defense . . . , 1997.

160

BIBLIOGRAPHY

[50] M. Mrugalski, “An unscented Kalman filter in designing dynamic GMDH

neural networks for robust fault detection,” International Journal of Applied

Mathematics and Computer Science, vol. 23, no. 1, pp. 157–169, Jan. 2013.

[51] C. Hajiyev and H. E. Soken, “Robust Estimation of UAV Dynamics in the

Presence of Measurement Faults,” Journal of Aerospace Engineering, vol. 25,

no. 1, pp. 80–89, Jan. 2012.

[52] H. Guo-jian, L. Gui-xiong, C. Geng-xin, and C. Tie-qun, “Self-recovery

method based on auto-associative neural network for intelligent sensors,” in

2010 8th World Congress on Intelligent Control and Automation, no. 2007.

IEEE, Jul. 2010, pp. 6918–6922.

[53] S. Gururajan, M. L. Fravolini, H. Chao, M. Rhudy, and M. R. Napolitano,

“Performance evaluation of neural network based approaches for airspeed Sen-

sor Failure Accommodation on a small UAV,” in 21st Mediterranean Confer-

ence on Control and Automation. IEEE, Jun. 2013, pp. 603–608.

[54] T.-H. Guo and J. Musgrave, “Neural network based sensor validation for

reusable rocket engines,” in Proceedings of 1995 American Control Conference

- ACC’95, vol. 2. American Autom Control Council, 1995, pp. 1367–1372.

[55] L. Cork, R. Walker, and S. Dunn, “Fault Detection, Identification and Accom-

modation Techniques for Unmanned Airborne Vehicles,” Australian Interna-

tional Aerospace Congress, 2005.

[56] M. Fravolini, G. Campa, and K. Napolitano, “Minimal resource allocating net-

works for aircraft SFDIA,” in 2001 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556), vol. 2,

no. July. IEEE, 2001, pp. 1251–1256.

[57] N. Sundararajan, “Neural Networks for Intelligent Aircraft Fault Tolerant

Controllers,” Signal Processing, Communications and . . . , pp. 8–14, 2008.

161

BIBLIOGRAPHY

[58] L. Xiaoxiong, S. Liyuan, C. Kang, and G. Wei, “A neural network-based direct

adaptive fault tolerance flight control for control surface damage,” Procedia

Engineering, vol. 15, pp. 147–151, Jan. 2011.

[59] NASA, “NASA Armstrong Fact Sheet: Intelligent Flight Control System,”

2014. [Online]. Available: http://www.nasa.gov/centers/armstrong/news/

FactSheets/FS-076-DFRC.html\#.VB1xb\ ldVEI

[60] D. Hunter, H. Yu, and M. Pukish, “Selection of Proper Neural Network Sizes

and Architectures—A Comparative Study,” Industrial Informatics, . . . , vol. 8,

no. 2, pp. 228–240, May 2012.

[61] P. Goupil, “Oscillatory failure case detection in the A380 electrical flight con-

trol system by analytical redundancy,” Control Engineering Practice, vol. 18,

no. 9, pp. 1110–1119, Sep. 2010.

[62] I. Sadeghzadeh and Y. Zhang, “A review on fault-tolerant control for

unmanned aerial vehicles (UAVs),” Infotech@ Aerospace, St. Louis, MO, no.

March, pp. 1–12, 2011. [Online]. Available: http://arc.aiaa.org/doi/pdf/10.

2514/6.2011-1472

[63] R. Patton, “Fault detection and diagnosis in aerospace systems using analyti-

cal redundancy,” Computing & Control Engineering Journal, vol. 2, no. 3, pp.

127–136, 1991.

[64] F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. L.

Ferretti, R. E. P. Leite, W. Jacob Filho, R. Lent, and S. Herculano-Houzel,

“Equal numbers of neuronal and nonneuronal cells make the human brain an

isometrically scaled-up primate brain.” The Journal of comparative neurology,

vol. 513, no. 5, pp. 532–41, Apr. 2009.

[65] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-up pri-

mate brain.” Frontiers in human neuroscience, vol. 3, no. November, p. 31,

Jan. 2009.

162

BIBLIOGRAPHY

[66] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg-

Marquardt training.” IEEE transactions on neural networks / a publication

of the IEEE Neural Networks Council, vol. 21, no. 6, pp. 930–7, Jun. 2010.

[67] D. Kriesel, A Brief Introduction to Neural Networks, 2007. [Online]. Available:

availableathttp://www.dkriesel.com

[68] K. Abhishek, M. Singh, S. Ghosh, and A. Anand, “Weather Forecasting Model

using Artificial Neural Network,” Procedia Technology, vol. 4, pp. 311–318,

Jan. 2012.

[69] V. B. Sutariya, A. Groshev, and Y. V. Pathak, “Artificial Neural Networks

in Pharmaceutical Research, Drug Delivery and Pharmacy Curriculum,” in

2013 29th Southern Biomedical Engineering Conference, vol. 4749. IEEE,

May 2013, pp. 91–92.

[70] A. F. Atiya, “Bankruptcy prediction for credit risk using neural networks: a

survey and new results.” IEEE transactions on neural networks / a publication

of the IEEE Neural Networks Council, vol. 12, no. 4, pp. 929–35, Jan. 2001.

[71] B. K. Bose, “Neural Network Applications in Power Electronics and Motor

Drives An Introduction and Perspective,” IEEE Transactions on Industrial

Electronics, vol. 54, no. 1, pp. 14–33, Feb. 2007.

[72] B. M. Wilamowski, “C++ implementation of neural networks trainer,” in

2009 International Conference on Intelligent Engineering Systems. IEEE,

Apr. 2009, pp. 257–262.

[73] B. Wilamowski, “Challenges in applications of computational intelligence in

industrial electronics,” Industrial Electronics (ISIE), 2010 IEEE, pp. 15–22,

Jul. 2010.

[74] B. Wilamowski, N. Cotton, O. Kaynak, and G. Dundar, “Computing Gradient

Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks,” IEEE

Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3784–3790, Oct.

2008.

163

BIBLIOGRAPHY

[75] B. Wilamowski, H. Yu, and K. Chung, “Parity-N Problems as a Vehicle to

Compare Efficiencies Parity-N Problems as a Vehicle to Compare Efficiencies,”

in Intelligent Systems, ser. Electrical Engineering Handbook. CRC Press, Feb.

2011, pp. 1–8.

[76] D. Liu, M. E. Hohil, and S. H. Smith, “N-bit parity neural networks: new

solutions based on linear programming,” Neurocomputing, vol. 48, no. 1–4,

pp. 477–488, 2002.

[77] M. E. Hohil, D. Liu, and S. H. Smith, “Solving the N-bit parity problem using

neural networks,” Neural Networks, vol. 12, no. 9, pp. 1321–1323, 1999.

[78] P. Werbos, “Backpropagation: past and future,” in IEEE International Con-

ference on Neural Networks. IEEE, 1988, pp. 343–353 vol.1.

[79] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct.

1986.

[80] B. M. Wilamowski and H. Yu, “Neural network learning without backprop-

agation.” IEEE transactions on neural networks / a publication of the IEEE

Neural Networks Council, vol. 21, no. 11, pp. 1793–803, Nov. 2010.

[81] B. M. Wilamowski, “Advanced learning algorithms,” in 2009 International

Conference on Intelligent Engineering Systems. IEEE, Apr. 2009, pp. 9–17.

[82] B. Wilamowski, H. Yu, and N. Cotton, “NBN Algorithm,” in Intelligent Sys-

tems, ser. Electrical Engineering Handbook. CRC Press, Feb. 2011, pp. 1–24.

[83] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the

Marquardt algorithm.” IEEE transactions on neural networks / a publication

of the IEEE Neural Networks Council, vol. 5, no. 6, pp. 989–993, Jan. 1994.

[84] B. Wilamowski, “Understanding Neural Networks,” in Intelligent Systems, ser.

Electrical Engineering Handbook. CRC Press, Feb. 2011, pp. 1–11.

164

BIBLIOGRAPHY

[85] Laminar Research, “X-Plane 10 Global — The World’s Most Advanced Flight

Simulator — X-Plane.com.” [Online]. Available: http://www.x-plane.com

[86] R. Collinson, “Navigation Systems,” in Introduction to Avionics Systems.

Dordrecht: Springer Netherlands, 2011, pp. 303–376.

[87] R. P. G. Collinson, “Inertial Sensors and Attitude Derivation,” in Introduction

to Avionics Systems. Springer Netherlands, 2011, pp. 255–302.

[88] R. Collinson, “Aerodynamics and Aircraft Control,” in Introduction to Avion-

ics Systems. Dordrecht: Springer Netherlands, 2011, pp. 101–117.

[89] M. V. Cook, Flight Dynamic Principles, 2nd ed. Oxford: Butterworth-

Heinemann, 2007.

[90] T. A. Talay, “Stability and Control.” [Online]. Available: http:

//history.nasa.gov/SP-367/chapt9.htm

[91] A. Kozionov, M. Kalinkin, A. Natekin, and A. Loginov, “Wavelet-based sen-

sor validation: Differentiating abrupt sensor faults from system dynamics,”

in 2011 IEEE 7th International Symposium on Intelligent Signal Processing.

IEEE, Sep. 2011, pp. 1–5.

[92] E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling,

Detection, and Disambiguation of Sensor Faults for Aerospace Applications,”

IEEE Sensors Journal, vol. 9, no. 12, pp. 1907–1917, Dec. 2009.

[93] I. Samy, “Development and Evaluation of Neural Network Models For Cost

Reduction in Unmanned Air Vehicles,” PhD Thesis, University of Leicester,

UK, May 2009.

[94] G. Heredia, a. Ollero, M. Bejar, and R. Mahtani, “Sensor and actuator fault

detection in small autonomous helicopters,” Mechatronics, vol. 18, no. 2, pp.

90–99, Mar. 2008.

[95] M. Kim, S. H. Yoon, P. a. Domanski, and W. Vance Payne, “Design of a

steady-state detector for fault detection and diagnosis of a residential air con-

165

BIBLIOGRAPHY

ditioner,” International Journal of Refrigeration, vol. 31, no. 5, pp. 790–799,

Aug. 2008.

[96] M. Perhinschi, M. Napolitano, G. Campa, B. Seanor, J. Burken, and R. Lar-

son, “An adaptive threshold approach for the design of an actuator failure

detection and identification scheme,” IEEE Transactions on Control Systems

Technology, vol. 14, no. 3, pp. 519–525, May 2006.

[97] Laminar Research, “X-Plane Website.” [Online]. Available: http://www.

x-plane.com/desktop/home/

[98] ——, “X-Plane Forum.” [Online]. Available: http://forums.x-plane.org/

[99] X-Plane, “X-Plane Datarefs.” [Online]. Available: http://www.xsquawkbox.

net/xpsdk/docs/DataRefs.html

[100] Military.com, “F-15 One Wing Miracle Landing, Militay.com.” [Online].

Available: http://www.military.com/video/military-aircraft-operations/

crash-landings/f-15-one-wing-miracle-landing/660534011001/

[101] S. Jacklin, “Closing the Certification Gaps in Adaptive Flight Control Soft-

ware,” in AIAA Guidance, Navigation and Control Conference and Exhibit.

Reston, Virigina: American Institute of Aeronautics and Astronautics, Aug.

2008, pp. 1–14.

166

Appendix A

Flight Duration Post Failure

i

Appendix A. Flight Duration Post Failure

T
ab

le
A

.1
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
5,

sc
al

ar
=

1.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
15

0.
24

45
17

7.
35

02
27

.1
05

7
15

3.
47

13
17

8.
61

82
25

.1
46

9

2
17

0.
57

96
19

8.
10

14
27

.5
21

9
18

4.
56

94
21

2.
31

94
27

.7
50

0

3
14

3.
57

89
16

9.
89

39
26

.3
15

0
19

4.
09

01
22

0.
90

19
26

.8
11

8

4
18

9.
19

15
21

6.
20

50
27

.0
13

5
22

8.
32

12
25

5.
31

41
26

.9
92

9

5
13

2.
74

07
15

9.
71

28
26

.9
72

1
17

6.
40

10
20

3.
16

87
26

.7
67

7

6
14

2.
08

49
16

9.
18

44
27

.0
99

5
15

5.
06

45
18

0.
41

73
25

.3
52

7

7
17

0.
02

13
19

6.
94

59
26

.9
24

6
17

6.
26

85
20

3.
87

89
27

.6
10

4

8
17

0.
43

54
19

7.
74

96
27

.3
14

1
16

9.
63

24
19

5.
85

37
26

.2
21

3

9
15

7.
08

84
18

2.
88

24
25

.7
94

0
15

5.
73

98
18

3.
45

30
27

.7
13

1

10
16

1.
72

81
18

6.
99

57
25

.2
67

7
17

6.
56

08
20

2.
39

55
25

.8
34

7

A
ve

ra
ge

26
.7

32
8

26
.6

20
2

S
D

0.
71

57
0.

95
46

ii

Appendix A. Flight Duration Post Failure

T
ab

le
A

.2
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
5,

sc
al

ar
=

2.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
14

5.
70

96
17

9.
52

42
33

.8
14

5
16

7.
04

97
20

3.
72

73
36

.6
77

6

2
14

8.
86

62
18

3.
37

94
34

.5
13

3
18

9.
60

95
22

6.
53

44
36

.9
24

9

3
18

7.
20

29
22

2.
16

16
34

.9
58

6
16

4.
97

83
20

0.
80

98
35

.8
31

6

4
19

4.
25

12
22

8.
53

79
34

.2
86

7
17

3.
74

84
20

8.
95

80
35

.2
09

6

5
18

9.
59

34
22

6.
31

97
36

.7
26

3
17

0.
72

98
20

6.
98

73
36

.2
57

5

6
17

1.
88

81
20

8.
47

42
36

.5
86

0
18

1.
59

31
21

7.
63

23
36

.0
39

1

7
23

8.
76

13
27

5.
99

99
37

.2
38

7
14

5.
05

59
18

1.
42

73
36

.3
71

4

8
17

3.
74

56
21

0.
83

86
37

.0
93

0
16

3.
84

84
19

9.
73

97
35

.8
91

4

9
14

9.
17

26
18

5.
43

82
36

.2
65

6
15

4.
90

47
19

1.
05

89
36

.1
54

2

10
14

1.
99

42
17

7.
21

80
35

.2
23

8
18

7.
27

08
22

5.
23

62
37

.9
65

3

A
ve

ra
ge

35
.6

70
7

36
.3

32
3

S
D

1.
25

59
0.

74
29

iii

Appendix A. Flight Duration Post Failure

T
ab

le
A

.3
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
5,

sc
al

ar
=

3.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
16

1.
06

35
20

3.
25

30
42

.1
89

5
80

.7
08

0
12

6.
82

91
46

.1
21

1

2
15

9.
11

47
20

3.
60

44
44

.4
89

7
90

.7
39

5
13

5.
31

93
44

.5
79

8

3
15

4.
67

68
19

9.
09

21
44

.4
15

3
90

.6
49

8
13

5.
80

56
45

.1
55

8

4
16

0.
11

72
20

5.
45

47
45

.3
37

6
90

.7
89

1
13

5.
71

88
44

.9
29

7

5
69

.2
60

0
11

0.
87

25
41

.6
12

4
66

.7
08

0
11

1.
46

31
44

.7
55

1

6
67

.7
43

0
10

9.
18

45
41

.4
41

5
91

.8
02

2
13

7.
28

20
45

.4
79

8

7
72

.9
33

0
11

3.
96

29
41

.0
29

9
78

.8
30

4
12

4.
74

04
45

.9
09

9

8
94

.7
96

3
13

4.
83

73
40

.0
40

9
75

.7
25

7
12

1.
08

17
45

.3
56

0

9
78

.3
70

6
11

8.
56

30
40

.1
92

4
74

.3
51

1
11

9.
76

82
45

.4
17

0

10
79

.6
93

2
12

0.
90

28
41

.2
09

5
76

.8
04

0
12

2.
18

79
45

.3
83

9

A
ve

ra
ge

42
.1

95
9

45
.3

08
8

S
D

1.
88

44
0.

48
02

iv

Appendix A. Flight Duration Post Failure

T
ab

le
A

.4
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
5,

sc
al

ar
=

4.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
68

.2
89

2
11

3.
35

26
45

.0
63

4
73

.5
90

2
12

3.
93

75
50

.3
47

2

2
85

.9
58

7
13

1.
06

49
45

.1
06

2
76

.3
74

1
12

5.
27

05
48

.8
96

4

3
90

.4
22

6
13

4.
88

61
44

.4
63

5
75

.5
90

7
12

6.
36

41
50

.7
73

5

4
80

.7
03

8
12

6.
31

48
45

.6
11

0
10

2.
58

46
15

5.
42

14
52

.8
36

8

5
80

.9
10

4
12

6.
46

47
45

.5
54

3
81

.0
40

7
13

2.
20

83
51

.1
67

5

6
76

.2
32

3
12

2.
37

47
46

.1
42

4
70

.9
44

9
12

1.
34

76
50

.4
02

7

7
85

.5
88

4
13

0.
80

04
45

.2
12

0
72

.8
50

8
12

2.
06

61
49

.2
15

3

8
80

.6
94

6
12

7.
79

34
47

.0
98

8
86

.3
81

9
13

6.
02

34
49

.6
41

5

9
76

.0
65

0
12

4.
28

01
48

.2
15

1
74

.4
94

6
12

4.
51

76
50

.0
23

0

10
73

.8
87

6
12

0.
76

45
46

.8
76

9
73

.5
38

4
12

2.
55

98
49

.0
21

4

A
ve

ra
ge

45
.9

34
4

50
.2

32
5

S
D

1.
14

83
1.

18
66

v

Appendix A. Flight Duration Post Failure

T
ab

le
A

.5
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
10

sc
al

ar
=

1

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
80

.8
26

2
10

6.
00

94
25

.1
83

2
86

.8
26

8
11

4.
73

91
27

.9
12

3

2
78

.2
05

0
10

2.
87

90
24

.6
73

9
87

.3
00

9
11

4.
72

00
27

.4
19

1

3
80

.5
76

9
10

6.
29

89
25

.7
22

0
71

.6
60

4
97

.8
96

9
26

.2
36

5

4
75

.8
97

3
10

1.
10

28
25

.2
05

5
75

.4
06

4
10

2.
14

80
26

.7
41

6

5
81

.2
49

1
10

6.
16

02
24

.9
11

1
81

.3
39

8
10

8.
66

44
27

.3
24

6

6
91

.1
47

0
11

6.
03

49
24

.8
87

9
77

.7
71

6
10

4.
77

64
27

.0
04

8

7
75

.9
79

3
10

1.
32

40
25

.3
44

7
75

.5
77

0
10

2.
72

94
27

.1
52

4

8
76

.1
52

7
10

0.
68

61
24

.5
33

4
86

.8
20

5
11

3.
90

30
27

.0
82

5

9
81

.2
92

2
10

7.
20

55
25

.9
13

3
77

.1
31

3
10

3.
75

14
26

.6
20

1

10
70

.7
83

4
96

.1
82

4
25

.3
99

0
75

.7
79

3
10

3.
07

99
27

.3
00

6

A
ve

ra
ge

25
.1

77
4

27
.0

79
4

S
D

0.
43

96
0.

