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Abstract 

 Periodontitis is a polymicrobial chronic inflammatory disease of tooth-supporting tissues 

with bacterial etiology affecting all age groups, becoming chronic in a subgroup of older 

individuals. Periodontal pathogens Porphyromonas gingivalis, Tannerella forsythia, and 

Treponema denticola are implicated in the development of a number of inflammatory 

pathologies at remote organ sites, including Alzheimer’s disease (AD). The initial inflammatory 

hypothesis proposed that AD hallmark proteins were the main contributors of central nervous 

system (CNS) inflammation. This hypothesis is expanding to include the role of infections, 

lifestyle, and genetic and environmental factors in the pathogenesis of AD. Periodontal disease 

(PD) typifies a condition that encompasses all of the above factors including pathogenic bacteria. 

These bacteria not only are the source of low-grade, chronic infection and inflammation that 

follow daily episodes of bacteremia arising from everyday tasks such as brushing, flossing teeth, 

chewing food, and during dental procedures, but they also disseminate into the brain from 

closely related anatomical pathways. The long-term effect of inflammatory mediators, 

pathogens, and/or their virulence factors, reaching the brain systemically or otherwise would, 

over time, prime the brain’s own microglia in individuals who have inherent susceptibility traits. 

Such susceptibilities contribute to inadequate neutralization of invading agents, upon reaching 

the brain. This has the capacity to create a vicious cycle of sustained local inflammatory milieu 

resulting in the loss of cytoarchitectural integrity and vital neurons with subsequent loss of 

function (deterioration in memory). The possible pathways between PD and AD development are 

considered here, as well as environmental factors that may modulate/exacerbate AD symptoms.  

 

Keywords: Alzheimer’s disease, inflammation, oral health, periodontal disease 
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Introduction 

 Alzheimer’s disease (AD), a form of dementia, is the most common neurodegenerative 

disease worldwide [1]. The prevalence of AD increases exponentially with age, rising from 3% 

among the 65 to 74 year age group and to almost 50% among those around 85 years and older [2, 

3]. Mental deterioration is slow but progressive, contributing to poor memory, disorientation, 

confusion, and eventually profound dementia. Susceptible individuals can take decades before 

clinically presenting with the disease. This implies that the etiology of AD is heterogeneous and 

that the importance of finding new risk factors for development in the case of late-onset AD 

remains a priority.  

 Although partial efficacy of non-steroidal anti-inflammatory drugs in some AD patients [4, 

5] gave rise to the inflammatory hypothesis that accounts for the intrinsic elements of CNS 

inflammation [6], support also exists for the extrinsic inflammatory mediators. The elderly, for 

example, having suffered multiple episodes of recurrent infections, can present with dementia 

like clinical symptoms in likely late-onset AD cases [7] as well as those subjects with confirmed 

clinical diagnoses of AD [8, 9].  

 The innate immune responses suggest extrinsic inflammatory cytokines are involved in 

exacerbating neurocognition [9] and cytokine-related genes are being implicated in the 

susceptibility to inflammation in late-onset AD [10, 11, 12]. Furthermore, human brain tissue 

specimens from postmortem AD patients demonstrate evidence for neuroinflammation via the 

activated complement system as C1q, C3b, and reactive oxygen species are all involved in the 

amyloid fibril formation [11,13, 14]. These observations are strengthened by genome-wide 

studies supporting the role of innate immune components such as complement receptor 1 (CR1) 

and a fluid-phase regulatory protein clusterin [15, 16]. 
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Pathological Hallmarks of Alzheimer’s Disease  

 In AD, marked neuronal loss is observed in the hippocampus where high densities of the 

classical hallmark lesions are initially observed [17]. An accumulation of intraneuronal 

neurofibrillary tangles (NFTs) and extracellular amyloid-β (Aβ) plaques are the two easily 

demonstrated histological features of AD brains [18]. Synaptic dysfunction is considered as one 

of the earliest structural defects [19]. Specifically, NFTs indicate the severity of disease with Aβ 

plaques depicting disease progression [17]. NFTs in neurons constitute hyperphosphorylated tau 

protein that alters the polymerization and stability of microtubules [20]. The loss of synapses 

between neurons correlates well with cognitive decline [19]. The cumulative knock-on effect of 

these cytoarchitectural changes is compromised protein-protein interactions with other 

cytoskeletal elements eventually leading to further synaptic loss and the demise of the NFT-

bearing neurons [17, 18, 20, 21].  

 Amyloid plaques are largely made up of fibrillary Aβ peptides Aβ40/42 amino-acid residues 

and are the result of α-, β-, and γ-secretase enzymes cleaving the transmembrane amyloid-β 

protein precursor expressed by all CNS cells. The proteolytic fragment consisting of the last 28 

residues of the amyloid-β protein precursor ectodomain prior to the membrane and including the 

first 12 to -14 residues of the transmembrane region generate Aβ40/42 amino-acid residues that 

lead to deposition of extracellular, insoluble fibrillar Aβ. Clearing insoluble Aβ peptides from the 

brain involves phagocytosis by microglial cells [22, 23], an activity that invariably fails with the 

consequences of further accumulation of fibrillary Aβ. 

