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Abstract 

Diamond-like carbon (DLC) coatings are useful for creating biocompatible surfaces for 

medical implants. DLC and silicon doped DLC have been synthesised using plasma 

enhanced chemical vapour deposition (PECVD). The effects of surface morphology on 

the interaction of human serum albumin (HSA) with doped and undoped DLC films have 

been investigated using a range of surface analysis techniques using Raman spectroscopy 

and atomic force microscopy (AFM). Raman spectra of doped DLC show silicon doped 

DLC reduces the growth range of ID/IG ratio, with significant red-shift of G peak position. 

Following exposure to protein, for undoped DLC the peaks at 1664cm-1 and around 1241 

cm-1 can be attributed to amide I and III, respectively, with an increase in the surface 

morphology of the surfaces giving some indication of the protein structure on the 

surfaces. Results indicate that HSA exhibit the majority of β-sheet during the adsorption 

on the surfaces. The results showed that the silicon incorporation DLC tends to increase 

of surface roughness and the adsorbed level of HSA is higher with higher levels of silicon 

doping of the DLC. Therefore, doping DLC may provide a method of controlling the 

adsorption of protein. 
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1. Introduction 

Interest in the field of biomaterials has increased over the last three decades due to their 

importance in repair and replacement of diseased or damaged tissues in the body. The 

implantation of biomaterials into the human body allows it restructure function and hence 

to enhance the quality of life. 

Protein interaction is central to many biological processes including the interaction of 

cells with the surfaces of biomaterials. The adsorption of proteins to the surface of 

biomaterial is of great importance because of its governing role in determining cellular 

responses to implanted materials and substrates for tissue engineering and regenerative 

medicine [1]. The understandings of the fundamental factors that determine protein 

adsorption are imperative to improve our ability to design biocompatible materials and 

biotechnological devices.  

 

Due to its unique combination of desirable properties including chemical inertness, 

high density, heamocompatibility and poor coefficient of friction [2], diamond like 

carbon (DLC) is an attractive biomaterial for coating human implantable devices [3,4],  

such as rotary blood pumps [5] mechanical heart valves [6], coronary artery stents [7], 

hip and knee replacements [ ]8 . DLC films have shown excellent hemocompatibility, 

resulting in a reduction of thrombosis formation and cytotoxic reactions in vitro and in 

vivo as observed by the normal cell growth on DLC surfaces [9], which has been regarded 

as important advances in the field of biomedical devices and implants [2].  

 

The chemical and physical properties of the surface such as the elemental composition, 

functional groups and surface energy are very important and play a role in enhancing or 

decreasing the adsorption of proteins or biological compounds of the implant. Thus, to 

enhance the biocompatibility of DLC, doping has been investigated involving the 

incorporation of third element such as nitrogen [10], fluorine [11], silicon [12] and 

titanium [13].   

It has been reported that silicon incorporation into DLC tended to improve the chemical 

stability and wear resistance of the DLC films [14]. Si-DLC overcomes some of the 

drawbacks mentioned, including low intrinsic compressive stress, good adhesion, and 

mechanical resistance [15], which are beneficial for biomedical applications. 

Improvements in blood compatibility with silicon doped DLC film where a decrease of 

inflammatory reactions was observed compared to undoped DLC [16].  
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To improve understanding and predict protein-surface interaction behaviour, DLC and 

Si-DLC have been studied using human serum albumin (HSA). This study aims to 

illustrate the conformational changes in proteins upon attachment to surfaces, and 

adsorption on the surfaces for lengthy periods, in order to obtain a better understanding 

of the dynamic phenomena in protein adsorption. 

 

 In this contribution, we explore the coating of silicon wafer substrates with DLC and 

silicon doped DLC thin films using plasma enhanced chemical vapour deposition 

(PECVD). The adsorption process of Human serum albumin (HSA) is investigated, since 

its adsorption onto surgical instruments and medical devices is likely to dominate in vivo 

due to its abundance in the human serum. 

