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The subject of data-driven discovery for equations has developed rapidly in recent years, 

especially in the field of finding equations of unknown forms, which provides new ideas 

for the study of complex systems. When there are unknown noise sources and other 

uncertain factors in the system, it is quite difficult to directly derive the system governing 

equation, because the equation is complicated and the calculation cost is large. But if we 

try to find the equation directly from the data, it will be helpful to improve these problems.  

 

For the data in nonlinear multi-physics electromagnetic system, the deep learning method 

can be used to find the equation, which can obtain the governing equation form accurately 

and has high time efficiency and parameter precision. This thesis studies the algorithm of 

data-driven discovery equations in electromagnetic multiple physics problems and 

realizes the inversion of Maxwell's multiple physics equations.  

 

Firstly, three methods of data-driven equation discovery are introduced, including symbol 

regression, sparse regression and neural network. Secondly, an algorithm based on sparse 

regression and convolutional neural network is proposed for multiple physics equations 

of Maxwell equations. This algorithm uses Euler method to approximate time 

differentiation and convolution kernel to compute space differentiation. At the same time, 

in the training process, the pareto analysis method was used to remove the redundancy.  

Then, the model algorithm is applied to the multi-physics coupling simulation data of 

electromagnetic plasma, and the homogeneous and non-homogeneous equations of 

electromagnetic propagation are realized by using less time and space observation field 

samples, which has certain anti-noise performance. For the problem of propagation in 

uniform medium, the influence of spatial and temporal sampling method on the inversion 

precision of equation coefficients is studied. Under the condition of inhomogeneous 

media propagation, this thesis finds the changing law of inhomogeneous coefficient by 

changing the weight scale of neural network, aiming at the problem that the equation 

coefficient varies with the spatial scale. By using the properties of trigonometric series 

and some prior knowledge, the expression of the coefficient of inhomogeneous terms is 

approximated, and satisfactory results are obtained.  

 

Finally, the thesis summarizes the proposed method and its main conclusion. In both 

homogeneous and inhomogeneous media, the model has good performance. Meanwhile, 

the author discusses the possible improvement methods for other problems and the idea 

that the structure of the model can be adjusted in a small range in the future and applied 

to the high-dimensional space and the problems with high-order spatial differentiation in 

the governing equations. 
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Data-driven discovery of partial differential equations in electromagnetic field problems 

can help solve complex problems, reduce computational complexity and improve 

computational speed. In the future study of complex system problems, data-driven 

discovery of governing equations will play an important role. 

 

Keywords: deep learning, convolutional neural network, partial differential equations, 

multiple electromagnetic physics 
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Chapter 1 Introduction 

1.1 Background and Significance of Research 

Data-driven discovery is become more and more popular in recent years. As early 

as the beginning of the last century, scientists explored ways to discover physical 

laws through data [1]. With the explosive growth of data in various fields, the use of 

machines to extract rules from all kinds of complex data is bound to become a hot 

topic.  

With comprehensive application of electromagnetic wave spectrum in radar, 

communication, navigation, computational power and storage, the amount of 

electromagnetic big data comes to a huge number. The thing that needs to be studied 

further is that how to distill the underlying electromagnetic physical laws in such a 

complex system. The big electromagnetic data provides new opportunities for the 

data-driven discovery of new physics laws or making complex system modelling 

computationally feasible. Traditional derivation of governing equations relies on 

fundamental laws and solution can be obtained with analytic and computational 

methods. However, the realistic scene is sophisticated to tackle, which involves 

multiple-physics, multiple-scale and nonlinearity.  

For a multiple physics system with complex interaction mechanisms, there is no 

exact quantitative analytic solution and the computational cost is high to solve a set 

of partial differential equations (PDEs). Therefore, the key question is how to use 

sparse given data to discover the principle of a complex system. If the model can be 

learned from spare data and then perform prediction, it is significant for complex 

electromagnetic multiple-physics system and beyond.  

The data-driven discovery method is developing quickly during the past decades. 

It can be mainly divided into three categories, including symbolic regression, sparse 

regression and deep learning. 

1.2 Typical Methods 

 

1.2.1 Symbolic Regression 
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Earlier researches on data-driven discovery for free-form natural laws are based 

on symbolic regression. Two of recent researches are proposed by Bongard and 

Lipson (2007) [2] and Schmidt and Lipson (2009) [3]. The main idea is to calculate 

numerical differentiations of experimental data firstly and then use symbolic 

regression based on evolutionary algorithm to compare numerical differentiations 

with analytical derivative solutions. Unlike traditional linear regression methods, 

which fit the parameters of an equation with the given form, symbolic regression has 

its strength and novel use, it searches not only the form of the parameters but also 

the equation. The initial expression is composed of a random combination of 

algebraic operators (+, -, ×, ÷), analytic functions (such as some trigonometric 

functions), constants, state variables and other building blocks of mathematics. The 

new equations are formed by combining the algebraic operators, analytic function 

and so on with parameters of each term. Pareto analysis [4][5] is mentioned for 

reducing the complexity of underlying expressions. With the increasing of terms in 

expression, the prediction ability (which is accuracy when doing prediction) rises 

while it is apparent that if the expression of a physical law is too long, it is probably 

a wrong expression with the theory of Occam's razor principle [6]. Thus, in their 

research, they choose the model with the tradeoff of complexity and accuracy.  

This method worked well in some traditional and simple physical laws’ discovery 

such as a double-pendulum. When dealing with sophisticated physical model like EM 

problem, it may not be stable enough. What’s more, the requirement of computation 

cost is large when the order of numerical differentiations rise, at the same time, the 

calculation of numerical differentiations will always cause error because the 

property of the numerical differentiation method cause this problem. 

 

1.2.2 Sparse Regression 

In addition to symbolic regression, other kinds of regression algorithms are 

commonly used in the field of machine learning, such as ridge regression, the least 

absolute shrinkage and selection operator (LASSO) regression [7], etc. Sparse 

regression is mainly proposed based on the problem that too many features make 

the results easy to over-fit and it is also used in compressive sensing to recover 
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information from a randomly sample signal [8][9]. Its advantage is that it can 

constrain the number of result features well, which on the one hand makes the model 

more compact, and on the other hand makes the result more reasonable and 

accurate. Sparse regression also has another application for dictionary learning 

which is also called sparse representation [10][11].  

In recent years, sparse regression method for data-driven discovery on 

underlying governing equations was raised by Brunton et al. (2017) [12], Schaeffer 

(2017) [13], and Rudy et al. (2017) [14] (2019) [15]. As most underlying governing 

equations of physics process are PDEs having a universal expression. We assume 

there is a function 𝑢(𝑥1, 𝑥2, … , 𝑥𝑛) and it has at most quadratic nonlinearity, it has a 

PDE having the following term: 

 

𝑓(𝑥1, . . . , 𝑥𝑛; 𝑢,
∂𝑢

∂𝑥1
, . . . ,

∂𝑢

∂𝑥𝑛
;

∂2𝑢

∂𝑥1 ∂𝑥1
, . . . ,

∂2𝑢

∂𝑥1 ∂𝑥𝑛
) 

(1) 

In most physics motion, time 𝑡 as an independent variable is indispensable and 

probably has only first-order differentiation. Therefore, Equation (1) can be equal to 

the following expression: 

 

∂𝑢

∂𝑡
= [𝑥1, . . . , 𝑥𝑛, 𝑢,

∂𝑢

∂𝑥1
, . . . ,

∂𝑢

∂𝑥𝑛
,

∂2𝑢

∂𝑥1 ∂𝑥1
, . . . ,

∂2𝑢

∂𝑥1 ∂𝑥𝑛
] ⋅ V 

(2) 

where vector V  indicates the parameter of each candidate term at the right-hand-

side of Equation (2). With this vector, all possible terms of Equation (2) can be 

selected by non-zero parameters. 

To use sparse regression, a candidate function dictionary needs to be established 

which consists of simple and derivatives terms shown in Equation (2), and the 

candidate function dictionary can be defined as 𝐹
~

(𝑡): 
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𝐹
~

(𝑡) = [𝑥1, . . . , 𝑥𝑛, 𝑢,
∂𝑢

∂𝑥1
, . . . ,

∂𝑢

∂𝑥𝑛
,

∂2𝑢

∂𝑥1 ∂𝑥1
, . . . ,

∂2𝑢

∂𝑥1 ∂𝑥𝑛
] 

(3) 

𝐹
~

(𝑡) ⋅ V  is the prediction form while the true form of equation can be marked as 𝐹(𝑡). 

Then sparse regression method is used to select the proper terms as part of the 

equations. There are several kinds of sparse regression: 

𝐿2 norm sparse regression: 

  

𝑚𝑖𝑛
𝑽

∑ ∥ 𝐹(𝑡𝑖) − 𝐹
~

(𝑡𝑖) ∥2

𝑁

𝑖=1

+ 𝜆 ∥ 𝑽 ∥2 

(4) 

𝐿1 norm sparse regression: 

 

𝑚𝑖𝑛
𝑽

∑ ∥ 𝐹(𝑡𝑖) − 𝐹
~

(𝑡𝑖) ∥2

𝑁

𝑖=1

+ 𝜆 ∥ 𝑽 ∥1 

(5) 

Actually 𝐿0  sparse regression is the best chose for sparse regression, because 𝐿0 

norm can directly select parameters as zero or non-zero. However, 𝐿0 norm is hard 

to calculate so 𝐿1 and 𝐿2 norm sparse regression are better choices for calculation. 

Then, 𝐿1 norm sparse regression is easier to get sparse solution then those with 𝐿2 

norm, so we often chose 𝐿1  norm sparse regression to select correct terms from 

candidate function dictionary. In Schaeffer’s research [13], he chose 𝐿1 norm sparse 

regression for optimization.  

In Rudy’s research [14], they think 𝐿1  norm sparse regression performs poorly 

when data are highly correlated, thus, they applied a new algorithm modified from 

ridge regression with tough thresholding, the main idea is to iteratively optimize the 

tolerance of sparse regression which is 𝜆 in Equation (5) and (6) then finally find the 

best solution.  
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The training data for sparse regression is generated from various ways including 

finite difference, spectral method and so on. For the calculation of numerical 

differentiations, most works choose finite difference method which may introduce 

large error, Rudy’s method [14] is quite inspiring. They use polynomial interpolation 

to generate spatial differentiations from points near the sampling location. This 

method is good at using less spatial points which means it need less spatial points 

and sampling locations. This characteristic has a very big advantage in practical 

problem processing, especially for those cases with very few spatial sampling points, 

such as radar signals. Rudy’ s method uses modified finite difference technology for 

noiseless data, which use polynomial interpolation to estimate partial differentials 

and filter noise by singular value decomposition. It is applicable to various 

standardized PDE equations. Rudy et al. tested seven different equations: KdV 

equation, Burgers equation, nonlinear Schrodinger equation, NLS equation, KS 

equation, reaction diffusion equation, and Navier Stokes equation.  