 Aβ peptides and insulin are known substrates of an insulin-degrading enzyme [24, 25]. Both 

of these proteins are important in the pathogenesis of AD and type II diabetes mellitus, 

respectively. Literature supports the risk-factor relationship between type II diabetes with 
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increased risk of cognitive impairment and dementia via its potential pro-inflammatory toxicity 

from perturbed glucose metabolism [26]. However, it is not clear if Aβ itself promotes insulin 

resistance in AD with the generation of subsequent oxidative stress, reactive oxygen species, and 

related pro-inflammatory cascades [27]. Streptozotocin used for generating experimental diabetic 

rats as a model for investigating late-onset AD in relation to insulin resistance is a toxin derived 

from Streptomyces species of bacteria [28]. It is, therefore, plausible to suggest that an initial 

microbial trigger may be responsible for insulin resistance and the subsequent deposition of Aβ 

in late-onset AD.  

 Aβ plaques can be observed in the brains of cognitively intact individuals, but they are fewer 

and are generally of the diffuse (Aβ40) type, which so far appear to have little pathological 

significance. Of the two forms of amyloid, fibrillary Aβ is regarded as being neurotoxic [29] and 

in vitro studies have shown it to lyse all types of cells by apoptosis [30]. Evidence from 

neuroradiological and neuropathological investigations link this hallmark (Aβ40/42) to the 

initiation of intracerebral inflammatory response in the inherited forms of AD as well as late-

onset AD [14, 31, 32]. 

 The inflammatory element of the disease may be a significant risk factor for late-onset AD, 

specifically as innate immune components such as C1q and C3b are involved with plaque 

maturation [11, 13]. The relevance of detecting C1q and C3b within Aβ40/42 also draws attention 

to the cellular mechanisms involved with regulating inflammation in neurodegeneration and in 

clearing Aβ40/42. The inflammatory components corroborate data from genetic studies proposing 

a relationship between AD and cytokine polymorphisms [12, 33], as well as the complement 

proteins such as clusterin and CR1 in its pathogenesis [15, 16]. With respect to the complement 

activation cascade, CR1 is a membrane-associated complement inhibitory protein that binds C4b 
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and C3b acting at the C3/C5 convertase stage of the alternative and classical complement 

pathway, and clusterin is a fluid-phase protein that interferes with the assembly of the lytic 

membrane attack complex. Decrease in clearance of the lesion by the innate immune system 

contributes to bystander damage that promotes a vicious cycle of chronic intra-cerebral 

inflammatory (high endogenous levels of inflammatory mediators) response [14, 34].  

 

What is Intra-Cerebral Inflammation? 

 In the past the brain was considered as an “immunoprivileged organ,” as elements of the 

immune system [such as neutrophils, naive T cells (adaptive immune system), plasma proteins, 

and extra-cerebral-toxins to prevent inappropriate glial cell activation] cannot cross the blood-

brain barrier (BBB). However, it is now understood that the circumventricular organs are not 

subject to the BBB [35], a region of the brain where infections (both systemic and direct via the 

trigeminal and olfactory nerve pathways (see Figure 1) and inflammatory mediators can access 

the brain [36-38].  

 The brain deals with inappropriate toxins derived locally (Aβ deposits) or from extracerebral 

sources (infectious agents) using its own innate immune system consisting of ependymal cells, 

microglia, astrocytes, and oligodendrocytes [39]. Normally these cells regulate the production 

and uptake of endotoxins and secrete trophic factors that nurture the CNS cells and protect their 

functions [40]. However, following physical damage and/or invasion by foreign agents 

(lipopolysaccharide, LPS), glial cells (specifically microglia) bearing the LPS receptor (CD14) 

and the highly conserved toll-like receptors 2 and 4 (TLR 2 and 4) undergo a number of 

phenotypic (resting to activated state) and functional changes. Key morphological changes 

include thickening and shortening of branching processes attached to a hypertrophic glial cell 

6 
 



body [41]. Once activated, microglia upregulate the expression of MHC class II molecules along 

with the secretion of pro-inflammatory cytokines (TNF-α and IL-β), complement proteins, 

quinolinic acid, arachidonic acid and its metabolites, nitric oxide, platelet activating factor, α and 

β chemokines excitatory amino acids, and free radicals [14]. When these innate factors are 

secreted by microglia, a local CNS inflammatory response is mounted.  

 In AD brains, Aβ is recognized as a nidus for intracerebral inflammation placing chronic 

neuroinflammation downstream of this primary hallmark [13, 14]. However, this view is 

changing, especially with late-onset AD cases as the importance of the innate immune molecules 

is being uncovered by genome-wide studies [11]. If nerve cell death and chronic CNS 

inflammation are common precursors of the development of dementia, explaining equivalent 

numbers of Aβ deposits and NFTs in clinical and subclinical AD in the very elderly who bypass 

dementia is important [42-45] and adds further complications to the etiological nature of AD.  