 

2. Experimental  

2.1 Film Preparation and modification  

DLC and Si-DLC were deposited on silicon wafer by the radio frequency (RF) 13.56 

MHz PECVD using a Diavac model 320PA (ACM Ltd.), with negative electrode self-

bias voltages set at 400 Volt. Before deposition of the films, substrates of silicon wafers 

(1.0×1.0) cm2 were cleaned using an ultrasonic bath in acetone and isopropanol (1:1) for 

5 minute followed by washing with distilled water and then dried using nitrogen gas.  

The experimental equipment had been described in detail previously [17]. The cleaned 

substrates were placed in the deposition chamber on top of a water-cooled electrode 

driven by an RF power supply. When the chamber pressure reached ~5×10−6 Torr, the 

glow discharge argon plasma (60 cm3/min) was used to clean substrate and make the 

surface rough and to deposit evaporated coating material. The films were prepared under 

the following conditions: Argon was used as a carrier gas, and C2H2 with 

tetramethylsilane (TMS) (Si(CH3)4 [99.8% Sigma-Aldrich] were used as reactant gas. 

The (Ar:C2H2) flow ratio was fixed at (10:20) standard cubic centimetre per minute 

(sccm), and the deposition time was fixed for 5 minute.  In the case of silicon doped DLC, 

the various doping concentrations of silicon were achieved using TMS. Detailed 

parameters are given in Table 1. 
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Table 1: Conditions of the DLC and Si-DLC films deposition process 
Parameters Samples 

DLC S-1 S-2 S-3 
rf. Power (Watt) 102 107 119 128 

Ar:C2H2 ratio (sccm) 10:20 10:20 10:20 10:20 
Pressure in Process x10-

2 ( Torr) 0.69  0.83  1.17 1.68 

TMS flow rate (sccm) 0 2 5 10 
Film thickness (nm) 168±12 182 ±15 202 ±13 239±16 

(ID/IG) ratio  0.60 0.52 0.45 0.39 

Water contact angle (θ) 79.3°±1.4 80.1°±1.8 82.7°±1.3 86.4°±1.7 

(rf): radio frequency, (W): watt, Bias voltage: 400 volt, deposition time: 5 
minute, (TMS): Tetramethylsilane, (sccm): standard centimetre cube per 
minute, nm: nanometre, Initial chamber pressure:  ~ 5 x10-6 Torr, (±) is SD 
for n = (5-7) samples. (ID/IG): is the intensity ratio between disorder induced 
(D) and graphite (G) band.  

 

 

2.2 Adsorption studies 

0.1mg/ml of HSA (from Sigma-Aldrich) solution was prepared in physiologic buffer 

solution using 0.01M pH 7.4 of Phosphate Buffer Saline (PBS tablets from Sigma-

Aldrich). The clean and dry coated samples were immersed in 10 ml of above solution in 

separate jar. The component was incubated for 30 minute with the adjusted temperature 

of (37±1) ºC. At the end of the adsorption period, the samples were rinsed and washed 

using distilled water and then dried.  

 

2.3 Surface characterisation 

Stylus profilometry was used to determine the film thickness (Dektak 8 Advanced Stylus 

Profiler Veeco Instruments Inc., USA).  

XPS measurements were taken using a KRATOS XSAM 800 equipped with an energy 

analyser (15 keV and 5 mA.) with a monochromatic Aluminium K-alpha X-ray source at 

hv =1486 eV. The operating pressure in the analysis chamber was kept around ~8.6 × 

10−10 bar. All spectra were referenced by setting the C1s peak to 285.0 eV to compensate 

for residual charging effects. 

Raman Spectroscopy was carried out on all samples before and after adhesion of HSA, 

by ISA lab-ram model system using an Argon laser beam ~50 mW 633 nm laser diode 

for excitation. The following parameters were used: confocal aperture 200 μm, spectral 
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resolution 5 cm-1. A 100× objective was employed with typical acquisition times of 7 

seconds and repeated 10 times. This process was repeated at five different spots across 

the samples prepared before and after the adhesion process. Prior to data acquisition the 

spectrometer was calibrated using the zero order diffraction peak and first order peak 

from a silicon phonon mode (at 520 cm-1) from a silicon wafer sample.  

