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Studies of movement behaviours have numerous applications. A recent approach
involves studying the time spent on different activity types using compositional
data analysis. In compositional data analysis, several variables are constrained to
an arbitrary sum and the primary interest is their proportions of the whole.

This thesis explores the mathematical foundations of the study of compositional
data and their practical applications. First, mathematical operations are defined
for compositions using Aitchison geometry. Methods are presented for transforming
compositions into real-valued coordinates and back. Various statistical methods are
also defined for compositions and compositional data.

Some of the techniques presented are demonstrated by applying them to a study
of movement behaviours. REACT is a randomized controlled trial study focusing
on whether commercial activity trackers affect movement behaviours among the
recently retired. By using compositional data analysis, the proportions of time
spent on different activity types can be studied. Based on the results, it would
appear that those who used activity trackers spent a slightly higher portion of their
day on physical activity than those who did not.

Keywords: Compositional data analysis, Aitchison geometry, Isometric logratio co-
ordinates, Physical activity, Movement behaviours, REACT.
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1 Introduction

In recent years, activity trackers worn on the wrist have become available on con-
sumer markets. These devices are used to track physical activity throughout the
day, set activity goals and remind users to move regularly. Their main purpose is
to help users maintain regular activity. If such devices prove to be effective, they
can be an affordable method of improving health at a national level. REACT, a
randomized controlled trial study, was funded by the Academy of Finland and the
Finnish Ministry of Education and Culture to study the effect the activity trackers
have on the physical activity of the recently retired (Leskinen et al. 2021). This
study is part of FIREA (Finnish Retirement and Aging), a broader study on the
health effects of retirement and aging.

The study was performed as a controlled trial with two groups. The intervention
group was given an activity tracker, while the control group was not. Their physical
activity was then measured at certain points over the period of a year. For mea-
suring physical activity, each subject was equipped with a separate wrist-mounted
accelerometer, worn for a week.

Historically, different movement behaviours such as physical activity, sedentary
behaviour and sleep have been studied separately from each other. However, these
studies often neglected the fact that increasing one type of activity causes the other
types to decrease, which may have led to flawed results. Later studies have accounted
for this by treating movement behaviours as compositional data, which represent the
different types of activity as proportions of time spent on them daily.

Compositional data constitute a type of multivariate data where the only in-
formation variables carry are their relative proportions of the overall observation.
This means that each variable is constrained by the values of the other variables in
the data. Due to these constraints, common multivariate techniques are unsuitable
for compositional data. Various analysis methods have been developed to take into
account the nature of compositional data. These methods are typically grouped
under the term compositional data analysis (CoDA).

This thesis examines various mathematical and statistical tools that have been
developed for handling compositional data, and applies them to analyse the data
provided by REACT. Our primary interests are determining whether using activity
trackers affects daily movement behaviour, how this change occurs over time, and
how changing the amount of one type of activity affects the others. Chapter 2 in-
troduces Aitchison geometry, the vector space used to represent compositional data,
as well as coordinate representations and transformations used for handling compo-
sitional data. Data preprocessing and visualization are also discussed. Chapter 3
covers statistical methods that can be used to analyse compositional data. Chap-
ter 4 provides an overview of the REACT data used in the analysis, and Chapter 5
covers the analysis itself. Finally, Chapter 6 presents a summary of the findings and
discusses possibilities for further studies and analysis.
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1.1 Compositional data analysis in the literature

Physical activity has a major effect on many aspects of health and life in general, and
as such has been the subject of numerous studies in the past. Many of these either
considered different movement behaviours in isolation or did not properly adjust
their analysis to account for the effects of the other behaviours. (Pedǐsić 2014).
Previous applications of compositional data analysis on the other hand have mainly
focused on subjects such as geology or chemistry, where compositions tend to have
large numbers of parts and can be measured accurately (Buccianti, Mateu-Figueras,
and Pawlowsky-Glahn 2006). In recent years, a growing number of studies have
applied CoDA to movement behaviours, as can be seen in a 2020 review of various
CoDA studies (Janssen et al. 2020).

Compositional data analysis is a relatively recent development in statistics, al-
though its roots date to the late nineteenth century (Pawlowsky-Glahn, Egozcue,
and Tolosana-Delgado 2015, 5-7). Many foundational concepts were developed by
John Aitchison, whose logratio-based approach is still the basis for many concepts.
His major theoretical work, The Statistical Analysis of Compositional Data, was re-
leased in 1986 (Aitchison 1986). Many fundamental concepts are also named after
him, such as the Aitchison geometry discussed in section 2.1. He remained active
in the development of CoDA into the early twenty-first century. (Pawlowsky-Glahn
and Buccianti 2011, 3-9).

The main source for the theoretical sections of this thesis is a textbook on the
subject of compositional data analysis, Modeling and Analysis of Compositional
Data (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015), which provides a
comprehesive coverage of the theory of compositional data analysis, including ad-
vanced subjects that are not covered in this thesis. Additionally, the book Applied
Compositional Data Analysis is used to supplement theoretical sections as well as
provide a foundation for the analysis done in R (Filzmoser, Hron, and Templ 2018).

2 Representing Compositional Data

Compositional data are defined to be observations for which the only relevant infor-
mation is carried in the proportions of the components. That is, one is not interested
in the specific values of the components, but in their proportions of the whole. The
sample space of compositional data is the simplex. A simplex is defined as the col-
lection of vectors whose components sum up to some pre-specified constant. The
choice of the constant κ is essentially arbitrary and is usually determined by the
type of data being analysed.

Definition 1 (Simplex). The D-dimensional simplex SD is defined as

SD =

{︄
x = (x1, x2, . . . , xD)|xi > 0, i = 1, 2, . . . , D;

D∑︂
i=1

xi = κ

}︄
.

Any vector can be mapped onto a simplex by scaling the components by their
sum, and then normalizing the result with a constant. This operation is called a
closure.
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Definition 2 (Closure). Let x = (x1, x2, . . . , xD), xi > 0, i = 1, 2, . . . , D, be a
strictly positive vector. Its closure to κ > 0 is defined as

C(x) =

(︄
κx1∑︁D
i=1 xi

,
κx2∑︁D
i=1 xi

, . . . ,
κxD∑︁D
i=1 xi

)︄
.

The result of the closure is on the simplex, with C(x) ∈ SD.

It can be noted that since the sum of elements is constant for every x ∈ SD, the
closure essentially multiplies the vector by an arbitrary constant, that is C(x) = ax,
where a > 0. With this in mind, we can show that the closure satisfies a property
called scale invariance, a feature that will be relevant later.

Lemma 1. C(x) = C(ax), where a > 0.

Proof.

C(ax) =

(︄
aκx1∑︁D
i=1 axi

,
aκx2∑︁D
i=1 axi

, . . . ,
aκxD∑︁D
i=1 axi

)︄

=

(︄
κx1∑︁D
i=1 xi

,
κx2∑︁D
i=1 xi

, . . . ,
κxD∑︁D
i=1 xi

)︄
= C(x).

Instead of considering a full composition, it is often desireable to inspect only
certain compositional parts. This can be required, for example, because certain
components are not relevant to the analysis, or to simplify analysis and visualization.
A subset of a composition is called a subcomposition. Any subcomposition is also
a composition and can be analysed with the same methods.