Even Aβ in subclinical AD subjects, which initiates intracerebral inflammation [11, 46, 47], 

appears not to lead to clinical decline in cognition. One possible explanation for the lack of 

cognitive decline could lay in the inflammatory genetic traits of these and the non-impaired 

individuals with vital neuronal cells being rescued from death and so providing a “cognitive 

reserve.” The inflammatory signals that initiate phagocytosis by microglia are driven by Aβ that 

involve the CD14 and TLR 2 and 4 signaling [22, 23, 48, 49], a pathway also used by microglia 

for bacterial LPS recognition [50]. Spontaneous loss-of-function mutation in the TLR 4 gene has 

been demonstrated to have an inhibitory effect on microglial cell activation. For example, 

presence of Aβ in the microglia with mutated gene expression [49] demonstrated reduced 

secretion of inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor-α 
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(TNF-α) and nitric oxide. These findings further strengthen the cognitive reserve hypothesis in 

very old subjects in the presence of classical AD hallmark lesions. 

 Using an ex-vivo experimental model to examine the expression of pro-inflammatory 

cytokine profiles in whole blood from the healthy middle-aged offspring of patients affected by 

late-onset AD, van Exel et al. [10] reported higher levels of specific cytokines than were found in 

the siblings from non-AD parents. This finding also demonstrates that inflammation-related risk 

factors are present in currently healthy subjects who may have a genetic ‘susceptibility profile’ a 

phrase, coined by McGeer and McGeer [33] to late-onset AD. Despite the inheritance factors, the 

brain’s response to inflammation is slow as supported by animal models of AD [51]. Currently, 

the greater accumulation of Aβ deposits in late-onset AD is considered to be the result of defects 

in the clearance system [52]. Therefore, the pertinent question would be, “what initially triggers 

Aβ40/42 release in patients with late-onset AD?”  

 Infections are common in elderly individuals and are the main cause of death in a majority of 

neurodegenerative conditions. One hypothesis is that the elderly, per se, are 

immunocompromised and this correlates with their susceptibility to an increased incidence of 

infection [53, 54]. Recurrent bacteremia from common infections in the elderly, due to, for 

example, chronic periodontitis [55, 56], intra-abdominal [57], and urinary tract infections [58], 

will contribute to systemic circulation infections. In addition, chronic periodontitis demonstrates 

a promising link that encompasses environmental influences, susceptibility profiles, infectious 

agents, and a multitude of host’s factors that affect its episodic re-occurrence [59]. Numerous 

studies show that tooth loss due to PD to correlate with cognitive impairment in AD [60-63]. 

Further studies have demonstrated systemically derived immune components such as antibodies 

to the periodontal pathogens circulating in the blood plasma of AD subjects [64]. In addition, AD 
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patients with antibodies to the periodontal pathogens in their blood have displayed inflammatory 

mediators (cytokines) in the systemic circulation [64]. As Holmes et al. [9] suggest, these 

cytokines and those from alternative sources in the peripheral circulation have the potential to 

reach the brain parenchyma, and subsequently prime microglia to mount a local immune 

response with appropriate stimuli, and impair memory.  

 An alternative hypothesis for the role of Aβ in subclinical and/or clinical AD individuals is 

that Aβ is acting as an antimicrobial peptide [65] to counteract infections by functioning as part 

of the early innate immune defense mechanisms that mediate innate and adaptive immune 

responses [66]. Traditionally, antimicrobial peptides act as look-outs for invading micro-

organisms to maintain the balance between commensals. The main target for antimicrobial 

peptides is the pathogen cell membrane, as most antimicrobial peptides are cationic [67]. 

Antimicrobial peptides undergo electrostatic interactions with negatively charged molecules to 

penetrate bacterial cell walls, including anionic lipids and LPS [67]. They then invade the lipid 

bilayer, creating trans-membrane pores through which leakage of ions and metabolites, 

cytoplasmic components, dissipation of electrical potentials, and cell death of microbes takes 

place [68]. This hypothesis suggests the involvement of a pathogenic precursor in the initiation 

of Aβ release before inflammation becomes detectable in the presence of this hallmark. We 

support this hypothesis and propose a suite of susceptibility traits and immunosuppressive 

(stressed or rundown) episodes during life that give way to chronic bacterial infections. These 

bacterial elements in the individuals with susceptibility profiles may trigger release of Aβ to 

neutralize their effect. Over time Aβ will accumulate in the brains of healthy but susceptible 

individuals and initiate neuroinflammation that may cross the threshold from subclinical to late-

onset AD. 
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 The etiological hypothesis suggests that viruses and bacteria and/or their virulence factors 

access the brain and thereby contribute to AD pathogenesis. A review by Holmes and Cotterell 

[69] provides a range of infective agents consistently being linked to AD. These include viruses 

such as Herpes simplex virus type I [70], Chlamydophila pneumoniae [71], Treponema spp.,[72] 

Borrelia burgdorferi [73], and more recently LPS from P. gingivalis [74], one of the key bacteria 

causing PD in humans.  