The surface morphology of the synthesised films before and after adsorbed of HSA was 

obtained and analysed by atomic force microscopy (AFM), using a Dimension TM 3100 

(Veeco Metrology group). Imaging was performed under ambient conditions at room 

temperature using a sharp silicon probes (R=20nm), attached to a low stress soft silicon 

nitride cantilever with no reflecting coating on its back side [spring constant ~0.033 N/m 

and resonant frequency around 15 kHz with the applied force of 500 mV]. The AFM 

exhibited a maximum scan area of 10μm×10μm and a vertical range of 3μm and was 

calibrated using calibration gratings purchased from Micro Masch. A root mean square 

surface roughness (rms) was derived directly from the AFM height images. 

 

The contact angle of water was measured in atmospheric conditions at room temperature 

with a contact angle meter (CAM 200 optical contact angle system, KSV instruments 

LTD, Finland). A drop of 5 µL of double distilled water was generated with a micrometric 

syringe and was deposited on the substrate surfaces. The contact angle was read at five 

different places on each sample surface. The average contact angle for each film was 

determined along with the standard error.     

 

3. Results and Discussion 

The film thickness of DLC was 168 nm, with the addition of silicon to the films causing 

an increase in the film thickness, i.e. 182, 202 and 239 nm for TMS flow rates of 2, 5 and 

10 sccm respectively (Table 1). Thus the contents of silicon increased with film thickness 

possible due to the fact that silicon atom has a larger radius than carbon [18]. In contrast, 

the Si–C bond length (1.89 Å) is more than 20% longer than that in C-C bond length 

(1.54 Å). These results are similar to those observed in our previous study [17]. 

 

3.1 surface contact angle 

The contact angle is essential to understand the wetting properties of the surfaces. The 

contact angle value of the DLC and Si- DLC films are shown in Table 1. DLC film tends 
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to be a mild hydrophobic surface with a water contact angle of approximately 79.3°. This 

result is consistent with those obtained in our earlier studies [10]. The silicon incorporated 

DLC films tends to be hydrophobic surfaces with a water contact angle of 80.1°, 82.7° 

and 86.4° for S-1, S-2 and S-3, respectively. This indicates that a hydrophobic DLC can 

be obtained by silicon treatment. 

 

 3.2 The XPS Spectrum of Samples 

Chemical composition of the film surface was estimated by XPS analysis. The 

measurement within the range of 0 eV to 1100 eV was performed (figure not shown). 

Peaks of C 1s and O 1s were confirmed at ~285 eV and ~531 eV, respectively. As well, 

in case of Si-DLC, the additional peak was observed at ~100 eV which attributed to Si2p 

spectrum. This result, has clarified that the DLC film is consisted mainly of Carbon and 

contaminated Oxygen at a ratio of C:O =7:1, (Table 2).  

 
Table 2: Chemical composition of undoped and silicon doped DLC films obtained by 

XPS measurement 
Samples Atom % sp3/sp2 

C  O  Si 
DLC 86.7 13.3 0 0.55 
S-1 81.9 13.7 4.5 0.63 
S-2 76.3 14.1 9.6 0.67 
S-3 68.5 14.6 16.7 0.76 

 
C 1s peak of DLC film was measured within the range of 282 eV to 290 eV, is reported 

in figure 1. This spectrum can be resolved into three components. The peak at 284.6 eV 

is due to C=C (sp2). A second one observed at 285.3 eV attributable to C-C (sp3). The 

last spectrum at 287.2 eV seems to be due to CO configuration. It suggests that silicon 

doped DLC films contained relatively high concentration of Si atoms, which caused a 

slight shift of the C1s spectrum toward a lower binding energy, accompanied by a 

broadening of the C1s peaks with FWHM of 2.5 eV, figure 1. 