Then in 2019, Rudy et al. raised a new method [15] for deal with data changing 

depending on time or space. In their up to date research, parametric PDEs are 

studied. They define a new kind of sparse regression called group sparse regression 

while the traditional sparse regression only minimized the non-zero term for one 

time, in other word for one vector to optimized. The group sparse regression 

considers vectors to optimized within a time series. There is a well-studied method 

for solving group sparsity called group LASSO, they compared GLASSO with 

Sequential Thresholding Ridge Regression (STRG) and got the conclusion that STRG 

worker better than GLASSO. 

However, there are still some problems need to be optimized in sparse regression 

for data discovery area. Sparse regression method cannot find coefficients which 

appear as the parameter of each term, if the term is inside the function like sin 𝑎𝑥, it 

is hard for sparse regression to find its correct form. For noise dealing, it is too 

complicated because it involves singular value decomposition which may make the 

whole system looks not so automatic. Even though sparse regression can use better 

strategy to calculate spatial differentiations like polynomial interpolation which 

needs less spatial points, it needs enough time points to ensure the result. It will 
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cause the increase of the computation cost of the whole system exponentially as the 

dimension of the candidate function dictionary increases.  

Sparse regression method is of great significance in the field of data-driven 

discovery on equations. After fully absorbing the experience of predecessors, 

researchers used the idea of sparse recognition based on modern machine learning 

methods, combined with the advantages of symbolic regression, and optimized the 

computational performance and saved computational resources. At the same time, 

the idea of introducing sparse vector as punishment term is also an implementation 

of pareto analysis. From all aspects, this method is in line with human beings to 

explore the laws of physics and more efficient than traditional physics discovery 

routine. Their researches have provided treasurable value for the advancement of 

future generations. 

 

1.2.3 Deep Neural Network 

In recent years, thanks to the continuation of Moore's law, the computing power of 

computers has been in a state of rapid growth. As it is found that graphic process unit 

can provide acceleration for matrix operation, the comprehensive ability of neural 

network has achieved a qualitative breakthrough, which makes neural network 

become the leading role in this era of artificial intelligence. Various types of neural 

networks have been successively improved in efficiency.  

Fully connected deep neural network [16] has very high complexity, which all the 

characteristics of different characteristics of decomposition is very sufficient for 

making it to the study of complex data usually has a good performance, but because 

of the result too mad, once processing image problem, must bring the explosive 

growth of the amount of data, it is not only to calculate the force is a challenge, also 

is a kind of the waste of resources, at the same time, along with the network, the 

gradient diffusion and gradient explosion problem will always threaten the training 

of the network. 

Deep fully connected neural network in addition to not easy to deal with high 

dimension problems, also can't help with input data sequence having good 
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recognition effect. Recurrent neural network (RNN) [17] [18] arises at the historic 

moment, for a long-time signal sequence of training will introduce gradient 

dispersion and explosion. The influence of gradient it also contributed to the 

formation of long short-term memory (LSTM) network [19] [20]. LSTM is a neural 

network based on time circulation, which is specially constructed to solve the long-

term dependence problem existing in normal RNN, because all RNN have a chain of 

repeating modules, and such repeated chain structure can cause serious gradient 

dispersion or gradient explosion. LSTM is a type of neural network that contains 

LSTM blocks or other kinds of neural network. In literature or other materials, LSTM 

blocks may also be described as a kind of intelligent network unit, because it can 

remember values of indefinite length of time. There is a gate in the block that can 

determine whether the input is important enough to be remembered and output. 

LSTM has many versions, one of which is GRU (Gated Recurrent Unit). According to 

the test of Google, the most important one in LSTM is Forget gate, followed by Input 

gate and Output gate. 

If the input data to process is not of time series but of high dimension, convolution 

neural network (CNN) is the best choice. The attractive characteristic of the CNN that 

it shares parameters makes it stable and trainable when the layer number is big. 

When dealing with the problem of high dimension, it can keep gradient and 

optimization quality, while at the same time the researchers can choose features that 

they want according to their own requirements manually from the training in order 

to more easily get the classification results. There several kinds of CNNs which 

indicate the development of it, they are LeNet [21], AlexNet [22], VGG [23], GoogleNet 

[24], ResNet [25].  

ResNet is almost the most wildly used CNN now for feature extraction. VGG tried 

to find out how deep the deep learning network could be so that it could continuously 

improve classification accuracy. In our daily impression, the deep learning model 

should be more expressive with the increase of depth (complexity and more 

parameters). Based on this basic knowledge, CNN classification network developed 

from seven layers in AlexNet to sixteen or nineteen layers in VGG, and later to twenty-

two layers in GoogleNet. However, with the deepening of the research, then we found 



 15 

that the depth of CNN network after reaching a certain depth, if we blindly increase 

the layer number not bring further classification performance improvement, it will 

cause the network convergence becomes slower, the test dataset classification 

accuracy is also worse, in other words the depth deepening makes network 

recognition rate significantly decreased. After eliminating the problem of over-fitting 

the model caused by the small data set, we found that the classification accuracy was 

still decreased in the deep network (compared with the shallow network). Due to the 

lack of understanding of the principle, VGG network reached 19 layers and then 

increased the number of layers began to lead to a decline in classification 

performance. The author of ResNet thought of the concept of residual representation 

commonly used in the field of conventional computer vision and further applied it to 

the construction of CNN model, so there was the basic residual learning block. It uses 

multiple parameter layers to learn the representation of residuals between input and 

output, instead of using parameter layers to directly. It does not try to learn the 

function relation between the input and output as what general CNN networks do 

(such as AlexNet/VGG, etc.). Experiments show that it is much easier (faster 

convergence) and more efficient (higher classification accuracy can be achieved by 

using more layers) to directly learn resists than to directly learn the mapping 

between inputs and outputs. 

At present, ResNet has replaced VGG as the basic feature extraction network in 

general computer vision problems. The FPN network proposed by Facebook that can 

effectively generate multi-scale feature expression can also obtain an optimal 

combination of CNN features by taking ResNet as the basic network to give full play 

to its capabilities. 

On the other hand, the convolutional neural network needs more experience of the 

researcher in parameter adjustment, and the physical meaning of the convolution 

kernel is still unclear. Therefore, while enjoying the high efficiency brought by the 

convolutional neural network, we also must bear the trouble caused by its poor 

performance to the researcher.  

In the field of data-driven discovery equations, neural networks have been widely 

used in recent years. As for the problem of finding equations, the input data of the 
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network is probably neither pictures nor time series, so we need to make highly 

customized adjustments to the structure and use method of various neural networks. 

Initially, using a deep learning to accurately identify nonlinear relation from these 

input and output data couples is, at best, too simple for some input and output data 

which is potentially high-dimensional. Fortunately, in many cases involving the 

modeling of physical and aerodynamic systems, there is a great gap between the 

prior knowledge being used and being not used that by modern machine learning 

cases. Make the knowledge principle controlled by the laws of physics change over 

time of the dynamic system, or some practical validation rules or other special 

knowledge, also it can make them as a regular item for the change of the system to a 

certain degree of constraint (for example, in incompressible fluid dynamic problems, 

those who abandon any solution has no practical significance, is likely to be in 

violation of the principle of conservation of mass). As a summary, if apply this 

structured knowledge coding method into a learning algorithm, can enlarge 

algorithm can obtain the information content, making it able to quickly adjust 

yourself, let oneself to the correct solution as soon as possible, in the case of only a 

few of the available training sample can still play a role.  

In recent years, many scholars explored on neural network’s utility in the data-

driven discovery equations issues. As previously mentioned, how to better use of the 

neural network complexity and power of expression, at the same time adding certain 

constraints, is to apply neural networks to the important issue in data modeling 

problem, also because of these methods to the choice of network architecture. 

Raissi and Karniadakis (2017) used fully connected deep neural network to 

discover underlying physics of nonlinear PDEs [26], [27] with less data required for 

training. The key idea is to set up a universal neural network to approximate the 

solution of the PDE by minimizing the loss function and the derivatives can then be 

calculated by automation differentiation based on neural network [28]. In their 

research, automation differentiation’s application is achieved by TensorFlow, 

currently one of the hottest open source libraries for deep learning computations. 

The TensorFlow.gradients() function helps a lot when dealing with differentiation 

calculation within the same graph. They did researches in different cases. Take 
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Burger’s Equation as an example. Firstly, they use 100 points randomly spread on 

the boundary of space and time for training, while in this case, the form of equation 

is known already. After this, they did experiment on 10,000 points randomly spread 

on both boundary and inside the function and this time without knowing the form of 

function. Both results are good for discover the underlying physics motion. However, 

the explicit form of the PDEs is assumed to be known in the first case and in the 

second case the final result is not an exact equation but only prediction on time and 

space domain. Their method provided valuable reference for later research in many 

aspects, for example, they abandoned the traditional numerical differential 

calculation method in favor of the more advanced and less error automatic 

differential calculation. In terms of the use of neural network, they tend to use the 

fully connected network structure conservatively. Although the structure is complex 

enough to make the network have better representativeness, the calculation cost of 

training is also very large because the network parameters are too miscellaneous. 

Therefore, if it is necessary to increase the complexity of the network to improve the 

recognition rate of the model to the physical equation, the fully connected network 

is not necessarily a very good choice. 

More recently, Long et al. (2018) [29] raised PDE-NET, he utilized the connection 

between differentiation and convolution to discover nonlinear equations with minor 

knowledge on the equation form [30] [31]. The wavelet frame filters in convolutional 

neural network (CNN) with a training kernel is adopted to approximate spatial 

differentiations. In Long’s work, he gives an example for demonstrating the use of 

convolution to approximate differentiation. Assume that we have the 2D Haar 

wavelet filters as following: 

 

ℎ00 =
1

4
(
1 1
1 1

), ℎ10 =
1

4
(
1 −1
1 −1

), ℎ01 =
1

4
(

1 1
−1 −1

), ℎ11 =
1

4
(

1 −1
−1 1

). 

(6) 

where ℎ00 is low-pass filter and the rest three are high-pass filter. And we define the 

wavelet transformation 𝐖 on a 2D function 𝑢 as following: 
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𝐖(𝑢) = {ℎ𝑖𝑗 ⊗ 𝑢: 0 ≤ 𝑖, 𝑗 ≤ 1} 

(7) 

Based on this transformation, we have the following relation between the 

differentiation and convolution: 

 

ℎ00 ⊗ 𝑢 ≈ 𝑢,

ℎ10 ⊗ 𝑢 ≈
1

2
𝛿𝑥

𝜕𝑢

𝜕𝑥
,

ℎ01 ⊗ 𝑢 ≈
1

2
𝛿𝑦

𝜕𝑢

𝜕𝑦
,

ℎ11 ⊗ 𝑢 ≈
1

4
𝛿𝑥𝛿𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
.

 

(8) 

where 𝛿𝑥  and 𝛿𝑦  indicates spatial grid on the two directions. Therefore, the 

approximation relation is shown clearly. The proof of this relation can be obtained 

by referring to the Taylor expansion.  