  

Age-Related Personal Hygiene Changes as Risk for Infections 

 Advancing age is the greatest risk factor for all forms of AD. Some consequences of 

advancing age are a compromised immune system [53, 54] and a neglect of general and oral 

personal hygiene [61, 75, 76], and such conditions are associated with recurrent, chronic 

infections. Recurrent, chronic infections enhance systemic hyperinflammatory profile that may 

lead to confusion and other dementia-like clinical features [7-9] in which the exact 

structural/cellular changes taking place at the time remain unknown. 

 Several studies support deterioration in oral health with increasing age [77-80]. The exact 

reasons are poorly understood, but advancing age is likely to compromise the manual dexterity 

of senior citizens and this may make cleaning their teeth more difficult, or perhaps it is because 

as general health concerns and conditions increase with age, maintenance of oral health becomes 

a lower priority. The elderly are more likely to be on multiple medications, many of which, as a 

side effect, cause xerostomia and this will inevitably be a factor in deteriorating oral health [81]. 

Furthermore, if the elderly suffer from physical impairments, accessing the dentist may become 

more difficult. Elderly people resident in care institutions are, to a certain extent, dependent on 

the level of care within the establishment for the level of oral hygiene and dental health they 
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receive. These factors were supported in a large-scale survey carried out in the US by Griffin et 

al. [79], which found that older age groups were more likely to be edentulous or have untreated 

dental disease and root caries. Those who were either residents in institutions or homebound had 

higher levels of untreated cavities, gingivitis (a marker of poor oral hygiene), and poorer overall 

oral health than the elderly living independently. The study shows that cost, lack of 

transportation, and limited mobility were key barriers to accessing dental care for nursing home 

residents [79]. Other groups of elderly that show higher untreated dental disease and lower levels 

of oral health are those from ethnic minorities and low-income families [79]. 

 

Periodontal Disease 

 PD is a polymicrobial inflammatory disease that has been estimated to affect 10-15% of the 

developed world population and is a major cause of tooth loss. The prevalence of PD increases 

with age, affecting around 50% of people over the age of 55 years [82]. The disease affects tooth 

supporting tissues wherein the interaction of specific bacteria and the host’s immune responses 

play a pivotal role [59]. The host’s response to bacteria and their products is an important factor 

in determining the extent and severity of PD [83]. The acute bacterial challenges stimulate 

junctional transformed pocket epithelium to produce a broad range of inflammatory mediators to 

guard against gingival tissue damage. The inefficient clearance of subgingival pathogens by the 

innate immune system compromises the integrity of periodontal tissues and eventually results in 

the formation of periodontal pockets.  

 Periodontitis, involving specific bacteria coupled with the host’s response, initiates an acute 

phase receptor-mediated cytokine production by epithelial cells and simultaneous neuropeptide 

release, resulting in vasodilation of local vessels. Chemokines mobilize neutrophils from blood 
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vessels for migration to the area of bacterial invasion. Gingival bleeding, swelling, and redness 

together with the presence of neutrophils/macrophages within the inflamed gingivae indicate 

clinical signs of inflammation. The infection is both confined to, and subsequently cleared by, 

neutrophils and macrophages, or expands to include other cells and structures [84]. In the high 

susceptibility profile group of individuals, the acute phase responses fail to clear the infection, 

and chronic inflammatory lesions develop within a matter of weeks. The pathogenic consortium 

consisting of Porphyromonas gingivalis (P. gingivalis), Tannerella forsythia (T. forsythia), and 

Treponema denticola (T. denticola) appear to be the main organisms involved in the 

development of chronic PD [85, 86]. The subgingival sulcus serves as a niche enabling a cyclic 

chronic inflammatory process which in turn facilitates recurrent bacteremia following routine 

oral health regimes [55, 56, 87]. A number of inflammatory pathologies are said to develop in 

this way, including cardiovascular diseases [88, 89], rheumatoid arthritis [90-92], diabetes 

mellitus [93], and others as well as AD [60, 61, 64, 72, 74]. 

 

Anatomical Relationship of Facial Nerves and the Blood Supply to the Brain  

 The position of the oral cavity, serving the need for speech and food consumption, connects 

with the brain via series of nerves. Cranial nerve 1 (CN1) is the special sensory nerve for 

olfaction and contributes not only to our sense of smell but also to that of taste. CN1 has 

complex pathways that trigger visceral responses (salivation and nausea or accelerated peristalsis 

in the intestinal tract and increased gastric secretion) to various odors. Although CN1 is 

recognized and named as the olfactory nerve, the majority of the olfactory tract comprises of 

secondary, rather than primary sensory axons; thus it is really not a “nerve” but rather a bulb and 

tract. There is a physical connection between the oral and nasal cavity, extending onto the 
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superior nasal conchae and nasal septum and contains neurosensory cells and olfactory glands, 

which keep the mucosa moist and in which the dissolution of inhaled scents (aromatic 

molecules) occurs. The peripheral processes of the primary sensory neurons in the epithelium 

perform as sensory receptors and transmit sensation centrally, which congregate into around 20 

bundles, which, in turn, pass through foramina of the cribiform plate of the ethmoid bone. The 

cribiform plate of the ethmoid bone is the porous barrier between the nasal passages and the 

brain itself. Once they have passed through the cribiform plate, the central processes synapse on 

the secondary sensory neurons in the olfactory bulb itself, which houses the nerve cell bodies. 