Si 2p spectrum was measured within the range of 97 eV to 107 eV, is shown in figure 1. 

This spectrum can be deconvoluted into three Gaussian peaks corresponding to the Si 

bonded to Si (99.6eV), Si bonded C (100.6eV) and the last one located at 102.1 due to 

SiO bonding.  
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Figure 1: XPS C1s and Si 2p spectra of DLC films. 
 

The silicon concentration in the doped films was increased from 4.5 at. % to 16.7 at. %  
with increasing of TMS flow rate during the film deposition from 2 sccm to 10 sccm, 
whereas, carbon atoms always decrease with the increasing silicon content, (table 1 and 
figure 2). On the other hand, the results obtained from figure 3 show that both the 
(O/C+O) and (Si/C+Si) atomic ratios are increased with increasing of TMS flow-rate 
during the film deposition.  
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Figure 2: Carbon, Oxygen and silicon atomic concentration in the DLC films as a 
function of the surface roughness [rout mean square (Rq)].  

 
 

 
Figure 3: Si/(C+Si) and O/(C+O) ratios as a function of the TMS flow rate and sp3/sp2 

hybridisation ratio (drive from XPS measurements) 
 

 
 
The ratios between the sp3 to sp2 bonds in the deposited films were calculated and found 
to be 0.56 (for DLC). Whereas, the results showed that sp3/sp2 ratio is progressively 
developing with a rise of silicon concentration in the range of 0.63, 0.67 and 0.78 for S-
1, S-2 and S-3 samples, respectively (figure 3). Therefore, one can conclude that, since 
silicon forms only single bonds, the incorporated Si atoms substitute for sp2 bonded 
carbon atoms (C=C) causing a development of C–Si bonds with the increase in the TMS 
flow-rate. 
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3.3 Raman Spectroscopy  

Raman spectroscopy is widely used for the investigation of sp carbon systems, as well as 

for a number of carbon-based systems. In addition, it can be exploited to achieve a high 

sensitivity in detecting small amounts of sp carbon. [19] 

Raman spectra of DLC and related compounds showed a wide broad peak of carbon bands 

in the range of 1000-1750 cm-1. The measured spectra employed two Gaussian peaks at 

1349 cm-1 and 1538 cm-1. These bands are characteristic of disordered graphite (D band) 

and pure graphite sp2 (G band), respectively (figure 4-A). The G-peak is due to bond 

stretching of all pairs of sp2 configuration atoms in both rings and chains whilst the D-

peak is the shoulder of the G-peak at lower wave numbers due to the presence of the sp2 

aromatic rings [20].  
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Figure 4: The Raman spectra of DLC (A) and Si-DLC (B) film samples 

 

Whilst in the case of S-1, the typical G-band and D-band are located at 1527cm-1 and 

1344 cm-1 respectively. Furthermore, increasing the silicon concentration resulted in a red 

shift in the G-peak of about 12 cm-1 and 15 cm-1 in the D-peak positions (figure 4-B). 

This is due to the sp2 domains in Si-DLC films decreasing [12].  



 

 10 

In addition, silicon has a higher atomic mass than carbon and the downshift can be 

attributed to the presence of Si-C bridging bonds which weaken the adjacent C-C bonds 

[21]. 

The G band position is a function of the sp3 hybridisation. Following incorporation silicon 

into the DLC film enhance the formation of the sp3-hybridized configuration (σ) bonding. 

This is equivalent to breaking the π bonds in the sp2 hybridized aromatic ring structures 

causing a decrease in the intensity of D-band [22]. On the other hand when the sp3 

configuration increases the sp2 cluster size will decrease and the bond order increases 

with a resultant Raman frequency increase [23]. 