 

∑ ℎ[𝑘1, 𝑘2]𝑢(𝑥 + 𝑘1𝛿𝑥, 𝑦 + 𝑘2𝛿𝑦)

1
2

𝑘1,𝑘2=−
1
2

= ∑ ℎ[𝑘1, 𝑘2]

1
2

𝑘1,𝑘2=−
1
2

∑
∂𝑖+𝑗𝑢

∂𝑖𝑥 ∂𝑗𝑦

1

𝑖,𝑗=0

|𝑥,𝑦

𝑘1
𝑖 𝑘2

𝑗

𝑖! 𝑗!
𝛿𝑥𝑖𝛿𝑦𝑗 + 𝑜(|𝛿𝑥|1 + |𝛿𝑦|1)

= ∑ 𝑚𝑖,𝑗𝛿𝑥𝑖𝛿𝑦𝑗 ⋅
∂𝑖+𝑗𝑢

∂𝑖𝑥 ∂𝑗𝑦
|𝑥,𝑦

1

𝑖,𝑗=0

+ 𝑜(|𝛿𝑥|1 + |𝛿𝑦|1)

 

(9) 

in which [𝑘1, 𝑘2] indicates the subscript of filter ℎ, and 𝑚𝑖,𝑗 can be expressed as 
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𝑚𝑖,𝑗 =
1

𝑖! 𝑗!
∑ 𝑘1

𝑖 𝑘2
𝑗
ℎ[𝑘1, 𝑘2]

1
2

𝑘1,𝑘2=−
1
2

, 𝑖, 𝑗 = 0,1 

(10) 

here 𝑚𝑖,𝑗 is a quite important variable in PDE-NET, which is the trainable in network. 

Long et al. (2019) [32] upgraded their network by imposing appropriate 

constraints on filters and using a newly designed symbolic neural network to express 

the analytical form of function clearly.  

The popularity of neural network method in various fields in recent years is mainly 

attributed to the rapid development of computing power of modern computers. And 

the black box's characteristics, on the one hand, confuse people about its 

fundamental principles, on the other hand, make it extremely robust, which is an 

advantage over any other traditional machine learning methods, and also makes it 

more like the human brain, after all, people still cannot understand how the human 

brain works. In the field of data-driven discovery equations, we borrow the excellent 

feature that is, the differentiation capability of neural network, and hope to reduce 

the ambiguity in the principle part as much as possible through structural 

improvement. The present study is only a preliminary exploration of the use value of 

neural network in this field, there is still a long way to go in the future. 

In sum, the data-driven discovery method of the underlying physics of PDEs are in 

progress. However, they still have some problems that is, symbolic regression 

requires high computation cost and has trouble dealing with large scale problem. 

Sparse regression needs to set numerical differentiations beforehand which costs 

large storage and may generate unrelated terms. The PDE-NET for discovering 

unknown equations by Long et al. (2018) [29][32] requires no knowledge on the 

differential operators and associated discrete approximations, which has been 

applied for 2-dimensional linear variable-coefficient convection-diffusion equation. 
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1.3 Novelty of the Thesis 

However, it is still challenging for the data-driven method in order to solve 

multiple-physics electromagnetic physics problem. There are two main 

characteristics for data driven methods for multiple physics electromagnetic 

application. First, the electromagnetic scatter field is usually varying fast with time. 

The characteristic of the EM field needs to be extracted in the time series. Secondly, 

the multiple-physics electromagnetic problem involves a set of different partial 

differential equations. It requires one unified algorithm to retrieve the multiple 

coefficient of the PDE equation set simultaneously. Therefore, the data-driven 

discovery method for complex electromagnetic system will be specially designed as 

a framework. That’s what this thesis wants to provide solutions specifically. 

 

1.3.1 Unified Neural Network 

In this thesis, we aim to design a data-driven network architecture to discover a 

set of nonlinear PDE equations. A unified neutral network with convolution is 

proposed in combination with spare regression and pareto analysis. By using the 

sparse regression method, we add the sparse regression elements in some specific 

locations in the network as punishment terms to constrain the complexity of the 

found equation, which is based on Occam's razor principle. On the other hand, we 

further apply the pareto analysis criteria, and we will compare the final loss function 

values after each training, so as to clearly conclude whether the candidates we have 

screened out really benefit from making the discovered equation more accurate. 

 

1.3.2 Application on Multiple-Physics EM Problems 

This proposed network is applied for an electromagnetic wave and plasma 

interaction system, which can discover the coefficient of the PDE set with relatively 

good accuracy. As is known to all, EM field has always been a thorny problem in many 

physical problems, which is mainly due to the abstractness of EM problems, the high 

uncertainty of the environment, and various complicated interference factors in 

practical problems. However, among the many researchers mentioned above, there 

are few studies involving the discovery of EM field equations, so there are very few 
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theoretical or experimental attempts in this field. Although many physical equations 

have many similarities in form, such as the derivative of time usually for the first 

order, but the EM field problems involved in a variety of physical process, and the 

influence of nonlinear effect is larger. There are not deeply studied by previous 

researchers, this part also shows that why they did not choose to EM field equation 

as a subject in the study. This is a new field that we want to explore. We hope to 

propose a more appropriate solution to EM field problems through an algorithm that 

combines the valuable experience of predecessors and more innovations.   

 

1.3.3 Exploration on Inhomogeneous Problem 

No matter the equations studied by previous researcher or EM equations, there 

are not many relevant researches on the problems of inhomogeneous classes. The 

problem of inhomogeneous can be divided into two categories: one is the change of 

inhomogeneous in time, the other is the change of inhomogeneous in space. The 

difficulty in dealing with inhomogeneous problems is mainly that the equation in 

non-uniform problems is changing. It may be that the form of the equation has 

changed, or the coefficients of some terms of the equation have changed, so that no 

definite form of the equation can be found. In this thesis, we also explore the problem 

of inhomogeneous. In this case, we firstly identified the variation of the coefficients 

in a very small space, and then further used the properties of trigonometric series to 

express the expression of the variation rule implied by the coefficients through 

trigonometric series. During this process, sparse regression is also used to realize the 

selection of trigonometric series, and finally good experimental results are obtained. 

 

1.4 Structure of Thesis 

In this thesis, the following content can be divided into three parts.  

In Chapter 2, the main methodology and architecture of system are introduced. 

The structure of convolutional neural network is demonstrated firstly with the 

explanation of how to calculate time and space differentiations. And training method 

including sparse regression and Pareto analysis together with the architecture of 

system are introduced later. 
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In Chapter 3, simulations are carried out on homogeneous and inhomogeneous 

problems respectively. Preprocessing is introduced firstly including data collection 

and feature scaling. Then, in homogeneous cases, the simulations are carried out on 

one universal sampling and several personalized sampling strategies for each target 

equation. In inhomogeneous cases, the modification of network and new method to 

extract the expression of inhomogeneous parameter are introduced. 

In Chapter 4, discussion and conclusion on the simulation results are given, the 

problems that need to be improved are analyzed and some possible solutions are 

given. And the future work for data-driven discovery in EM problem is introduced, it 

is mainly to focus on arbitrary inclination angle, high order of differentiation. What’s 

more, based on the performance of the previous two works, application on real data 

is also an important direction.  

The data-driven methods of the PDEs set will pay the way for deriving equations 

for complex partially known and unknown systems including nonlinear, multiple 

physics, EM equations and beyond.   
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Chapter 2 Methodology 

In this chapter, it introduces the basic algorithms and basic principles adopted 

in this thesis. The methods for how to calculate time and space differentiations are 

introduced and after which is the whole structure of convolutional neural network. 

And training method including sparse regression and Pareto analysis together with 

the architecture of system are introduced later. The method introduced in this 

chapter will be utilized in Chapter 3, while for clarity, electromagnetic equations are 

not referred in this chapter, all equations as examples are of universal form.  

For simplicity, we assume there are two physical variables 𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)  in 

a 2-dimensional (𝑥, 𝑦) space varying with time 𝑡. The universal expression of their 

governing equations can be express as following 

  

∂𝑢

∂𝑡
= 𝑓(𝑥, 𝑦, 𝑢, 𝑣,

∂𝑢

∂𝑥
,
∂𝑢

∂𝑦
,
∂𝑣

∂𝑥
,
∂𝑣

∂𝑦
,

∂2𝑢

∂𝑥 ∂𝑦
,

∂2𝑣

∂𝑥 ∂𝑦
. . . )

∂𝑣

∂𝑡
= 𝑔(𝑥, 𝑦, 𝑢, 𝑣,

∂𝑣

∂𝑥
,
∂𝑣

∂𝑦
,
∂𝑢

∂𝑥
,
∂𝑢

∂𝑦
,

∂2𝑣

∂𝑥 ∂𝑦
,

∂2𝑢

∂𝑥 ∂𝑦
. . . )

 

(11) 

where 𝑓 and 𝑔 is the nonlinear function of all possible terms including nonlinear 

functions of 𝑢 and 𝑣, their derivatives and other parameters, respectively. 

 

2.1 Time Derivative  

We define 𝑢(𝑡𝑖,⋅) or 𝑣(𝑡𝑖,⋅) as all spatial value of function 𝑢 or 𝑣 at 𝑡 = 𝑡𝑖  . For 

time derivative calculation, according to the forward Euler method, we have the 

following formula 

 

𝑢
~

(𝑡𝑖+1,⋅) = 𝑢(𝑡𝑖,⋅) + Δ𝑡 ⋅
∂𝑢

∂𝑡

𝑣
~

(𝑡𝑖+1,⋅) = 𝑣(𝑡𝑖,⋅) + Δ𝑡 ⋅
∂𝑣

∂𝑡

 

(12) 
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where 𝑢
~

(𝑡𝑖+1,⋅) or 𝑣
~

(𝑡𝑖+1,⋅) is the approximation value at 𝑡 = 𝑡𝑖. Then, we have this 

expression: 

 

𝑢
~

(𝑡𝑖+1,⋅) = 𝑢(𝑡𝑖,⋅) + Δ𝑡 ⋅ 𝑓

𝑣
~

(𝑡𝑖+1,⋅) = 𝑣(𝑡𝑖,⋅) + Δ𝑡 ⋅ 𝑔
 

(13) 

There are various choices for time derivative calculation like finite differentiation, 

Runge-Kutta method [33] and so on. The reason for choosing forward Euler method 

is that the structure of network is based on the calculation method, thus, to keep the 

neural network’s structure simple enough for training, we select the simplest method 

for time derivation calculation. If there is higher requirement for accuracy of time 

derivation, the network should be adjusted together with the method for time 

derivative. 

 

2.2 Spatial Derivative  

For spatial derivative calculation, the connection between convolutions and 

differentiations was studies by Cai et al. (2012) [30] and by Dong et al. (2017) [31]. 