46
72

vi

Appendix A. Flight Duration Post Failure

T
ab

le
A

.6
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
10

S
ca

le
=

2

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
70

.7
66

6
10

4.
49

30
33

.7
26

4
70

.6
16

3
10

7.
27

47
36

.6
58

4

2
73

.0
82

1
10

6.
99

59
33

.9
13

8
78

.2
06

8
11

4.
85

50
36

.6
48

2

3
75

.5
19

6
10

9.
63

57
34

.1
16

1
73

.7
48

0
10

9.
88

02
36

.1
32

2

4
71

.4
88

8
10

5.
67

31
34

.1
84

4
70

.9
85

5
10

6.
97

30
35

.9
87

5

5
78

.5
27

7
11

1.
44

95
32

.9
21

8
71

.0
63

1
10

6.
45

58
35

.3
92

7

6
88

.9
97

8
12

2.
02

60
33

.0
28

2
72

.6
03

3
10

9.
08

06
36

.4
77

3

7
77

.0
51

9
11

1.
05

35
34

.0
01

6
75

.9
45

2
11

2.
53

34
36

.5
88

2

8
73

.6
49

9
10

7.
13

77
33

.4
87

9
71

.0
26

6
10

7.
39

14
36

.3
64

7

9
88

.5
67

6
12

1.
52

34
32

.9
55

8
71

.5
36

5
10

7.
80

51
36

.2
68

6

10
70

.5
46

3
10

4.
45

49
33

.9
08

6
74

.4
93

8
11

0.
66

33
36

.1
69

5

A
ve

ra
ge

33
.6

24
5

36
.2

68
7

S
D

0.
49

30
0.

38
38

vii

Appendix A. Flight Duration Post Failure

T
ab

le
A

.7
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
10

,
sc

al
ar

=
3.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
86

.0
17

3
12

6.
58

39
40

.5
66

6
67

.6
74

2
11

1.
57

90
43

.9
04

9

2
74

.1
01

4
11

6.
12

28
42

.0
21

5
70

.9
55

3
11

3.
99

49
43

.0
39

6

3
71

.0
77

7
11

2.
49

25
41

.4
14

9
78

.4
50

2
12

3.
03

22
44

.5
82

1

4
81

.7
85

9
12

2.
28

67
40

.5
00

8
70

.4
79

1
11

4.
53

35
44

.0
54

3

5
71

.6
94

9
11

2.
62

91
40

.9
34

3
72

.6
73

3
11

6.
81

46
44

.1
41

3

6
75

.8
08

7
11

7.
04

67
41

.2
38

1
70

.5
22

9
11

4.
06

37
43

.5
40

8

7
69

.5
85

0
11

0.
86

56
41

.2
80

6
69

.3
71

0
11

3.
55

39
44

.1
82

9

8
75

.7
71

8
11

6.
46

61
40

.6
94

4
70

.2
26

0
11

4.
52

32
44

.2
97

3

9
69

.4
10

4
11

1.
53

72
42

.1
26

8
77

.0
92

2
12

1.
04

51
43

.9
52

9

10
70

.4
68

5
11

2.
13

34
41

.6
64

9
73

.4
06

9
11

8.
17

99
44

.7
73

0

A
ve

ra
ge

41
.2

44
3

44
.0

46
9

S
D

0.
57

74
0.

49
48

viii

Appendix A. Flight Duration Post Failure

T
ab

le
A

.8
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
10

,
sc

al
ar

=
4.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
74

.6
83

6
12

1.
61

01
46

.9
26

5
72

.8
23

5
12

2.
30

57
49

.4
82

2

2
75

.2
63

0
12

1.
06

34
45

.8
00

4
71

.4
82

6
12

1.
03

83
49

.5
55

6

3
79

.4
28

1
12

5.
99

85
46

.5
70

4
72

.1
01

8
12

1.
46

21
49

.3
60

3

4
73

.6
36

3
12

0.
20

51
46

.5
68

8
72

.0
17

6
12

2.
44

69
50

.4
29

2

5
73

.8
63

1
12

0.
18

02
46

.3
17

1
74

.2
06

0
12

4.
44

21
50

.2
36

1

6
73

.5
68

2
12

0.
98

42
47

.4
15

9
76

.9
70

7
12

6.
62

31
49

.6
52

4

7
73

.1
20

8
11

9.
64

56
46

.5
24

8
77

.2
31

4
12

7.
24

11
50

.0
09

7

8
76

.4
67

5
12

4.
13

47
47

.6
67

2
76

.6
92

2
12

6.
17

91
49

.4
86

9

9
73

.9
33

4
12

1.
32

18
47

.3
88

4
79

.5
56

9
13

0.
35

63
50

.7
99

4

10
76

.6
60

0
12

3.
81

24
47

.1
52

5
72

.6
41

4
12

3.
42

34
50

.7
82

0

A
ve

ra
ge

46
.8

33
2

49
.9

79
4

S
D

0.
57

94
0.

55
23

ix

Appendix A. Flight Duration Post Failure

T
ab

le
A

.9
:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
15

,
sc

al
ar

=
1.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
71

.6
82

2
97

.0
78

4
25

.3
96

1
76

.9
18

3
10

3.
33

74
26

.4
19

1

2
77

.9
54

6
10

2.
73

12
24

.7
76

6
83

.4
70

7
11

0.
21

56
26

.7
44

9

3
73

.4
49

5
98

.6
79

7
25

.2
30

1
76

.1
44

8
10

3.
80

72
27

.6
62

4

4
73

.4
05

9
98

.7
33

8
25

.3
27

8
78

.6
97

7
10

5.
69

13
26

.9
93

6

5
71

.9
20

1
97

.3
33

6
25

.4
13

5
79

.5
36

8
10

6.
30

74
26

.7
70

6

6
76

.0
67

3
10

1.
31

96
25

.2
52

3
82

.1
77

7
10

9.
33

21
27

.1
54

5

7
76

.9
75

1
10

1.
50

26
24

.5
27

5
79

.1
83

4
10

6.
30

10
27

.1
17

5

8
75

.6
79

4
10

1.
02

31
25

.3
43

7
75

.1
64

3
10

2.
38

78
27

.2
23

5

9
80

.1
24

9
10

5.
33

05
25

.2
05

6
73

.7
06

9
10

0.
77

41
27

.0
67

2

10
82

.7
28

3
10

8.
00

87
25

.2
80

4
73

.5
67

5
10

0.
69

87
27

.1
31

3

A
ve

ra
ge

25
.1

75
4

27
.0

28
5

S
D

0.
28

99
0.

33
25

x

Appendix A. Flight Duration Post Failure

T
ab

le
A

.1
0:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
15

,
sc

al
ar

=
2.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
74

.3
97

7
10

8.
72

23
34

.3
24

6
85

.0
80

3
12

1.
55

70
36

.4
76

7

2
75

.2
23

4
10

9.
93

34
34

.7
10

0
76

.9
82

9
11

2.
25

83
35

.2
75

4

3
85

.7
88

6
11

9.
95

93
34

.1
70

7
75

.1
88

8
11

1.
19

23
36

.0
03

5

4
84

.4
85

5
11

8.
95

68
34

.4
71

4
82

.1
49

1
11

8.
72

13
36

.5
72

3

5
77

.8
98

5
11

3.
04

02
35

.1
41

7
76

.0
60

7
11

0.
87

54
34

.8
14

7

6
86

.7
03

5
12

0.
77

80
34

.0
74

5
73

.7
00

9
11

0.
45

44
36

.7
53

4

7
71

.9
97

9
10

5.
81

06
33

.8
12

7
78

.6
74

0
11

5.
16

37
36

.4
89

8

8
77

.4
07

4
11

1.
73

39
34

.3
26

5
80

.5
82

7
11

6.
70

85
36

.1
25

9

9
77

.9
52

5
11

2.
35

84
34

.4
05

9
81

.1
14

7
11

7.
80

25
36

.6
87

8

10
85

.0
73

0
11

9.
17

83
34

.1
05

3
82

.5
47

0
11

9.
04

37
36

.4
96

7

A
ve

ra
ge

34
.3

54
3

36
.1

69
6

S
D

0.
37

00
0.

64
46

xi

Appendix A. Flight Duration Post Failure

T
ab

le
A

.1
1:

F
li
gh

t
D

u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
15

,
sc

al
ar

=
3.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
72

.4
73

7
11

4.
90

53
42

.4
31

6
99

.0
78

2
14

2.
74

86
43

.6
70

3

2
73

.9
91

1
11

6.
38

81
42

.3
97

1
77

.8
25

1
12

1.
73

19
43

.9
06

8

3
82

.5
98

3
12

4.
82

54
42

.2
27

1
81

.9
74

7
12

6.
79

76
44

.8
22

9

4
78

.9
53

5
12

0.
77

61
41

.8
22

6
83

.7
31

6
12

9.
05

28
45

.3
21

2

5
78

.9
57

1
12

0.
45

03
41

.4
93

1
87

.8
84

7
13

2.
50

38
44

.6
19

1

6
78

.6
86

3
12

0.
32

92
41

.6
42

9
88

.9
72

0
13

3.
93

58
44

.9
63

7

7
77

.5
70

9
12

0.
31

26
42

.7
41

8
85

.6
16

1
13

0.
27

78
44

.6
61

6

8
85

.4
16

9
12

6.
73

89
41

.3
21

9
88

.1
16

1
13

3.
04

84
44

.9
32

3

9
80

.8
48

7
12

2.
39

57
41

.5
47

0
88

.8
28

1
13

3.
09

52
44

.2
67

1

10
84

.1
51

7
12

6.
12

72
41

.9
75

6
75

.2
92

2
12

0.
99

30
45

.7
00

9

A
ve

ra
ge

41
.9

60
1

44
.6

86
6

S
D

0.
47

27
0.

61
55

xii

Appendix A. Flight Duration Post Failure

T
ab

le
A

.1
2:

F
li
gh

t
d
u
ra

ti
on

af
te

r
fa

il
u
re

fo
r

w
in

d
ow

=
15

,
sc

al
ar

=
4.

L
ef

t
W

in
g

F
ai

lu
re

T
im

e
(s

ec
)

R
ig

h
t

W
in

g
F

ai
lu

re
T

im
e

(s
ec

)

N
o.

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

F
ai

l
D

et
ec

ti
on

T
im

e
of

C
ra

sh
D

u
ra

ti
on

1
81

.0
97

5
12

7.
91

59
46

.8
18

4
81

.0
16

6
13

0.
91

66
49

.9
00

0

2
81

.5
16

7
12

8.
11

90
46

.6
02

3
10

7.
90

82
15

7.
26

25
49

.3
54

3

3
78

.3
04

8
12

6.
19

52
47

.8
90

3
13

7.
72

40
18

6.
89

01
49

.1
66

1

4
85

.5
50

0
13

1.
60

93
46

.0
59

3
86

.0
94

2
13

6.
59

85
50

.5
04

3

5
85

.1
09

0
13

1.
23

61
46

.1
27

2
10

4.
63

87
15

4.
20

23
49

.5
63

6

6
78

.9
64

8
12

7.
04

27
48

.0
77

9
12

2.
90

80
17

5.
14

41
52

.2
36

2

7
79

.0
15

8
12

6.
35

83
47

.3
42

5
12

8.
00

69
17

8.
47

87
50

.4
71

8

8
81

.3
28

1
12

8.
08

56
46

.7
57

4
14

8.
37

54
19

8.
00

58
49

.6
30

3

9
80

.2
93

1
12

5.
71

66
45

.4
23

6
10

9.
30

23
15

8.
91

04
49

.6
08

1

10
89

.1
95

7
13

4.
31

88
45

.1
23

2
12

2.
50

85
17

2.
99

26
50

.4
84

1

A
ve

ra
ge

46
.6

22
2

50
.0

91
9

S
D

0.
97

46
0.

89
63

xiii

Appendix B

Wing Loss Failure Detection Time

Table B.1: Wing loss failure detection for window = 5, scalar = 1.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 150.2093 150.2445 0.0352 153.4508 153.4713 0.0204

2 170.5392 170.5796 0.0404 184.5443 184.5694 0.0251

3 143.5146 143.5789 0.0644 194.0704 194.0901 0.0197

4 189.1687 189.1915 0.0229 228.3029 228.3212 0.0182

5 132.6779 132.7407 0.0628 176.3582 176.4010 0.0427

6 142.0612 142.0849 0.0238 155.0044 155.0645 0.0601

7 169.9746 170.0213 0.0467 176.2123 176.2685 0.0563

8 170.4048 170.4354 0.0307 169.5892 169.6324 0.0431

9 157.0428 157.0884 0.0455 155.6791 155.7398 0.0607

10 161.6944 161.7281 0.0337 176.4925 176.5608 0.0683

Average 0.0406 0.0415

SD 0.0145 0.0194

xiv

Appendix B. Wing Loss Failure Detection Time

Table B.2: Wing loss failure detection for window = 5, scalar = 2.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 145.6527 145.7096 0.0569 166.9955 167.0497 0.0542

2 148.8450 148.8662 0.0211 189.5925 189.6095 0.0170

3 187.1584 187.2029 0.0446 164.9295 164.9783 0.0488

4 194.2176 194.2512 0.0336 173.7009 173.7484 0.0475

5 189.5728 189.5934 0.0206 170.6874 170.7298 0.0425

6 171.8127 171.8881 0.0754 181.5386 181.5931 0.0546

7 238.7266 238.7613 0.0346 145.0285 145.0559 0.0274

8 173.7110 173.7456 0.0346 163.8123 163.8484 0.0360

9 149.1387 149.1726 0.0339 154.8599 154.9047 0.0448

10 141.9343 141.9942 0.0599 187.2548 187.2708 0.0160

Average 0.0415 0.0389

SD 0.0176 0.0143

Table B.3: Wing loss failure detection for window = 5, scalar = 3.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 161.0309 161.0635 0.0326 80.6845 80.7080 0.0235

2 159.0683 159.1147 0.0463 90.7037 90.7395 0.0357

3 154.6511 154.6768 0.0258 90.6158 90.6498 0.0339

4 160.0643 160.1172 0.0529 90.7653 90.7891 0.0239

5 69.2255 69.2600 0.0345 66.6714 66.7080 0.0366

6 67.7085 67.7430 0.0345 91.7399 91.8022 0.0622

7 72.8978 72.9330 0.0352 78.7934 78.8304 0.0371

8 94.7390 94.7963 0.0573 75.6629 75.7257 0.0628

9 78.3245 78.3706 0.0461 74.3234 74.3511 0.0277

10 79.6691 79.6932 0.0242 76.7755 76.8040 0.0285

Average 0.0389 0.0372

SD 0.0112 0.0142

xv

Appendix B. Wing Loss Failure Detection Time

Table B.4: Wing loss failure detection for window = 5, scalar = 1.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 68.2297 68.2892 0.0595 73.5369 73.5902 0.0534

2 85.9019 85.9587 0.0568 76.3093 76.3741 0.0648

3 90.3830 90.4226 0.0395 75.5405 75.5907 0.0502

4 80.6632 80.7038 0.0406 102.5565 102.5846 0.0281

5 80.8449 80.9104 0.0655 81.0155 81.0407 0.0253

6 76.1817 76.2323 0.0506 70.9078 70.9449 0.0371

7 85.5400 85.5884 0.0484 72.8010 72.8508 0.0498

8 80.6698 80.6946 0.0248 86.3452 86.3819 0.0367

9 76.0401 76.0650 0.0249 74.4326 74.4946 0.0620

10 73.8208 73.8876 0.0668 73.4776 73.5384 0.0607

Average 0.0477 0.0468

SD 0.0152 0.0142

Table B.5: Wing loss failure detection for window = 10, scalar = 1.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 80.7792 80.8262 0.0470 86.7793 86.8268 0.0476

2 78.1572 78.2050 0.0478 87.2424 87.3009 0.0585

3 80.5175 80.5769 0.0594 71.6131 71.6604 0.0473

4 75.8739 75.8973 0.0233 75.3718 75.4064 0.0347

5 81.2256 81.2491 0.0235 81.3047 81.3398 0.0351

6 91.0892 91.1470 0.0578 77.7362 77.7716 0.0354

7 75.9325 75.9793 0.0468 75.5302 75.5770 0.0469

8 76.1179 76.1527 0.0348 86.7858 86.8205 0.0348

9 81.2339 81.2922 0.0582 77.0848 77.1313 0.0465

10 70.7253 70.7834 0.0581 75.7555 75.7793 0.0238

Average 0.0457 0.0410

SD 0.0140 0.0100

xvi

Appendix B. Wing Loss Failure Detection Time

Table B.6: Wing loss failure detection for window = 10, scalar = 2.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 70.7193 70.7666 0.0473 70.5580 70.6163 0.0583

2 73.0351 73.0821 0.0470 78.1478 78.2068 0.0590

3 75.4610 75.5196 0.0586 73.7115 73.7480 0.0365

4 71.4530 71.4888 0.0357 70.9606 70.9855 0.0249

5 78.4922 78.5277 0.0355 71.0135 71.0631 0.0496

6 88.9384 88.9978 0.0594 72.5785 72.6033 0.0248

7 76.9918 77.0519 0.0601 75.8810 75.9452 0.0642

8 73.6007 73.6499 0.0492 70.9752 71.0266 0.0515

9 88.5065 88.5676 0.0611 71.4699 71.5365 0.0667

10 70.5100 70.5463 0.0363 74.4551 74.4938 0.0387

Average 0.0490 0.0474

SD 0.0105 0.0154

Table B.7: Wing loss failure detection for window = 5, scalar = 3.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 85.9712 86.0173 0.0461 67.6392 67.6742 0.0350

2 74.0665 74.1014 0.0348 70.9082 70.9553 0.0471

3 71.0192 71.0777 0.0584 78.3881 78.4502 0.0620

4 81.7382 81.7859 0.0476 70.4545 70.4791 0.0247

5 71.6353 71.6949 0.0596 72.6344 72.6733 0.0390

6 75.7505 75.8087 0.0581 70.4863 70.5229 0.0366

7 69.5616 69.5850 0.0234 69.3459 69.3710 0.0250

8 75.7232 75.7718 0.0486 70.1988 70.2260 0.0272

9 69.3601 69.4104 0.0503 77.0252 77.0922 0.0670

10 70.4438 70.4685 0.0247 73.3797 73.4069 0.0272

Average 0.0452 0.0391

SD 0.0133 0.0152

xvii

Appendix B. Wing Loss Failure Detection Time

Table B.8: Wing loss failure detection for window = 5, scalar = 4.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 74.6240 74.6836 0.0596 72.7998 72.8235 0.0237