Figure 5 shows the variation of ID/IG ratio for synthesized films, which is conventionally 
indicative of the degree of disorder in the carbon film clusters [18]. After the initial 
increment, the ID/IG value decreases linearly with increasing silicon flow rate, whereas 
this ratio decreased exponentially with increasing the silicon flow rate from 5 sccm to 10 
sccm. This, probably due to the change in crystallite size of sp2 hybridised bonded 
clusters [24]. In addition, the decrease in the ID/IG ratio indicates an increase in the 
formation of atomic network and saturation of dangling bonds [25].  
 

 
Figure 5: Raman peak position of the D and G bands with ID/IG ratio versus TMS flow 

rate in doped and undoped DLC films. 
 
These findings are in a good agreement with results of XPS measurements. Silicon atoms 
preferentially substitute the sp2 hybridized carbon atoms during film formation which 
tends to increase the C-Si contribution, while the amount of the C-C bonding (sp3) 
remained relatively unaltered. Since the Si/C ratio was increased with increasing silicon 
flow rate, the number of sp2 cluster has been decreased. This may cause changes in the 
film composition 
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Raman spectroscopy provides an effective method to ascertain the secondary and tertiary 
structural characteristics of protein. The secondary structure of protein is determined by 
the set of dihedral angles (ϕ, φ), which define the spatial orientation of the peptide 
backbone, and the presence of specific hydrogen bonds.  [26]  
A wide range of secondary structural markers, including α-helix backbone (930cm-1 - 
950cm- 1), amide I (1600cm-1 - 1700cm-1), and amide III (1200cm-1- 1350cm-1) can be 
monitored. The principal geometry for the α-helix is ϕ ~60° and φ ~45° with hydrogen 
bonds from the N-H of the fifth residue in the chain to the C=O group on the first residue. 
The dihedral angles of the β-sheet are ϕ ~130° and φ ~120°, forming an extended 
structure. The peptide backbone in a β-turn forms a rough plane that contains the 
intramolecular hydrogen bond. [27,28]. 
 
Raman spectra of free and adhered HSA onto DLC and Si-DLC samples can be observed 

on figure 6. Significant bands assigned for the free HSA spectrum includes; the amide I 

band, which is sensitive to the secondary structure in protein, located at 1656 cm-1 with 

full width at half maximum (47 cm-1). The amide I modes, which involves mainly C=O 

stretching, C-N stretching, C𝛼𝛼-C-N bending, and N-H in-plane bending of α-helical 

peptide groups. In contrast, the band at ~1257 cm-1 is correlated to the amide III mode. 

The amide III band includes N-H and C=O in-plane bending as well as C-N stretching 

and contributions from Cα-C stretching modes.  A band at around 849 cm-1 and 1003 cm-

1 are attributed to the Symmetric ring breathing mode of tyrosine (tyr) and phenylalanine 

(phe) modes in HSA conformation, respectively. The protein backbone modes are 

observed in the range of 900 cm-1 to 1100 cm-1. The moderately bands observed at 1327 

cm-1 and 1448 cm-1, correspond to bending vibrations of both CH2 and CH3 deformation 

mode [29]. The peak at 1405 cm-1 can be attributed to the symmetric stretching C=O of 

ionized carboxyl groups (COO¯) of aspartic and glutamic acid, and side chain vibrations 

of the imidazole ring of histidine [30]. As well, a band is located at ~1612 cm-1 is due to 

the aromatic ring mode. 
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Figure 6: The Raman spectra for free (A) and adsorbed HSA on DLC (B), S-1 (C), S-2 

(D) and S-3 (E).  
 

 

Followed the adhesion of HSA on to DLC, the amide I band slightly shifted from 1656 

cm-1 to 1664 cm-1, with FWHM wider (56 cm-1), and this shift well increased with 

addition of silicon content DLC (table 3). In contrast the band at 1612 cm-1 well shifted 

to near 1606 cm-1 this might be related to deprotonated of tyrosine ring during the 

adsorption. Whereas, the amide III envelope reflects peptide amide bonds and is observed 

as abroad band in the Raman spectra of adsorbed HSA. The wave-number maximum at a 

lower Raman shift at around (1241-1248) cm-1 is an indicative of a lower α- helix content 

in the protein’s secondary structure upon adsorption onto surfaces [31].  