Here, we demonstrate one simple example of their work [30][31] to show how to 

express the relation between differentiation and convolution. Assume that we have 

the 2-dimensional Haar wavelet filters includes one low-pass filter ℎ00  and three 

high-pass filters ℎ10, ℎ01 and ℎ11: 

 

ℎ00 =
1

4
(
1 1
1 1

), ℎ10 =
1

4
(
1 −1
1 −1

), ℎ01 =
1

4
(

1 1
−1 −1

), ℎ11 =
1

4
(

1 −1
−1 1

). 

(14) 

Then, the circular convolution operator is labeled as ⊗ and we define the wavelet 

transformation 𝐖 on a 2D function 𝑢 as following: 
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𝐖(𝑢) = {ℎ𝑖𝑗 ⊗ 𝑢: 0 ≤ 𝑖, 𝑗 ≤ 1} 

(15) 

Based on this transformation, we have the following relation between the 

differentiation and convolution: 

 

ℎ00 ⊗ 𝑢 ≈ 𝑢,

ℎ10 ⊗ 𝑢 ≈
1

2
𝛿𝑥

∂𝑢

∂𝑥
,

ℎ01 ⊗ 𝑢 ≈
1

2
𝛿𝑦

∂𝑢

∂𝑦
,

ℎ11 ⊗ 𝑢 ≈
1

4
𝛿𝑥𝛿𝑦

∂2𝑢

∂𝑥 ∂𝑦
.

 

(16) 

where 𝛿𝑥 and 𝛿𝑦 are the grids of 𝑥 and 𝑦 direction of function 𝑢 or 𝑣, respectively.  

Similarly, for 𝑣, 

 

ℎ00 ⊗ 𝑣 ≈ 𝑣,

ℎ10 ⊗ 𝑣 ≈
1

2
𝛿𝑥

∂𝑣

∂𝑥
,

ℎ01 ⊗ 𝑣 ≈
1

2
𝛿𝑦

∂𝑣

∂𝑦
,

ℎ11 ⊗ 𝑣 ≈
1

4
𝛿𝑥𝛿𝑦

∂2𝑣

∂𝑥 ∂𝑦
.

 

(17) 

The proof of Equation (16) can be obtained by the Taylor expansion.  
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∑ ℎ[𝑘1, 𝑘2]𝑢(𝑥 + 𝑘1𝛿𝑥, 𝑦 + 𝑘2𝛿𝑦)
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𝛿𝑥𝑖𝛿𝑦𝑗 + 𝑜(|𝛿𝑥|1 + |𝛿𝑦|1)

= ∑ 𝑚𝑖,𝑗𝛿𝑥𝑖𝛿𝑦𝑗 ⋅
∂𝑖+𝑗𝑢

∂𝑖𝑥 ∂𝑗𝑦
|𝑥,𝑦

1

𝑖,𝑗=0

+ 𝑜(|𝛿𝑥|1 + |𝛿𝑦|1)

 

(18) 

in which 𝑘1, 𝑘2 indicates the subscript of filter ℎ and 𝑚𝑖,𝑗 can be expressed as  

 

𝑚𝑖,𝑗 =
1

𝑖! 𝑗!
∑ 𝑘1

𝑖 𝑘2
𝑗
ℎ[𝑘1, 𝑘2]

1
2

𝑘1,𝑘2=−
1
2

, 𝑖, 𝑗 = 0,1 

(19) 

here 𝑚𝑖,𝑗 is a shorthand for a coefficient. In our work, the coefficient is simplified to a 

trainable weight which can save computation power and performs well. 

By multiplying constant coefficients, convolution can represent differentiation in 

neural network effectively. The calculation of the second order differentiation is also 

mentioned in [30], it is ignored since our current work does not involve it as will be 

discussed in future. 

 

2.3 𝚫𝒕 Block 

Therefore, we obtain a partial neural network structure from time derivative 

calculation based on forward Euler's method. For simplicity, the partial neural 

network architecture will be shown only for variable 𝑢  and target function 𝑓 , 

similarly for variable 𝑣 and target function 𝑔. 
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    Figure 1. illustrates a Δ𝑡  block [29] as a layer of neural network to advance 

variables based on equations in time. In principle, the structure of the Δ𝑡 block is an 

interpretation of Equation (13). The two left terms in Figure. 1 represent Δ𝑡 ⋅ 𝑓, that 

is a candidate terms database in the form of neural network. Thus, the input of this 

network is clear, that's all possible functions with 𝑢 and 𝑣 in this example. Here, it is 

noted that for variable 𝑣 and its derivatives are also included for advancing 𝑢 in the 

candidate database because we assume that there is coupling between 𝑢 and 𝑣. The 

prior knowledge will help reduce the number of possible candidate functions 

associated with PDEs. The output of Δ𝑡 block is the predicted value at the next time 

stamp 𝑢
~

(𝑡𝑖+1,⋅).  

 

Figure 1. The architecture of a Δ𝑡 block [29] to advance function in time. The two 

left parts represent the target function 𝑓 in Equation (13), that includes a candidate 

term database in the form of neural network as in Equation (5-6). The input of this 

network is all possibly related functions which are 𝑢 and 𝑣 in this example. It is 

noted that function 𝑣  and its derivatives are also included in the candidate 

database because we assume that there is coupling between 𝑢 and 𝑣 in PDEs set. 
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In Figure. 1, the coefficients 𝑤1 , 𝑤2 ,  𝑤3  are neural network weights for each 

candidate term, respectively. The network weights will be shared in each layer and 

become the output vector of this model. The non-zero weight represents the term of 

the target equation, where 𝑛 means the number of candidate terms. We define it W 

as 

 

W = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, . . . , 𝑤𝑛] 

(20) 

In general, the whole network consists of several Δ𝑡  blocks by continuously 

connecting each block one by one. For the number of Δ𝑡 blocks, it is determined by 

convergence criteria we choose. 

 

 

2.4 Sparse Regression for Regularization 

Sparse regression is a common method in data-discovery area. When there are too 

many terms discovered with small parameters, in our case, it means that the system 

may face with over-fitting problems. Regularization method need to be adopted in 

training process to avoid over-fitting. For the type of regularization, even though 𝐿0 

Figure 2. Δ𝑡 blocks are connected one by one [29], and the parameters like weights 

are shared in each block, this method saves the number of parameters to train and 

keep the form of equation at the same stage as time going step by step. 
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is the most direct method and effective method for regularization, it is still hard to 

calculate and in deep learning framework, it is hard to calculate gradients. Thus, 𝐿1 

norm regularization is more commonly used as it is easier to calculate than 𝐿0 norm 

regularization and more powerful than 𝐿2 norm regularization. 

In our approach, when the training of network is finished, the output W will be 

limited by regularization method in final layer of network. 

The output of Δ𝑡  block is the predicted value at the next time step 𝑢
~

(𝑡𝑖+1,⋅) . 

Therefore, the loss function of a single block is defined as 

 

𝑙𝑖 =∥ 𝑢
~

(𝑡𝑖+1,⋅) − 𝑢(𝑡𝑖+1,⋅) ∥2 

(21) 

Consider sparse regression to optimize the output W at the end of the complete 

network, we define that loss function of the entire network is sum of each block's loss 

according to 𝐿1  norm of W . The accumulated loss function can make prediction 

reliable within certain time step numbers N. The expression for final loss L is 

 

𝐿 = ∑ ∥ 𝑢
~

(𝑡𝑖,⋅) − 𝑢(𝑡𝑖,⋅) ∥2

𝑁

𝑖=1

+ 𝜆 ∥ W ∥1 

(22) 

 

where 𝜆 is the regularization parameter to decide the weight of regularization terms. 

 

2.5 Pareto Analysis 

Pareto analysis [4] is a method that can be effective in scenarios where many 

potential action processes are competing to become the principal component. In 

short, the problem-solver makes decision through evaluating the benefits of each 

action and then selects a small number of the most effective actions that bring the 
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total benefits  to approximate the maximum possible benefits [4]. While it is common 

to call pareto as the "80/20" rule, in all cases, 20% of the reasons for 80% of the 

problems are assumed to be a rule of thumb for remembering, not and should not be 

considered an absolute principle in nature. This method helps to identify the main 

component part of the problem that needs to be notices and located. 

The application of Pareto analysis that has been adopted is the final guarantee of the 

discovery result of the system. By cutting the term with the minimum parameter out 

and training again, we compare the later loss with the previous one. If loss reduces, 

then we repeat the process until loss rises. 

 

2.6 System Architecture 

Figure 3. illustrates the architecture of the whole neutral network to deal with a 

given equation set. This process includes: 

(1) Find out the number of possible equations to discover, e. g., 𝑓 or 𝑔 . 

(2) Determine time derivatives, e. g., 𝑢
~

(𝑡𝑖+1,⋅) or 𝑣
~

(𝑡𝑖+1,⋅). 

(3) Decide the number of networks to activate. 

(4) Utilize spare regression to train network weights W. 

(5) Cut out terms based on Pareto analysis.  

(6) Iterate and train again if not converged. 



 31 

 

 

 

 

 

Thus, the whole system is shown as above. There are some things need to be 

explained more. First is that, the first step checking number of equations is quite 

important in our method, to ensure covering all possible equations (as the number 

and the form of equation are both unknown before training) we will preprocess the 

network into all possible structures by calculating the time derivatives. In our 

simulation, all possible time derivatives are indicating one equation respectively. 

Second is that the activation of neural network is done manually currently, we will 

optimize the code in the future to make all process into automation. Third is that, 

Pareto analysis is implemented after training, which means it analyzes the result of 

Figure 3. The architecture of discovering the PDE equation set. The procedure steps 

include 1) Check the number of PDEs equations. 2) Determine the time derivative of 

active terms in the PDE. 3) Activate multiple equation network corresponding to 

each equation. 4) Train network with sparse regression regularization. 5) Pareto 

analysis helps to cut out unrelated terms with minimum parameters. 
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discovering for equation, so this step is different from sparse regression and cannot 

be replaced. 

 

2.7 Summary 

In this chapter, the main methodology used in this thesis is introduced. The whole 

neural network’s structure is based on the calculation of time derivative which is the 

process of forward Euler method and the convolutional layers are consist of spatial 

differentiation operators which are approximated by convolutional kernel. These 

two methods ensure that the network can express a universal form of PDE. What’s 

more, sparse regression and Pareto analysis are introduced as main training 

methods to keep the form of equation clean and simple enough. The whole system 

architecture includes all methods mentioned above and works for a set of equations. 

 

 

 

Chapter 3 Simulation Model 

3.1 Forward Model 

In the ionosphere, we usually have the following deformation equations for 

Maxwell’s equations. For the anisotropic magnetized cold plasma, assume that the 

angle between the background magnetic field 𝐁  and the +𝑧  axis of the 

electromagnetic wave propagating along the direction of +𝑧 is theta, and in the 𝑦𝑜𝑧 

plane, ignore the movement of ions.  