2 75.2279 75.2630 0.0351 71.4469 71.4826 0.0357

3 79.4044 79.4281 0.0236 72.0546 72.1018 0.0472

4 73.5883 73.6363 0.0480 71.9588 72.0176 0.0588

5 73.8048 73.8631 0.0584 74.1592 74.2060 0.0469

6 73.5208 73.5682 0.0475 76.9473 76.9707 0.0234

7 73.0975 73.1208 0.0233 77.1843 77.2314 0.0471

8 76.4080 76.4675 0.0595 76.6338 76.6922 0.0584

9 73.8869 73.9334 0.0465 79.5101 79.5569 0.0468

10 76.6249 76.6600 0.0351 72.6063 72.6414 0.0351

Average 0.0437 0.0423

SD 0.0138 0.0126

Table B.9: Wing loss failure detection for window = 15, scalar = 1.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 71.6469 71.6822 0.0353 76.8948 76.9183 0.0236

2 77.9197 77.9546 0.0349 83.4240 83.4707 0.0468

3 73.4262 73.4495 0.0233 76.1094 76.1448 0.0353

4 73.3592 73.4059 0.0468 78.6395 78.6977 0.0582

5 71.8964 71.9201 0.0237 79.5126 79.5368 0.0243

6 76.0207 76.0673 0.0466 82.1412 82.1777 0.0364

7 76.9514 76.9751 0.0237 79.1593 79.1834 0.0241

8 75.6557 75.6794 0.0237 75.1402 75.1643 0.0241

9 80.1010 80.1249 0.0239 73.6826 73.7069 0.0243

10 82.6930 82.7283 0.0353 73.5186 73.5675 0.0489

Average 0.0317 0.0346

SD 0.0095 0.0128

xviii

Appendix B. Wing Loss Failure Detection Time

Table B.10: Wing loss failure detection for window = 15, scalar = 2.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 74.3368 74.3977 0.0609 85.0228 85.0803 0.0575

2 75.1422 75.2234 0.0811 76.9478 76.9829 0.0351

3 85.7658 85.7886 0.0228 75.1421 75.1888 0.0467

4 84.4270 84.4855 0.0585 82.0908 82.1491 0.0583

5 77.8633 77.8985 0.0352 76.0015 76.0607 0.0591

6 86.6682 86.7035 0.0353 73.6773 73.7009 0.0237

7 71.9630 71.9979 0.0349 78.6380 78.6740 0.0359

8 77.3724 77.4074 0.0349 80.5242 80.5827 0.0584

9 77.8936 77.9525 0.0589 81.0764 81.1147 0.0383

10 85.0382 85.0730 0.0348 82.5224 82.5470 0.0246

Average 0.0457 0.0438

SD 0.0180 0.0141

Table B.11: Wing loss failure detection for window = 15, scalar = 3.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 72.4499 72.4737 0.0238 99.0213 99.0782 0.0570

2 73.9562 73.9911 0.0348 77.8016 77.8251 0.0236

3 82.5639 82.5983 0.0345 81.9279 81.9747 0.0468

4 78.9039 78.9535 0.0496 83.7080 83.7316 0.0236

5 78.8983 78.9571 0.0588 87.8392 87.8847 0.0455

6 78.6266 78.6863 0.0597 88.9238 88.9720 0.0482

7 77.5355 77.5709 0.0353 85.5678 85.6161 0.0484

8 85.3709 85.4169 0.0460 88.0931 88.1161 0.0230

9 80.8130 80.8487 0.0357 88.7900 88.8281 0.0382

10 84.0983 84.1517 0.0534 75.2576 75.2922 0.0345

Average 0.0432 0.0389

SD 0.0120 0.0122

xix

Appendix B. Wing Loss Failure Detection Time

Table B.12: Wing loss failure detection for window = 15, scalar = 4.

Left Wing Failure Time (sec) Right Wing Failure Time (sec)

No. Injection Detection Elapsed Injection Detection Elapsed

1 81.0614 81.0975 0.0360 80.9811 81.0166 0.0355

2 81.4565 81.5167 0.0602 107.8848 107.9082 0.0234

3 78.2466 78.3048 0.0582 137.6862 137.7240 0.0378

4 85.5152 85.5500 0.0348 86.0602 86.0942 0.0340

5 85.0523 85.1090 0.0566 104.5917 104.6387 0.0470

6 78.9414 78.9648 0.0235 122.8475 122.9080 0.0604

7 78.9922 79.0158 0.0236 127.9466 128.0069 0.0603

8 81.2929 81.3281 0.0352 148.3316 148.3754 0.0438

9 80.2570 80.2931 0.0361 109.2654 109.3023 0.0369

10 89.1300 89.1957 0.0657 122.4466 122.5085 0.0620

Average 0.0430 0.0441

SD 0.0157 0.0131

xx

Appendix C

Controller Run Time

Table C.1: AFDIA run time for left wing failure, window = 5, scalar = 1.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.00 µ 0.365 m 5.50 µ 0.430 m

2 7.10 µ 0.370 m 8.40 µ 0.411 m

3 7.30 µ 0.520 m 4.70 µ 0.339 m

4 8.40 µ 0.345 m 7.10 µ 0.325 m

5 7.10 µ 0.943 m 5.00 µ 0.830 m

6 7.60 µ 0.375 m 6.10 µ 0.370 m

7 8.10 µ 0.243 m 1.19 µ 0.229 m

8 6.80 µ 0.368 m 5.00 µ 0.373 m

9 7.20 µ 0.370 m 8.00 µ 0.403 m

10 7.50 µ 0.873 m 7.00 µ 0.836 m

Average 7.41 µ 0.477 m 4.62 µ 0.455 m

xxi

Appendix C. Controller Run Time

Table C.2: AFDIA run time for right wing failure, window = 5, scalar = 1.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

2 7.50 µ 0.446 m 5.80 µ 0.341 m

3 7.40 µ 0.445 m 0.700 µ 0.240 m

4 7.50 µ 0.397 m 0.700 µ 0.393 m

5 7.00 µ 0.286 m 0.500 µ 0.233 m

6 6.90 µ 0.247 m 0.500 µ 0.146 m

7 7.70 µ 0.419 m 6.30 µ 0.482 m

8 8.10 µ 0.489 m 9.30 µ 0.49 m

9 7.80 µ 0.444 m 1.30 µ 0.199 m

10 7.40 µ 0.266 m 0.700 µ 0.175 m

Average 7.49 µ 0.387 m 3.12 µ 0.321 m

Table C.3: AFDIA run time for left wing failure, window = 5, scalar = 2.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.80 µ 0.338 m 0.900 µ 0.227 m

2 7.80 µ 0.816 m 0.800 µ 0.771 m

3 7.40 µ 0.456 m 1.20 µ 0.311 m

4 7.70 µ 1.21 m 6.60 µ 0.878 m

5 8.00 µ 0.601 m 0.900 µ 0.224 m

6 7.60 µ 0.492 m 5.00 µ 0.480 m

7 7.70 µ 0.526 m 4.70 µ 0.249 m

8 7.80 µ 0.517 m 5.10 µ 0.235 m

9 7.50 µ 0.517 m 5.20 µ 0.352 m

10 7.60 µ 0.513 m 0.700 µ 0.299 m

Average 7.69 µ 0.599 m 3.11 µ 0.403 m

xxii

Appendix C. Controller Run Time

Table C.4: AFDIA run time for right wing failure, window = 5, scalar = 2.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 6.90 µ 0.383 m 1.20 µ 0.185 m

2 6.80 µ 0.454 m 1.40 µ 0.537 m

3 6.80 µ 0.404 m 5.00 µ 0.232 m

4 6.90 µ 0.419 m 1.60 µ 0.288 m

5 6.70 µ 0.413 m 1.10 µ 0.267 m

6 7.30 µ 0.395 m 6.80 µ 0.181 m

7 6.90 µ 0.408 m 1.30 µ 0.344 m

8 7.10 µ 0.404 m 1.40 µ 0.282 m

9 7.00 µ 0.287 m 1.40 µ 0.214 m

10 6.70 µ 0.415 m 1.20 µ 0.221 m

Average 6.91 µ 0.398 m 2.24 µ 0.275 m

Table C.5: AFDIA run time for left wing failure, window = 5, scalar = 3.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 6.90 µ 0.404 m 1.60 µ 0.199 m

2 7.00 µ 0.413 m 1.50 µ 0.258 m

3 6.50 µ 0.428 m 1.10 µ 0.201 m

4 6.80 µ 0.425 m 4.60 µ 0.197 m

5 7.30 µ 0.394 m 2.20 µ 0.235 m

6 6.90 µ 0.355 m 1.40 µ 0.154 m

7 6.90 µ 0.347 m 1.60 µ 0.194 m

8 7.50 µ 0.388 m 7.70 µ 0.287 m

9 6.90 µ 0.311 m 1.40 µ 0.271 m

10 7.60 µ 0.491 m 5.80 µ 0.396 m

Average 7.03 µ 0.396 m 2.89 µ 0.239 m

xxiii

Appendix C. Controller Run Time

Table C.6: AFDIA run time for right wing failure, window = 5, scalar = 3.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.50 µ 0.482 m 7.90 µ 0.293 m

2 7.10 µ 0.450 m 6.70 µ 0.268 m

3 6.90 µ 0.461 m 1.70 µ 0.264 m

4 7.10 µ 0.496 m 1.30 µ 0.221 m

5 7.30 µ 0.516 m 1.20 µ 0.266 m

6 7.70 µ 0.578 m 0.900 µ 0.373 m

7 7.90 µ 0.541 m 6.40 µ 0.201 m

8 7.60 µ 0.607 m 1.00 µ 0.279 m

9 7.60 µ 0.568 m 0.900 µ 0.262 m

10 7.70 µ 0.570 m 1.00 µ 0.366 m

Average 7.44 µ 0.527 m 2.90 µ 0.279 m

Table C.7: AFDIA run time for left wing failure, window = 5, scalar = 4.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 6.80 µ 0.383 m 1.50 µ 0.171 m

2 6.90 µ 0.252 m 1.60 µ 0.261 m

3 7.90 µ 0.382 m 0.900 µ 0.381 m

4 8.10 µ 0.514 m 0.250 µ 0.208 m

5 7.90 µ 0.519 m 0.900 µ 0.222 m

6 8.00 µ 0.514 m 1.20 µ 0.173 m

7 7.60 µ 0.471 m 1.10 µ 0.175 m

8 7.70 µ 0.519 m 1.20 µ 0.207 m

9 7.90 µ 0.488 m 1.00 µ 0.204 m

10 7.70 µ 0.591 m 1.10 µ 0.609 m

Average 7.65 µ 0.463 m 1.30 µ 0.261 m

xxiv

Appendix C. Controller Run Time

Table C.8: AFDIA run time for right wing failure, window = 5, scalar = 4.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 8.00 µ 0.552 m 5.50 µ 0.213 m

2 7.70 µ 0.543 m 1.00 µ 0.467 m

3 8.00 µ 0.517 m 4.30 µ 0.204 m

4 7.90 µ 0.507 m 0.900 µ 0.201 m

5 8.00 µ 0.545 m 1.00 µ 0.251 m

6 7.70 µ 0.513 m 1.20 µ 0.238 m

7 7.50 µ 0.524 m 1.50 µ 0.199 m

8 8.00 µ 0.521 m 1.30 µ 0.195 m

9 7.50 µ 0.496 m 1.30 µ 0.360 m

10 7.30 µ 0.494 m 1.10 µ 0.264 m

Average 7.76 µ 0.521 m 1.91 µ 0.259 m

Table C.9: AFDIA run time for left wing failure, window = 10, scalar = 1.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.30 µ 0.600 m 1.60 µ 0.683 m

2 8.20 µ 0.903 m 0.0104 m 0.823 m

3 7.40 µ 0.389 m 6.80 µ 0.376 m

4 6.80 µ 0.232 m 1.40 µ 0.226 m

5 8.20 µ 0.190 m 0.0127 m 0.109 m

6 7.60 µ 0.220 m 7.60 µ 0.167 m

7 7.20 µ 0.309 m 6.60 µ 0.272 m

8 7.20 µ 0.760 m 4.50 µ 0.798 m

9 7.00 µ 0.393 m 1.90 µ 0.170 m

10 7.20 µ 0.326 m 1.50 µ 0.255 m

Average 7.41 µ 0.432 m 5.50 µ 0.388 m

xxv

Appendix C. Controller Run Time

Table C.10: AFDIA run time for right wing failure, window = 10, scalar = 1.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.80 µ 0.379 m 0.0112 m 0.151 m

2 7.50 µ 0.369 m 6.40 µ 0.376 m

3 6.90 µ 0.377 m 1.20 µ 0.146 m

4 7.20 µ 0.381 m 4.70 µ 0.157 m

5 8.00 µ 0.393 m 0.0130 m 0.220 m

6 8.00 µ 0.393 m 0.0130 m 0.220 m

7 7.30 µ 0.382 m 6.30 µ 0.207 m

8 7.00 µ 0.201 m 1.50 µ 0.189 m

9 7.30 µ 0.380 m 6.20 µ 0.148 m

10 7.10 µ 0.410 m 1.60 µ 0.231 m

Average 7.41 µ 0.367 m 6.51 µ 0.205 m

Table C.11: AFDIA run time for left wing failure, window = 10, scalar = 2.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.00 µ 0.393 m 4.60 µ 0.146 m

2 7.10 µ 0.585 m 1.70 µ 0.628 m

3 7.00 µ 0.380 m 1.50 µ 0.152 m

4 7.00 µ 0.456 m 1.70 µ 0.410 m

5 7.10 µ 0.543 m 5.10 µ 0.616 m

6 7.20 µ 0.573 m 0.90 µ 0.621 m

7 7.70 µ 0.600 m 6.40 µ 0.595 m

8 7.40 µ 0.498 m 5.10 µ 0.209 m

9 8.20 µ 0.467 m 9.80 µ 0.155 m

10 7.50 µ 0.476 m 1.10 µ 0.512 m

Average 7.32 µ 0.497 m 3.79 µ 0.404 m

xxvi

Appendix C. Controller Run Time

Table C.12: AFDIA run time for right wing failure, window = 10, scalar = 2.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.00 µ 0.405 m 2.00 µ 0.181 m

2 6.90 µ 0.376 m 1.90 µ 0.133 m

3 7.50 µ 0.486 m 1.70 µ 0.193 m

4 7.80 µ 0.549 m 4.50 µ 0.284 m

5 7.70 µ 0.473 m 1.30 µ 0.129 m

6 8.10 µ 0.556 m 7.30 µ 0.185 m

7 7.40 µ 0.506 m 1.10 µ 0.136 m

8 7.40 µ 0.506 m 1.10 µ 0.136 m

9 8.00 µ 0.585 m 5.10 µ 0.285 m

10 8.10 µ 0.573 m 5.00 µ 0.216 m

Average 7.59 µ 0.501 m 3.10 µ 0.188 m

Table C.13: AFDIA run time for left wing failure, window = 10, scalar = 3.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 6.90 µ 0.390 m 1.40 µ 0.157 m

2 7.70 µ 0.402 m 0.0111 m 0.214 m

3 7.20 µ 0.389 m 4.50 µ 0.157 m

4 7.40 µ 0.385 m 6.40 µ 0.161 m

5 7.40 µ 0.412 m 1.80 µ 0.195 m

6 7.00 µ 0.463 m 5.80 µ 0.284 m

7 6.80 µ 0.275 m 1.30 µ 0.178 m

8 6.90 µ 0.412 m 1.50 µ 0.206 m

9 7.40 µ 0.453 m 1.30 µ 0.237 m

10 7.40 µ 0.313 m 1.30 µ 0.182 m

Average 7.21 µ 0.389 m 3.64 µ 0.197 m

xxvii

Appendix C. Controller Run Time

Table C.14: AFDIA run time for right wing failure, window = 10, scalar = 3.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.50 µ 0.408 m 6.90 µ 0.141 m

2 6.90 µ 0.430 m 1.50 µ 0.279 m

3 7.60 µ 0.497 m 1.10 µ 0.178 m

4 7.50 µ 0.488 m 1.10 µ 0.179 m

5 8.10 µ 0.558 m 4.20 µ 0.310 m

6 7.80 µ 0.819 m 6.70 µ 0.853 m

7 7.60 µ 0.536 m 1.00 µ 0.166 m

8 8.00 µ 0.618 m 1.50 µ 0.490 m

9 7.90 µ 0.552 m 1.20 µ 0.150 m

10 7.70 µ 0.616 m 1.10 µ 0.272 m

Average 7.66 µ 0.552 m 2.63 µ 0.302 m

Table C.15: AFDIA run time for left wing failure, window = 10, scalar = 4.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 6.70 µ 0.390 m 1.40 µ 0.177 m

2 6.80 µ 0.403 m 1.30 µ 0.162 m

3 7.10 µ 0.393 m 1.50 µ 0.152 m

4 7.10 µ 0.407 m 1.50 µ 0.184 m

5 7.00 µ 0.414 m 1.60 µ 0.168 m

6 6.60 µ 0.406 m 1.40 µ 0.199 m

7 7.40 µ 0.392 m 9.20 µ 0.174 m

8 7.40 µ 0.404 m 6.30 µ 0.211 m

9 7.20 µ 0.289 m 6.50 µ 0.214 m

10 7.40 µ 0.417 m 6.10 µ 0.207 m

Average 7.07 µ 0.392 m 3.68 µ 0.185 m

xxviii

Appendix C. Controller Run Time

Table C.16: AFDIA run time for right wing failure, window = 10, scalar = 4.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.00 µ 0.395 m 4.50 µ 0.192 m

2 6.80 µ 0.415 m 1.50 µ 0.185 m

3 7.10 µ 0.418 m 1.70 µ 0.176 m

4 6.80 µ 0.421 m 1.60 µ 0.260 m

5 6.80 µ 0.405 m 1.70 µ 0.171 m

6 7.60 µ 0.376 m 8.80 µ 0.126 m

7 7.00 µ 0.403 m 1.40 µ 0.194 m

8 7.10 µ 0.399 m 2.00 µ 0.142 m

9 7.00 µ 0.415 m 1.60 µ 0.162 m

10 6.90 µ 0.416 m 1.70 µ 0.194 m

Average 7.01 µ 0.406 m 2.65 µ 0.180 m

xxix

Appendix C. Controller Run Time

Table C.17: AFDIA run time for left wing failure, window = 15, scalar = 1.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.20 µ 0.383 m 6.80 µ 0.230 m

2 7.40 µ 0.275 m 0.0104 m 0.225 m

3 7.60 µ 0.180 m 7.10 µ 0.142 m

4 7.30 µ 0.449 m 1.70 µ 0.481 m

5 7.20 µ 0.441 m 5.10 µ 0.243 m

6 7.10 µ 0.265 m 1.50 µ 0.189 m

7 7.20 µ 0.558 m 6.80 µ 0.602 m

8 7.00 µ 0.584 m 1.50 µ 0.675 m

9 7.20 µ 1.01 m 6.50 µ 0.815 m

10 7.50 µ 0.249 m 9.30 µ 0.162 m

Average 7.27 µ 0.440 m 5.67 µ 0.376 m

xxx

Appendix C. Controller Run Time

Table C.18: AFDIA run time for right wing failure, window = 15, scalar = 1.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.60 µ 0.832 m 7.80 µ 0.823 m