 

Table 3: Characteristic Raman vibrational bands (cm-1) of free and adsorbed HSA on 
DLC and Si-DLC samples 

Free 
HSA 

HSA adsorbed on Modes  
[28-34] DLC S-1 S-2 S-3 

658 655 654 653 654 Tyr 
849 853 852 853 853 Tyr 
924 936 934 937 932 C-C 

1003 1005 1004 1004 1006 phe 
1109 1105 1102 1103 1101 C-C, C-N, C-O 
1170 1177 1175 1179 1176 Tyr, phe 
1257 1247 1248 1244 1241 Amide III 
1327 1322 1326 1324 1328 CH2 sym, def 
1405 1417 1415 1416 1417 COOsym 
1448 1453 1451 1452 1453 CH3 def. 
1611 1606 1605 1605 1602 Ar C=C 
1662 1668 1670 1670 1672 Amide I 
Tyr: tyrosine, phe: phenylalanine, def: deformation, sym: symmetric, Ar 

aromatic,  
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Raman spectra of [O=CO¯] stretching mode appeared at ~1417 cm-1, these blue shift 

might be related to the chemical reaction of side chain carboxylic group with the surface 

[32]. The results agree with our previous experiments, suggested that the adsorption of 

glycine on to Si-DLC accrued through carboxylic acid group [12]. 

Curve fitting of the amide I band was performed to indicate the secondary structural 

compositions of HSA using Gaussian model, (figure 7). The bands of free HSA were 

located at 1614, 1634, 1654 cm-1 and 1669 cm-1 which is related to aromatic ring 

vibration, random coil, α-helix and β-sheet components, respectively, whilst the bands 

between 1680 –1690 cm-1 region reflects the contribution of β-turn [33].  
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Figure 7: Curve fitting of the Amide I band vibration mode of free HSA (A) and 

adsorbed on DLC (B) and on S-3 (C) surfaces.  
 

Based on the analysis data, the free HSA protein consisted of 53.3% α-helix (1653 cm-1), 

11.3% random coil (1635 cm-1), 23.1% β-sheet (1669 cm-1) and 12.2% β-tum (1687 cm-

1), this finding is consistent with our previous research that HSA contained major 55% of 

α-helix and 45% β-structure in pH 7.4 buffer solution [34,35]. 

For the HSA adhered onto the samples, the amide I band fit of HSA showed a decrease 

in the α-helix band intensity to (46%) with a slight increase in both β-sheet and random 

coil conformations (table 4). This indicated the presence of conformational changes of 

HSA during the adsorption. In case of  adsorbed HSA on Si-DLC surfaces, the de-

convoluted band at ~1634 cm-1 can be assigned to the random conformation which 

increases relative to the band at ~1653 cm-1 (α-helix region) with increasing silicon 

doping of DLC. As well, an increase from 26% to 32% β-sheet is observed with increasing 

of silicon concentration in a film to 16.7 at. %. This finding corroborates the ideas of 

Wang et al, who suggested that, the proteins will tend to adsorb on the hydrophobic 

surface by hydrophobic patches of residues present in the protein’s amphiphilic structure. 

Protein would unfold and spread its hydrophobic core over the surface owing to the 

thermodynamic driving force to reduce the net hydrophobic surface area of the system 

exposed to the solvent [36]. While the hydrophilic amino acid moieties, which are not in 

a close proximity to the adsorbing hydrophobic domains, are allowed to dangle to the 

exterior and interact with the aqueous environment. [37]. 
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Table 4: Assignment of amide I band positions to secondary structures of HSA before 
and after adsorption on DLC and Si-DLC 