Here, we consider the interaction between electromagnetic waves and magnetized 

plasmas with collisions. For such multiple physic complex system, the Maxwell's 

partial differential equations and their constitutive relations are given as 
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𝛻 × 𝐇 = 𝜀0

𝜕𝐄

𝜕𝑡
+ 𝐉

𝛻 × 𝐄 = −𝜇
0

𝜕𝐇

𝜕𝑡
𝜕𝐉

𝜕𝑡
+ 𝜈𝑐𝐉 = 𝜀0𝜔𝑝

2𝐄 + 𝜔𝑐𝑒 × 𝐉

 

(23) 

where 𝐇  , 𝐄  and 𝐉  are vectors of magnetic intensity, electric field intensity, and 

polarized current density, respectively. 𝜇
0
, 𝜀0  are the magnetic permeability and 

vacuum permittivity respectively. Here,  𝜈𝑐 ,  𝜔𝑝  and 𝜔𝑐𝑒  are electron collision 

frequency, plasma frequency, and electron cyclotron frequency respectively. 

The background magnetic field is 𝐁𝟎 = 𝐵𝑦𝑦
^

+ 𝐵𝑧𝑧
^
.  

The wave propagates with magnetic inclination angle 𝜃 with respect to the 𝐳 axis. 

Equation (23) is only for the situation that ion motion is neglected and cold plasmas 

is assumed. 

Figure 4. shows the propagation model of EM wave in plasmas with arbitrary 

magnetic inclination angle 𝜃 with respect to the 𝒛 axis. The electromagnetic wave is 

propagating along the 𝒛  axis direction. The scattered field for a 1D magnetized 

plasma slab are solved based on the current density convolution finite-difference 

time domain (JEC-FDTD) [11]. 

To verify our method, we calculate the scattering field 𝐄s for a one-dimensional 

magnetized plasma slab shown in Figure. 4. The computational space takes up 800 

grids along the 𝒛  directions, among which plasma takes up 200-600 grids with 

uniform distribution and a thickness of 𝑑 = 3𝑐𝑚. The JEC-FDTD method is utilized to 

get the solution of Equation (23). The algorithm of JEC-FDTD can be found in [34]. 

For uniform plasma distribution, parameters in the simulation are set as following in 

Table I. 
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Table I. System Parameters 

 

Symbol Value 

Space iteration step size 𝛿𝑧 75 μm 

Time iteration step size 𝛿𝑡 0.125 ps 

Electron collision frequency 𝜈𝑐 20 Ghz 

Electron cyclotron frequency 𝜔𝑐𝑒 30 Ghz 

Uniform plasma frequency  𝜔𝑝 40 Ghz 

Permittivity of vacuum 𝜀0 8.85 × 10−12 

Magnetic inclination angle 𝜃 90° 

 

For 𝜃 = 90°, Equations (23) are expressed as a scalar differential equation as: 

∂𝐸𝑥

∂𝑧
= −𝜇

0

∂𝐻𝑦

∂𝑡
                                      (24) 

−
∂𝐻𝑦

∂𝑧
= 𝜀0

∂𝐸𝑥

∂𝑡
+ 𝐽𝑥                                  (25) 

∂𝐽𝑥

∂𝑡
+ 𝜈𝑐𝐽𝑥 = 𝜀0𝜔𝑝

2𝐸𝑥 + 𝜔𝑐𝑒𝐽𝑧
                             (26) 

∂𝐽𝑧

∂𝑡
+ 𝜈𝑐𝐽𝑧 = 𝜀0𝜔𝑝

2𝐸𝑧 − 𝜔𝑐𝑒𝐽𝑥                            (27) 

Figure 4. Multiple physics EM wave interaction with plasma with arbitrary magnetic 

inclination 𝜃 = 90°. The spatial domain is in the 𝒛 direction. 
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𝐽𝑧 = −𝜀0

∂𝐸𝑧

∂𝑡
                                      (28) 

Here, there are 5 Equations (24-28) to discover with five unknown parameters 

including 𝜇
0
, 𝜀0, 𝜀0𝜔𝑝

2, 𝜔𝑐𝑒, 𝜈𝑐. This set of PDE equations is our first goal for equation 

discovery. This set of PDE equations is simply for EM wave propagation in 

anisotropic plasmas, however, it can effective reveal the application for our proposed 

network. 

 

3.2 Preprocessing 

The whole process of inverse model is shown in Figure. 5. The physical quantity 

input data are 𝐸𝑥, 𝐽𝑥, 𝐸𝑧, 𝐽𝑧, 𝐻𝑦 calculated from JEC-FDTD. Sampling is conducted for 

the input data 𝐸𝑥, 𝐽𝑥, 𝐸𝑧, 𝐽𝑧, 𝐻𝑦, respectively. 

 

3.2.1 Feature Scaling 

For preprocessing the data, normalization is also an important part, because each 

quantity is of different orders of magnitude, if there is no normalization, the 

parameters learning of each term will have large difference with each other. This 

would cause big wrong for sparse regression also for optimization of neural network.  

For normalization, the goal is to modified each input data into the same order of 

magnitude by comparing with the time derivatives. Taking Equation (24) as example, 

we have the relations as following: 

∂𝐸𝑥

∂𝑧
=

𝛿𝐸𝑥

𝛿𝑧
                                       (29) 

∂𝐻𝑦

∂𝑡
=

𝛿𝐻𝑦

𝛿𝑡
                                       (30) 

In which, 𝛿𝑡 and 𝛿𝑧 are temporal and spatial grids respectively shown in Table I. 

𝛿𝐸𝑥  and 𝛿𝐻𝑦  are differences respectively. Thus, the partial differentials can be 

expressed in terms of differences. Then, we have 

𝛿𝐸𝑥

𝛿𝑧
= −𝜇

0

𝛿𝐻𝑦

𝛿𝑡
                                     (31) 
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𝛿𝐻𝑦 = −
𝛿𝑡

𝜇
0
𝛿𝑧

𝛿𝐸𝑥                                   (32) 

The normalization coefficient is −
𝛿𝑡

𝜇0𝛿𝑧
 for 𝐸𝑥 of this equation.  

Similarly, Equation (25) has: 

−
𝛿𝐻𝑦

𝛿𝑧
= 𝜀0

𝛿𝐸𝑥

𝛿𝑡
+ 𝐽𝑥                                 (33) 

𝜀0

𝛿𝐸𝑥

𝛿𝑡
= −

𝛿𝐻𝑦

𝛿𝑧
− 𝐽𝑥                                 (34) 

𝛿𝐸𝑥 = −
𝛿𝑡

𝜀0𝛿𝑧
𝛿𝐻𝑦 −

𝛿𝑡

𝜀0
𝐽𝑥                             (35) 

The normalization coefficient are −
𝛿𝑡

𝜀0𝛿𝑧
 , −

𝛿𝑡

𝜀0
 for 𝐻𝑦  and 𝐽𝑥  respectively of this 

equation.  

Equation (26) has: 

𝛿𝐽𝑥

𝛿𝑡
+ 𝜈𝑐𝐽𝑥 = 𝜀0𝜔𝑝

2𝐸𝑥 + 𝜔𝑐𝑒𝐽𝑧
                                (36) 

𝛿𝐽𝑥 = −𝛿𝑡𝜈𝑐𝐽𝑥 + 𝛿𝑡𝜀
0
𝜔𝑝

2𝐸𝑥 + 𝛿𝑡𝜔𝑐𝑒𝐽𝑧                       (37) 

The normalization coefficient is −𝛿𝑡𝜈𝑐, 𝛿𝑡𝜀0𝜔𝑝
2, 𝛿𝑡𝜔𝑐𝑒for 𝐽𝑥, 𝐸𝑥 and 𝐽𝑧 respectively 

of this equation. 

Equation (27) has: 

 

𝛿𝐽𝑧

𝛿𝑡
+ 𝜈𝑐𝐽𝑧 = 𝜀0𝜔𝑝

2𝐸𝑧 − 𝜔𝑐𝑒𝐽𝑥
                                (38) 

𝛿𝐽𝑧 = −𝛿𝑡𝜈𝑐𝐽𝑧 + 𝛿𝑡𝜀
0
𝜔𝑝

2𝐸𝑧 − 𝛿𝑡𝜔𝑐𝑒𝐽𝑥                       (39) 

The normalization coefficient is −𝛿𝑡𝜈𝑐 , 𝛿𝑡𝜀0𝜔𝑝
2 , −𝛿𝑡𝜔𝑐𝑒 for 𝐽𝑧 , 𝐸𝑧  and 𝐽𝑥 

respectively of this equation. 

Equation (28) has: 

𝐽𝑧 = −𝜀0

𝛿𝐸𝑧

𝛿𝑡
                                          (40) 

𝛿𝐸𝑧 = −
𝛿𝑡

𝜀0
𝐽𝑧                                          (41) 
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The normalization coefficient is−
𝛿𝑡

𝜀0
 for 𝐽𝑧 of this equation. 

The normalization is the key process step during the overall process of the inverse 

model for a multiple-physics EM problem as shown in the following steps: 

Step 1: Data collected from a solution of PDE sets Equations (24-28).  

Step 2: Data spare sampling and normalization.  

Step 3: Check the total number of equations and determine the time derivative of 

the input data.  

Step 4: Multi-Equation network activation and training as shown in Figure 3.  

Step 5: Sparse regression is set at the end of training and the detailed form of 

equations will be shown later. 

Step 6: After Pareto analysis, distortion terms will be deleted. 
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 Figure 5. The overall process of the inverse model for a multiple-physics EM problem. 

Step 1: Data collected from a solution of PDE sets Equations (24-28). Step 2: Data 

spare sampling and normalization. Step 3: Check the total number of equations and 

determine the time derivative of the input data. Step 4: Multi-Equation network 

activation and training as shown in Figure 3. Step 5: Sparse regression is set at the 

end of training and the detailed form of equations will be shown later. Step 6: After 

Pareto analysis, distortion terms will be deleted. 
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Normalization is executed directly after data sampling. As we use the same input 

for different equations, we need to do normalization for each equation when the data 

is set up as candidate function in this term because the order of magnitudes of input 

data will cause big error for data training and lead to wrong results. 

 

 

Figure 6. Data collection location for 𝐸𝑥 , 𝐸𝑧 . For upper part, this is a 𝑥-direction 

electric field intensity 𝐸𝑥 picture. The two white lines means the incident location 

and exit location. The small white square represents the collection area. For lower 

part, it is the same for 𝐸𝑧. 
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Thus, each input data should be compared with time derivative 
𝜕𝐸𝑥

𝜕𝑡
,

𝜕𝐽𝑥

𝜕𝑡
,

𝜕𝐸𝑧

𝜕𝑡
,

𝜕𝐽𝑧

𝜕𝑡
,

𝜕𝐻𝑦

𝜕𝑡
, 

which are included by the target equation and then multiply a parameter to keep all 

candidate functions as same magnitude with the time derivative.  