Definition 3 (Subcomposition). Let x ∈ SD be a D-dimensional composition, and
let Sub(x) be a function which selects some proper subset of the components from x.
The subcomposition y is defined as the closure of this function,

y = C(Sub(x)).

The subcomposition has a smaller dimension than the original composition, with
y ∈ SK, 1 < K < D. The Sub() function should select same parts on any particular
composition.

There are three principles that should be fulfilled by statistical methods that are
to be used on compositional data. These are called the principles of compositional
analysis. The first principle is that of scale invariance. Since compositional data
carries only relative information, results obtained from statistical methods should
not depend on any scaling factors on the data. In practice, this means that compo-
sitional analysis methods disregard scale and consider only relative sizes.

Definition 4 (Scale invariance). Let x ∈ SD be a D-dimensional composition,
a ∈ R+ a positive real valued constant, and f(·) a function on RD

+ . The function f
is scale invariant if f(x) = f(ax) for every x and a.
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In Lemma 1 we demonstrated that the closure operation is scale invariant. This
means that by Definition 3 all subcompositions are also scale invariant, since simply
selecting a subset of the scaled parts does not change their relative scaling.

The second principle is that of permutation invariance. This means that analysis
does not consider the order of the compositional parts. In general, most methods
fulfill this principle as long as they do not depend on the order the variables are
stored in the dataset. The third principle is that of subcompositional coherence. In
basic terms, conclusions made from subcompositions should not contradict conclu-
sions made from the same components in the full composition. This means that
subcompositions should behave similarly to orthogonal projections in real space. In
practice, this means that scale invariance is preserved in arbitrary subcompositions,
and that the distance between two compositions is equal to or greater than the dis-
tance between their subcompositions. This guarantees that inferences made about
the relations of components in a subcomposition also hold for the full composition.

Definition 5 (Subcompositional coherence). In order for subcompositional coher-
ence to be in effect, two conditions must be fulfilled. First, if ∆p(x,y) is a measure
of distance between two p-dimensional compositions, then

∆D(x,y) ≥ ∆K(xK ,yK)

must apply for all D-part compositions x, y and their K-part subcompositions xK,
yK. Second, scale invariance should be preserved in arbitrary subcompositions,
meaning that the ratios of parts in the subcomposition should be the same as the
corresponding ratios in the original composition.

2.1 Aitchison geometry

Aitchison geometry is named after John Aitchison, who contributed greatly to re-
search of the properties of compositional data. Aitchison geometry defines a vector
space for the simplex by defining several operations for compositions, analogous to
transformation and scaling operations in other geometries.

Definition 6 (Basic operations). The perturbation of compositions x,y ∈ SD is
defined as

x⊕ y = C(x1y1, x2y2, . . . , xDyD),

x⊖ y = C(
x1

y1
,
x2

y2
, . . . ,

xD

yD
).

Additionally, for compositions x1,x2, . . . ,xk ∈ SD,

k⨁︂
i=1

xi = x1 ⊕ x2 ⊕ · · ·⊕ xk.

The powering of a vector x ∈ SD by a constant a ∈ R is defined as

a⊙ x = C(xa
1, x

a
2, . . . , x

a
D).
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With these operations, the simplex SD can be shown to be a vector space. There
are several rules which need to be fulfilled.

Definition 7 (Vector space). A vector space is a set V for which two operations,
vector addition (+) and scalar multiplication (·), are defined. The vector addition is
an operation between two vectors in V , and the scalar multiplication is an operation
between a real number and a vector in V . These operations must fulfill several
requirements.

The vector addition operation must fulfill the following conditions:

1. Closure: For all vectors u,v ∈ V , (u+ v) ∈ V .

2. Commutative law: For all vectors u,v ∈ V , u+ v = v + u.

3. Associative law: For all vectors u,v,w ∈ V , u+ (v +w) = (u+ v) +w.

4. Additive identity: There exists a neutral element n ∈ V for which n + v =
v + n = v for all vectors v ∈ V .

5. Additive inverses: For all vectors v ∈ V there exists a vector v−1 ∈ V for
which v−1 + v = v + v−1 = n.

The scalar multiplication operation must fulfill the following conditions:

1. Closure: For all vectors v ∈ V and scalars c ∈ R, (c · v) ∈ V .

2. Distributive law: For all vectors u,v ∈ V and scalars c ∈ R, c · (u + v) =
c · u+ c · v.

3. Distributive law: For all vectors v ∈ V and scalars c, d ∈ R, (c + d) · v =
c · v + d · v.

4. Associative law: For all vectors v ∈ V and scalars c, d ∈ R, c ·(d ·v) = (cd) ·v.

5. Unitary law: For all vectors v ∈ V , 1 · v = v.

Lemma 2 (Simplex as a vector space). The simplex SD is a vector space. The
perturbation of compositions x,y ∈ SD is the vector addition operator, and the
powering of x by a constant a ∈ R is the scalar multiplication operator.

Proof. We may first note that chaining perturbations and powerings introduces mul-
tiple closures to the equation. Per Defintion 2, we know that C(x) = ax for some
arbitrary constant a > 0, and per Lemma 1 we know that C(ax) = C(x), which
simplifies the proofs somewhat. We will use the constants k, l and m to represent
the effects of inner closures where necessary. We will next verify the conditions of
Definition 7 one-by-one.

1. Per Definition 2, the product of perturbation is on the simplex, x⊕ y ∈ SD.

2. x⊕ y = y⊕ x, since xiyi = yixi.

3. x⊕ (y⊕ z) = (x⊕ y)⊕ z, since C(xi(lyizi)) = C((mxiyi)zi).
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4. The neutral element is n = (a, a, . . . , a) = ( κ
D
, κ
D
, . . . , κ

D
) ∈ SD, the D-part

composition whose elements all have the same value. Since pertubation with
n is equivalent to scaling with a constant, per Lemma 1 we have x ⊕ n =
n⊕ x = x.

5. Since xi
1
xi

= 1, the inverse element of x is the composition x−1 = (1/x1, 1/x2, . . . , 1/xD),

and x⊕ x−1 = x−1 ⊕ x = C(1, 1, . . . , 1) = n.

Since the five conditions are fulfilled, we have shown that perturbation is a vector
addition operation.

1. Per Definition 2, the product of powering is on the simplex, a⊙ x ∈ SD.

2. a⊙ (x⊕ y) = a⊙ x⊕ a⊙ y, since C((kxiyi)
a) = C(lyai mxa

i ).

3. (a+ b)⊙ x = a⊙ x⊕ b⊙ x, since C((kxi)
a+b) = C(lxa

imxb
i).

4. a⊙ (b⊙ x) = (ab)⊙ x, since C((lxb
i)

a) = C(xab
i ).

5. 1⊙ x = x, since x1
i = xi.

Since the five conditions are fulfilled, we have also shown that powering is a
scalar multiplication operation. Since the two operations are defined and fulfill the
conditions, the simplex SD is a vector space.

In addition to the basic operations, various other useful vector operations can
be defined for compositional data.