Structure 
Free HSA HSA adsorbed on  

DLC S-1 S-2 S-3 
ν 
cm-1 

Band 
% 

 ν 
cm-1 

Band 
% 

ν 
cm-1 

Band 
% 

ν 
cm-1 

Band 
% 

ν 
cm-1 

Band 
% 

random 
coil 1633 11.3 1634 13.7 1634 14.8 1633 15.9 1634 17.6 

α-helix 1653 53.3 1652 46.2 1652 42.4 1654 41.1 1653 39.3 
β-sheet 1670 23.1 1669 26.9 1670 28.6 1670 30.2 1668 31.8 
β-turn 1687 11.7 1685 12.8 1686 13.5 1687 13.4 1688 13.7 

 (ν): Raman shift band (cm-1).  

 

 

The results inferred that silicon doping of DLC tends to increase of the β-sheet peak area 

with reducing α-helix content. Comparing these results with native protein indicates that 

the secondary structure of protein has been partially disordered due to the binding of HSA 

to the surfaces.  

These results are consistent with our previous analysis, which was obtained from 

ellipsometry spectroscopy [38], suggested that the surface of samples undergo a 

significant reduction in cosΔ , following the adhesion of HSA and this gap increases with 

increasing the silicon content in the surface of the samples. This result is in agreement 

with Benesch et al who reported that reduction in the (Δ) value corresponds with the 

increasing surface coverage of HSA layers [39].  

The finding is correlated with Naksnishi et al, who found that the proteins adsorb on 

hydrophobic surfaces, which leads to a structural change upon adsorption onto the surface 

[40]. This is compelling evidence that the presence of silicon enhances the adsorption of 

HSA onto the surface of DLC; this might tend to reduce the adsorption of fibrinogen. 

This indicates that the adsorption onto the coated DLC results in a change in the protein 

conformation from α-helix to β-sheet.  

 

3.4 Atomic force microscopy (AFM) analysis:   

The roughness of the film surface is generally characterized by the rms (root mean square, 

Rq) value. The three-dimensional topography of both doped and undoped films is 

displayed in figure 8. The undoped DLC thin film showed a smooth and flat surface with 

the root mean square value (Rq) roughness around 1.97nm. This finding is similar to those 

obtained in our previous investigation [41]. 
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Figure 8: Topographical AFM images of DLC and Si-DLC surfaces before (A) and after 
(B) protein adhesion. 

  

In the case of Si-DLC samples the morphological peaks of films are quite sharp compared 

to the peaks in DLC film. The root-mean-squared roughness (rms or Rq) of the samples 

versus the Si concentration is summarized in table 5. The Rq value of samples was 2.7 

nm, 4.1nm and 4.9 nm for S-1, S-2 and S-3, respectively.  
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Table 5: The various morphological parameters of DLC and Si-DLC thin films before 
and after adsorption of HSA 

Paramete
rs 

(nm) 
scale 

Samples 
DLC S-1 S-2 S-3 

Before After Before After Before After Before After 
Root 
mean 
square 
[rms] 
(Rq) 

1.97±0.13 6.16±0.54 2.74±0.15 6.24±0.62 4.14±0.18 6.92±0.51 4.93±0.2 7.20±0.64 

Average 
height 3.48±1.3 18.46±1.9 4.25±1.5 19.17±2.0 5.9±1.5 22.32±2.2 7.6±0.9 25.42±2.1 

Maximu
m height 

10.25±0.7
6 

27.53±1.8
2 

11.63±0.5
8 

28.41±1.6
4 

14.12±1.1
3 

30.72±2.3
4 

18.32±1.8
7 

34.68±3.2
1 

Roughnes
s (Ra) 0.72±0.08 1.8±0.11 1.18±0.17 1.88±0.2 1.63±0.15 1.96±0.21 2.18±0.18 2.50±0.16 

(nm): is nanometre,  rms or (Rq): roughness is based on a least square calculated with the best fit of the height points. 
(Ra): is obtained by a logarithm which measures the average deviation between the peaks and values from the mean 
line of the surfaces. (±): represent the values calculated standard deviation (n=3 samples). 
 