2 7.10 µ 0.342 m 4.40 µ 0.367 m

3 7.30 µ 0.396 m 7.00 µ 0.168 m

4 7.00 µ 0.413 m 1.80 µ 0.177 m

5 7.70 µ 0.511 m 6.10 µ 0.165 m

6 7.90 µ 0.494 m 1.30 µ 0.149 m

7 7.20 µ 1.26 m 1.20 µ 0.948 m

8 8.00 µ 0.502 m 4.70 µ 0.164 m

9 7.8 µ 0.481 m 6.30 µ 0.161 m

10 7.80 µ 0.470 m 6.40 µ 0.161 m

Average 7.54 µ 0.570 m 4.70 µ 0.328 m

Table C.19: AFDIA run time for left wing failure, window = 15, scale = 2.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.10 µ 0.465 m 2.00 µ 0.554 m

2 7.50 µ 0.440 m 9.00 µ 0.244 m

3 7.50 µ 0.455 m 8.00 µ 0.240 m

4 7.20 µ 0.258 m 1.70 µ 0.197 m

5 6.90 µ 0.439 m 1.60 µ 0.340 m

6 7.60 µ 0.409 m 6.40 µ 0.430 m

7 7.00 µ 0.488 m 1.40 µ 0.419 m

8 7.30 µ 0.288 m 6.50 µ 0.223 m

9 7.10 µ 0.445 m 1.80 µ 0.372 m

10 7.20 µ 0.453 m 5.70 µ 0.327 m

Average 7.24 µ 0.414 m 4.41 µ 0.334 m

xxxi

Appendix C. Controller Run Time

Table C.20: AFDIA run time for right wing failure, window = 15, scalar = 2.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.10 µ 0.398 m 1.50 µ 0.156 m

2 7.20 µ 0.457 m 4.50 µ 0.251 m

3 6.90 µ 0.440 m 1.70 µ 0.339 m

4 7.10 µ 0.439 m 6.30 µ 0.316 m

5 6.90 µ 0.442 m 1.40 µ 0.298 m

6 6.90 µ 0.324 m 1.40 µ 0.267 m

7 6.90 µ 0.431 m 1.50 µ 0.251 m

8 7.20 µ 0.448 m 1.60 µ 0.116 m

9 7.40 µ 0.503 m 1.00 µ 0.182 m

10 7.90 µ 0.571 m 1.30 µ 0.234 m

Average 7.15 µ 0.445 m 2.22 µ 0.241 m

Table C.21: AFDIA run time for left wing failure, window = 15, scale = 3.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 6.80 µ 0.767 m 1.30 µ 0.502 m

2 7.40 µ 0.432 m 6.20 µ 0.153 m

3 7.00 µ 0.285 m 3.80 µ 0.219 m

4 7.60 µ 0.411 m 8.10 µ 0.159 m

5 7.00 µ 0.406 m 1.40 µ 0.230 m

6 7.20 µ 0.384 m 1.70 µ 0.152 m

7 7.20 µ 0.423 m 6.40 µ 0.168 m

8 7.20 µ 0.414 m 1.30 µ 0.165 m

9 7.30 µ 0.456 m 1.20 µ 0.145 m

10 7.50 µ 0.525 m 1.00 µ 0.151 m

Average 0.722 m 0.450 m 3.24 µ 0.204 m

xxxii

Appendix C. Controller Run Time

Table C.22: AFDIA run time for right wing failure, window = 15, scale = 3.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 6.90 µ 0.423 m 1.20 µ 0.153 m

2 7.10 µ 0.402 m 1.50 µ 0.143 m

3 7.00 µ 0.415 m 1.60 µ 0.156 m

4 7.30 µ 0.480 m 6.50 µ 0.217 m

5 7.10 µ 0.451 m 1.60 µ 0.174 m

6 7.60 µ 0.540 m 1.40 µ 0.179 m

7 8.10 µ 0.526 m 8.80 µ 0.253 m

8 7.20 µ 0.455 m 7.50 µ 0.158 m

9 8.00 µ 0.561 m 0.90 µ 0.320 m

10 7.00 µ 0.448 m 6.80 µ 0.294 m

Average 7.37 µ 0.473 m 3.44 µ 0.195 m

Table C.23: AFDIA run time for left wing failure, window = 15, scale = 4.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.60 µ 0.389 m 8.90 µ 0.147 m

2 7.60 µ 0.404 m 7.90 µ 0.130 m

3 7.20 µ 0.386 m 1.60 µ 0.127 m

4 7.40 µ 0.409 m 4.30 µ 0.186 m

5 7.20 µ 0.330 m 6.40 µ 0.291 m

6 7.30 µ 0.329 m 1.70 µ 0.261 m

7 6.80 µ 0.406 m 1.30 µ 0.159 m

8 7.40 µ 0.382 m 1.60 µ 0.134 m

9 8.50 µ 0.723 m 7.90 µ 0.727 m

10 7.90 µ 0.399 m 9.00 µ 0.142 m

Average 7.49 µ 0.416 m 5.06 µ 0.230 m

xxxiii

Appendix C. Controller Run Time

Table C.24: AFDIA run time for right wing failure, window = 15, scalar = 4.

Run Time Mean (sec) Run Time SD (σ) (sec)

No. Before Fail After Fail Before Fail After Fail

1 7.80 µ 0.394 m 8.70 µ 0.157 m

2 7.20 µ 0.431 m 1.50 µ 0.138 m

3 7.00 µ 0.419 m 1.60 µ 0.199 m

4 7.70 µ 0.414 m 8.70 µ 0.122 m

5 7.50 µ 0.398 m 9.00 µ 0.167 m

6 7.00 µ 0.405 m 4.80 µ 0.149 m

7 6.70 µ 0.419 m 1.00 µ 0.131 m

8 7.10 µ 0.441 m 0.50 µ 0.165 m

9 7.10 µ 0.416 m 1.40 µ 0.167 m

10 7.00 µ 0.415 m 0.90 µ 0.158 m

Average 7.21 µ 0.415 m 3.81 µ 0.155 m

xxxiv

Appendix D

Publications by the Author

xxxv

Aircraft Sensor Estimation for Fault Tolerant Flight
Control System using Fully Connected Cascade

Neural Network
Saed Hussain, Student Member, IEEE, Maizura Mokhtar, Member, IEEE, and Joe M. Howe

Abstract—Flight control systems that are tolerant to failures
can increase the endurance of an aircraft in case of a failure.
The two major types of failure are sensor and actuator failures.
This paper focuses on the failure of the gyro sensors in an
aircraft. The neuron by neuron (NBN) learning algorithm,
which is an improved version of the Levenberg-Marquardt (LM)
algorithm, is combined with the fully connected cascade (FCC)
neural network architecture to estimate an aircraft’s sensor
measurements. Compared to other neural networks and learning
algorithms, this combination can produce good sensor estimates
with relatively few neurons. The estimators are developed and
evaluated using flight data collected from the X-Plane flight
simulator. The developed sensor estimators can replicate a
sensor’s measurements with as little as 2 neurons. The results
reflect the combined power of the NBN algorithm and the FCC
neural network architecture.

I. INTRODUCTION

IN recent years there has been a significant growth in
the development of unmanned aerial vehicles (UAVs) for

various applications (e.g. search and rescue, survey, border
control). UAVs are most commonly used in applications that
are considered dangerous, dull, impractical or unreachable by
manned vehicles. These applications have contributed to an
increasing importance for UAVs and the need to improve their
endurance. Increasing the endurance of a UAV allows for:

• Longer flight hours without the need to refuel/recharge.
• Autonomously maintaining stability despite varying en-

vironmental conditions.
• Autonomously maintaining stability in case of failure.
Long endurance can be achieved by developing UAV sys-

tems that incorporate:
• Intelligent energy management systems.
• Intelligent flight behavior.
• Adaptive fault tolerance.
This research considers the development of a fault tolerant

flight control system (FTFCS) to increase the endurance of a
UAV in case of failure. In particular, this paper focuses on
the development of neural network based sensor estimators to
replace faulty sensors in case of sensor failure.

The paper investigates, for each sensor, the optimal archi-
tecture of the neural network based estimator. The type of
neural network used is the fully connected cascade (FCC)

S. Hussain, M. Mokhtar and J. M. Howe are with the School
of Computing, Engineering and Physical Sciences, University of Cen-
tral Lancashire (UCLan), Preston, PR1 2HE, United Kingdom. E-mail:
saed@ieee.org,{MMokhtar, JMHowe}@uclan.ac.uk.

neural network. The FCC neural network is chosen because it
is able to achieve its objective with small number of neurons in
the network [1]–[5]. Therefore, the paper presents the optimal
number of neurons within the neural network to be used as
the sensor estimator. These FCC neural network based sensor
estimators will be used in future experiments to replace faulty
sensors.

This paper is organized as follows: Section II provides
background information on FTFCS, as well as the use of
neural networks for FTFCS. Section III describes the FCC
neural network and learning algorithm used to develop the
sensor estimators. The aircraft simulator used for this research
is briefly presented in Section IV. In Section V, the estimator
development process is explained. Finally the results are
discussed in Section VI and the conclusion is presented in
Section VII.

II. FAULT TOLERANT FLIGHT CONTROL SYSTEM

FTFCS are systems that have the ability to tolerate compo-
nent failures automatically while maintaining overall system
stability and acceptable performance in the event of errors and
failures. Their purpose is to detect, identify and accommodate
any type of failure that may occur during a flight. Two major
classes of failure are sensor and actuator failures [6], [7]. In
general a fully FTFCS needs to perform:

• Sensor failure detection, identification and accommoda-
tion (SFDIA) [8]

• Actuator failure detection, identification and accommo-
dation (AFDIA) [8]

These tasks could be further divided into [8]:

• Failure detection and identification (FDI), which detects
significant abnormalities and identifies the cause.

• Failure accommodation (FA), which in the case of sen-
sors, replaces the faulty sensor with an appropriate es-
timation. In case of the actuators, it determines what
actions need to be taken to recover the impaired aircraft.

This paper focuses on the failure accommodation stage
(FA) of the SFDIA scheme. SFDIA schemes are particularly
important when failed sensor measurements are used in the
feedback loop of an aircraft’s control laws. This could result in
closed loop instability, possibly leading to unrecoverable flight
conditions if the failure is not detected and accommodate for
[6], [8].

A. Redundancy for FDIA

Traditionally, fault detection, identification and accommo-
dation (FDIA) is achieved through high levels of hardware
redundancy. This is still the state-of-the-art practice in the
aircraft manufacturing industry [6], [8]–[10]. For example,
Airbus A320/330/340/380 has triple or quadruple redundant
actuation, sensor and flight control computer systems [9].

In hardware redundancy for SFDIA, identical sensors are
used to measure the same parameter; and fault tolerance is
achieved based on a voting scheme [11]. For example, in a
system with three redundant sensors, if one of the redundant
signals differs significantly from the other two, the differing
signal is eliminated.

However, hardware redundancy has serious cost, power and
weight implications, especially for small aircraft’s like UAVs.
Due to these implications, analytical redundancy is a far more
appealing approach for FTFCS. Analytical redundancy uses
a model of the monitored system to generate signals that
would otherwise be generated by redundant hardware. In its
simplest form, the difference between the model estimate and
the measured reading is used to generate an error residual.
This residual is then monitored to detect and identify faults
[12].

B. Neural Networks for Analytical Redundancy

Over the past two decades, there has been an increasing
interest in the application of neural networks for SFDIA
schemes [8], [13], [14]. For example, Guo and Musgrave
[15] presented a SFDIA scheme for sensors in the space
shuttle main engine (SSME). Their scheme is based on the
auto-associative multi-layer perceptron (MLP) neural network,
trained using the error back propagation learning algorithm
(BPA). Napolitano et al. [8] developed a SFDIA scheme
using the MLP neural network trained using the extended
back propagation algorithm (EBPA). Samy et al. [6], [12]
proposed a SFDIA scheme using the radial basis function
(RBF) neural network, trained using the extended minimum
resource allocating network (EMRAN) algorithm.

In this paper, a combination of the FCC neural network and
neuron by neuron (NBN) learning algorithm is proposed for
sensor accommodation. This can be part of any neural network
based SFDIA scheme. Once a sensor failure is detected and
isolated in the failure detection and identification (FDI) stage,
the accommodation stage replaces the faulty sensor reading
with a reliable estimate. SFDIA schemes based on neural
network replaces the faulty sensor reading with a neural
network generated estimate. It other words, the neural network
works as an estimator.

III. FULLY CONNECTED CASCADE (FCC) NEURAL
NETWORK AND NEURON BY NEURON (NBN) LEARNING

ALGORITHM

A. Neural Network Architecture

It could be argued that the MLP neural network architecture
is the most popular choice for neural network applications [1]–
[4], [16]. However, this architecture is neither powerful nor

efficient. MLP architectures requires more neurons, to solve a
problem, than other architectures in which connection across
layers is allowed [1]–[5]. Although increasing the number of
neurons converges the neural network faster, the network loses
its generalization ability [1], [2]. Therefore, the neural network
responds poorly to patterns never used in the training.

As a comparison between the two architectures, the authors
of [5] state that: to solve the parity-7 problem, the MLP ar-
chitecture using one hidden layer required 8 neurons; whereas
the fully connected cascade (FCC) architecture (Fig. 1), which
allows connection across layers, managed to solve this prob-
lem using just 3 neurons. To solve the parity-64 problem, 64
neurons were required by the MLP architecture in comparison
to 6 neurons by the FCC architecture.

This shows that the FCC architecture is better and more
efficient in comparison to the MLP architecture. Therefore, the
FCC neural network is chosen for use as the sensor estimator
neural network.

n3

n1

n2

Ϊͳ������ ������

Fig. 1. FCC Neural Network Architecture

B. Learning Algorithm

The error back propagation (EBP) algorithm is popularly
used along with the MLP neural network architecture. How-
ever this algorithm is slow and inefficient [1]–[3], [5], [17].
Many improvements have been made to help speed up the
EBP algorithm (e.g. momentum, EBPA), but as long as first
order algorithms are used, improvements are not dramatic [17].
Instead of the EBP algorithm, advance second order algorithms
like the Levenberg-Marquardt (LM) or the neurons by neuron
(NBN) algorithms should be used. These algorithms can not
only train fast, but also efficiently, with small number of
neurons within the neural network [1]–[3], [5], [16], [18]–[20].

The NBN algorithm is an improved version of the second
order LM algorithm [2], [5]. In the LM algorithm, the weights
are updated using the following update rule [20]:

Wn+1 =Wn − (JTJ + µI)−1JTe (1)

where Wn+1 is the new weights vector; Wn is the previous
weights vector; J is the Jacobian matrix; I is the identity
matrix; e is the error vector; and µ is the combination
coefficient. The size of the Jacobian matrix and the error vector
are (P ×M)×N and (P ×M)× 1 respectively, where P is
the number of training patterns, M is the number of network
outputs and N is the number of weights [21].

Aircraft Sensor Estimation for Fault Tolerant Flight
Control System using Fully Connected Cascade

Neural Network
Saed Hussain, Student Member, IEEE, Maizura Mokhtar, Member, IEEE, and Joe M. Howe

Abstract—Flight control systems that are tolerant to failures
can increase the endurance of an aircraft in case of a failure. The
two major types of failure are sensor and actuator failures. This
paper focuses on the failure of the gyro sensors in an aircraft.
The neuron by neuron (NBN) learning algorithm, which is an
improved version of the Levenberg-Marquardt (LM) algorithm is
combined with the fully connected cascade (FCC) neural network
(NN) architecture to estimate an aircraft’s sensor measurements.
Compared to other NN and learning algorithms, this combination
can produce good sensor estimates with relatively few neurons.
The estimators are developed and evaluated using flight data
collected from the X-Plane flight simulator. The developed sensor
estimators can replicate a sensor’s measurements with as little
as 2 neurons. The results reflect the combined power of the NBN
algorithm and the FCC NN architecture.

This is achieved by calculating the vector jp,m as the
patterns are applied. This vector is the Jacobian row for pattern
p and network output neuron m.

neuron1z }| { neuronjz }| {

J =

2
6666666666666666666664

�e1,1

�w1,1

�e1,1

�w1,2
· · · �e1,1

�wj,1
· · ·

�e1,2

�w1,1

�e1,2

�w1,2
· · · �e1,2

�wj,1
· · ·

· · · · · · · · · · · · · · ·
�e1,M

�w1,1

�e1,M

�w1,2
· · · �e1,M

�wj,1
· · ·

· · · · · · · · · · · · · · ·
�eP,1

�w1,1

�eP,1

�w1,2
· · · �eP,1

�wj,1
· · ·

�eP,1

�w1,1

�enp,2

�w1,2
· · · �eP,2

�wj,1
· · ·

· · · · · · · · · · · · · · ·
�eP,M

�w1,1

�eP,M

�w1,2
· · · �eP,M

�wj,1
· · ·

3
7777777777777777777775

m = 1

m = 2

· · ·
m = M

9
>>>>>=
>>>>>;

p = 1

· · ·

m = 1

m = 2

· · ·
m = M

9
>>>>>=
>>>>>;

p = P

(1)

S. Hussain, M. Mokhtar and J. M. Howe are with the School
of Computing, Engineering and Physical Sciences, University of Cen-
tral Lancashire (UCLan), Preston, PR1 2HE, United Kingdom. E-mail:
saed@ieee.org,{MMokhtar, JMHowe}@uclan.ac.uk.

J =

@e1,1

@w1,1

@e1,1

@w1,2
· · · @e1,1

@wj,1
· · ·

@e1,2

@w1,1

@e1,2

@w1,2
· · · @e1,2

@wj,1
· · ·

· · · · · · · · · · · · · · ·
@e1,M

�w1,1

@e1,M

@w1,2
· · · @e1,M

@wj,1
· · ·

· · · · · · · · · · · · · · ·
@eP,1

@w1,1

@eP,1

@w1,2
· · · @eP,1

@wj,1
· · ·

· · · · · · · · · · · · · · ·
@eP,M

@w1,1

@eP,M

@w1,2
· · · @eP,M

@wj,1
· · ·

2
66666666666666666666666664

3
77777777777777777777777775

m = 1

m = 2

· · ·

m = M

· · ·

m = 1

· · ·

m = M

8>>>>>>><>>>>>>>: neuron 1 8><>:neuron j

9
>>>>>>>>>=
>>>>>>>>>;

p = 1

9
>>>>>=
>>>>>;

p = P

Fig. 2. The Jacobian Matrix J

The Jacobian matrix is presented in Fig. 2, where, p is the
training pattern; j is the index of the neuron; wj,x is the xth

connection weight w to neuron j; and m is the index of the
network output neuron. The error ep,m for training pattern p
at network output neuron m is calculated as follows:

ep,m = dp,m − op,m (2)

where dp,m is the desired output and op,m is the actual output
for training pattern p at network output neuron m.