Definition 8 (Aitchison inner product). The inner product of compositions x,y ∈
SD is defined as

⟨x,y⟩a =
1

2D

D∑︂
i=1

D∑︂
j=1

ln
xi

xj

ln
yi
yj
.

Definition 9 (Aitchison norm). The norm of a composition x ∈ SD is defined as

∥x∥a =

⌜⃓⃓⎷ 1

2D

D∑︂
i=1

D∑︂
j=1

(︃
ln

xi

xj

)︃2

.

Definition 10 (Aitchison distance). The distance between compositions x,y ∈ SD

is defined as

da(x,y) = ∥x⊖ y∥a =

⌜⃓⃓⎷ 1

2D

D∑︂
i=1

D∑︂
j=1

(︃
ln

xi

xj

− ln
yi
yj

)︃2

.
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As an example of the utility of the Aitchison geometry, consider two two-part
compositions: (500, 100) and (1, 5). The two differ quite significantly in their
proportions, which are 5:1 and 1:5, respectively. If we were to sum the two together
as regular vectors, we would get (501, 105), whose ratio is far closer to 5:1 than
1:5. The significance of the second composition disappears almost entirely due to
the scale of the first. This is precisely what we seek to avoid in compositional data
analysis.

If we perturb the compositions instead, our result (without closure) is (500,
500), with a ratio of 1:1. The two compositions, which have inverse proportions,
have canceled each other out. Perturbation has preserved the relevant information
of proportions and ignored scale as irrelevant. This also serves to illustrate that
perturbing serves to shift the proportions of its inputs towards each other.

As another example, the distance between the compositions (1,3) and (2, 6)
is
√︁

(2− 1)2 + (6− 3)2 =
√
10 with Euclidean methods, but 0 with the Aitchison

distance in Definition 10. Since the two have the same ratio of 1:3, the Aitchison
distance fulfills our goal of only considering relative proportions.

2.2 Coordinate representation

While the Aitchison geometry provides a mathematical framework for manipulat-
ing compositional data, common statistical procedures cannot be directly applied
to data on the simplex. Instead, special transformations can be used to express
compositions in real space. Since compositions are constrained to a sum, we can
even reduce the dimensionality of the data without losing any information. Specif-
ically, a D-part composition can be represented with D − 1 real values, which act
as coordinates expressing the composition in real space. As a simple example, the
ratio between two values can be written as a single number, expressing a two-part
composition with a single real-valued coordinate.

The most common type of composition to real space transformation are called
logratio coordinates, which as the name suggests, are based on logarithmic trans-
formations of ratios of the compositional parts. There are several types of logratio
coordinates, including the additive (alr), centered (clr), and isometric (ilr) logratio
transformations.

The alr transformation is a mapping of the simplex SD to the real space RD−1. It
is based on selecting one compositional part against which the others are compared,
leading to the following transformation:

alrj(x) =

(︃
ln

x1

xj

, . . . , ln
xj−1

xj

, ln
xj+1

xj

, . . . , ln
xD

xj

)︃
.

The alr transformation is not isometric, that is, it does not preserve distances, and
produces a non-orthogonal coordinate system. Interpretation is also hindered, since
one component’s information is spread across all coordinates, and the others only
show their relation to the part being compared. Due to these reasons, alr coordinates
are rarely used.

The clr transformation is an isometry from the simplex SD to a subset of real
space RD. Since the result has D dimensions rather than the minimum D − 1
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necessary for representing D-part compositions, the results are called coefficients
rather than coordinates. The coefficients are based on the geometric mean of the
composition,

clr(x) =

(︃
ln

x1

gm(x)
, . . . , ln

xD

gm(x)

)︃
, (1)

where gm(x) =
(︂∏︁D

i=1 xi

)︂1/D
. Despite being isometric there are still problems with

using clr as coordinates. First, we lose the quality of dimension reduction. The
sum of the coordinates is zero, restricting them to a (D− 1)-dimesional hyperplane
on RD. Furthermore, this makes the covariance matrix of the coordinates singular.
Nevertheless, the clr transformation does also have useful properties, such as

clr(a⊙ x1 ⊕ b⊙ x2) = a · clr(x1) + b · clr(x2). (2)

which can easily be verified by recalling Definition 6 and that ln(xayb) = a lnx +
b ln y.

To avoid the problems presented by the alr or clr transformations we have to
build an orthogonal coordinate system, which requires defining an orthonormal basis
for the simplex. Coordinates based on such a basis are called ilr coordinates. We
can build the basis by using the hyperplane defined by the clr coefficients. The ilr
coordinates mapping to such a basis will belong to the (D − 1)-dimensional real
space RD−1, and avoid singularity in their covariance matrix.

The canonical basis of RD is {e1, e2, . . . , eD}, where ei ∈ RD is defined as a
vector of zeros whose ith element is 1. Any vector in RD can be expressed as a
linear combination of these basis vectors, v =

∑︁D
i=1 viei. The values vi ∈ R are

coordinates that express the real-valued vector in terms of the basis. We aim to find
something equivalent for the simplex SD. We cannot use the canonical basis as-is,
since the basis vectors are not on the simplex, which by Definition 1 disallows zeros.
Additionally, due to the sum constraint, the basis of the simplex will have D − 1
coordinates.

We can transform the canonical basis to the simplex by taking the closure of
their element-wise exponential, resulting in the generating system {w1,w2, . . . ,wD},
where

wi = C(exp(ei)) = C(1, 1, . . . , e, . . . , 1).

Recalling Definition 6, we can now write any composition x ∈ SD as x =
⨁︁D

i=1 lnxi⊙
wi. This is a generating system, rather than a basis, which means that the coeffi-
cients xi are not unique. We can obtain an orthonormal basis from the generating
system by omitting one generating composition wi and using the Gram–Schmidt
procedure on the resulting basis (Egozcue et al. 2003). Once a suitable basis has
been obtained, ilr coordinates can be defined straightforwardly.

Definition 11 (Isometric logratio coordinates). Let (e1, e2, . . . , eD−1) be an or-
thonormal basis for the simplex SD and x ∈ SD a composition. The ilr trans-
formation of x is the function ilr(x) = z, z ∈ RD−1, which satisfies the properties

x =
D−1⨁︂
i=1

zi ⊙ ei, zi = ⟨x, ei⟩a.

8



The vector z = (z1, z2, . . . , zD−1) holds the ilr coordinates of the composition.

Transforming ilr coordinates back into compositions can be done via the contrast
matrix of the basis used to define the ilr transformation.

Definition 12 (Contrast matrix). Let e = (e1, e2, . . . , eD−1) be an orthonormal basis
for the simplex SD and let V be a (D − 1) ×D matrix with the rows Vi = clr(ei).
This matrix is called the contrast matrix of the basis, and its rows are called contrasts
or logcontrasts.

V has the properties that VV′ = ID−1, where ID is a D × D identity matrix,
and VV′ = ID − 1

D
1′
D1D, where 1D is a row vector of D ones.

Based on Definitions 11, 12 and equation (2) we can define a relation between
the clr and ilr transforms so that

clr(x) = clr(
D−1⨁︂
i=1

zi ⊙ ei)

=
D−1∑︂
i=1

zi · clr(ei)

= zV.