 

Figure 2 shows the surface roughness of the films as a function of the atomic 
concentration in the film composition. As one can see, the surface roughness increases 
with increasing the silicon atomic concentration in the Si-DLC films. This may return to 
the bonding configuration. When DLC is doped with Si there is an increase in the 
hydrogen concentration and these phenomena tend to enhance the proportion of sigma 
bonds which increase the Rq values [42]. These results are consistent with other research 
suggesting that silicon content DLC tends to increase the Rq value [43,44].  
 

In order to determine the change in the surface topography, AFM was used to investigate 

and visualize conformation and morphologic characteristics resulting from adsorption of 

HSA onto doped and undoped DLC films (Figure 8). The results show that HSA adsorbed 

on both doped and undoped surfaces as a grain shape with an average height of 18-25 nm. 

As seen from figure 8 and table 5, a significant change in the Rq values was observed 

following HSA adsorption, i.e. for DLC, the Rq changed to 6.1 nm, and in case of the 

doped samples, the Rq value increased to 6.2, 6.9 and 7.2 nm for S-1, S-2 and S-3, 

respectively. The results showed good agreement with those obtained by Buijs et al, who 

concluded that hydrophobic surface significantly contribute to strong protein/substrate 

interactions, and suggested that proteins undergo structural rearrangements and spread 

upon adsorption [45].  

 

One can observe that the surface roughness of adsorbed HSA increased with increasing 

of surface roughness of samples. This might return to existence of silicon and hydrogen 

in the DLC films that are more electropositive than carbon will result in the formation a 
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surface dipole with an external positively charged side on the silicon doped DLC film. 

This phenomenon is believed to be the responsible for anchoring the negatively charged 

of the HSA molecules.   

As mentioned above, silicon incorporated DLC tended to increase the water contact angle 

(more hydrophobic). This could play a role in the increase of HSA adsorption on the Si-

DLC film surface; because a more hydrophobic surface reduces its interaction with water 

molecules allowing more direct contact with the protein, rather than an interaction 

mediated by a water layer and this will increase the adsorption layer. These results are in 

correlation with Ogwu et al, who suggested that increasing the surface hydrophobicity 

tends to promote human endothelial cell growth and adhesion on the films [46]. 

On the other hand, adsorption from solutions of protein takes place in two different 

processes. The first process is fast and results in the direct adsorption of the protein 

molecules that attach to the surface without changing their conformation and then move 

laterally into a hexagonal close-packed (HCP) configuration. The second step which is 

slower than the first step; the proteins adsorb randomly and irreversibly at a site on the 

surface and the thickness of the layer gradually increases with the adsorbed amount due 

to the conformational change taking place in the direction normal to the surface [40,47]. 

 

4. Conclusions  

DLC and Si doped DLC have been synthesised and showed that silicon content in the 

DLC tends to decrease the ID/IG with an increase in the surface roughness behaviour of 

samples. It is found that the silicon doping may improve the surface morphology and film 

thicknesses of DLC sample.  

The interactions between adsorbed HSA molecules and the surface of samples played an 

essential role in influencing these results. Followed the adhesion of HSA onto the 

samples, the secondary structure of the adsorbed protein has changed from α-helices to 

the β-sheet mode with slight increase of the random coil feature. 

 

The results from the AFM, found that the (Rq) values increase with increasing silicon 

content in the DLC samples. Since the Protein adsorption behaviour on the surfaces of 

biomedical materials depends on the surface properties, such as material chemistry and 

morphology, the AFM analysis showed that the surface roughness of samples 

significantly increased following exposure to protein. The results suggested that a 

multilayer of HSA covered the doped and undoped DLC samples, and this was improved 
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by the addition of silicon content. When the adsorption of HSA increases it tends to 

reduce fibrinogen adsorption and lowers platelet adhesion. This might improve the 

biocompatibility of the implant; however, further studies are required to obtain a better 

understanding of protein adsorption in vivo. 
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