Usually, the Jacobian matrix is calculated and stored for
updating the weights using (1). This is fine with problems
that require small number of training patterns. However, for
problems with a large number of training patterns, memory
limitation may become a major concern. This is due to the
size for the Jacobian matrix [21], [22].

In the NBN algorithm, the weights are updated using the
following update rule:

Wn+1 =Wn − (Q+ µI)−1g (3)

where Q is the quasi-Hessian matrix and g is the gradient
vector. This is just another form of the LM update rule [23]
where

Q = JTJ (4)
g = JTe (5)

However, in the NBN algorithm, the matrix Q is calculated
by summing the quasi-Hessian sub-matrix qp,m for pattern p
and network output neuron m:

Q =
P∑

p=1

M∑

m=1

qp,m (6)

The gradient vector g is calculated by summing the gradient

sub-vector ηp,m for pattern p and network output neuron m:

g =
P∑

p=1

M∑

m=1

ηp,m (7)

The size of the matrix Q is N × N and is independent
of the number of patterns and outputs. Compared to the
LM algorithm, the NBN algorithm calculates the matrix Q
and vector g directly as the patterns are applied. Therefore
removing the need to compute and store the Jacobian matrix
(J) [23]. This is achieved by calculating the vector jp,m as
the patterns are applied. This vector is the Jacobian row for
pattern p and network output neuron m. Using this vector,
the matrix Q and vector g can be updated as each pattern is
applied using the following equations:

qp,m = jTp,mjp,m (8)
ηp,m = jp,mep,m (9)

The main advantages of the NBN algorithm over the LM
algorithm can be summarized as follows [1], [23]:

1) It can train arbitrarily connected, feed forward neural
network (i.e. it can be used with the FCC network unlike
the LM algorithm).

2) Error derivatives are calculated in the forward propaga-
tion therefore no need for back propagation. This makes
it more efficient compared to LM algorithm, especially
for networks with multiple outputs [17].

3) It does not need to compute and store large Jacobian ma-
trix, therefore it can be used with unlimited patterns [21].

Due to these benefits, the NBN algorithm is selected to train
the FCC neural network based sensor estimators. The pseudo
code for this algorithm, adapted from [23], is given in Fig. 3.
In the next subsection, the settings of various parameters used
to create the neural networks for the estimators is presented.

C. Neural Network Settings

The neural networks are initialized with random weights in
the range of +1.5 to −1.5. The activation function used by
the neurons is the bipolar sigmoid [24], defined as follows:

Outj =
2

1 + e−netj
− 1 (10)

where netj is the sum of the weighted inputs to neuron j
and Outj is the output of neuron j. This activation function
produces an output in the range of +1 to −1.

To match the output range of the neurons, the sensor
measurements that should be the output of the estimators are
normalized using [25]:

xn = (b− a)× xo − xmin
xmax − xmin

+ a (11)

where xn is the normalized value and xo is the value to be
normalized. a and b are the minimum and maximum value of
the range to be normalized to, which in this case is +1 to −1.
xmax and xmin are the maximum and minimum values of the
range from which xo is been normalized. This range is set to
be +10 to −10.

1: procedure INITIALIZATION(Q, g)
2: Q← 0
3: g ← 0
4: end procedure
5:
6: for all patterns (p = 1 to p = P) do
7: procedure FORWARD COMPUTATION
8: for all neurons (nn) do
9: for all weights of current neuron (j) do

10: calculate net input (netj)
11: end for
12: calculate neuron output
13: calculate neuron slope (sj)
14: sj =

∂Outj(netj)
∂netj

15: set current slope as delta
16: for weights to previous neurons (ny) do
17: for previous neurons (nz) do
18: multiply delta through weights
19: then sum
20: end for
21: multiply sum by the slope
22: end for
23: end for
24: for all outputs (m = 1 to m =M) do
25: calculate error
26: end for
27: end procedure
28:
29: procedure UPDATE(Q, g)
30: for all outputs (m = 1 to m =M) do
31: calculate vector jp,m
32: calculate sub matrix qp,m
33: calculate sub vector ηp,m
34: Q = Q+ qp,m
35: g = g + ηp,m
36: end for
37: end procedure
38: end for
39:
40: procedure IMPROVED LM TRAINING
41: follow the LM algorithm training process
42: update rule: Wn+1 =Wn − (Q+ µI)−1g
43: end procedure

Fig. 3. NBN Algorithm Pseudo Code

The initial value of combination coefficient (µ), used in the
weights update rule of the NBN algorithm, is set to 0.01. The
factor by which to increase or decrease this value of µ is 10.

IV. AIRCRAFT SIMULATOR AND SENSORS

Aircraft data is collected using the X-Plane flight simulator
[26]. This simulator produces realistic flight simulations due
to which its professional version is certified by FAA (Federal

Aviation Administration) for pilot training [27], [28]. It is
also used by leading defence contractors, air forces and space
agencies for applications of flight training, concept design and
testing [28].

For this research, the Cessna 172SP aircraft model in X-
Plane is used to collect the flight data. Since the main emphasis
of the work is on sensor estimation, the aircraft is flown by
the provided AI pilot in X-Plane.

It is assumed that the aircraft is equipped with 6 inertial
sensors without any hardware redundancy. The inertial sensors
are 3 gyroscopes (gyros) and 3 accelerometers. They are
mounted along the x, y and z axis of the aircraft. These sensors
are essential components of the attitude/heading reference
system (AHRS) and the inertial navigation system (INS) found
in today’s aircrafts [29], [30].

The outputs of these sensors are as follows:
1) Gyros: pitch (q), roll (p) and yaw (r) rates.
2) Accelerometers: accelerations along the x (ax), y (ay)

and z (az) axis.

V. ESTIMATOR DEVELOPMENT

A. Estimator Neural Network Input/Output and Structure

The paper concentrates on the gyro sensors of the aircraft.
Therefore three gyro sensor estimators are developed, one each
for the (i) pitch, (ii) roll and (iii) yaw rate gyro sensors. The
outputs of these estimators are their respected estimated sensor
rates.

The inputs to the estimators are other sensors’ measure-
ments (excluding the one it is estimating) and the commanded
control values provided by flight control computers. Inputs
to each of these estimators and their respected outputs are
presented in Table I. These inputs are taken at t− 1, where t
is the current sample time.

These inputs are chosen because they can have an effect
or cause an effect on the parameter that the sensor is mea-
suring. The relationship between the measured accelerations
and the gyro rates can be derived from the linear acceleration
equations [31] defined as follows:

ax = U̇ − rV + qW

ay = V̇ − pW + rU (12)

az = Ẇ − qU + pV

where (U, V,W) are the velocity along the X, Y and Z
axes, given in body fixed reference frame. The relationships
between the control inputs and the gyro rates can be derived
from the aircraft’s linearized equations of motion [31]. From
the aircraft’s longitudinal equations of motion, the equation
relevant to this paper is as follows [31]:

[
q̇
]
=
[
Mw

Iy

Mq

Iy

][w
q

]
+
[
MδE

Iy

][
δE
]

(13)

where, q̇ is the rate of change of q, w is the vertical velocity
increment and δE is the elevator demand. Mw, MδE and
Mq are the pitching moment derivatives due to w, δE and

q, respectively. Iy is the moment of inertia of aircraft about
the pitch axis. The relevant equations from the lateral motion
of the aircraft are as follows [31]:

[
ṗ

ṙ

]
=

[
Lv
Ix

Lp
Ix

Lr
Ix

Nv
Iz

Np
Iz

Nr
Iz

]

v

p

r

+

LδR
Ix

LδA
Ix

NδR
Iz

NδA
Iz

[
δR

δA

]
(14)

where, ṗ and ṙ are the rate of change of p and r, respectively;
L is the rolling moment; N is the yawing moment; v is the
side-slip velocity increment; δR is the rudder demand; and δA
is the aileron demand. Lv , Lp, Lr, LδR and LδA are the rolling
moment derivatives due to v, p, r, δR and δA, respectively. Nv ,
Np, Nr, NδR and NδA are the yawing moment derivatives with
respect to v, p, r, δR and δA. Iz is the moment of inertia of
aircraft about the yaw axis.

These equations are derived assuming the aircraft is in
steady, straight and level trimmed conditions, with small
disturbances. Writing the aircraft equations using these as-
sumptions and linearizing them is a common practice. This
helps to simplify the equations and analyze the behavior of
the aircraft in response to the control inputs.

In order to select the best structure (topology) for the FCC
neural network based sensor estimators, the number of neurons
in each estimator is first experimented; varying from 2 to 12
neurons. These estimators with different number of neurons
are trained and validated using the process described in the
following subsections.

TABLE I
INPUTS TO THE SENSOR ESTIMATORS

Sensor Estimator Inputs

Pitch (q) az - Normal Acceleration
ax - Longitudnal Acceleration
δE - Elevator Demand

Roll (p) r - Yaw Rate
δA - Aileron Demand
δR - Rudder Demand

Yaw (r) ay - Lateral Acceleration
δA - Aileron Demand
δR - Rudder Demand

B. Training and Validation Data Sets

To train and evaluate the estimators, flight data from the
Cessna 172SP aircraft in X-Plane is recorded for 6 different
flight scenarios. In these scenarios, the aircraft takes off from
different airports to capture different maneuvers performed
by the AI pilot in X-Plane. These flight data contain various
sensor readings and control inputs, recorded every second.

In a practical system, sensor readings are updated at a
higher frequency. In this case, however, recording the flight
data at every second allows greater dynamics of the data to
be captured within a single and short time window for the
training data.

These scenarios were simulated in turbulent free weather
conditions. The data was recorded once the aircraft reached
its cruise altitude. Out of these scenarios, 1 of them is used
for training and the remaining 5 are used for validating the
estimators. Only 1 training set is used to train the FCC neural
network. This is to test the capabilities of the NBN algorithm
in training the neural network.

C. Estimator Training

The estimators are trained offline (batch learning) using a
fixed set of training data extracted from the training flight data
mentioned in the previous section. The training set consists of
data collected during the steady and transient state of flight.
This ensures that the estimators can produce good estimates
during any state of flight. The estimators are trained until
the Sum Squared Error (SSE) of the epoch is ≤ 0.01 or a
maximum of 101 epochs is reached.

D. Simulation for Validation

Once trained, each of the estimators (ranging from 2 to 12
neurons) for a sensor are validated on the 5 different flight
scenarios. These scenarios last for 1500 seconds, therefore
containing 1500 patterns. To assess the performance of the
estimator on the scenario, the total Sum Squared Error (SSE)
of all the patterns in the scenarios is computed. Finally, the best
estimator for a sensor is selected by calculating the average
and the standard deviation of the SSE for all the scenarios.

VI. RESULTS AND DISCUSSION

A. Yaw Rate Estimator

The Sum Squared Errors (SSE) of the yaw rate estimators
using different neurons on the 5 validation scenarios are pre-
sented in Table II. From the average SSE, estimator networks
with 2 and 5 neurons produce the least errors. Using the
standard deviation, it is clear that the estimator with 2 neurons
is the best among the two.

The output of this estimator on its best and worst scenarios
is presented in Fig. 4 and Fig. 5 respectively. The best scenario
is scenario 3 and the worst is scenario 1.

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

N
or

m
al

iz
ed

 Y
aw

 R
at

e

0 500 1000 1500
0

1

2

3

4
x 10-4

Sample Time (sec)

S
qu

ar
ed

 E
rro

r

Sensor Output
Estimator Output

Squared Error

Fig. 4. Normalized yaw rate using (11) and the associated SSE. Results using
2 neurons in scenario 3.

TABLE II
YAW RATE ESTIMATOR ERRORS FOR THE VALIDATION SCENARIOS

SUM SQUARED ERRORS (SSE)

Neurons 2 3 4 5 6 7 8 9 10 11 12

Scenario 1 0.05403 0.05790 0.05775 0.04916 0.14770 1.08820 0.08818 0.14520 0.41494 0.22531 0.74185
Scenario 2 0.01678 0.03428 0.02443 0.02183 0.23910 2.11596 0.13171 0.29886 1.26390 0.36817 1.23907
Scenario 3 0.00923 0.04650 0.03638 0.01692 0.25249 5.99460 0.25252 0.91540 2.30973 0.99688 3.57601
Scenario 4 0.05017 0.10001 0.04895 0.06144 0.11770 0.69716 0.08022 0.05969 0.27662 0.07500 0.47789
Scenario 5 0.03428 0.05799 0.04082 0.03250 0.44971 3.44615 0.35203 0.39369 2.05501 0.39984 2.04609

Average Error 0.03290 0.05934 0.04167 0.03637 0.24134 2.66841 0.18093 0.36257 1.26404 0.41304 1.61618

SD 0.01979 0.02475 0.01262 0.01869 0.13000 2.14222 0.11786 0.33528 0.92399 0.35091 1.24781

TABLE III
PITCH RATE ESTIMATOR ERRORS FOR THE VALIDATION SCENARIOS

SUM SQUARED ERRORS (SSE)

Neurons 2 3 4 5 6 7 8 9 10 11 12

Scenario 1 0.87549 1.07204 0.77152 0.75686 0.62664 8.31579 1.07375 1.73602 1.60933 1.80456 4.34395
Scenario 2 1.30509 1.19663 1.06827 0.97039 0.92628 5.95501 1.15038 1.79250 2.21795 2.63000 6.52519
Scenario 3 3.09023 2.83352 2.80383 2.70440 2.74835 8.32024 2.88546 2.97336 3.03034 4.02907 6.08809
Scenario 4 0.64407 0.58858 0.46337 0.37710 0.34452 8.91346 0.50092 1.05716 1.20740 3.24782 4.86670
Scenario 5 1.78657 1.59820 1.35882 1.32644 1.15308 13.43923 1.87371 2.78344 2.85945 2.95253 7.94092

Average Error 1.54029 1.45779 1.29316 1.22704 1.15978 8.98874 1.49684 2.06850 2.18489 2.93280 5.95297

SD 0.96998 0.84925 0.90797 0.89468 0.93901 2.73477 0.91668 0.79678 0.78385 0.81640 1.42008

TABLE IV
ROLL RATE ESTIMATOR ERRORS FOR THE VALIDATION SCENARIOS

SUM SQUARED ERRORS (SSE)

Neurons 2 3 4 5 6 7 8 9 10 11 12

Scenario 1 1.03861 1.71942 0.99188 1.26806 1.17937 1.23314 1.33951 1.06159 1.12756 1.03996 0.95751
Scenario 2 0.87189 0.71655 0.62950 0.74557 0.73817 0.80793 0.83962 0.90883 1.00083 0.75335 0.72139
Scenario 3 0.33534 0.48925 0.41012 0.44700 0.42922 0.43207 0.45478 0.64603 0.68607 0.56293 0.44613
Scenario 4 0.50070 0.92344 0.82084 1.07419 0.98542 1.01214 1.05378 1.36040 1.40734 1.21942 0.94279
Scenario 5 1.42533 1.46552 1.32818 1.53932 1.41908 1.58002 1.60261 1.20004 1.22841 1.27567 1.08864

Average Error 0.83437 1.06284 0.83610 1.01483 0.95025 1.01306 1.05806 1.03538 1.09004 0.97027 0.83129

SD 0.43380 0.51517 0.35028 0.42944 0.38405 0.43287 0.44369 0.27434 0.27036 0.30544 0.25250

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

N
or

m
al

iz
ed

 Y
aw

 R
at

e

0 500 1000 1500
0

0.5

1

1.5
x 10-3

Sample Time (sec)

S
qu

ar
ed

 E
rro

r

Sensor Output
Estimator Output

Squared Error

Fig. 5. Normalized yaw rate using (11) and the associated SSE. Results using
2 neurons in scenario 1.

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

N
or

m
al

iz
ed

 P
itc

h
R

at
e

0 500 1000 1500
0

0.005

0.01

0.015

0.02

Sample Time (sec)

S
qu

ar
ed

 E
rro

r

Sensor Output
Estimator Output

Squared Error

Fig. 6. Normalized pitch rate using (11) and the associated SSE. Results
using 6 neurons in scenario 4.

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

N
or

m
al

iz
ed

 P
itc

h
R

at
e

0 500 1000 1500
0

0.005

0.01

0.015

0.02

Sample Time (sec)

S
qu

ar
ed

 E
rro

r

Squared Error

Sensor Output
Estimator Output

Fig. 7. Normalized Pitch rate using (11) and the associated SSE. Results
using 6 neurons in scenario 3.

0 500 1000 1500
-1

-0.5

0

0.5

1

N
or

m
al

iz
ed

 R
ol

l R
at

e

0 500 1000 1500
0

0.005

0.01

0.015

0.02

Sample Time (sec)

S
qu

ar
ed

 E
rro

r

Sensor Output
Estimator Output

Squared Error

Fig. 8. Normalized roll rate using (11) and the associated SSE. Results using
4 neurons in scenario 3.

0 500 1000 1500
-1

-0.5

0

0.5

1

N
or

m
al

iz
ed

 R
ol

l R
at

e

0 500 1000 1500
0

0.01

0.02

0.03

Sample Time (sec)

S
qu

ar
ed

 E
rro

r

Sensor Output
Estimator Output

Squared Error

Fig. 9. Normalized roll rate using (11) and the associated SSE. Results using
4 neurons in scenario 5.

B. Pitch Rate Estimator

Table III presents the validation results for the pitch rate
estimators. The estimator using 6 neurons has the least SSE
among them. The output of this estimator on its best and worst
scenarios is presented in Fig. 6 and Fig. 7 respectively. The
best scenario is scenario 4 and the worst is scenario 3.

As can be seen from Fig. 6 and Fig. 7, the output of the
pitch rate sensor seems to oscillate rapidly over certain time
frames. This is due to the aircraft being disturbed from its

equilibrium state. These disturbances could be initiated by
pilot control inputs, change in power settings and atmospheric
influences like gust and turbulence [32]. Since the scenarios
where simulated in turbulent free weather conditions, in this
case, the oscillations are caused by the control outputs from the
AI pilot in X-Plane. For a certain time frame, the oscillations
are neither increasing nor decreasing in magnitude (Fig. 7).
Once the aircraft is disturbed, it continues to oscillate without
a significant increase or decrease in magnitude. The aircraft
is said to be in a state of neutral dynamic stability [31], [33].
The magnitude and duration of these oscillations depends on
the aircraft’s aerodynamics and stability.

The estimator follows these oscillations but does not follow
the magnitude. To investigate this anomaly, the estimator
with 6 neurons was validated on the training data itself. The
estimator output followed all the training data points, except
the points with rapid oscillations. This leads to the conclusion
that the anomaly is due to the lack of inputs.

Additional inputs could help capture the aircraft’s aerody-
namics within the neural network, which would then help
to follow the magnitude of the sensor during the oscillatory
phase of the aircraft. Future work would focus on identifying
the inputs to the estimator to follow the magnitude of the
oscillatory phase.