(3)

Since the clr transform simply scales the original compositional parts and takes their
logarithm, we can now define an inverse transformation for recovering compositions
from their ilr coordinates.

Definition 13 (Inverse ilr transform). Let V be the contrast matrix of an orthonor-
mal basis e for the simplex SD as defined in Definition 12, and let z = ilr(x) be the
ilr coordinates of a composition x ∈ SD obtained with a transform using the basis e.
The inverse ilr transformation is defined as

x = ilr−1(z) = C(exp(zV)).

There are an infinite number of orthonormal bases that can be generated for any
particular simplex SD. As such, the choice of basis should be done according to the
needs of the analysis at hand.

2.2.1 Pivot coordinates

A specific type of ilr coordinates are called pivot coordinates. They are obtained by
choosing a specific basis for the ilr transformation through selecting one part of the
composition to act as a pivot which only appears in one coordinate.

Definition 14 (Pivot coordinates). Let the basis of the ilr transformation be com-
posed of vectors ej, j = 1, . . . , D − 1, defined as

ej =

√︄
D − j

D − j + 1

(︃
0, . . . , 0, 1,− 1

D − j
, . . . ,− 1

D − j

)︃′

,
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with the jth element of the vector being 1. The coordinates produced by this trans-
formation are called pivot coordinates and take the form

zj =

√︄
D − j

D − j + 1
ln

⎛⎝ xj

D−j

√︂∏︁D
k=j+1 xk

⎞⎠ . (4)

From equation (4) it can be seen that the first component, x1, appears only in the
first coordinate z1, which means that all relative information about this component
is contained in the first coordinate. Pivot coordinates are therefore useful when
specifically modeling the influence of a single part in a composition.

2.2.2 Balances

Balances are another specific type of ilr coordinates, which are used to compare
groups of compositional parts. Each coordinate, called a balance, corresponds to
two groups and reflects which of them is proportionally more prevalent in the whole
composition. This is akin to balancing them on a scale, hence the name.

Balances are constructed with a sequential binary partition of the composition.
A sequential binary partition is a method of dividing a vector into several groups of
variables. As the name implies, it is based on repeatedly dividing the parts into two
groups. For a D-dimensional composition, the partitioning will take (D − 1) steps,
resulting in (D − 1) sets of positive and negative component groups. Each of these
pairs of groups will then be used to construct a coordinate.

In the first step, all parts are sorted into two groups, positive (represented by +)
and negative (represented by -). The groups can be freely determined, preferably
so that comparing them is of interest in the analysis. At the subsequent steps the
groups continue to be divided, one group per step. This is continued until further
division is no longer possible. In steps after the first one, the parts that are not
part of the group currently being divided are represented by zeros. The choice of
which groups are positive and which negative is arbitrary, and mainly affects how
the balances are interpreted, with positive groups corresponding to larger values in
the coordinates.

Step x1 x2 x3 x4 x5

1 + + - + -
2 + + 0 - 0
3 + - 0 0 0
4 0 0 + 0 -

Table 1: Example of a binary partitioning of five variables x1-x5. In
the first step, the variables are divided into two groups, positive and
negative. The positive group is further divided in step two, and the
positive group of the second step is divided in step three. The original
negative group is finally divided in step four. At each step, variables
not being partitioned are represented with 0.
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An example of a binary partitioning is provided in Table 1. We have a five-part
composition, and we wish to compare parts x1, x2 and x4 against parts x3 and x5.
To do this, we first assign a sign to each part. We decide to assign the first group
as positive and the second as negative. This choice is largely arbitrary.

Having partitioned all the parts in the first step, we move to partitioning the
positive group. Of these, we decide that comparing x4 to x1 and x2 is the best
choice. We therefore set the first two parts as positive, and x4 as negative. Parts
x3 and x5 are not considered in this step. In step three, we partition x1 as positive
and x2 as negative. As the partitioning progresses, the groups are divided more and
more finely, which makes the choice of partition become more and more arbitrary.
Again, we ignore parts x3-x5.

At the final step, we move back to the original negative group, and set x3 as
positive and x5 as negative. Part x4 was partitioned into a group of one in step two,
meaning there was no further need to divide it. The final partition is composed of
the partitions made at all D−1 steps. Each balance corresponds only to those parts
which are positive or negative at the corresponding step. Furthermore, a balance
does not tell how large a portion the two groups together comprise. If we wanted
to know the proportion of x1 in the whole composition, for example, we would first
have to check balance 1 to find out the relative proportion of x1, x2 and x4; then
look at balance 2 for the proportion of x1 and x2; and finally check the proportion
of x1 relative to x2.

Definition 15 (Balances). Given a D-dimensional composition, a sequential bi-
nary partition can be constructed in D − 1 steps. In the kth step, the components
are divided into a positive group represented by the indices ik = (ik1, . . . , i

k
pk
), and a

negative group represented by the indices jk = (jk1 , . . . , j
k
mk

), as well as some compo-
nents which do not belong in either group. The balance, or coordinate, corresponding
to the kth step is

zk =

√︃
pkmk

pk +mk

ln

(︄
(xik1

xik2
· · · xikpk

)1/pk

(xjk1
xjk2

· · · xjkmk
)1/mk

)︄
.

The balances z1, . . . , zD−1 map to an orthonormal basis in the simplex SD. The
elements of the basis vector ek = (ek1, . . . , e

k
D) corresponding to the balance zk are

calculated as

ekl =

⎧⎪⎪⎨⎪⎪⎩
1
pk

√︂
pkmk

pk+mk
for l ∈ ik,

− 1
mk

√︂
pkmk

pk+mk
for l ∈ jk,

0 otherwise.

The interpretation of balances depends on the groupings made during the binary
partitioning. For the kth coordinate, the sign of the coordinate indicates which of the
two groups in step k is more dominant in the overall composition, with positive values
corresponding to the positive group and vice versa. Values close to zero indicate
that the groups are close in size. The first balance, which contains information from
all the components, is the one most useful for analysis.

11



2.2.3 Data processing

The logratio approach to coordinates comes with a notable drawback: The compo-
sition cannot contain any zeros. This is due to the nature of the logratio: A zero
value will either result in a division by zero or the logarithm of a zero, both unde-
fined. Any zeros in compositions must therefore be removed before any coordinate
transforms are applied, preferably in the preprocessing stage.

Zeros may be introduced to compositional data through various means. These
include variables that may naturally have the value zero (structural zeros), zeros
caused by inaccuracy in the measurement stage (rounded zeros), or zero counts
caused by insufficient sampling (count zeros). Additionally, missing data due to
measurement errors or other reasons can also cause similar issues in the analysis.

There are several ways of handling the problem of zeros. A straightforward
approach would be to use only those observations which do not have zeroes or missing
data. This will lead to a loss of information, however, which is often not desirable.
The alternative is imputing zeros or missing values with some acceptable value. A
simple way of imputing missing values is the k-nearest neighbour method. In this
approach, we select the k observations which have the smallest Aitchison distance
from the observation being imputed, and the median of their corresponding parts
is imputed in place of the missing value. The size of the observations needs to be
adjusted before this is done, since they may differ from each other in magnitude
even though their proportions are similar. More advanced model-based iterative
approaches may also be used (Filzmoser, Hron, and Templ 2018). Imputing rounded
and count zeroes is somewhat more complex, since they deal with a detection limit on
the measuring equipment used. In these cases models based on linear regression may
be used. The R-package robCompositions provides multiple methods for imputing
missing values and zeros, mainly based on iterative regression models (Templ, Hron,
and Filzmoser 2011).