Behind this area is the olfactory tract and trigone; the nerve cell bodies travel to the three 

olfactory areas, located in the anterior part of the entorhinal cortex area, encompassing the 

hippocampal gyrus and all ultimately lead to the hippocampus [94].  

 Cranial nerve V (CN V) or the trigeminal nerve, arising from the mid-lateral surface for the 

pons, is primarily a general sensory nerve with smaller motor component. There are three 

divisions of the CN V which are ophthalmic (V I), maxillary (V2) and mandibular (V3) where, 

the motor root of CN V travels with the mandibular branch. The ophthalmic division (V I) exits 

the neurocranium through the supraorbital fissure, the maxillary division (V2) through the 

foramen rotundum in the sphenoid bone and the mandibular (V3) branch through the sphenoid’s 

foramen ovale. CN V is a general sensory nerve to the scalp, face, nasal and oral cavities 

(including the teeth and tongue), and brachial motor nerve to the muscles of mastication 

(temporalis, masseter, medial pterygoid, and lateral pterygoid), tensor tympani, tensor (veli) 

palitini, mylohyoid, and the anterior belly of the digastric. When dental or periodontal therapy is 

performed using local anesthesia (e.g., novocaine, xylocaine), the drug is injected into the oral 

mucosa covering the bony foramina where the sensory branches of the CN V exit into the oral 
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cavity. For the maxillary dental arcade, the injection is aimed toward the pterygopalatine 

ganglion; for the mandibular teeth, this is directed toward the mandibular foramen. In the case of 

the pterygopalatine ganglion, this supplies sensation via branches of V2 from the nasal cavity, 

plate, nasopharynx, and maxillary teeth. The lingual and inferior alveolar nerve branches carry 

sensation from the entirety of the lower jaw, mandibular teeth, gums, and anterior two thirds of 

the tongue as shown in Figure 1. As with most nerves, the branches of the trigeminal nerve are 

accompanied by veins and arteries along the peripheries of their pathways [94]. 

 The olfactory and the trigeminal nerve(s) pathways are also exploited by periodontal 

pathogens as a means of bypassing the BBB for direct entry into the CNS [72, 95, 96], an 

observation supported by studies in immunosuppressed animal models using T. denticola [97]. 

The animal model study allows some insight into the virulence of the organism and the host’s 

immune defenses as being important for this occurrence.  

 The systemic route as an alternative mode of bacterial entry into the brain is favored due to 

bacteremia as mentioned earlier, association of periodontal pathogens with atherosclerotic 

lesions and in particular P. gingivalis having the ability to adhere to erythrocytes for innate 

immune evasion [87, 98, 99] as well as gaining advantage for transportation to remote body 

organs [99].  

 The brain is supplied by three paired blood vessels: the right and left internal carotid arteries, 

arising from the common carotid artery at the base of the neck. It has three divisions that enter 

the cranium, anteriorly through the carotid canal of the temporal bone and through foramen 

lacerum in the middle cranial fossa. The vertebral arteries arise from the subclavian arteries, 

bilaterally and both enter the cranium via the foramen magnum. The vertebral and internal 

carotid arteries unite on the base of the brain at the Circle of Willis, via a series of 
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interconnecting smaller arteries. The basilar artery is created when the vertebral arteries join. The 

Circle of Willis itself is composed of the posterior cerebral, posterior communicating, internal 

carotid, anterior cerebral and anterior communicating arteries; all these arteries branch to supply 

the brain itself [94] including the circumventricular organ regions where bacteria and bacterial 

products access the brain.  

 

The Association between Periodontal Disease and Alzheimer’s Disease  

 Longitudinal studies have shown that people with PD who progressed to the development of 

AD had poorer oral health [61, 76, 79, 100-102]. Does poor oral health always mean that the 

pathogens will disseminate to the brain even in AD patients? Both our unpublished data from 

controlled experiments using animal models, and that of Foschi et al. [97], indicate that the 

presence and motility of the low virulence strains of periodontal pathogens may not be sufficient 

for them to access the brain. However, animal models of oral diseases (periodontitis and 

endodontic) may require an adjustment for the optimization of dosage and/or duration of 

infection to allow for bacteria to translocate to the brain. Our unpublished data demonstrates that 

P. gingivalis (FDC381) accessed the brain of ApoEnull mice following an oral infection while P. 

gingivalis (ATCC 33277) failed, even in SCID mice mono and poly infections [97]. It therefore 

appears that the greater virulence of P. gingivalis (FDC 381) due to having acquired fimbriae, 

likely allowed its adherence to erythrocytes for innate immune evasion, a process that has gained 

the bacterium an advantage for dissemination [99], to the brain [Poole et al. unpublished results]. 