C. Roll Rate Estimator

In Table IV the results for the roll rate estimators are
presented. As can be seen from the average SSE, there is a
close tie between neurons 2, 4 and 12. Using the standard
deviations of their SSE, the estimator with 12 neurons has the
best normal distribution among them with 3 being the worst.
However, it was decided to select the estimator with 4 neurons,
keeping in line with the low neuron count of the previous gyro
sensor estimators.

The output of this estimator on its best and worst scenarios
is presented in Fig. 8 and Fig. 9 respectively. The best scenario
is scenario 3 and the worst is scenario 5.

VII. CONCLUSION

Fault tolerant flight control system (FTFCS) can increase
the endurance of an aircraft in case of failures. As part of the
FTFCS, the sensor failure detection, identification and accom-
modation (SFDIA) scheme, must detect any faulty sensor and
replace it with a reliable estimate.

The neuron by neuron (NBN) learning algorithm is an im-
proved version of the Levenberg-Marquardt (LM) algorithm.
This algorithm is combined with the fully connected cascade
(FCC) neural network to develop the sensor estimators for the
pitch, roll and yaw rate gyros of an aircraft. These estimators
can be used in any SFDIA scheme to provide the failure
accommodation (FA).

The results show that the proposed algorithm and neural
network architecture can produce good estimates of the sensor
measurements, with as little as 2 neurons (see yaw rate results
in Section VI). The pitch and roll rate estimators, were able to
produce good estimates with just 6 and 4 neurons respectively;

in comparison to the SFDIA scheme presented in [8]. In
the scheme presented in [8], the estimators are based on the
multilayer perceptron (MLP) neural network using 1 hidden
layer. They are trained using the extended back propagation
learning algorithm (EBPA). These estimators require 20, 30
and 18 neurons in their hidden layer, to produce reliable
pitch, roll and yaw rate estimates, respectively. This scheme,
presented in [8], also uses more inputs to its estimators,
compared to 3 inputs each to the pitch, roll and yaw rate
estimators, presented in this paper.

On-going research is aimed at using the NBN algorithm
with the FCC neural network architecture to develop a fully
FTFCS; incorporating a SFDIA scheme and a actuator failure
detection, identification and accommodation (AFDIA) scheme.
Future work also aims to identify additional inputs that can
solve the limitation of the pitch estimator.

ACKNOWLEDGMENT

This research is part-funded by the University of Central
Lancashire (UCLan) and Military Air and Information (MAI),
BAE Systems, UK. The authors thank Adam Bedford of
UCLan and Mohiuddin Rahman of University of Glasgow,
UK, for their advice with this research. In addition, we
acknowledge the supportive reviews from our colleagues at
BAE MAI.

REFERENCES

[1] B. M. Wilamowski, “How to not get frustrated with neural networks,”
2011 IEEE International Conference on Industrial Technology, pp. 5–11,
Mar. 2011.

[2] B. Wilamowski, “Neural network architectures and learning algorithms,”
IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 56–63, Dec.
2009.

[3] H. Yu and W. Auburn, “Fast and efficient and training of neural net-
works,” in 3rd International Conference on Human System Interaction.
IEEE, May 2010, pp. 175–181.

[4] B. Wilamowski, D. Hunter, and A. Mabnowski, “Solving parity-N
problems with feedforward neural networks,” in Proceedings of the
International Joint Conference on Neural Networks, 2003., vol. 4.
IEEE, 2003, pp. 2546–2551.

[5] D. Hunter, H. Yu, and M. Pukish, “Selection of Proper Neural Network
Sizes and ArchitecturesA Comparative Study,” Industrial Informatics,
. . . , vol. 8, no. 2, pp. 228–240, May 2012.

[6] I. Samy, I. Postlethwaite, and D. Gu, “Neural network based sensor
validation scheme demonstrated on an unmanned air vehicle (UAV)
model,” in 2008 47th IEEE Conference on Decision and Control. IEEE,
2008, pp. 1237–1242.

[7] G. Campa, M. Fravolini, M. Napolitano, and B. Seanor, “Neural
networks-based sensor validation for the flight control system of a
B777 research model,” in Proceedings of the 2002 American Control
Conference (IEEE Cat. No.CH37301), vol. 1. American Automatic
Control Council, 2002, pp. 412–417.

[8] M. Napolitano, “A fault tolerant flight control system for sensor and
actuator failures using neural networks,” Aircraft Design, vol. 3, no. 2,
pp. 103–128, Jun. 2000.

[9] P. Goupil, “AIRBUS state of the art and practices on FDI and FTC in
flight control system,” Control Engineering Practice, vol. 19, no. 6, pp.
524–539, Jun. 2011.

[10] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-
tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2, pp.
229–252, Dec. 2008.

[11] A. S. Willsky, “A survey of design methods for failure detection in
dynamic systems,” Automatica, vol. 12, no. 6, pp. 601–611, Nov. 1976.

[12] I. Samy, I. Postlethwaite, and D.-W. Gu, “Survey and application of
sensor fault detection and isolation schemes,” Control Engineering
Practice, vol. 19, no. 7, pp. 658–674, Jul. 2011.

[13] ——, “Detection and accommodation of sensor faults in UAVs- a com-
parison of NN and EKF based approaches,” in 49th IEEE Conference
on Decision and Control (CDC). IEEE, Dec. 2010, pp. 4365–4372.

[14] R. Isermann and P. Ballé, “Trends in the application of model-based fault
detection and diagnosis of technical processes,” Control Engineering
Practice, vol. 5, no. 5, pp. 709–719, May 1997.

[15] T.-H. Guo and J. Musgrave, “Neural network based sensor validation
for reusable rocket engines,” in Proceedings of 1995 American Control
Conference - ACC’95, vol. 2. American Autom Control Council, 1995,
pp. 1367–1372.

[16] B. M. Wilamowski, N. Cotton, J. Hewlett, and O. Kaynak, “Neural
Network Trainer with Second Order Learning Algorithms,” in Intelligent
Engineering Systems, 2007 International Conference on. IEEE, Jun.
2007, pp. 127–132.

[17] B. M. Wilamowski and H. Yu, “Neural network learning without
backpropagation.” IEEE transactions on neural networks / a publication
of the IEEE Neural Networks Council, vol. 21, no. 11, pp. 1793–803,
Nov. 2010.

[18] B. M. Wilamowski, “C++ implementation of neural networks trainer,”
in 2009 International Conference on Intelligent Engineering Systems.
IEEE, Apr. 2009, pp. 257–262.

[19] B. Wilamowski, “Challenges in applications of computational intel-
ligence in industrial electronics,” Industrial Electronics (ISIE), 2010
IEEE, pp. 15–22, Jul. 2010.

[20] B. M. Wilamowski, “Advanced learning algorithms,” in 2009 Interna-
tional Conference on Intelligent Engineering Systems. IEEE, Apr. 2009,
pp. 9–17.

[21] B. M. Wilamowski and H. Yu, “Improved computation for Levenberg-
Marquardt training.” IEEE transactions on neural networks / a publica-
tion of the IEEE Neural Networks Council, vol. 21, no. 6, pp. 930–7,
Jun. 2010.

[22] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm.” IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, vol. 5, no. 6, pp.
989–993, Jan. 1994.

[23] B. Wilamowski, H. Yu, and N. Cotton, “NBN Algorithm,” in Intelligent
Systems, ser. Electrical Engineering Handbook. CRC Press, Feb. 2011,
pp. 1–24.

[24] B. Wilamowski, “Understanding Neural Networks,” in Intelligent Sys-
tems, ser. Electrical Engineering Handbook. CRC Press, Feb. 2011, pp.
1–11.

[25] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial
neural networks:: The state of the art,” International Journal of Fore-
casting, vol. 14, no. 1, pp. 35–62, Mar. 1998.

[26] Laminar Research, “X-Plane 10 Global — The Worlds Most
Advanced Flight Simulator — X-Plane.com.” [Online]. Available:
http://www.x-plane.com

[27] ——, “FAA-Certified X-Plane.” [Online]. Available: http://www.
x-plane.com/pro/certified/

[28] ——, “X-Plane 10 Manual,” 2012. [Online]. Available: http://www.
x-plane.com/files/manuals/X-Plane\ 10\ Desktop\ manual.pdf

[29] R. Collinson, “Navigation Systems,” in Introduction to Avionics Systems.
Dordrecht: Springer Netherlands, 2011, pp. 303–376.

[30] R. P. G. Collinson, “Inertial Sensors and Attitude Derivation,” in
Introduction to Avionics Systems. Springer Netherlands, 2011, pp. 255–
302.

[31] R. Collinson, “Aerodynamics and Aircraft Control,” in Introduction to
Avionics Systems. Dordrecht: Springer Netherlands, 2011, pp. 101–117.

[32] M. V. Cook, Flight Dynamic Principles, 2nd ed. Oxford: Butterworth-
Heinemann, 2007.

[33] T. A. Talay, “Stability and Control.” [Online]. Available: http:
//history.nasa.gov/SP-367/chapt9.htm

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 1

Sensor Failure Detection, Identification and
Accommodation Using Fully Connected Cascade

Neural Network
Saed Hussain, Student Member, IEEE, Maizura Mokhtar, Member, IEEE, and Joe M. Howe

Abstract—Modern control systems rely heavily on their sensors
for reliable operation. Failure of a sensor could destabilize the
system, which could have serious consequences to the system’s
operations. Therefore there is a need to detect and accommodate
such failures, especially if the system in question is of a safety
critical application. In this paper, a sensor failure detection,
identification and accommodation (SFDIA) scheme is presented.
This scheme is based on the fully connected cascade (FCC) neural
network (NN) architecture. The NN is trained using the neuron by
neuron (NBN) learning algorithm. This NN architecture is chosen
because of its efficiency in terms of the number of neurons and
the number of inputs required to solve a problem. The SFDIA
scheme considers failures in pitch, roll and yaw rate gyro sensors
of an aircraft. A total of 105 experiments were conducted; out of
which, only one went undetected. The SFDIA scheme presented
here is efficient, compact and computationally less expensive, in
comparison to schemes using, for example, the popular multi-
layer perceptron (MLP) NN. These benefits are inherited from
the FCC NN architecture.

Index Terms—Sensors, neural networks, fault tolerance, failure
detection, analytical redundancy.

I. INTRODUCTION

Sensors are vital components of any control system. They
inform the controller about its environment and the state of the
system. With increasing safety, performance and automation
requirements, control systems are increasingly sophisticated
and are heavily reliant on their sensors. However, sensors are
often considered as the weak link in these systems [1], [2].

Any sensor failure could degrade the system’s performance
and possibly lead to total system failure. The impact of the
failure depends on the application domain. In safety critical
applications, any failure could result in damage to property
or environment and in worst case scenario, result in loss
of life. Therefore sensor failure detection, identification and
accommodation (SFDIA) is an important area of research in
the safety critical systems domain.

Manuscript received April 28, 2013; revised September 23, 2013, March
6, 2014 and August 7, 2014; accepted September 6, 2014.

Copyright c©2014 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

Saed Hussain is with the School of Computing, Engineering and Physical
Sciences (CEPS), University of Central Lancashire (UCLan), PR1 2HE,
United Kingdom (UK) (e-mail: SHussain23@uclan.ac.uk)

Maizura Mokhtar is with the Department of Automatic Control and Systems
Engineering (ACSE), University fo Sheffield, S1 3JD, UK, and was with the
School of CEPS, UCLan, UK (email: M.Mokhtar@sheffield.ac.uk)

Joe M. Howe is with the Thornton Energy Institute, University of Chester,
Thornton Science Park, Chester, CH2 4NU, UK, and was with the School of
CEPS, UCLan, UK (e-mail: j.howe@chester.ac.uk)

An aircraft system is a good example of a safety critical
system. Sensor failures are particularly important to an aircraft,
due to their role in the feedback control loop. If measurements
from a faulty sensor enter the control loop, it can lead to closed
loop instability which can eventually result in undesirable, or
worst, unrecoverable flight conditions [3], [4]. Therefore these
systems must have robust sensor fault tolerance mechanisms.

This paper presents a neural network (NN) based SFDIA
scheme, with an aircraft system as the application domain.
Neural networks have been used in various applications,
including fault diagnosis and detection [5]–[11]. The popular
architecture for NN based applications is the multi-layer per-
ceptron (MLP) NN [12]–[14]. However, the scheme presented
here is based on the fully connected cascade (FCC) NN
architecture. This architecture is selected due to its ability
to solve a problem with a small number of neurons [13],
[15]–[17]. It should be noted that this paper is based on the
research presented by the authors in [18]. In [18], FCC NN
based aircraft pitch, roll and yaw rate sensor estimators are
developed. These estimators are utilized by the SFDIA scheme
presented here.

This paper is organized as follows: Section II provides a
brief review of the SFDIA methods detailed in the literature.
Section III provides an overview of the FCC NN architecture
and also presents the settings used for this research. The
outline of the SFDIA scheme developed is discussed in
Section IV. The sensor suite used to collect data for this
research is briefly described in Section V. The FCC NN based
sensor estimator development process presented in [18] is
summarized in Section VI. In Section VII, the failure types
considered is discussed. The experimental results are presented
in Section VIII and summarized in Section IX. And finally,
Section X, concludes the paper.

II. BRIEF REVIEW OF SFDIA METHODS

The state of the art practice for fault detection, identification
and accommodation (FDIA) is to implement high levels of
hardware redundancy [3], [10], [19], [20]. For example, Airbus
A320/330/340/380 has triple or quadruple redundant actuation,
sensor and flight control systems [19]. In hardware redundancy
(see Fig. 1), identical sensors are used to measure the same
parameter. A voting scheme is then employed to detect and
identify any faulty sensor [4], [11], [19]. For example, in a
system with three redundant sensors, if the signal from one
sensor differs significantly from the remaining two sensors,

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2

the sensor is declared as faulty. Sensor failure accommodation
is achieved by replacing the faulty sensor with one of the two
remaining sensors.

Pitch (q)

Voting
Scheme

Flight Controller

Fault Free
Measurement

Sensor 1 Sensor 2 Sensor 3

Fig. 1. Block diagram of hardware redundancy

However, for small aircraft’s like UAVs, this method has
serious implications in terms of cost, power and weight. Due
to these implications, analytical redundancy has become a far
more appealing approach for SFDIA.

Generally, in analytical redundancy (see Fig. 2), a model of
the monitored system is used to generate signals that would
otherwise be generated by redundant hardware. In its simplest
form, the difference between the model estimate and the
measured reading is used to generate an error residual. This
residual is then monitored to detect and identify faults [11].

Threshold Logic

Fault Free
Measurement

Flight Controller

Sensor Sensor
Model

Fig. 2. Block diagram of analytical redundancy

In the literature, early works on analytical redundancy are
mostly based on observers and Kalman filters [4], [10], [11],
[20]–[22]. These techniques relied on the linear time invariant
mathematical model of the systems. In an aircraft system, the
assumption that the system is linear, is not often valid through-
out the entirety of the flight envelope [22], [23]. Therefore,
these techniques might perform inadequately, in the non-linear
regions of the flight envelope. In addition, these techniques
can suffer from modeling discrepancies between real and
mathematical model of the system [24]. Recent literature, has
seen efforts been made to address these issues, especially with
the linearity assumption of the Kalman filters [25]. Several
versions of the Kalman filter has been developed and applied
to various fault tolerance and state estimation problems in non-
linear systems [7], [24], [26]–[30].

Over the past two decades, there has been an increasing
interest in the application of NN for SFDIA schemes [3], [10],
[21], [24], [31]–[33]. This is mainly due to their innate ability
to model both linear and non-linear systems [5], [34]. Unlike

the Kalman filters, they do not require a detailed mathematical
description of the system. They develop a structure based
on training data instead. In addition, they can also be made
to adapt on-line, whilst the system is in use; in order to
adapt to the dynamic conditions of the environment and the
system dynamics. On-line adaptation is provided by the on-
line learning algorithm.

Example applications of NN based SFDIA schemes include,
an SFDIA scheme for the space shuttle main engine using
the auto-associative MLP NN, presented in [33]. This NN
architecture has also been used for fault detection in intelligent
sensors [8], [31]. The authors of [10] developed a SFDIA
scheme using the hetero-associative MLP NN. This scheme
was evaluated on the pitch, roll and yaw rate gyro sensors.
Samy, Postlethwaite and Gu proposed a SFDIA scheme using
the radial basis function (RBF) NN in [3] and [11].

In this paper, a SFDIA scheme using the FCC NN [13]
is presented. This NN is trained using the neuron by neuron
(NBN) learning algorithm [13]. In an SFDIA scheme, once
a sensor failure is detected and identified (FDI), the faulty
sensor reading is replaced with a reliable estimate, a process
known as failure accommodation (FA). SFDIA schemes based
on NN replaces the faulty sensor reading with a NN generated
estimate. It other words, the NN works as the estimator.

III. NEURAL NETWORK

A. Fully Connected Cascade Neural Network
In the literature, the MLP NN architecture is the popular

choice for NN applications [12]–[14]. This architecture how-
ever is neither powerful nor efficient, in comparison to other
architectures with connections across layers [13], [15], [17],
[35].

The FCC NN architecture, presented in Fig. 3, allows
connections across layers. Compared to the popular MLP
architecture, this architecture is compact and efficient as it
requires less neurons to solve a problem. For example Table I,
which is adapted from [15], compares the two architecture to
solve the parity-n problem. This is a common benchmarking
problem for neural networks [13].

n3

n1

n2

Ϊͳ������ ������

Fig. 3. FCC Neural Network Architecture

As can be seen from Table I, to solve a parity-7 problem,
the MLP architecture requires 8 neurons compared to 3 by
the FCC. The FCC architecture is capable of solving a parity
63 problem with just 6 neurons, compared to 64 by the MLP.
With increasing number of neurons, the computational expense
increases due to an increase in the number of network weights.

In Table I, to solve the parity-31 problem, the MLP archi-
tecture with 32 neurons has 1024 weights; whereas the FCC

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 3

TABLE I
COMPARISON OF FCC AND MLP ARCHITECTURE TO SOLVE

PARITY-N PROBLEM

Parity Architecture No. Neurons No. Weights

3 MLP 4 16
FCC 2 9

7 MLP 8 64
FCC 3 27

15 MLP 15 256
FCC 4 70

31 MLP 32 1024
FCC 5 170

63 MLP 64 4096
FCC 6 399

Note: This table is adapted from [15]. The MLP architecture is made of
1 hidden layer.

architecture with just 5 neurons has 170 weights. The FCC
architecture requires significantly low number of weights and
neurons compared to MLP due to its unique architecture. It is
clear from Table I, that a signification saving in computation
expense can be made, if a system based on MLP is updated
to use the FCC architecture. Based on these results, the FCC
NN is chosen for use as the NN based sensor estimator.

B. Training Algorithm
To train the FCC NN based sensors estimators, the NBN

learning algorithm is used. The NBN algorithm is an improved
version of the second order Levenberg-Marquardt (LM) algo-
rithm [15]–[17]. Using the NBN algorithm, the weights are
updated as follows:

Wn+1 =Wn − (Q+ µI)−1g (1)

where Wn+1 is the new weights vector, Wn is the previous
weights vector, Q is the quasi-Hessian matrix, g is the gradient
vector and µ is the combination coefficient.