2.3 Visual representation

It is useful to study data visually, but compositions are difficult to plot using ordinary
techniques. In addition, it quickly becomes difficult to represent any data of more
than three dimensions as a two-dimensional image. Since inferences made from
subcompositions can be extended to the full composition, compositions are often
plotted using several plots of three-part subcompositions.

Ternary plots can be used to visualize three-part compositions. They are similar
to two-dimensional scatterplots, except that possible values are restricted to the
simplex in order to represent three variables on two dimensions simultaneously. The
basic ternary plot is an equilateral triangle, with each side acting as a scale for
one of the three compositional parts. Each side has an arrow which indicates a
corner for each part. The closer an observation is to a corner, the higher is the
corresponding part’s proportion of the whole composition. Likewise, observations
close to the center have roughly equal proportions of the three parts. The scales on
each side can be used to assess the proportions visually.

Figure 1 shows an example of a ternary plot. It is configured for compositions
with three parts named x, y and z. Each part has been assigned a corner: x
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Figure 1: Example of a ternary plot, with three three-part compositions
(x, y, z) represented by dots: (1,1,7) (Lower right), (5,4,3) (Center) and
(20, 230, 50). (Top).

at the left, y at the top and z at the right. Each part also pertains to one of
the sides as indicated by the arrows. Three (x, y, z) compositions have also been
plotted on the graph: (1,1,7), (5,4,3) and (20, 230, 50). Composition (1, 1, 7) has
a disproportionately large amount of z, and thus lies close to the right corner. In
comparison, (5,4,3) has a more balanced ratio and sits near the center while (20,
230, 50) sits near y at the top. Despite a great difference in absolute values, (20,
230, 50) and (1, 1, 7) are approximately equally close to their respective corners.
This illustrates the scale invariant nature of compositions.

Using the scales may seem slightly unintuitive at first. The compositional part
that a particular scale belongs to can be determined by the corresponding labeled
arrow. The orientation of the scale’s numbers corresponds to a set of lines on
the plot. Any composition on a particular line has the same proportion of the
corresponding part, which is the value where the line intersects the scale. A good
rule of thumb is that the lines get shorter as one moves up a scale. As an example of
using the scale, we can read the scales to see that (20, 230, 50) is approximately 75%
y (scale on the right, horizontal lines), 5% x (scale on the left, lines run downwards),
and 15% z (scale at the bottom, lines run upwards). It can also be noted that each
scale’s 33% lines meet at exactly the center of the graph.

Based on the Aitchison geometry defined in Section 2.1, various geometric con-
structions can be added on the plot. Among these are straight lines, called compo-
sitional lines.

Definition 16 (Compositional lines). Compositional lines in the simplex SD are

13



defined as

y = x0 ⊕ (α⊙ x),

where x0 is the starting point, x is the leading vector, and α is a real component.
Two compositional lines y1 and y2 are parallel if they have the same leading

vector, that is,

y1 = x1 ⊕ (α1 ⊙ x),

y2 = x2 ⊕ (α2 ⊙ x).

Two compositional lines y1 and y2 are orthogonal if the Aitchison inner product
of their leading vectors is zero, that is, for lines

y1 = x0 ⊕ (α1 ⊙ x1),

y2 = x0 ⊕ (α2 ⊙ x2),

where x0 is their intersection and ⟨x1,x2⟩a = 0.

Using parallel and orthogonal lines, grids can be drawn on ternary plots to aid
in visualising compositional data. Parallel lines on the ternary plot do not appear
parallel visually, which can make interpretation difficult.

In addition to straight lines, circles and ellipses can also be plotted on ternary
plots. These can be used to visualize, for example, confidence intervals. It is often
simpler to parameterise these figures using the coordinate system introduced in
Section 2.2. Figure 2 shows an example of a confidence region on the simplex S3

and real space R2, accompanied by observations and their coordinate transforms.
Both regions are based on normal distributions: a regular multinormal distribution
for the coordinates, and an equivalent normal distribution on the simplex as defined
in Section 3.2 for the compositions. The non-regular shapes of the ternary plot are
clearly visible.

Several operations can be applied to ternary plots to make interpretation easier.
Centering shifts the observations by their mean so that they are centered around
the center of the plot. Scaling shifts them so that unit variance is achieved, and
observations are distributed more evenly along the entire plot. It should be noted
that these operations can significantly transform the plot, in that the scales of the
variables are no longer regularly spaced, and are no longer parallel to the sides of
the triangle.

3 Statistical methods

3.1 Descriptive statistics

In order to analyse compositional data, it is useful to define descriptive statistics
analogous to the mean and variance of regular random variables.
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Figure 2: Example of a level 0.95 confidence region for the center of
normally distributed compositional data, plotted on a ternary plot in
S3 with the compositional observations (left) and a scatterplot in R2

with transformed pivot coordinates (right). The coloring corresponds
to the groupings used later in Section 4.

Definition 17 (Sample centre). The central tendency of a compositional data set
X, which has n observations of D-part compositions Xi ∈ SD, is defined as

cen(X) = ĝ = C[ĝ1, ĝ2, . . . , ĝD],

where ĝj = (
∏︁n

i=1 Xij)
1/n

.

The sample centre corresponds to the equation cen(X) = (1/n) ⊙
⨁︁n

i=1 Xi in
the simplex space, which illustrates that the centre is the compositional equivalent
of the arithmetic mean. The value of the centre will depend on the closure constant,
which can be chosen based on the nature of the data.

Variability in the data set can be described with a variation matrix.

Definition 18 (Variation matrix). The variation matrix of a compositional data set
X, which has n observations of D-part compositions Xi ∈ SD, is defined as

T =

⎡⎢⎢⎢⎣
t11 t12 · · · t1D
t21 t22 · · · t2D
...

...
...

tD1 tD2 · · · tDD

⎤⎥⎥⎥⎦ ,

where tjk, j, k = 1, . . . , D are the sample variances of pairwise logratios between
compositional parts. That is,

tjk =
1

n− 1

n∑︂
i=1

(zijk − z̄jk)
2,

where zijk = ln
Xij

Xik
and z̄jk =

1
n

∑︁n
i=1 z

i
jk.
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The variation matrix can be viewed as a measure of how consistent the proportion
between two parts is over the entire dataset. It can also be seen to explain how
variance is distributed among different logratios.

Definition 19 (Sample total variance). The global dispersion of a compositional
data set X, which has n observations of D-part compositions Xi ∈ SD, can be
measured with its total variance, defined as

totvar(X) =
1

2D

D∑︂
j,k=1

tjk,

where tjk are elements of the variation matrix as defined in Definition 18.

It is usually not sensible to calculate the total variance of non-compositional
datasets, since they often contain variables which are measured in completely dif-
ferent scales, if they are comparable in the first place. However, since compositional
data only carries relative information, all the components are measured on the same
scale, i.e. the proportion of a single composition. This means that total variance
has a natural interpretation as the average variance of a logratio. It can also be
interpreted as the average squared Aitchison distance from the sample centre.