When the duration of active infection supersedes the virulence of the bacteria, there remains a 

high possibility that the host harboring the periodontal pathogens will demonstrate these bacteria 

disseminating to the brain. Immunocompromised status seen in AD patients will also enhance the 
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infection process. This begs the question as to what causes some individuals to harbor 

periodontal bacteria rather than other species? Could there be as yet unknown genetic 

factors/inflammatory traits, lifestyle driven environmental stressors? 

 However, it should be noted that patients suffering from AD cognitive impairment are poor 

at managing their personal oral health. In addition, a caregiver or dentist may face a marked 

decrease in co-operation from the AD patient, making management of oral health more 

challenging. With patients having increased cognitive impairment, such as reduced adaptation to 

change, dentists often choose not to carry out the dental treatment that would give optimal oral 

health. For example, patients with AD may well be unable to cope with extensive, potentially 

unpleasant dental procedures, leaving them with fewer teeth, which could have a detrimental 

impact on their eating ability. 

 Nutritional deficiencies are documented in the elderly as well as in the dementia subjects, 

especially with regard to lessened intake of B-vitamins and folic acid in the diet. The marker that 

indicates these deficiencies also correlates with cognitive decline, but as consequence of disease 

rather than a cause [103]. The mechanism of cognitive decline is suggested via synaptic 

dysfunction, which is one of the earliest structural defects associated with decline in memory 

[19]. Diet provides the essential B-vitamins, phospholipids, and other micronutrients, which are 

required for the formation of new synapses [104]. 

 

Epidemiological Evidence for the Association between Chronic Periodontitis and 

Alzheimer’s Disease 

 Clinical/epidemiological studies so far, all agree on loss of teeth leading to poor memory [60-

63]. Further studies have examined possible inflammatory biomarkers in an attempt to link 
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and/or to find new diagnostic makers of AD. Others have, however, used more specific measures 

including IgG levels to P. gingivalis and other specific periodontal pathogens [64, 105]. A study 

by Sparks Stein et al. [105] used cohort methodology analyzing levels of serum antibodies to 

periodontal disease. At the start of the study period, all participants were cognitively intact, but 

higher levels of serum antibodies to periodontal pathogens at baseline led to some individuals 

developing AD [105]. As baseline measures were taken years before diagnosis of AD, the 

elevation in serum antibodies cannot be attributed to secondary effects of AD (for example, poor 

oral hygiene). Although clinical measurements of oral health were not taken in the Sparks Stein 

et al. [105] investigation, periodontal bacterial species are generally accepted as being specific 

enough to PD and assessing serum antibody levels to these pathogens may prove to be a true 

indicator of PD in AD patients.  

 

Possible Confounders 

 Several environmental, epidemiological, and risk factors show similar trends and patterns in 

both PD and AD. Whether or not this is coincidental or arises through shared developmental 

pathways remains unclear. The impact of these associations is the potential for these factors to 

act as confounders, influencing the true relationship between PD and AD. 

 The incidence of both PD and AD increases with age; this has already been mentioned in 

previous sections. Gender related trends exist between AD and periodontal disease. The 

incidence of AD has been shown to be higher in women after 85 years of age. This is thought to 

be due to the protective effect of pre-menopause estrogen [106]. Men, however, have been 

shown to have a greater incidence of PD (up to 50%) than women overall [107]. Interestingly, 

this study also showed that men with PD also had increased incidence of coronary artery disease, 
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suggesting fewer men than women survive to old age. Physical activity has been shown to have a 

positive effect on cognitive function and those aged 70-79 years with high levels of activity show 

lower levels of inflammatory markers such as IL-6 and C-reactive protein [106]. Likewise 

obesity has shown similar trends, in that those who are obese suffer a greater incidence of AD. 

Although physical activity and the incidence of PD have not been investigated directly, many 

studies have shown an indirect relationship, highlighting a greater incidence of PD with obesity 

and diabetes [107, 108]. It has been suggested that obesity may be the second highest risk factor 

for PD after smoking [109]. The underlying mechanism for this association is thought to be 

related to proinflammatory cytokines, including IL-6 and C-reactive protein that are released by 

adipose tissue, along with hormones adipokines or adipocytokines. With the increasing levels of 

evidence supporting inflammatory processes in AD development, it is possible that the 

relationship between AD and obesity may follow similar mechanisms [109]. Poorer general 

health may be associated with PD due to a compromising immune system and therefore, the 

ability of the host to defend against periodontal bacterial infections. 

 It is generally accepted that smoking is the major risk factor in periodontal disease. Smokers 

are 2-7 times more likely to present with PD than non-smokers and this is unrelated to oral 

hygiene. Disease progression is more rapid and response to treatment is poorer [109]. Smoking is 

thought to affect neutrophil function, reducing the host’s ability to eliminate periodontal 

pathogens. Smokers with PD have distinct patterns of pathogenic microbial profile than non-

smokers with PD [110-112]. Smoking is also thought to lead to release of reactive oxidative 

species and oxidative stress mediated tissue damage. Inflammatory cytokine and chemokine 

expression in smokers compared to non-smokers show many differences reflecting the 
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immunosuppressant effect of smoking, which may contribute to an enhanced susceptibility to 

periodontitis [113].  