 

 

Figure 7. Data collection location for 𝐽𝑥, 𝐽𝑧 . The pictures for 𝐽𝑥, 𝐽𝑧 , the collection 

locations are the same while the white box indicates the sampling area. It can be 

observed that we sampled the data from the location with as much information as 

possible. 
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3.2.2 Data Collection 

For training data collecting, we select three physical quantities of the scattered 

field 𝐸𝑥, 𝐸𝑧, 𝐻𝑦  and two currents 𝐽𝑥, 𝐽𝑧  at spatial grids 200 to 219 close to plasma-

vacuum boundary (grid 200). For temporal series of physical quantities, we choose 

few samples at the time period 500-509, which includes the maximum value of the 

scattered field. 

Figure 6. and Figure 7. shows examples for the total electric field 𝐸𝑥  and 𝐸𝑧  in 

perpendicular to the magnetic field. The sampling scheme is the same for all five 

Figure 8. Sampling area in detailed. In the upper panel, the black square shows the 

data sampling area for 𝐸𝑥  and 𝐸𝑧  in time domain. In the bottom panel, the black 

horizontal line indicates the border of plasma and our collection area begins right on 

the incident border. 
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quantities. In Figure 6. the two white lines represent the boundary of plasma. The 

small white square represents the data collection area from both inside and outside 

the plasma. For collection location on time axis, we choose 10 steps from 500-time 

step, because at this location the gradient of curve is obvious so that the function is 

easy to be recognized by neural network. 

The sampling area for training network is shown in Figure 8. In the upper panel, 

the black square shows the data sampling area for 𝐸𝑥 and 𝐸𝑧 in time domain. In the 

bottom panel, the black horizontal line indicates the border of plasma and our 

collection area begins right on the incident border. It is clear that only a small number 

of spatial information and time are sampled. 

 

3.3 Network Construction  

From forward Euler's method, we have 

 

𝐸𝑥

~
(𝑡𝑖+1,⋅) = 𝐸𝑥(𝑡𝑖,⋅) + Δ𝑡 ⋅

∂𝐸𝑥

∂𝑡
                         (42) 

𝐻𝑦

~
(𝑡𝑖+1,⋅) = 𝐻𝑦(𝑡𝑖,⋅) + Δ𝑡 ⋅

∂𝐻𝑦

∂𝑡
                        (43) 

𝐽𝑥

~
(𝑡𝑖+1,⋅) = 𝐽𝑥

(𝑡𝑖,⋅) + Δ𝑡 ⋅
∂𝐽𝑥

∂𝑡
                         (44) 

𝐽𝑧

~
(𝑡𝑖+1,⋅) = 𝐽𝑧

(𝑡𝑖,⋅) + Δ𝑡 ⋅
∂𝐽𝑧

∂𝑡
                         (45) 

𝐸𝑧

~
(𝑡𝑖+1,⋅) = 𝐸𝑧(𝑡𝑖,⋅) + Δ𝑡 ⋅

∂𝐸𝑧

∂𝑡
                        (46) 

 

For one-dimension problem, the spatial direction is only 𝑧, so we use only one filter 

to get one kind of spatial differentiation. Take 𝐸𝑥 for example: 

 

ℎ10 ⊗ 𝐸𝑥 ≈
1

2
𝛿𝑧

∂𝐸𝑥

∂𝑧
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(47) 

From this, we can get the adjusted neural network structure. To fulfil the function 

of Equation (47), we use a function called conv2d in TensorFlow to generate 

convolution calculation. In our case this is a 1D problem, so we set the shape of 

convolution kernel to 2×1, so that this function still works for it. 

Based on the detailed situation of physical quantities, we adjust the Δ𝑡 block’s 

structure into a detailed one. The design principle is not changed at all, while the 

candidate function layer is compressed for simplicity in calculation. 

By screening different weights of network, the correct equation term and its 

corresponding coefficient can be obtained. This is one single time block for Equations 

(24-28). 

 

As one single block given above, we have  10 Δ𝑡  blocks to build up the whole 

network. By using the parameter sharing characteristic of neural network, the 

training coefficient results becomes accurate if the number of time blocks is 

increased. Consider that all redundant terms may lead to the problem of complicated 

neural network structure, we reduce the number of candidates based on certain 

prior physical knowledge, thus making the network training more efficient. 

Figure 9. The adjusted neural network structure - function ℎ contains all possibilities 

of this equation and as the spatial direction is only 𝑧, so we use only one filter to get 

one kind of spatial differentiation. 
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Apparently, only a small amount of information is needed and the distance of each 

spatial point is very close. This character is quite meaningful in radar communication 

when ground detection location is limited. 

 

3.4 Result and Analysis 

More space points can make the prediction results more accurate, but in practical 

application, that is, in the process of radar communication, it is difficult for us to 

collect data in a wide range of space, most of which come from a few points in the 

center. Therefore, we train this network for different cases of different spatial points 

number. 

For the whole system of equations, we build a comprehensive neural network, 

which can use the same set of training data to train and predict the coefficients of 

different equations without interfering with each other. In this process, we need to 

fully normalize the data, taking into account that the magnitude of various field 

quantities of electromagnetic field data will show huge differences. By evaluating the 

order of magnitude of each candidate, we set a reasonable normalization coefficient 

for each candidate with certain prior knowledge to ensure that the disparity of 

magnitude order will not cause great impact on training results of the network. 

 

3.4.1 Homogenous Simulation 

More space points can make the prediction results more accurate, but in practical 

application, that is, in the process of radar communication, it is difficult for us to 

collect data in a wide range of space, most of which come from a few points in the 

center. Therefore, we train this network for different cases of different spatial points 

number. 

For the whole system of equations, we build a comprehensive neural network, 

which can use the same set of training data to train and predict the coefficients of 

different equations without interfering with each other. In this process, we need to 

fully normalize the data, taking into account that the magnitude of various field 

quantities of electromagnetic field data will show huge differences. By evaluating the 
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order of magnitude of each candidate, we set a reasonable normalization coefficient 

for each candidate with certain prior knowledge to ensure that the disparity of 

magnitude order will not cause great impact on training results of the network. 

 

Table II. Inversion Result with 10 spatial points for each equation from t=500 
to 509 

 

Equation Error without noise Error with noise 𝑆𝑁𝑅 = 65db 

∂𝐸𝑥

∂𝑧
= −𝜇0

∂𝐻𝑦

∂𝑡
   𝜇0: 4.32% 𝜇0: 4.61% 

−
∂𝐻𝑦

∂𝑧
= 𝜀0

∂𝐸𝑥

∂𝑡
+ 𝐽𝑥  𝜀0: 14.11% 𝜀0: 14.56% 

∂𝐽𝑥

∂𝑡
+ 𝜈𝑐𝐽𝑥 = 𝜀0𝜔𝑝

2𝐸𝑥 + 𝜔𝑐𝑒𝐽𝑧
 𝜈𝑐: 40.69%, 𝜀0𝜔𝑝

2: 3.85%, 𝜔𝑐𝑒: 0.98% 𝜈𝑐: 27.15%, 𝜀0𝜔𝑝
2: 12.9%, 𝜔𝑐𝑒: 0.67% 

∂𝐽𝑧

∂𝑡
+ 𝜈𝑐𝐽𝑧 = 𝜀0𝜔𝑝

2𝐸𝑧 − 𝜔𝑐𝑒𝐽𝑥
 𝜈𝑐: 8.70%, 𝜀0𝜔𝑝

2: 0.20%, 𝜔𝑐𝑒: 1.53% 𝜈𝑐: 25.43%, 𝜀0𝜔𝑝
2: 3.85%, 𝜔𝑐𝑒: 18.10% 

𝐽𝑧 = −𝜀0

∂𝐸𝑧

∂𝑡
 𝜀0: 2.50% 𝜀_0: 2.82% 

 

Table II applies the methodology proposed to a multiple-physics EM interaction 

system of Equations (24-28) with all coefficients homogeneous. The five PDEs can be 

obtained simultaneously with five coefficients. For simplicity, we combine 𝜖0𝜔𝑝
2 

together as one parameter. In Figure 10, it shows the loss value and accuracy with 

the training step going. For clearly, the process for recording loss and accuracy are 

all collected during the last round of Pareto analysis which means in this round, there 

is no distorting terms at all. 
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For most coefficients, the relative error is relatively low less than 5%. The equation 

is also identified with the addition of Gaussian white noise to data set. We add noise 

with 𝑆𝑁𝑅 = 65db, even though the accuracy reduced, this method can still recognize 

the effective term for equations and keep a relatively high accuracy at the same time. 

The method can discover each physical equation even the data was slightly 

subsampled spatially and temporally. 

Figure 10. Loss function and accuracy converge with the number of training steps in 

last round of training. Upper panel shows the trend of loss function for each equation 

and the lower panel shows the accuracies of each coefficient. As there are some 

coefficients appears repeatedly in several equations, we select the best results for 

demonstration. It can be seen that in the last round of training, it converges fast and 

steadily. 
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There are still two coefficients having big error even without noise. The main 

reason for this problem is that, the universe sampling strategy which is to sample all 

data at the same spatial location and same time stamp for each equation. If we want 

to get better accuracy for them, each equation should have the better sampling 

strategy. Here we analyzed this problem from both spatial and temporal sights. 

 

 

A. Spatial Sampling Analysis 

The data sampling location on time and spatial domains are also one of important 

infects in training process. By adopting more spatial points we can get better 

parameters prediction accuracies relatively. As is shown in Figure 11. each point 

indicates the accuracy (which is 1 − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟%) of normalized parameter, we 

can see that with the increasing of spatial point number the accuracy rises. However, 

Figure 11. Inversion accuracy dependent on spatial sampling numbers. It is noted 

that each point indicates the accuracy of normalized parameters. The spatial 

sampling points are 2, 3, 5, 10, 15, 20, respectively and the beginning location is 𝑧 = 

200. It is noted that inversion accuracy reaches to 95% only for three samples but 

reduces substantially for two samples. 
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by considering the spatial sampling limitation, we need to make trade-off between 

accuracy and spatial sampling scale.      

 

B. Temporal Sampling Analysis 

On the other hand, temporal sampling scenario of the field sequence data plays an 

important role as well. Figure 12. depicts the dependence of accuracy of 𝜀0 on the 

gradient of 𝐸𝑧 based on Equation (28) as an example. We select three typical time 

sampling blocks corresponding to low (red), middle (blue) and high gradient (green) 

in the upper panel of Figure 12. 

Figure 12. Inversion accuracy dependent on temporal sampling scenario. Three-time 

sampling blocks are marked for low (red), middle (blue), and high gradient (green) 

with 10 samples in each block. Here is an example of Equation (28) with the time 

derivative of 𝐸𝑧  at spatial location 𝑧  = 200. For low gradient (red block in upper 

panel), the accuracy is low (red in lower panel). It is noted that the inversion accuracy 

correlates with the time derivative of sampled data block. 
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In each block, there are 10 temporal samples. It is noted that the accuracy reaches 

99% for high gradient (green) and reduces to approximately 90% for low gradient 

(red). With data varying rapidly with time, the neutral network can catch data 

characteristics easily. For the PDE equation set, it will require a common time block 

during which all quantities have high gradients with relatively large amplitude. 