It can be noted that unlike the centre, neither the variation matrix nor the total
variance depend on the closure constant, which is canceled out in the ratio.

3.2 Random compositions

There are two distributions which are commonly used to model random composi-
tions, the normal distribution on the simplex, and the Dirichlet distribution. Of
these, the normal distribution is more commonly used. The Dirichlet distribution
is also popular but has more restrictions. Other existing distributions are generally
modifications of the two distributions mentioned. Only the normal distribution will
be used in this thesis.

The sample space of random compositions is the simplex. Since the simplex
restricts the values of its vectors, some special rules are needed to describe distri-
butions. There are two common approaches. In the conventional approach, the
simplex is considered as a subspace of real space. In the compositional approach,
the simplex is considered as an Euclidean space, for which coordinates are assigned
from probability distributions. This is the approach used in this thesis.

The use of normal distribution on the simplex is based on representing the ran-
dom composition in ilr coordinates, which are assumed to follow a multivariate
normal distribution.

Definition 20 (Normal distribution on the simplex). If X is a random composition
with sample space SD, and the random orthonormal coordinates z = ilr(X) follow
a multivariate normal distribution on RD−1 where z ∼ N(µ,Σ), then X is said to
follow a normal distribution on SD, denoted as X ∼ NS(µ,Σ).

The parameters of the coordinate distribution, µ and Σ, are also taken to be
the parameters of the normal distribution on the simplex. While these parame-
ters depend on the specific transformation used, this does not cause problems for
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estimation or analysis as long as the results are interpreted based on the specific
transformation used. The parameter µ is the mean of the coordinates, and the
center of the random composition X is calculated as

cen[X] = ilr−1(E[ilr(X)]) = ilr−1(µ). (5)

Since the distribution is parameterised with the parameters of the coordinates,
several properties of the normal distribution translate as-is to the normal distribution
on the simplex.

Lemma 3 (Transforming normally distributed compositions). Let X be a normally
distributed random composition X ∈ SD, X ∼ NS(µ,Σ). Performing powering and
pertubation on X with the real-valued constant b ∈ R and the composition a ∈ SD

produces the random composition Y ∈ SD, which is also normally distributed, i.e.

Y = a⊕ (b⊙X) ∼ NS(µY ,ΣY ).

The parameters of Y can be derived from the original parameters, with

µY = ilr(a) + bµ, ΣY = b2Σ.

Lemma 4 (Summation of normally distributed compositions). Let Xk ∈ SD, k =
1, . . . , n, be independently normally distributed compositions, Xk ∼ NS(µk,Σk).
The sum of these compositions is also a normally distributed composition Y ∈ SD,

Y =
n⨁︂

k=1

Xk ∼ NS(µY ,ΣY ),

µY =
n∑︂

k=1

µk, ΣY =
n∑︂

k=1

Σk.

One useful property relating to normal and multinormal distributions is the
central limit theorem, which states that as the number of independent, identically-
distributed random observations increases, their average approaches normality re-
gardless of the true distribution of the samples. It can be shown that this theorem
can also be applied to compositions through the coordinate transformation.

Theorem 1 (Central limit theorem for compositions). Let Xi, i = 1, 2, . . . , n, be
a sequence of independent random compositions that share the same center, that is
cen(Xi) = τ . Furthermore, assume that the random ilr-coordinates zi = ilr(Xi)
share the same covariance matrix, cov(zi) = Σ. Let X̄ be the average of these
compositions on the simplex, X̄ = (1/n) ⊙

⨁︁n
i=1 Xi. The central limit theorem

states that as n → ∞, the distribution of the random composition
√
n ⊙ (X̄ ⊖ τ )

converges to the normal distribution NS(0,Σ).
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3.3 Testing for normality

Testing the normality of compositional data can be based on the singular-value
decomposition (SVD) of the ilr coordinates.

Definition 21 (Singular-value decomposition). Let Z be an n× (D − 1) matrix of
mean-centered ilr coordinates for compositional data. SVD decomposes the matrix
into three parts,

Z = UDW′,

where U is an n × p matrix with orthonormal columns holding the left singular
vectors, D is a p× p diagonal matrix holding the positive singular values, and W is
a (D − 1) × p matrix with orthonormal columns holding the right singular vectors.
The matrix U = ZWD−1 contains normed and uncorrelated ilr coordinates.

If Z is normally distributed, U follows (approximately) a (D−1)-variate standard
multinormal distribution with independent components. Testing Z for normality can
then be performed in two parts. First, the columns of U are tested for marginal
normality with univariate tests. Any standard normality tests can be used. The
second test focuses on the squared norms of the rows of U,

∥ui∥2 =
D−1∑︂
j=1

u2
ij.

Since uij are independent standard normal variables under the assumption of nor-
mality, ∥ui∥2 follows a χ2-distribution with D − 1 degrees of freedom. Standard
distributional tests, such as the Kolmogorov-Smirnov test, can again be used to test
this. If the distributional tests indicate non-conformance, the normality of the data
can be called into question.

3.4 Linear regression

Linear regression using compositions is in many ways similar to regular linear regres-
sion. The aim is to model linear relationships between a variable to be explained, or
response, and one or more explanatory variables, or covariates. In the case of com-
positional regression, we can use the Aitchison geometry and normal distribution on
the simplex to define regression models. The models may feature compositional re-
sponses, compositional covariates, or both. The different cases each require slightly
different approaches. In this thesis we will focus on models with a compositional
response and real-valued covariates. Other types of compositional regression models
are discussed by Filzmoser et al. (Filzmoser, Hron, and Templ 2018, Chapter 10).

3.4.1 Regression with compositional response

Like in the real-valued case, compositional regression is based on treating the re-
sponse variable as a normally distributed random variable. The mean of the response
is assumed to be a linear combination of the covariates. The model can then be par-
titioned into a non-random systematic part and a random error part.
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Definition 22 (Regression model with compositional response). Let x be a normally
distributed composition on the simplex SD, and let t0, · · · , tr ∈ R be real-valued
covariates. The mean of x is assumed to be linearly dependent on the covariates tk.
x can be written as

x = (t0 ⊙ β0)⊕ (t1 ⊙ β1)⊕ . . .⊕ (tr ⊙ βr)⊕ e

=
r⨁︂

j=0

(tj ⊙ βj)⊕ e,

where βj ∈ SD are compositional coefficients and e ∼ NS(0,Σ) is a normally
distributed error term. Typically, t0 is chosen to be 1, which means that β0 serves
as an intercept term. The model is then written as

x = β0 ⊕
r⨁︂

j=1

(tj ⊙ βj)⊕ e. (6)

Categorical covariates can be modeled by choosing one level of the variable as a
reference level and giving the other levels their own coefficients. The corresponding
covariates are dummy variables which have the value 1 if the observation has the
appropriate level of covariate and 0 otherwise.

The model can equivalently be expressed in orthonormal coordinates as

x∗ = β∗
0 +

r∑︂
j=1

tjβ
∗
j + e∗,

where x∗, β∗
j and e∗ are coordinates corresponding to the compositions in equa-

tion (6). To show this, we can recall equation (2), that is,

clr(a⊙ x1 ⊕ b⊙ x2) = a · clr(x1) + b · clr(x2).