 The relationship between smoking and AD is less clear; with some studies suggesting 

smoking has a beneficial effect due to nicotine treatment improving cognitive performance in 

age associated memory impairment [114], while others suggesting that smoking increase the risk 

of AD. In the proposed theory, an increased risk of AD is similarly related to the factors causing 

periodontal disease, whereby smoking increases free radical generation leading to high oxidative 

stress, or affects the inflammatory immune system leading to phagocyte activation and further 

oxidative damage. 

 PD would appear to have an increased prevalence in both ethnic minority groups and lower 

socioeconomic status. This has been attributed to a complex combination of social, 

psychological, and structural factors including nutrition, oral hygiene, healthcare utilization, and 

access to care. It is thought that having lack of resources to pay for care, not having a regular 

source of care, or availability of transportation to healthcare centers contribute to these trends 

[115-117].  

 The relationship between race and socioeconomic status and AD appears more complex. 

Meta-analysis assessing the relationship between education level and AD showed that overall 

those with low or no education were more likely to develop AD, but this was not shown in all 

studies. This relationship was stronger in developed, compared to developing countries possibly 

due to life-expectancy being shorter in developing countries. Individuals with less education 

appear to have lower cognitive function compared to those with higher education levels. 

Education-dementia relationship appears to vary according to age, gender, and race/ethnicity and 

the suggestion is that the relationship ties in with a person’s life events beginning prior to and 
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carrying on beyond years of formal education [118]. These epidemiological trends associated 

with both PD and AD demonstrates the importance for excluding the impact of confounders 

when investigating a true relationship between PD and AD. 

 

Genetic Risk Factors for Late-Onset Alzheimer’s Disease and Periodontitis 

 The apolipoprotein E (ApoE) gene is a known genetic risk factor associated with late-onset 

AD, and more recent investigations suggest some further genetic risk factor associations with 

innate immune molecules and inflammatory traits in late-onset AD [10, 15, 16]. In particular, 

cytokine-related genes appear to be involved in the susceptibility to inflammation in late-onset 

AD [10, 12, 33] as well as in PD [119-121].  

 As the immune system plays an important role in PD pathogenesis [59], it is thought that PD 

itself may have genetic associations. Polymorphisms in IL-α, IL-1β, IL-6, and TNF-α genotype 

are reported for periodontitis [119-121] and similarly IL-1α, IL-1β, IL-6, TNF-α, α2-

macroglobulin, and α1-antichymotrypsin are all upregulated in AD [12, 33] suggesting 

commonalities between susceptibility profiles in these two disease conditions. As mentioned 

earlier, offspring of parents with AD have higher inflammatory cytokines in their blood than 

those who are descendants of non-AD parents [10]. Similarly, parents with poor oral health tend 

to have children with poor oral health; however, it is difficult to conclude that the poor oral 

health trait is a result of the genetic makeup of the individual and not simply an environmental 

influence [122].  

 

Stress Environmental and Genetic Factors 

Stress: In health 
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 Acute stressors in the environment, such as facing a dangerous situation, activate 

physiological systems designed to enhance self-preservation [123]. These include the 

sympathetic-adrenal-medullary and the more slowly responding hypothalamus pituitary adrenal 

(HPA) axis. This response prepares the body to cope with threat [124]. The two response 

systems work by increasing certain hormones, such as adrenaline and cortisol. These, in turn, act 

on the biological functioning of the individual, such as increased heart rate, inhibition of the 

digestive system, or increased glucose supply to the muscles. Although the physiological 

changes enhance our ability to mount a physical response to threat, the associated neurochemical 

changes can lead to cognitive failures, which may present as dementia-like even within a 

cognitively normal population. For example, elevations in cortisol as a result of activation of the 

HPA axis can lead to impairments in attention [125], working memory and inhibitory control 

[126], and declarative memory [127]. Cognitive impairments due to acute stressors are 

reversible. Further acute stress responses may actually have some benefits for health with 

enhancements in immune function being reported [128]. However, when short-term beneficial 

adaptations designed to maintain homeostasis during acutely stressful events become excessive 

or prolonged, problems can occur [129].  