 

C. Improved Sampling Strategy 

In Table II, all equations are discovered from a universal sampling strategy, which 

is relatively good for result generation for all cases. However, if the sampling location 

for time and space can be customized personalized well for each equation based on 

the analysis in section A and B shown above, the result can be optimized as the 

following table.  

Here, we keep the size of sampling area and change the sampling location. We try 

to find better sampling strategy for those equations with bad results.  

By adopting the analysis shown above, we find that no matter the equation 

includes the spatial differentiation, if the temporal sampling area can be chosen at 

the location with high time gradient, the result turns to be better than before. For 

equations that need to be optimized, we discuss them one by one individually.  

Firstly, we discuss the equation without spatial differentiations as shown in Table 

III. It can be seen that the optimization of time sampling area can help to get better 

accuracies. And the space sampling area is already suitable for equations that 

without spatial differentiations. 
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Table III. Inversion Result by using improved sampling strategy without 
noise for Equation (26)(27)(28) 

 

Equation Before Optimization 

 

After Optimization 

 
∂𝐽𝑥

∂𝑡
+ 𝜈𝑐𝐽𝑥 = 𝜀0𝜔𝑝

2𝐸𝑥 + 𝜔𝑐𝑒𝐽𝑧
 

𝜈𝑐: 40.69%, 𝜀0𝜔𝑝
2: 3.85%, 𝜔𝑐𝑒: 0.98%    

(z=200-209, t=500-509) 

𝜈𝑐: 14.43%, 𝜀0𝜔𝑝
2: 0.32%, 𝜔𝑐𝑒: 0.83% 

(z=305-314, t=700-709) 

∂𝐽𝑧

∂𝑡
+ 𝜈𝑐𝐽𝑧 = 𝜀0𝜔𝑝

2𝐸𝑧 − 𝜔𝑐𝑒𝐽𝑥
 

𝜈𝑐: 8.70%, 𝜀0𝜔𝑝
2: 0.20%, 𝜔𝑐𝑒: 1.53%     

(z=200-209, t=500-509) 

𝜈𝑐: 8.83%, 𝜀0𝜔𝑝
2: 1.79%, 𝜔𝑐𝑒: 0.22% 

(z=202-211, t=507-516) 

𝐽𝑧 = −𝜀0

∂𝐸𝑧

∂𝑡
 

𝜀0: 2.50%                                       

(z=200-209, t=500-509) 

𝜀0: 0.90%               

   (z=200-209, t=550-559) 

 

 

 

 

Figure 13. Optimized sample area for Equation (26) where 𝑧=305-314, 𝑡=700-709. 
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Figure 15. Optimized sample area for Equation (27) where 𝑧=202-211, 𝑡=507-516. 

Figure 14. Optimized sample area for Equation (28) where 𝑧=200-209, 𝑡=550-559. 
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Table IV. Inversion Result by using improved sampling strategy without 
noise for Equation (24)(25) 

 

Equation Before Optimization  

 

After Optimization  

 
∂𝐸𝑥

∂𝑧
= −𝜇0

∂𝐻𝑦

∂𝑡
   

𝜇
0
: 4.32% 

(z=200-209, t=500-509) 

𝜇
0
: 2.08% 

(z=318-327, t=577-586) 

−
∂𝐻𝑦

∂𝑧
= 𝜀0

∂𝐸𝑥

∂𝑡
+ 𝐽𝑥  

𝜀0: 14.11%                     

    (z=200-209, t=500-509) 

𝜀0: 3.31%               

       (z=338-347, t=650-659) 

 

In Table IV, it shows the optimized sample strategy for equations with spatial 

differentiations. In future work, this kind of equations are more common, so the 

sampling area selection are quite important for equation like them. By collecting 

space points around high spatial gradient area, optimized sampling strategy can help 

to get better accuracy significantly. 

 

Figure 16. Optimized sample area for Equation (24) where 𝑧=318-327, 𝑡=577-586. 
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By using optimized sampling strategy, all equations can obtain better results as 

following. The cost for this strategy is that the sampling area should be personalized 

for each equation respectively. 

In application problem, a universal sampling strategy can be used as first trail to 

get to know the basic form of equation and then detailed sampling strategy can be 

used to get more precise results. 

 

3.4.2 Inhomogeneous Simulation 

For all simulation above, we assume homogeneous coefficient for discovering the 

PDEs set. To verify algorithm further, we investigate the inhomogeneous coefficient 

further which often occurs for a wide range of applications. Input data of the 

scattered field for inhomogeneous density is generated by the JEC-FDTD algorithm. 

 

Figure 17. Optimized sample area for Equation (25) where 𝑧=338-347, 𝑡=650-659. 
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A. Network Adjustment 

The network needs to be adjusted. The structure of neural network needs to be 

adjusted to solve inhomogeneous problems. First, as the coefficients of 

inhomogeneous terms are varying with spatial position, we change parameters of 

inhomogeneous terms from a single number to a length-adaptive tensor. We call this 

length-adaptive tensor inhomogeneous parameter tensor. This tensor will be 

trainable in neural network. The length of inhomogeneous parameter tensor is equal 

to the spatial sampling point number. Secondly, we assume that prior knowledge is 

known which candidate terms have inhomogeneous parameters so that not all 

candidate terms should have inhomogeneous parameter tensors. Finally, the 

predicted parameter is no longer a single number but a tensor which indicates the 

varying parameters within spatial domain. After training, the underlying equations 

with inhomogeneous coefficients can be distilled from the inhomogeneous 

parameter tensor by the gradient descent method.  

    The input data of the scattered field for inhomogeneous density is obtained 

based on the JEC-FDTD algorithm. Here, we assume that 𝜔𝑝
2  obeys a sinusoidal 

envelope, which is positively proportional to plasma density. A normal expression of 

varying parameter can be written as 

 

𝜔𝑝
2 ∼ 𝐴sin (𝑘𝑧 + 𝜑) + 𝐶 

(48) 

Here, 𝐴, 𝑘, 𝜑, 𝐶  is amplitude, wave number, phase and constant, respectively. 

Plasma parameter 𝜔𝑝
2 varies from 𝑧 = 200 to 𝑧 = 600 with two wavelengths inside 

plasmas correspondingly. 

 

B. Data Collection for Inhomogeneous Case 

In our case, 𝜔𝑝
2 is positively correlated with the sine function and this is the prior 

knowledge we have. Therefore, we can get a normal expression of the changing 

parameter and Equation (26) containing 𝜔𝑝
2 can be taken for example. 
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And 𝜔𝑝
2 is changed along inside plasma which is 𝑧 from 200 to 600. We collected 

20 spatial points from 𝑧 = 240 to 𝑧 = 259 for training and got the whole predicted 

distribution inside the plasma. The reason for choosing in this space is that because 

the prior knowledge shows us that the peak of wave locates here while in more 

normal cases, the sampling area should be spread in the space of media. For this case, 

the simulation needs to be done several times and then select the best result, as time 

limitation, we will try next time. 

 

C. Equation Extraction From Inhomogeneous Parameter 

In our simulation, the exact form and normal expression of inhomogeneous 

parameter are unknown. In general, we assume that unknown inhomogeneous 

coefficients can be expressed as a kind of trigonometric series [36] in the form of 

 

1

2
𝐴0 + ∑(𝐴𝑛sin (𝑛𝑥) + 𝐵𝑛cos (𝑛𝑥))

𝑁

𝑛=1

 

(49) 

in which 𝑛 is the order of the series, 𝐴𝑛 and 𝐵𝑛 are coefficients respectively. 

As not all modes contain the main power of signal, so we choose that 𝑛 = 1,2,3 is 

enough to represent the expression of inhomogeneous parameter tensor in our case. 

Thus, the estimated function of inhomogeneous parameters ℎ
~

(𝑧) is written as   

 

ℎ
~

(𝑧) = 𝐴1sin (𝑘𝑧) + 𝐵1cos (𝑘𝑧) + 𝐴2sin (2𝑘𝑧) +
𝐵2cos (2𝑘𝑧) + 𝐴3sin (3𝑘𝑧) + 𝐵3cos (3𝑘𝑧) + 𝐶

 

(50) 

To solve the expression of ℎ
~

(𝑧), we adopt adaptive moments optimizer (Adam) 

[35] to solve the following sparse regression formula: 
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arg 𝑚𝑖𝑛
𝐒

∑ ∥ ℎ(𝑧) − ℎ
~

(𝑧) ∥2+ 𝜆 ∥ 𝐒 ∥1

𝐒 = [𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3, 𝐶]
 

(51) 

where 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3 are unknown coefficients to discover, respectively and 

𝜆 is the sparse coefficient here in this case is set as 0.0075 . 

20 spatial points are collected from 𝑧 = 240 − 260 for training and then predict 

inhomogeneous coefficient in the whole spatial domain. The identified coefficients of 

𝐒  are 𝐴1 = 0.5036, 𝐵1 = −0.0011 , 𝐴2 = −0.0020, 𝐵2 = 0.0002  and 𝐴3 =

0.0005, 𝐵3 = 0.0018 , respectively. The identified constant number is 𝐶 = 0.9951 

with true value is 1. The dominant term 𝐴1sin (𝑘𝑧) is successfully selected and other 

terms are small enough to be ignored. 

The result is shown in Figure 18. The theoretical value of coefficients in Equations 

(48) are 𝐴 = 0.5, 𝑘 = 𝜋, 𝜑 = 0, 𝐶 = 1 . And the predicted expression function is 

shown as following: 

𝜔𝑝
2 ∼ 0.5sin (3.142𝑧) + 1(True) 

𝜔𝑝
2 ∼ 0.5036sin (3.123𝑧) + 0.9951(Identified) 

(52) 

The result is reliable. 

Figure 18. Inhomogeneous parameter prediction result, the black box shows the 

sampling area, the prediction result is quite good without noise. 
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In Figure 18. it shows the inversion result in comparison with theoretical true 

value by Equation (52). The Sample area is shown by the black box. Although 

sampling only within few spatial grids, the inhomogeneous coefficient can be 

obtained in the sampling regime. Basically, the inversion result agrees well with 

theoretical value after iteration with only 20 spatial and 10 temporal samples. And 

we also deliver the inversion result with a Gaussian white noise of 40𝑑𝑏 for each 

input value respectively. The identified model with noise is given by 

 

𝜔𝑝
2 ∼ 0.5897 sin(3.360𝑧) + 1.082(Identified) 

(53) 

Often our training results will have many redundant terms, that is, other 

candidates also have a weak coefficient. By using Pareto analysis, we can remove 

these distortion terms effectively. 

However, there are still some errors for long distance prediction. There are two 

possible reasons. One source of error comes from the neural network training of 

inhomogeneous parameter tensor. Another source of error comes from process 

during distilling the underlying equation from inhomogeneous parameter tensor. 