Now, based on Definition 12 and equation (3) we can define the relation ilr(x) =
clr(x)V′, and applying an ilr transform to the model equation

ilr(x) = ilr(β0 ⊕
r⨁︂

j=1

(tj ⊙ βj)⊕ e)

= clr(β0 ⊕
r⨁︂

j=1

(tj ⊙ βj)⊕ e) ·V′

=

(︄
clr(β0) +

r∑︂
j=1

clr(βj)tj + clr(e)

)︄
·V′

= ilr(β0) +
r∑︂

j=1

ilr(βj)tj + ilr(e).

This means that the compositional regression model directly corresponds to a mul-
tivariate regression model of orthonormal coordinates.
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The aim of linear regression is to find estimates β̂k for the compositional coeffi-
cients βk which best fit the data available. Based on the estimates, we can calculate
fitted values x̂ = β̂0 ⊕

⨁︁r
j=1(tj ⊙ β̂k), as well as residuals ê = x⊖ x̂. Fitting the

model is typically done by finding values which minimize the sum of the squared
norms of the residuals, called the residual sum of squares (RSS),

RSS =
n∑︂

i=1

∥êi∥2a.

This is known as the least-squares method, corresponding to least-squares regression
in the real-valued case. The actual estimation is performed in the coordinate space,
where most common regression methods can be applied as-is.

Transformed into coordinate space, the RSS becomes

RSS =
n∑︂

i=1

∥ê∗i ∥2 =
n∑︂

i=1

D−1∑︂
j=1

(ê∗ij)
2,

with the Aitchison norms becoming Euclidian norms. The order of sums in the
equation can be reversed, and since the terms are all non-negative, maximizing the
sum can be reduced to maximizing the D − 1 sums

RSSj =
n∑︂

i=1

(ê∗ij)
2,

where RSSj is the sum corresponding to the jth coordinate. These problems can
be estimated independently, which means that the compositional regression model
is solved by fitting D − 1 real regression models, one for each coordinate. For the
jth coordinate, the model to be estimated is

x∗
ij =

r∑︂
k=0

tikβ
∗
kj + e∗ij,

with x∗
ij, β

∗
kj and e∗ij are the jth coordinates of the corresponding coordinate vectors.

Statistics such as the t- and F-statistics are usable as-is with coordinate estimates.
The fitted values and residuals produced by the model do not depend on the

selected coordinate basis, as long as they are transformed back into the simplex space
with the appropriate inverse transformation. However, using established methods
for statistical inference requires using the coordinate values. It is important to
choose interpretable coordinate transformation to make analysis easier.

3.4.2 Within-composition regression

Frequently, in addition to using compositions as a response it may be desirable to
study how the various parts of a composition affect each other. For example, one
might wish to study how increasing spending in food expenses affects spending in
other areas. As with normal regression, coordinate representations are used to study
the compositions in real space. The basic form of within-composition regression
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involves choosing one part as the response variable, and then constructing pivot
coordinates with the response as a pivot. The regression model is then built with
the first coordinate as the response, and the rest as covariates.

Compared to regular regression, using coordinates in this manner is somewhat
tricky. With pivot coordinates, all the relative information about the pivot variable
is contained in the first coordinate. This makes the first coordinate a suitable choice
for the response variable. The remaining coordinates, however, contain overlapping
information about the covariates. This means that one cannot consider several
coordinates as covariates in the same model. If one wishes to analyse the effect of
several parts, a separate regression model can be formed for each covariate. For
each model, the coordinates are formed so that the response part corresponds to
the first coordinate, and the covariate part to the second coordinate. The other
coordinates are also included in the model, since they contain information about
the whole composition, but they are not of primary interest.

Definition 23 (Within-composition regression). Let x = (x1, x2, . . . , xD) be a D-
part composition, x ∈ SD. We can now choose two parts which are of interest,
the response xl and a covariate xk, and define a reordered composition x(lk) =
(x

(lk)
1 , x

(lk)
2 , . . . , x

(lk)
D ) = (xl, xk, . . . , xi, . . . , xD), with i ̸= l, k. The first two parts

of the reordered composition are therefore the two parts of interest, i.e x
(lk)
1 = xl and

x
(lk)
2 = xk . Slightly modifying the notation from Section 2.2.1, we can now define

pivot coordinates based on this composition,

z
(lk)
j =

√︄
D − j

D − j + 1
ln

⎛⎝ x
(lk)
j

D−j

√︂∏︁D
k=j+1 x

(lk)
k

⎞⎠ .

z
(lk)
1 once again contains all relative information about xl, and z

(lk)
2 contains the

relative information of xk compared to all other non-response parts. Now, for each
response-covariate pair we wish to examine, we can define a linear model of the form

z
(lk)
1 = b

(lk)
1 + b

(lk)
2 z

(lk)
2 + · · ·+ b

(lk)
D−1z

(lk)
D−1 + ϵ.

Each model is used to analyse a single explanatory part, meaning that only the inter-
cept b

(lk)
1 and coefficient b

(lk)
2 are used for statistics, p-values and such. Interpreting

the coefficients is again not as straightforward as with regular variables, since they
represent the proportional strengths of each part in the composition. The response
variable is interpreted as the dominance of the part in question, or as its propor-
tion of the entire composition. The explanatory variable is then interpreted as the
proportion of the explanatory part compared to the rest of the non-response parts.

Due to the nature of compositions, the response and the covariates are related in
a manner that violates the assumptions of a normal regression model. Specifically,
the covariates are usually assumed to be errorless, whereas with compositions any
error in the response part is also reflected in the other parts. This problem can be
rectified by using orthogonal regression models, or total least squares regression. In
this case, however, strict distributional assumptions are required to make statistical
inferences. This can be avoided by using resampling methods such as bootstrapping
to estimate the sampling distribution of the statistics without making assumptions
about the distribution of the data.
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4 REACT dataset

The REACT controlled randomized trial is run by the public health division depart-
ment of the Department of Clinical Medicine of the University of Turku (Leskinen
et al. 2021). The REACT dataset comprises activity data for 231 participants,
gathered over a period of twelve months. The participants were chosen on the basis
of their having retired between the years 2016 and 2019. The average age of the
participants was 65, and their ages ranged from 62 to 67 years. The participants
were randomly divided into two groups, a control group and an intervention group.
Participants in the intervention group were given activity trackers to be worn for
one year, while the control group was left to live their life as normal. Activity data
from the participants were gathered 0, 3, 6 and 12 months after they had started
the study. Data were gathered by having each participant wear a wrist-mounted
accelerometer for one week during each measurement point.

The raw acceleration data produced by the measurements are not directly usable
in research. The data were preprocessed using several algorithms to produce mea-
surements of daily activity levels and sleep times for each subject. The data were
also supplemented with diaries kept by the subjects to gain accurate information
about sleeping times. The daily movement behaviour of each participant was then
partitioned into four categories: Sleep, sedentary behaviour, light physical activity
(LPA) and moderate or vigorous physical activity (MVPA).