 

Stress: Periodontal disease 

 Psychological stress may affect periodontal disease. Such stressors can lead to a change in 

health behaviors, which in turn may lead to associated increased risk of PD. For example, poorer 

oral hygiene coupled with increased smoking [130] and alcohol intake [131]; visiting the dentist 

less regularly, and eating less healthily with higher fat and sugar diets [132] encourage bacterial 

growth and worsen periodontal status.  
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 Stress impairs the balance between pro- and anti-inflammatory responses. Alterations in 

inflammatory polymorphic gene function, in particular of IL-1 and IL-6 (119-121), will affect 

polymorphonuclear leukocyte chemotaxis. The net effect will be reduced lymphocyte 

proliferation and this may increase the vulnerability of periodontal tissue to microorganisms 

leading to further tissue destruction [133]. Inhibition of T cell responses by glucocorticoids 

appears to explain, in part, susceptibility to PD and pro-inflammatory cytokines are potent 

activators of the HPA axis [134, 135]. Patients with PD who are stressed show increased IL-6 

and IL-1β levels in gingival crevicular fluid [133]. Results of several studies were reviewed and 

demonstrated a correlation between psychological stress and salivary and blood stress markers 

relating to inflammatory response and progression of PD [134]. However, a cause and effect 

relationship has not, so far been found, therefore stress is considered a risk factor for PD rather 

than a cause. 

 

Stress: Alzheimer’s disease 

 High levels of environmental stressors could lead to impairments in cognitive processes, 

which are important for maintaining oral hygiene. For example, acute and chronic activation of 

the HPA axis can lead to elevated basal cortisol levels. High levels of circulating cortisol causes 

hippocampal damage and so impair hippocampus-dependent memory processes [125]. In a 

cognitively intact elderly population, higher cortisol levels were indicative of impairments of 

declarative memory and executive functioning [135], both of which are needed to maintain good 

oral hygiene.  

 The hippocampus is the area of pathology in AD and is vulnerable to effects of stress and 

trauma [136]. Chronic stress can impair immune responses and so compromise the body’s ability 
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to resist disease [137]. The brain attempts to compensate cellular stress, by regulatory 

mechanisms, involving upregulation of heat shock proteins [138]. Loss of heat shock proteins, in 

vitro, was shown to contribute to accumulation of hyperphosphorylated tau, a component of 

NFTs, and a hallmark of AD pathology [139]. In addition, stress activated protein kinases, for 

example, mitogen-activated protein kinase 38 and the c-jun N-terminal kinases are activated in 

AD [140, 141]. These two stress pathways can also be activated by oxidative stress [142, 143], a 

common denominator of environmental, pathological, and habitual factors.  

 

Critical Remarks about the Present State of the Research to Relationship between 

Alzheimer’s Disease and Chronic Periodontitis 

 Clinical observational studies thus far all correlate with loss of teeth leading to poor memory. 

However, direct evidence is lacking to support a causal association between periodontal bacteria 

and progression of AD. The clinical studies have been performed on elderly cohorts where 

overlapping features of the aging process, such as deposition of Aβ in the brain is likely to have 

already begun. When assessing periodontal status clinically, levels of caries may not have been 

accounted for. Oral hygiene studies were based on retrospective questionnaire surveys, which 

may introduce selection bias depending on the response rate. People who are motivated to 

complete questionnaires may be more likely to visit the dentist than those who do not. Genetic 

factors have not given importance in some of the studies. Both the Riviere et al. [72] and the 

Poole et al. [74] studies lacked information concerning the periodontal status of the cases 

analyzed.  

 

Future Research 
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 How PD contributes to impaired memory remains intriguing and future studies should be 

directed towards addressing these mechanisms. There is paucity of information relating to the 

exact risk factor(s) for the development of deteriorating memory from missing teeth in the 

prodromal phase of AD. Are these factors downstream of co-morbidities such as diabetes 

affecting periodontal status of the individual? Or common susceptibility profiles play a key role 

in loss or gain of function in future generations of AD parents. Further evidence to support an 

association between PD and AD, research would need to demonstrate that the inflammatory and 

immunological responses that the bacteria and their virulence factors induce may subsequently 

lead to the onset of AD. Perhaps associations between parents with AD and their children at a 

much younger age should be monitored for oral health as that should eliminate any overlapping 

confounders that may be masking the true links in these two conditions.  

 This review clearly indicates significant gaps in our current understanding of the causal 

association of pathogens (spirochetes, bacteria, viruses) in a slowly progressive and debilitating 

disease such as AD. Although various types of neurotropic spirochetes including oral 

(Treponema spp) and non-oral spirochetes (B. burgdorferi) have been detected directly in 

association with the pathological hallmarks of AD [73] but, a causal relationship has not been 

tested in animal models. To the best of our knowledge, there is no single in vivo animal model 

study that has examined the role of periodontal bacteria during chronic infection (9-12 months of 

exposure times) to study the sequence of neuropathological events associated with the 

development of AD pathology. Even though infectious agents have been implicated in relation to 

AD hallmark pathology for over a century ago, several clinical and molecular studies strongly 

support an association between PD and AD. However, to date, there is a paucity of reports 
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supporting a causative relationship between periodontal pathogens and AD cases and in vivo 

transgenic mice. 
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Legends 

 

 

Figure 1. Nerve pathways from the oral and nasal cavity to the brain, showing the 2nd and 3rd 

branches of the Trigeminal (CN V) and the Olfactory nerve (CN I). The middle meningeal artery 

enters the brain at the foramen spinosum in the lateral portion of the greater wing of the 

sphenoid, and then follows the cranial base and lateral potions of the vault, supplying the dura 

and bones of the calvarium. 
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