Figure 19. Inhomogeneous parameter prediction with 40𝑑𝑏  noise, it shows that 
when noise is added, the prediction result turn to worse than cases without noise. 
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Even though, this method still gives a prediction of trend the inhomogeneous 

parameter. 

 

3.5 Summary and Analysis 

In this chapter, the forward model for simulation is introduced firstly, the key 

algorithm to calculate the forward model to get training set is JEC-FDTD. Then, the 

preprocessing including feature scaling, data collection and network construction 

are introduced. For data collection, the following simulation sections take a universal 

sampling strategy (which is 𝑧 = 200 𝑡𝑜 209, 𝑡 = 500 𝑡𝑜 509 ) for better 

demonstration and comparison. Finally, simulations are done in the environment of 

one-dimensional electromagnetic multi-physics system, the model is simulated and 

verified for many times according to the different media propagation conditions by 

using less time and space observation field samples. The results are as follows: 

First, under the condition of homogeneous medium propagation, the model can 

not only discover the governing equations of the system with 10 time and space 

samples, respectively, but also realize the inversion of the coefficients of the 

equations with higher accuracy. Similarly, under the condition of inhomogeneous 

medium propagation, the model also shows excellent inversion performance. In 

addition, the model is tested for its anti-noise performance under two media 

propagation conditions. 

Second, on the premise that the propagation condition of homogenous medium 

remains unchanged, the inversion performance of the network structure at different 

sampling locations is obtained by changing the sampling locations of time and space 

for several times, and the possible reasons affecting the inversion accuracy of the 

equation are analyzed, so as to improve and optimize the experimental results. Based 

on the experimental results obtained in this part, this thesis also discusses the 

underlying physical causes. 

Thirdly, under the condition of inhomogeneous medium propagation, this thesis 

finds the changing shape of inhomogeneous coefficient by changing the weight scale 

of neural network, aiming at the problem that the equation coefficient varies with the 
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spatial scale. By using the properties of trigonometric series and some prior 

knowledge, the expression of the coefficient of inhomogeneous term is 

approximated, and satisfactory results are obtained. 
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Chapter 4 Conclusion and Discussion 

4.1 Conclusion 

In this thesis, we have presented a data-driven network architecture to discover 

the hidden nonlinear PDE equation set. The architecture extends the idea from the 

PDE-net [29] with sparse regression, which approximates differential operations by 

convolutions with properly constrained filters and approximate the nonlinear 

response by deep neural networks. By using Pareto analysis during training, we 

make the equations found as simple as possible with no redundant terms.  

Through our experiments and attempts, the practical application of CNN method 

in the inversion of EM field equations is preliminarily realized. 1D cases on both 

homogeneous and inhomogeneous problem sets are tested and the results are 

satisfying. To raise the quality of results, we make simulations on different spatial 

and temporal sampling area to explore the best sampling strategies for each 

equation. The results are refined while the analysis is still need to be studied in the 

future. This analysis will be widely different in other physical systems which is based 

on the attribute of system itself. 

To further verify our method, we generate the problem on inhomogeneous cases. 

The structure of neural network is adjusted, the weight of inhomogeneous term is 

extended to certain length which can be equal to the number of spatial sampling 

points. This method works well on inhomogeneous problem when the expression of 

coefficient is unknown.  

This thesis provides a certain contribution and reference for the development of 

data-driven modelling from theory to practice. At the same time, the application of 

this technology in the field of EM field can bring more computing convenience and 

the expansion of practical application scenarios for radar communication 

technology. 

 

4.1.1 Results Summary 
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A. Homogeneous Cases 

We firstly add a coefficient sparse regression module to the system to improve the 

identification accuracy, which is like the role of Pareto analysis. In order to verify the 

network, we applied this network architecture for a set of PDEs equations for an 

electromagnetic wave and plasma interaction system.  

With 10 temporal points and 10 spatial points sampled, the accuracy of each term’s 

parameter reaches higher than 80% for every target equation. And the system is also 

robust for noise with SNR= 65𝑑𝑏 . Results show that our method can discover 

unknown equations with remarkably reduced measurements in a stable manner.  

To further study the sample area’s influence on the inversion accuracy, we design 

more simulations for each equation. By adopting optimized sampling strategy, which 

is to find high time gradient and space gradient area as sample area, we raise the 

inversion accuracy for each equation as following: 

1) 𝜈𝑐: 40.69% → 𝜈𝑐: 14.43% 

2) 𝜀0: 2.50% → 𝜀0: 0.90% 

3) 𝜀0𝜔𝑝
2: 3.85% → 𝜀0𝜔𝑝

2: 0.32% 

4) 𝜇
0
: 4.32% → 𝜇

0
: 2.08% 

5) 𝜔𝑐𝑒: 1.53% → 𝜔𝑐𝑒: 0.22% 

The results show that by adopting more suitable sample area, the inversion 

accuracy will be improved, this gives instruction for future applications that multiple 

sampling strategy is necessary in some way. 

 

B. Inhomogeneous Cases 

For the cases of transaction in inhomogeneous media, this method is verified to 

have the ability for solving the problem well with some prior knowledge. The 

trigonometric series are applied to approximate the true form of expression of 

inhomogeneous parameters and sparse regression is adopted to solve the problem.  
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By collecting 20 spatial points and 10 temporal points the result is quite good 

shown by figure comparing the predicted value with true value. This method can 

provide the expression of inhomogeneous parameter which can further express the 

change of physical coefficient in space. The algorithm is robust to noise with 

SNR=40𝑑𝑏. If totally no prior knowledge in the future, we plan to combine a new 

candidate function dictionary for function discovery.  

 

4.1.3 To Be Improved 

 

A. Anti-noise Performance 

The anti-noise performance of the system still has room for improvement. The 

following ideas can be referred to.  

Firstly, we can improve the sampling position and adopt a variety of sampling 

schemes for training at the same time. It can not only ensure that the correct form of 

the equation is screened out, but also ensure that the accuracy of the equation 

coefficient is high.  

Secondly, we can optimize and upgrade the network model, and use high-precision 

time-difference structure to build the network.  

Thirdly, a nonlinear function can be added in candidate function database to 

improve the fault tolerance of instability. Even though it will introduce a redundant 

term into the form of equation, it is relatively stable and can be neglected when it 

works well for keeping the robustness of the system. 

 

B. No Prior Knowledge for Inhomogeneous Problems 

For inhomogeneous problem, the prior knowledge is that which term is 

inhomogeneous term is unknown for us. In reality problem, the prior knowledge is 

hard to get. The basic solution is to set all weights to the same length with the length 

of spatial sampling, this method must increase the pressure of computation. 

Furthermore, a more complex and complete candidate function database can be set 

for searching the form of expression for inhomogeneous terms. 
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4.2 Future Work 

In the future, we would like to make some progress listed as following. 

 

4.2.1 Arbitrary Inclination Angle and High Order of Differentiation 

 

A. Arbitrary Inclination Angle 

We will consider arbitrary inclination angle θ which means that the space is not 

one dimension at all. To solve this, there is need to add the representation module of 

curl and high order differentiation operators in the neural network, which is also a 

very important research direction. The network and algorithm will be upgrade based 

on new problem setting.  

As has been mentioned in Chapter I, for a 2D case, there are relations as following: 

ℎ00 =
1

4
(

1 1
1 1

) , ℎ10 =
1

4
(

1 −1
1 −1

) , ℎ01 =
1

4
(

1 1
−1 −1

) , ℎ11 =
1

4
(

1 −1
−1 1

) (54) 

 

ℎ00 ⊗ 𝑢 ≈ 𝑢,

ℎ10 ⊗ 𝑢 ≈
1

2
𝛿𝑥

𝜕𝑢

𝜕𝑥
,

ℎ01 ⊗ 𝑢 ≈
1

2
𝛿𝑦

𝜕𝑢

𝜕𝑦
,

ℎ11 ⊗ 𝑢 ≈
1

4
𝛿𝑥𝛿𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
.

                              (55) 

where 𝛿𝑥 and 𝛿𝑦 indicates spatial grid on the two directions.  

So that in 2D problem, the differentiation operators in convolutional layers can be 

expressed as above. However, no matter in 1D or higher dimension problems, there 

may be some high order differentiations like 
𝜕2𝑢

𝜕𝑥𝜕𝑦
, 

𝜕2𝑢

𝜕𝑥2 and so on.  

Thus, more candidate functions should be considered. 
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B. High Order of Differentiation 

To discover terms like 
𝜕2𝑢

𝜕𝑥𝜕𝑦
, 

𝜕2𝑢

𝜕𝑥2 is inevitable in future’s research. We need to take 

more consideration in the assumption for the highest order of spatial differential 

terms of the equation, mainly by increasing the calculation number of spatial 

derivatives to determine how many terms of equations need to be found. The 

network structure is also more complex because more candidate functions need to 

be considered for screening. Thus, the 
𝜕2𝑢

𝜕𝑥2 term in 1D problem can be expressed as 

following 

ℎ1 =
1

2
(−1,2, −1)                                (56) 

ℎ1 ⊗ 𝑢 ≈
1

2
(𝛿𝑥)2

∂2𝑢

∂𝑥2
                              (57) 

For terms like 
∂4𝑢

∂𝑥2 ∂𝑦2 in 2D problem, there is relation as following: 

ℎ22 =
1

16
(

1 −2 1
−2 4 −2
1 −2 1

)                          (58) 

ℎ22 ⊗ 𝑢 ≈
1

16
(𝛿𝑥)2(𝛿𝑦)2

∂4𝑢

∂𝑥2 ∂𝑦2
                      (59) 

where 𝛿𝑥 and 𝛿𝑦 indicates spatial grid on the two directions. 

Therefore, the convolutional kernel can be modified according to the assumption 

of the highest order included by the target equation we made.  

 

4.2.2 Real Data Set 

Also, it is valuable to try the proposed framework on real data set of nonlinear EM 

wave and ionospheric plasma interaction experiments [37][38][39]. In the 

application of practical problems, this topic has a very important application value, 

whether in the case of too few time and space sampling points, or in the case of 

inhomogeneous media, or a variety of mixed physics problems environment. There 

are already some researches on modeling of electromagnetic wave [40], our 

experiment has a certain reference significance.  
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4.2.3 Physical Law Discovery System 

The original intention of data-driven discovery equation is to replace human 

beings with machines to discover the laws of nature. Furthermore, with today's 

increasingly complex data, it is difficult for us to discover the laws of physics through 

manual calculation and searching for rules like physicists in Newton's time, and the 

method of first principle derivation is also difficult to be applied in complex physical 

environment. On the other hand, in the face of some questions have no fixed patterns 

to follow, for example, financial area, climate prediction, they usually contain large 

amount of data, there is no fixed patterns, let alone the governing equations. 

Modeling from data can largely reduce the cost of analyzing these data, can turn the 

need of large amount of calculation into simple and quick work. We believe that in 

the future, we will have an AI physicist [41] who has both rigorous thinking, enduring 

patience and strong memory, making great contributions to human development. 
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