In comparison to the popular error back propagation (EBP)
training algorithm, this algorithm can not only train fast, but
also efficiently, with small number of neurons within the NN
[13], [15]–[17], [35]–[38].

C. Neural Network Settings
The neural networks are initialized with random weights in

the range of +1.5 to −1.5. The activation function used by
the neurons is the bipolar sigmoid [39], defined as follows:

Outj =
2

1 + e−netj
− 1 (2)

where netj is the sum of the weighted inputs to neuron j
and Outj is the output of neuron j. This activation function
produces an output in the range of +1 to −1.

To match the output range of the neurons, the sensor
measurements that should be the output of the estimators are
normalized using [40]:

xn = (b− a)× xo − xmin
xmax − xmin

+ a (3)

where xn is the normalized value and xo is the value to be
normalized. a and b are the minimum and maximum value of
the range to be normalized to, which in this case is +1 to −1.
xmax and xmin are the maximum and minimum values of the
range from which xo is normalized. This range is set to be
+10 to −10.

The initial value of combination coefficient (µ), used in the
weights update rule of the NBN algorithm, is set to 0.01. The
factor by which to increase or decrease this value of µ is 10.

IV. SFDIA OUTLINE

For every sensor considered, there is a NN based sensor
estimator. As the name suggest, the output of this estimator
is the sensor measurement it is estimating. Also associated
with each sensors, is a fault alarm signal (FA), which could
either be ‘0’ or ‘1’: where FA = 1 indicates a fault and
FA = 0 if otherwise. Failure detection (FD) is performed by
evaluating the residual between each sensor and its associated
NN estimate. If the residual exceeds a certain threshold, the
failure alarm for that sensor is triggered (FA = 1). Failure
identification (FI) is performed by identifying which sensor
fault alarm is triggered. Once the failed sensor is identified, it
remains in the failed state throughout the process.

In addition, the proposed scheme consists of a fault switch
(FS) for every sensor. The inputs to the fault switch are the
fault alarm signal (FA), sensor output and estimator output.
This switch is controlled by the FA signal. In fault free
conditions (FA = 0), the output of FS is the sensor output.
However in the event of failure (FA = 1), the FS switches
to the estimator output. The block diagram of the SFDIA
scheme for the pitch rate sensor is presented in Fig. 4. Note
that the SFDIA scheme and the experiments presented here,
only addresses single sensor failure at a time. However, this
scheme could be extended to address multiple sensor failures
(simultaneously or in series), similar to the research presented
in [11].

Roll Sensor

NN Roll
Estimate

Residual
Evaluation

Fault
Switch

Fault Signal Fault Free
Roll Rate

Pitch
Sensor

NN Pitch
Estimate

Residual
Evaluation

Fault
Switch

 Fault Signal

Fault Free Pitch
Rate

Fig. 4. SFDIA scheme layout for pitch rate sensor

V. THE SENSOR SUITE

The SFDIA scheme is applied to an aircraft’s sensor suite.
To test the functionality of the SFDIA scheme, flight data
(which includes sensor readings) is collected from the X-Plane
flight simulator [41]. This simulator is known for its realistic
flight simulations, due to which its professional version is

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 4

certified by the FAA (Federal Aviation Administration) for
pilot training [42], [43]. The aircraft model used for the
simulations is the Cessna 172SP. This aircraft is flown by the
artificial intelligence (AI) pilot in X-Plane.

For this research, it is assumed that the aircraft is equipped
with six inertial sensors without any hardware redundancy.
The inertial sensors are three gyroscopes (gyros) and three
accelerometers. They are mounted along the x, y and z axis
of the aircraft. These sensors are essential components of
the attitude/heading reference system (AHRS) and the inertial
navigation system (INS) found in modern aircraft [44], [45].
The outputs of these sensors are as follows:
1. Gyros: pitch (q), roll (p) and yaw (r) rates.
2. Accelerometers: accelerations along the x (ax), y (ay) and

z (az) axis.

VI. ESTIMATOR DEVELOPMENT

A. Estimator NN Inputs, Outputs and Structure

In total three estimators are developed, one each for the
pitch, roll and yaw rate gyros. The inputs to the estimators
are measurements from other sensors, excluding the one it
is estimating. In addition, commanded control outputs by the
flight control computer is also used as inputs. These inputs
are taken at the current sample time t. Inputs to each of these
estimators and their respected outputs are presented in Table II.
These inputs are chosen because they can have an effect or
cause an effect on the parameter that the sensor is measuring.

TABLE II
INPUTS TO THE SENSOR ESTIMATORS [18]

Sensor Estimator Inputs

Pitch (q) az - Normal Acceleration
ax - Longitudnal Acceleration
δE - Elevator Demand

Roll (p) r - Yaw Rate
δA - Aileron Demand
δR - Rudder Demand

Yaw (r) ay - Lateral Acceleration
δA - Aileron Demand
δR - Rudder Demand

The relationship between the measured accelerations and
the gyro rates are as follows [46]:

ax = U̇ − rV + qW + gx

ay = V̇ − pW + rU + gy (4)

az = Ẇ − qU + pV + gz

where (U, V,W) and (gx, gy, gz) are the velocity and gravi-
tational acceleration components respectively, along the X, Y
and Z axes, given in body fixed reference frame. Other input
relationships to the outputs are indicated in [47].

B. Estimator Training and Validation Data

Using the X-Plane simulator, six different flight scenarios
are recorded to train and evaluate the FCC NN based SFDIA

scheme. Out of the 6, 1 is chosen at random to train the NN
based estimators for each of the sensors; and the remaining 5
are used to validate the estimators. The results of the training
and validation process are presented in [18]. The 5 validation
scenarios are used again to evaluate the SFDIA scheme.

In the simulations, the aircraft takes off from different
airports to capture different maneuvers performed by the AI
pilot in X-Plane. The maneuvers include, take-off, straight
flight and randomly changing flight heading. The flight data
contains various sensor readings and control inputs, recorded
every second. Although in a practical system, sensor readings
are updated at a higher frequency; recording the flight data at
every second allows the training data to capture more dynamic
flight characteristics between each training pattern. This helps
to prevent the estimator NN from over-fitting to less dynamic
training data.

C. Estimator Development Summary

The development process of the NN based sensor estimators
is presented in [18]. The process can be summarized into the
following steps:
1. Estimator Training: The aim of the estimator development

process is to develop and select the best sensor estimator
in terms of size and error. In this step, for each sensor
considered, estimators with 2 to 12 neurons are trained
offline (batch learning). The training data is extracted from
the training data scenario described in the previous sub-
section. The estimators are trained until the Sum Squared
Error (SSE) of the epoch is ≤ 0.01 or a maximum of 101
epochs is reached.

2. Estimator Validation: In this step, the estimators with
varying number of neurons, trained for each sensor are
validated on the 5 flight scenarios. Each scenario has a
duration of 1500s, therefore containing 1500 patterns. The
performance of the estimator on the scenario is assessed
by calculating the total Sum Squared Error (SSE) of all
the patterns in the scenario. The best estimator for a sensor
is then selected by calculating the average and the standard
deviation of the SSE for all the scenarios.
The results of the best number of neurons for the estimators

are presented in Table III.

TABLE III
STRUCTURE OF THE SENSOR ESTIMATORS [18]

Sensor Estimator No. Neurons

Pitch 6
Roll 4
Yaw 2

D. Estimator Size Comparison

The SFDIA scheme presented here is computationally less
expensive in comparison to that of [10] and [11]. This is due to
the low neuron count and number of inputs to each estimators
when compared against [10] and [11]. For example, Table IV
compares the parameters used in this SFDIA scheme with the
NN based sensor estimators presented in [10] and [11].

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 5

The estimators in [10] are based on the MLP NN using 1
hidden layer. As can be seen from the table, the estimators
in [10] require 20, 30 and 18 neurons for the pitch, roll and
yaw rate sensors, respectively. In comparison, the FCC NN
based estimators require 6, 4 and 2 neurons for the pitch, roll
and yaw rate sensors, respectively. In addition, the estimators
in [10] have considerably higher number of inputs compared
to the estimators presented here. This is due to the use of
historical values (previous time (t) instances) as inputs to these
estimators [10].

In [11], the SFDIA scheme was developed for the pitch
rate (q), normal acceleration (az) and angle of attack (α)
sensors. Therefore only the pitch rate (q) sensor is compared
in Table IV. This SFDIA scheme [11] is based on the extended
minimum resource allocating radial basis function (EMRAN
RBF) NN. Using the EMRAN algorithm, the number of
neurons can vary between 0 and 10, based on the performance
of the estimator. Since no information on the average number
of neurons is presented in [11], the maximum value of 10
is considered for comparison. This is 4 additional neurons
compared to the FCC NN based estimators.

TABLE IV
COMPARISONS OF THE SENSOR ESTIMATOR NEURAL NETWORKS

Sensor Parameters MLP a FCC EMRAN RBF b

Pitch (q) No. Neurons 20 6 10
No. Input Variables 4 3 4
Input Patternc 5 1 1
Total Inputsd 20 3 4

Roll (p) No. Neurons 30 4 -
No. Input Variables 6 3 -
Input Patternc 5 1 -
Total Inputsd 30 3 -

Yaw (r) No. Neurons 18 2 -
No. Input Variables 6 3 -
Input Patternc 5 1 -
Total Inputd 30 3 -

a Ref [10]. The estimator architecture consist of 1 hidden layer.
b Ref [11]. No. of neurons represent the maximum value.
c No. of time (t) instances.
d No. of time instances (t) × No. of input variables.

VII. SENSOR FAILURE EXPERIMENTS

A. Failure Detection and Identification Experiment Setup

The X-Plane 9 flight simulator does not support simulation
of sensor faults. Therefore, faults have to be introduced man-
ually once the flight data for a simulation is collected. The 5
scenarios used to validate the NN based estimators (see VI-B),
are used to evaluate the SFDIA scheme. Faults are introduced
manually at random locations into these 5 scenarios. Note
that although, the flight data contains data collected during
the take-off, straight flight and flight heading changes, faults
are not introduced during the take-off phase.

For every fault type considered, the faults are simulated on
each of the scenarios for every sensor. This would allow the
examination of the performance of the SFDIA scheme for each

of the fault type for every sensor. The fault types considered
in this research are discussed in the following subsection.

B. Sensor Failure Types

Sensors can fail in several ways. Some failures are specific
to a sensor, while others are general. The signal from a sensor
could be described as follows [1], [22], [48]:

xt = st + nt + ft (5)

where at time t, x is the signal from the sensor, s is the useful
signal, n is the noise and f is the sensor failure. The sensor
data collected from X-Plane consists of s + n value. The f
signal is injected manually for each fault type. In this research,
the following fault types are considered [1], [4], [49], [50]:

• Stuck constant bias failure: At a given time, the sensor
output gets stuck and outputs a constant bias b.

xt = b (6)

• Additive (drift) failure: This type of failure is very com-
mon. They are usually caused due to temperature changes
or calibration problems. In this fault, a constant term (drift
value) is added to the sensor output. Additive fault can
be modeled using the following equation [4], [22], [49]:

ft =

0 t < tf

A(t− tf)/TR tf ≤ t < tf + TR

A t ≥ tf + TR

(7)

where tf is the time when the fault is introduced, TR is
the duration of the ramp and A is the fault magnitude.
The magnitude A of the additive fault can either be large
or small. Depending on the duration of the ramp (TR),
the fault can be step (TR ≈ 0s), soft (TR = 4s) or hard
(TR = 1s) [11], [49].

In this research, the output of the gyro sensors are assumed
to be in the range of +10 deg/s to −10 deg/s. In case of
the additive fault type, large and small magnitude faults are
modeled using A = 3 deg/s and A = 1.5 deg/s, respectively.
In total, seven failure cases are considered, which can be
summarized as follows:

1. Constant Bias
2. Hard Additive Large (TR = 1 s , A = 3 deg/s)
3. Hard Additive Small (TR = 1 s , A = 1.5 deg/s)
4. Soft Additive Large (TR = 4 s , A = 3 deg/s)
5. Soft Additive Small (TR = 4 s , A = 1.5 deg/s)
6. Step Additive Large (TR = 0 s , A = 3 deg/s)
7. Step Additive Small (TR = 0 s , A = 1.5 deg/s)
In the next subsection, the technique to generate the sensor

residual is discussed.

C. Residual Generation Technique

As described earlier, the SFDIA scheme presented here uses
residuals (d) to detect and identify sensor failures. Generally,
residuals are generated by squaring the difference between
the real sensor measurement and the measurement from its
model [11]. This is as shown in (8). In (8), d is the residual

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 6

at time t where, x is the real sensor measurement and x is the
estimator (model) measurement at time t.

dt = (xt − xt)2 (8)

Failure is detected when the residual d goes over a threshold
τ . Ideally the sensor measurement and the estimator output
must be equal, therefore generating a residual d = 0 and d 6= 0
in case of failure. When the residual d crosses τ , the failure
alarm is triggered. In this ideal condition, τ should be kept
close to 0 for quick detection (τ ≈ 0).

However, in a practical system, the sensor measurements are
not equal to the estimator (model) output due to sensor noise
and modeling inaccuracies. This means that the residual d is
not equal to zero in fault free conditions. Due to this reason, in
the absence of any faults, a false alarm (FA = 1) could occur
frequently when threshold τ ≈ 0. This could be resolved by
raising the value of τ , however this risks the non detection of
faults. Therefore, there is a need to have a balance between
false alarms and fault detection.

In the SFDIA scheme proposed in this research, the residual
d is generated using a sliding window mechanism [11]. In this
mechanism (see Fig. 5), a window of size n data points keeps
moving (sliding) with time. The window calculates the moving
average of the n residuals generated using (8). The result of
the sliding average window is then weighted to produce the
current residual [11]. The residual generation mechanism can
therefore be described as follows:

Dt =
$

n

t∑

i=t−n−1

(xi − xi)2 (9)

where D is the residual at time instant t and $ is the
weight. Notice how (8) is substituted in (9). The sliding
average window filters the residuals using (8) from noise and
modeling inaccuracies. The weight allows the magnification
of the residuals and a high fault threshold τ . In this research,
the size of the sliding window is set to 5 (n = 5) and the
weight is set to 40 ($ = 40). For the pitch, roll and yaw rate
sensors, the threshold is set to τ = 0.8, τ = 0.8 and τ = 0.2,
respectively.

In the next section, the results of the sensor failure de-
tection and identification for accommodation experiments are
presented.

n

n

Time
t t - 1 t - n + 1 t - n

Fig. 5. Sliding average window at time t

VIII. EXPERIMENTAL RESULTS

A. Yaw Sensor Failures

The results for the yaw rate sensor failure detection time
are presented in Table V. Generally, large magnitude faults
are quicker to detect, in comparison to the small magnitude

390 392 394 396 398 400 402 404 406 408 410
0

2

4

6

R
es

id
ua

l

390 392 394 396 398 400 402 404 406 408 410
-0.5

0

0.5

1

N
or

m
. Y

aw
 R

at
e

390 392 394 396 398 400 402 404 406 408 410
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
A

la
rm

 (
F

A
)

Expected
Sensor
Estimator

Residual
Threshold

Fault Alarm Signal (F
A
)

Fig. 6. Yaw sensor hard fault simulation of large magnitude. This result is
from scenario 1 where the fault occurs at 400s.

faults. The greater the magnitude of the fault, the sooner the
residual generated using (9) will cross the threshold τ . This
observation is reflected in the results presented in Table V,
which compares the results for a sudden step fault of large and
small magnitude. On average, the step fault of large magnitude
is detected instantaneously compared to an average of 0.8s in
sample time for small magnitude step fault.

Similar results can be observed with the hard additive type
faults with a ramp duration of TR = 1s (Section VII-B).
Although the detection time is affected by the magnitude
of the fault, it is also affected by the transient phase (ramp
duration TR) of the developing fault. Due to this, the detection
time for hard faults is greater than step type additive faults.
In Fig. 6, the signals associated with the yaw rate sensor
during the occurrence of hard fault of large magnitude is
presented. Notice the fast response of the fault signal FA after
the occurrence of the fault. The time of fault is marked by a
green line running across the three plots.

In comparison to the step and hard additive type faults, soft
faults have the longest detection time. These faults have the
highest ramp duration (TR = 4s) amongst the three types of
additive faults. On average, the detection time for soft faults
of large magnitude is 2.6s, in comparison to an average of
4s (sample time) for small magnitude fault. In the case of the
constant bias fault, the average detection time is 1.6s.

TABLE V
YAW FDI RESULTS

Detection Time for Fault Types in Sample Time

Scn. Bias Hard Step Soft

- - L S L S L S

1 1 1 1 0 0 2 3
2 1 1 2 0 1 3 5
3 1 1 2 0 1 2 3
4 2 1 3 0 2 3 5
5 3 1 2 0 0 3 4

Avg. 1.6 1 2 0 0.8 2.6 4

−: No Fault Detected, Threshold (τ): 0.2, Scn: Scenario, L: Large, S: Small

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 7

B. Pitch Sensor Failures

The results for the pitch rate sensor failure detection time
are presented in Table VI. The results reflect the observations
made in the yaw rate sensor results. Large magnitude faults
are quick to detect and additive faults with a ramp duration
TR > 0s takes a longer time to detect. On average, the
hard additive faults with large magnitude are detected in
1.4s sample time. In comparison, the hard faults with small
magnitude are detected in average of 3s sample time.

Compared to the hard faults, the soft additive faults take an
average of 3s and 5.2s in sample time, for large and small
magnitude respectively. Notice that the average detection time
of soft faults is longer compared to hard faults. This is because
the ramp duration is greater for soft faults, which is set at
TR = 4s, instead of TR = 1s for hard faults. The step fault
type has the lowest average of the additive fault types due to
the zero ramp duration (TR = 0). Step faults with small and
large magnitude have an average of 0.8s and 2.6s respectively.
The constant bias fault type has an average of 0.8s.

In Fig. 7, the signals associated with the pitch rate sensor
during the occurrence of step fault is presented. It shows the
response of various signals during the occurrence of step fault
of small magnitude. Notice how the residual gradually crosses
the fault threshold τ and triggers the fault alarm FA.

Comparing Table V and Table VI shows how the average
detection time for the pitch rate sensor is greater compared
to the yaw rate sensor, especially for the additive fault types.
This is due to the higher fault residual threshold τ used for
the pitch rate sensor. In comparison to the yaw rate sensor,
the pitch rate estimator has a higher modeling error, therefore
requiring a higher value for τ . The threshold τ is set to 0.8
for the pitch sensor whereas for the yaw sensor, τ = 0.2.

TABLE VI
PITCH FDI REULTS

Detection Time for Fault Types in Sample Time

Scn. Bias Hard Step Soft

- - L S L S L S

1 1 2 5 1 4 4 7
2 1 1 3 1 3 4 7
3 1 1 1 0 0 1 2
4 1 2 4 1 2 4 7
5 0 1 2 1 4 2 3

Avg. 0.8 1.4 3 0.8 2.6 3 5.2

− : No Fault Detected, Threshold (τ) = 0.8, Scn: Scenario, L : Large, S : Small

C. Roll Sensor Failures

In Table VII, the results for the roll rate sensor failure
detection are presented. Similar to the pitch rate sensors, τ
is set at a higher value: τ = 0.8. This is to accommodate the
difference between the estimator value and the sensor value.

The least detection time is taken by the constant bias fault
type with an average of 1s in sample time. For hard fault types,
the average is 2s and 4.6s in sample time for large and small

290 292 294 296 298 300 302 304 306 308 310
-0.1

0

0.1

0.2

N
or

m
. P

itc
h

R
at

e

290 292 294 296 298 300 302 304 306 308 310
0

0.5

1

R
es

id
ua

l

290 292 294 296 298 300 302 304 306 308 310
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
A

la
rm

 (
F

A
)

Expected
Sensor
Estimator

Residual
Threshold

Fault Alarm Signal (F
A
)

Fig. 7. Pitch sensor step fault simulation of small magnitude. This result is
from scenario 1 where the fault occurs at 300s.

magnitude respectively. As expected, the higher the residual
threshold, the longer the fault detection time.

The soft fault types take the most amount of time to be
detected. For large magnitude soft faults, the average detection
time is 4s in sample time. The average detection time is even
higher for small magnitude soft faults, with an average of 7s in
sample time. These results are considerably higher compared
to the detection time in the yaw rate sensor. The longer
detection time is caused by the higher residual threshold.

In case of the step type faults, the average is at 1.2s in
sample time for large magnitude. However for the small mag-
nitude, the average is at 3.75s with a fault going undetected
in scenario 1. The fault went undetected because the residual
failed to trigger the threshold, as can be seen in Fig. 8. This
could be solved by reducing the threshold τ , but risk false
fault detection. Future work would consider additional inputs
to the roll rate estimator to improve the estimate, and therefore
improve the chances for detection.

TABLE VII
ROLL FDI RESULTS

Detection Time for Fault Types in Sample Time

Scn. Bias Hard Step Soft

- - L S L S L S

1 1 2 5 2 − 4 7
2 1 2 4 1 4 4 7
3 1 2 4 1 3 4 7
4 1 2 5 1 4 4 7
5 1 2 5 1 4 4 7

Avg. 1 2 4.6 1.2 3.75 4 7

−: No Fault Detected, Threshold (τ): 0.8, Scn: Scenario, L: Large, S: Small

IX. RESULTS SUMMARY AND DISCUSSIONS

The FCC NN based SFDIA scheme is evaluated for fail-
ures in pitch, roll and yaw rate gyro sensors. Each sensor
is manually injected with seven different faults at random
locations on five different flight scenarios. The observations
of the experiments can be summarized as follows:

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 8

140 142 144 146 148 150 152 154 156 158 160
-0.1

0

0.1

0.2

N
or

m
. R

ol
l R

at
e

140 142 144 146 148 150 152 154 156 158 160
0

0.5

1

R
es

id
ua

l

140 142 144 146 148 150 152 154 156 158 160
-0.5

0

0.5

1

1.5

Sample Time (sec)

F
au

lt
A

la
rm

 (
F

A
)

Expected
Sensor
Estimator

Residual
Threshold

Fault Alarm Signal (F
A
)

Fig. 8. Roll sensor step fault simulation of small magnitude. This result is
from scenario 1 where the fault occurs at 150s.

• Sudden fault types like constant bias, hard additive, step
additive are quicker to detect than faults that develop over
time (e.g. soft additive faults).

• Faults with large magnitude are more easily detected than
faults with small magnitude.

• Higher fault residual threshold to accommodate sensor
estimator modeling errors and noise can increase the fault
detection time.

These observations are consistent across the three gyro
sensors. All faults were detected by the presented SFDIA
scheme, except for one in roll rate sensor. This undetected
fault is a step fault with small magnitude. In this case, the
fault went undetected because the residual failed to trigger
the threshold. However, out of the 105 failure cases evaluated,
only one went undetected.

The FDI results presented here can be compared to the SF-
DIA scheme presented in [11]. The SFDIA scheme presented
in [11] is based on the extended minimum resource allocating
radial basis function (EMRAN-RBF) NN. With their SFDIA
scheme, pitch rate faults were detected in 1.24s, 1s and 1.86s
for hard, step and soft faults respectively. In comparison, the
SFDIA scheme presented here, detected the large magnitude
(A = 3 deg/s) faults in an average time of 1.4s, 0.8s and 3s
for hard, step and soft faults respectively.

The results are fairly comparable, except for the case of soft
failure, where the presented SFDIA scheme took 1.14s longer.
This difference in performance can be accounted for by the fact
that the SFDIA scheme presented in [11] uses a sampling time
of 20ms, compared to the 1s sampling time used in the scheme
presented here. The higher the sampling frequency, the quicker
the faults are detected. Besides the sampling frequency, the
SFDIA scheme presented here just uses 3 inputs compared to
4 inputs in [11].

One of the drawbacks of the presented SFDIA scheme is the
fixed threshold based detection mechanism. Selecting a fixed
fault threshold is a challenging task especially, in a dynamic
system which is susceptible to noise and modeling inaccuracy.
If the threshold is too high, the fault might take longer to
be detected or worse, go undetected. Having a low threshold
on the other hand might increase the rate of false alarms.
The sliding averaging window mechanism does help reduce
the effect of noise and modeling inaccuracy. However, if the

dynamics of the system changes in the future, the thresholds
would have to be evaluated and fixed again.

An alternative to the fixed threshold based detection mech-
anism is an adaptive threshold. In this mechanism, the fault
threshold adapts to the changes in the system dynamics with
time. Such a mechanism, as presented in the [7] and [51],
would increase the robustness of the SFDIA scheme.

X. CONCLUSION

Sensors are an important part of any control system. A
failure in a sensor could degrade the system’s performance and
can destabilize the system’s operation. Therefore it is impor-
tant for a system to have the ability to detect and accommodate
sensor failures to maintain its reliability; especially in safety
critical applications.

An aircraft can be considered as a safety critical system,
where any failure can result in loss of life and significant
damage to environment or property. This research investigates
the development of a fault tolerant sensor system, with the
aircraft as the example application.

In this paper, a neural network (NN) based sensor failure
detection, identification and accommodation (SFDIA) scheme
is presented. This scheme uses the fully connected cascade
(FCC) NN architecture that was trained using the neuron by
neuron (NBN) learning algorithm. As evident from Table I,
this architecture is more efficient than the popular multi-layer
perceptron (MLP) NN architecture. It requires less number of
neurons to solve a problem compared to the MLP architecture.
Therefore savings can be made in terms of computational
expense, by using the FCC architecture instead of the MLP,
for any NN based application.

The SFDIA scheme presented here addresses failures in the
pitch, roll and yaw rate sensors. In total, seven sensor failure
types are considered for each sensor. The FCC NN based
sensor estimators can replicate a sensor’s measurements with
as little as two neurons; and out of the 105 failure experiments,
only one fault went undetected.

ACKNOWLEDGEMENTS

This research is part-funded by the University of Central
Lancashire (UCLan) and Military Air and Information (MAI),
BAE Systems, UK. The authors thank Adam Bedford of
UCLan and Mohiuddin Rahman of University of Glasgow,
UK, for their advice with this research.

REFERENCES

[1] E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Mod-
eling, Detection, and Disambiguation of Sensor Faults for Aerospace
Applications,” IEEE Sensors Journal, vol. 9, no. 12, pp. 1907–1917,
Dec. 2009.

[2] J. C. D. Silva, A. Saxena, E. Balaban, and K. Goebel, “A knowledge-
based system approach for sensor fault modeling, detection and miti-
gation,” Expert Systems with Applications, vol. 39, no. 12, pp. 10 977–
10 989, Sep. 2012.

[3] I. Samy, I. Postlethwaite, and D. Gu, “Neural network based sensor
validation scheme demonstrated on an unmanned air vehicle (UAV)
model,” in 2008 47th IEEE Conf. Decision and Control. IEEE, 2008,
pp. 1237–1242.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 9

[4] G. Campa, M. Fravolini, M. Napolitano, and B. Seanor, “Neural
networks-based sensor validation for the flight control system of a B777
research model,” in Proc. Amer. Control Conf., vol. 1. American
Automatic Control Council, 2002, pp. 412–417.

[5] Q. Wang, F. Yang, Q. Ge, and Q. Yang, “A sensor network modeling and
fault detection method for large wind farms by using neural networks,”
in Proc. 11th IEEE Int. Conf. Control & Autom. IEEE, 2014, pp.
308–313.

[6] Z. F. Wang, J.-L. Zarader, and S. Argentieri, “Aircraft fault diagnosis
and decision system based on improved artificial neural networks,” 2012
IEEE/ASME Int. Conf. Adv. Intelligent Mechatronics (AIM), pp. 1123–
1128, Jul. 2012.

[7] M. Mrugalski, “An unscented Kalman filter in designing dynamic
GMDH neural networks for robust fault detection,” Int. J. Applied
Mathematics and Computer Sci., vol. 23, no. 1, pp. 157–169, Jan. 2013.

[8] S. Rajendran, U. Govindarajan, S. Senthilvadivelu, and S. Uandai, “In-
telligent sensor fault-tolerant control for variable speed wind electrical
systems,” IET Power Elec., vol. 6, no. 7, pp. 1308–1319, Aug. 2013.

[9] D. Gastaldello, A. Souza, C. Ramos, P. da Costa Junior, and M. Zago,
“Fault location in underground systems using artificial neural networks
and PSCAD/EMTDC,” in 2012 IEEE 16th Int. Conf. Intelligent Engi-
neering Systems (INES). IEEE, Jun. 2012, pp. 423–427.

[10] M. R. Napolitano, Y. An, and B. A. Seanor, “A fault tolerant flight
control system for sensor and actuator failures using neural networks,”
Aircraft Design, vol. 3, no. 2, pp. 103–128, Jun. 2000.

[11] I. Samy, I. Postlethwaite, and D.-W. Gu, “Survey and application of
sensor fault detection and isolation schemes,” Control Engineering
Practice, vol. 19, no. 7, pp. 658–674, Jul. 2011.

[12] M. Meireles, P. Almeida, and M. Simoes, “A comprehensive review for
industrial applicability of artificial neural networks,” IEEE Trans. Ind.
Electron., vol. 50, no. 3, pp. 585–601, Jun. 2003.

[13] B. M. Wilamowski, “How to not get frustrated with neural networks,”
2011 IEEE Int. Conf. Industrial Technology, pp. 5–11, Mar. 2011.

[14] B. Wilamowski, N. Cotton, O. Kaynak, and G. Dundar, “Computing
Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural
Networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3784–3790,
Oct. 2008.

[15] D. Hunter, H. Yu, and M. Pukish, “Selection of Proper Neural Network
Sizes and Architectures: A Comparative Study,” IEEE Trans. Ind.
Informatics, vol. 8, no. 2, pp. 228–240, May 2012.

[16] B. M. Wilamowski, “Challenges in applications of computational intel-
ligence in industrial electronics,” in 2010 IEEE Int. Symposium on Ind.
Electron. (ISIE). IEEE, Jul. 2010, pp. 15–22.

[17] B. Wilamowski, “Neural network architectures and learning algorithms,”
IEEE Ind. Electron. Magazine, vol. 3, no. 4, pp. 56–63, Dec. 2009.

[18] S. Hussain, M. Mokhtar, and J. M. Howe, “Aircraft sensor estimation for
fault tolerant flight control system using fully connected cascade neural
network,” in Proc. Int. Joint Conf. Neural Netw. IEEE, 2013, pp. 1–8.

[19] P. Goupil, “AIRBUS state of the art and practices on FDI and FTC in
flight control system,” Control Engineering Practice, vol. 19, no. 6, pp.
524–539, Jun. 2011.

[20] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-
tolerant control systems,” Ann. Rev. in Control, vol. 32, no. 2, pp. 229–
252, Dec. 2008.

[21] R. Isermann and P. Ballé, “Trends in the application of model-based fault
detection and diagnosis of technical processes,” Control Engineering
Practice, vol. 5, no. 5, pp. 709–719, May 1997.

[22] G. Campa, M. L. Fravolini, B. Seanor, M. R. Napolitano, D. D. Gobbo,
G. Yu, and S. Gururajan, “On-line learning neural networks for sensor
validation for the flight control system of a B777 research scale model,”
Int. J. Robust and Nonlinear Control, vol. 12, no. 11, pp. 987–1007,
Sep. 2002.

[23] Y. An, “A design of fault tolerant flight control systems for sensor and
actuator failures using on-line learning neural network,” PhD Thesis,
West Virginia University, US, 1998.

[24] I. Samy, I. Postlethwaite, and D.-W. Gu, “Detection and accommoda-
tion of sensor faults in UAVs- a comparison of NN and EKF based
approaches,” in 49th IEEE Conf. Decision and Control (CDC). IEEE,
Dec. 2010, pp. 4365–4372.

[25] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to
nonlinear systems,” in Proc. SPIE 3068, Signal Processing, Sensor
Fusion, and Target Recognition VI. SPIE, 1997.

[26] G. Heredia and A. Ollero, “Sensor fault detection in small autonomous
helicopters using observer/Kalman filter identification,” in 2009 IEEE
Int. Conf. Mechatronics, vol. 00, no. April. IEEE, 2009, pp. 1–6.

[27] C. Hajiyev and H. E. Soken, “Robust Estimation of UAV Dynamics in
the Presence of Measurement Faults,” J. Aerospace Engineering, vol. 25,
no. 1, pp. 80–89, Jan. 2012.

[28] S. Kim, J. Choi, and Y. Kim, “Fault detection and diagnosis of aircraft
actuators using fuzzy-tuning IMM filter,” IEEE Trans. Aerospace and
Electronic Systems, vol. 44, no. 3, pp. 940–952, Jul. 2008.

[29] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault Detection,
Isolation, and Reconfiguration Methods,” IEEE Trans. Control Systems
Technology, vol. 18, no. 3, pp. 636–653, May 2010.

[30] G. H. B. Foo, Z. Xinan, and D. M. Vilathgamuwa, “A Sensor Fault De-
tection and Isolation Method in Interior Permanent-Magnet Synchronous
Motor Drives Based on an Extended Kalman Filter,” IEEE Trans. Ind.
Electron., vol. 60, no. 8, pp. 3485–3495, Aug. 2013.

[31] H. Guo-jian, L. Gui-xiong, C. Geng-xin, and C. Tie-qun, “Self-recovery
method based on auto-associative neural network for intelligent sensors,”
in Proc. 8th World World Congr. Intell. Control Autom., no. 2007. IEEE,
Jul. 2010, pp. 6918–6922.

[32] S. Gururajan, M. L. Fravolini, H. Chao, M. Rhudy, and M. R. Napoli-
tano, “Performance evaluation of neural network based approaches for
airspeed Sensor Failure Accommodation on a small UAV,” in 21st
Mediterranean Conference on Control and Automation. IEEE, Jun.
2013, pp. 603–608.

[33] T.-H. Guo and J. Musgrave, “Neural network based sensor validation for
reusable rocket engines,” in Proc. Amer. Control Conf., vol. 2. American
Autom Control Council, 1995, pp. 1367–1372.

[34] S. Toma, L. Capocchi, and G.-A. Capolino, “Wound-Rotor Induction
Generator Inter-Turn Short-Circuits Diagnosis Using a New Digital
Neural Network,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4043–
4052, Sep. 2013.

[35] H. Yu and W. Auburn, “Fast and efficient and training of neural
networks,” in 3rd Int. Conf. Human System Interaction. IEEE, May
2010, pp. 175–181.

[36] B. M. Wilamowski, N. Cotton, J. Hewlett, and O. Kaynak, “Neural
Network Trainer with Second Order Learning Algorithms,” in 2007 Int.
Conf. Intelligent Engineering Systems. IEEE, Jun. 2007, pp. 127–132.

[37] B. M. Wilamowski, “C++ implementation of neural networks trainer,”
in 2009 Int. Conf. Intelligent Engineering Systems. IEEE, Apr. 2009,
pp. 257–262.

[38] ——, “Advanced learning algorithms,” in 2009 Int. Conf. Intelligent
Engineering Systems. IEEE, Apr. 2009, pp. 9–17.

[39] B. Wilamowski, “Understanding Neural Networks,” in Intelligent Sys-
tems, ser. Electrical Engineering Handbook. CRC Press, Feb. 2011, pp.
1–11.

[40] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial
neural networks: The state of the art,” Int. J. Forecasting, vol. 14, no. 1,
pp. 35–62, Mar. 1998.

[41] Laminar Research, “X-Plane 10 Global — The World’s Most
Advanced Flight Simulator — X-Plane.com.” [Online]. Available:
http://www.x-plane.com

[42] ——, “FAA-Certified X-Plane.” [Online]. Available: http://www.
x-plane.com/pro/certified/

[43] ——, “X-Plane 10 Manual,” 2012. [Online]. Available: http://www.
x-plane.com/files/manuals/X-Plane\ 10\ Desktop\ manual.pdf

[44] R. Collinson, “Navigation Systems,” in Introduction to Avionics Systems.
Dordrecht: Springer Netherlands, 2011, pp. 303–376.

[45] R. P. G. Collinson, “Inertial Sensors and Attitude Derivation,” in
Introduction to Avionics Systems. Springer Netherlands, 2011, pp. 255–
302.

[46] D.-M. Ma, J.-K. Shiau, I.-C. Wang, and Y.-H. Lin, “Attitude deter-
mination using a MEMS-based flight information measurement unit.”
Sensors, vol. 12, no. 1, pp. 1–23, Jan. 2012.

[47] R. Collinson, “Aerodynamics and Aircraft Control,” in Introduction to
Avionics Systems. Dordrecht: Springer Netherlands, 2011, pp. 101–117.

[48] A. Kozionov, M. Kalinkin, A. Natekin, and A. Loginov, “Wavelet-
based sensor validation: Differentiating abrupt sensor faults from system
dynamics,” in 2011 IEEE 7th Int. Symposium on Intelligent Signal
Processing. IEEE, Sep. 2011, pp. 1–5.

[49] I. Samy, “Development and Evaluation of Neural Network Models For
Cost Reduction in Unmanned Air Vehicles,” PhD Thesis, University of
Leicester, UK, May 2009.

[50] G. Heredia, a. Ollero, M. Bejar, and R. Mahtani, “Sensor and actuator
fault detection in small autonomous helicopters,” Mechatronics, vol. 18,
no. 2, pp. 90–99, Mar. 2008.

[51] M. Perhinschi, M. Napolitano, G. Campa, B. Seanor, J. Burken, and
R. Larson, “An adaptive threshold approach for the design of an actu-
ator failure detection and identification scheme,” IEEE Trans. Control
Systems Technology, vol. 14, no. 3, pp. 519–525, May 2006.

“You have no idea how strong you are.”
– Dr. Banu Abdallah

“The best way out is always through.”
– Robert Frost