People typically maintain a certain level of activity for some time, during which
the precise level of movement can vary significantly. This means that the data have
to be divided into periods of activity based on the average amount of movement
during the period. The accelerometer data was processed to find these periods, or
bouts, using the open source R-package GGIR, version 1.7-1 (Migueles et al. 2019).

The daily activity bouts gathered over the week were combined to form an av-
erage representation of daily activity for each subject. The final dataset consisted
of 231 entries, each containing four observations on the amount of minutes spent on
sedentary time, light, moderate and vigorous activity, or sleep over a day. These
observations form a set of compositional data. The dataset contained several zeroes
and missing values which were imputed using methods provided by the R-package
robCompositions, mentioned in Section 2.2.3.

The average duration of each measurement was approximately 1420 minutes,
which is slightly less than 24 hours. The differences in length were caused by differ-
ing sleeping patterns, the time the accelerometer was started or removed, or other
reasons. Measurements also differed somewhat in the number of days that data were
collected. Aside from being averaged out, these considerations do not factor into
compositional data analysis.

Before beginning the actual analysis, it is useful to study the overall composi-
tional nature of the REACT data. Figure 3 shows the data as four ternary plots,
one for each possible three-dimensional subcomposition. The observations are col-
ored based on the measurement time. The graphs show that observations from
all measurement times are grouped closely together, suggesting that there are no
large differences between the different measurement times. The way the data are
distributed on the graphs tells about the relative dominance of each activity type.
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Figure 3: Ternary plots for different combinations of activity types,
showing all subjects, colored by time.

Sleep and sedentariness dominate, with the measurements being concentrated near
their corners on the left-hand graphs. On the right it can be seen that they take
up roughly an equal amount of the entire composition, since the measurements lay
roughly halfway between them. Light activity is more common than moderate-to-
vigorous activity.

Figure 4 shows the same graph configuration as Figure 3. Now, the individual
observations have been replaced with confidence intervals of the centers of the dif-
ferent groups, which are separated between time as well as bracelet use. The top
right plot shows neatly overlapping regions, indicating that sedentariness, sleep or
light activity do not greatly differ due to intervention. On the other plots, however,
we can see that the confidence regions for the intervention group are skewed towards
moderate-to-vigorous activity compared to non-users. This seems to indicate that
activity trackers have the effect of increasing exercise.

5 Analysis

Table 2 shows the compositional means of each measurement, as defined in Defi-
nition 17, for both the control and intervention groups. The closure constant was
chosen to be 1440, which is equal to the number of minutes in a 24-hour day. The
values indicate the same general proportions as the earlier figures, with sleep and
sedentary behaviour making up the bulk of the compositions, with smaller pro-
portions of light and very small proportions of moderate or vigorous activity. On
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Figure 4: The same plots as in Figure 3, with 99%, 90% and 50%
confidence regions based on the assumption of normally distributed
data. Bracelet and non-bracelet subjects are differentiated by linetype.

Table 2: Compositional means of the average measurements over a
week. The closure constant is 1440, representing minutes in a 24-hour
day. The Time-column indicates how many months after starting the
study the measurements took place.

No tracker Tracker

Time Sed. LPA MVPA Sleep Sed. LPA MVPA Sleep

0 674.69 218.68 42.44 504.20 673.50 222.97 50.30 493.23
3 659.10 234.44 44.03 502.44 669.04 231.01 50.62 489.33
6 664.30 234.96 42.62 498.12 656.26 245.76 45.67 492.31
12 684.45 216.30 39.87 499.39 680.28 210.79 46.48 502.45
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Table 3: Compositional variation matrices for different measurements.
Sed.: Sedentariness. LPA: Light Physical Activity. MVPA: Moderate
to Vigorous Physical Activity.

Sed. LPA MVPA Sleep

T0
Sedentariness 0.00 0.14 0.34 0.01
Light Physical Activity 0.14 0.00 0.24 0.14
Moderate to Vigorous Physical Activity 0.34 0.24 0.00 0.36
Sleep 0.01 0.14 0.36 0.00

T3
Sedentariness 0.00 0.17 0.39 0.01
Light Physical Activity 0.17 0.00 0.25 0.17
Moderate to Vigorous Physical Activity 0.39 0.25 0.00 0.40
Sleep 0.01 0.17 0.40 0.00

T6
Sedentariness 0.00 0.13 0.32 0.01
Light Physical Activity 0.13 0.00 0.19 0.12
Moderate to Vigorous Physical Activity 0.32 0.19 0.00 0.33
Sleep 0.01 0.12 0.33 0.00

T12
Sedentariness 0.00 0.18 0.39 0.01
Light Physical Activity 0.18 0.00 0.26 0.18
Moderate to Vigorous Physical Activity 0.39 0.26 0.00 0.41
Sleep 0.01 0.18 0.41 0.00

average, the participants spent around 11 hours per day sedentary, around 8 hours
sleeping, around 4 hours on light activity and less than an hour on more demanding
activity. While no major patterns are apparent, after 12 months of follow-up in both
groups of subjects, sedentariness appears to have increased and LPA decreased for
both groups of subjects, and the intervention group again appears to generally have
a higher proportion of MVPA than the control group.

Table 3 shows the compositional variation matrices for different measurement
times. Again, the change over time seems negligible. As seen in Definition 18, the
variation matrix is based on the variances of logratios instead of the more common
definitions of covariance. MVPA tends to have the highest covariances, which sug-
gests that it varies the most among the different activities. This is consistent with
the confidence regions seen in Figure 4.

5.1 Regression with a compositional response

Since the REACT study was designed as an intervention study, it is appropriate
to begin the analysis with a model that contains only the intervention variable.
This will allow us to study the overall effect of the intervention. As described in
Section 3.4, we will be fitting models using different coordinate transformations
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Table 4: Estimated regression models for coordinates from a pivot
transform with moderate-to-heavy physical activity as the pivot vari-
able. The only explanatory variable is the intervention. Coordinate z1
contains moderate-to-heavy activity contrasted against light activity,
sleep and sedentariness. Coordinate z2 contains light activity, sleep
and sedentariness, and coordinate z3 contains light activity and sleep.

Coordinate Term Estimate Std. Error t-statistic p-value

(Intercept) -2.00 0.03 -70.50 0.00
z1

Intervention : Yes 0.12 0.04 2.93 0.00

(Intercept) 0.56 0.01 43.42 0.00
z2

Intervention : Yes 0.00 0.02 0.11 0.91

(Intercept) -0.56 0.01 -41.96 0.00
z3

Intervention : Yes 0.01 0.02 0.72 0.47

of the compositional data. The model for the transformed coordinates of a single
observation is

z = β0 + β1xint + ϵ,

where z is a vector of transformed coordinates, xint is the categorical variable rep-
resenting intervention, and ϵ is a normally distributed error term.

The choice of the coordinate transformation should be determined by the goals
of the analysis. In this case, we are only interested in the effect of the intervention.
We can refer to Figure 4, noting that MVPA is the only compositional part whose
proportion seems to visibly differ based on the intervention. Therefore, we will start
by fitting a model for pivot coordinates obtained by selecting MVPA as the pivot
variable.

Table 4 shows the models fitted for each coordinate of the pivot transformation.
As expected, the intervention has a significant effect on the first coordinate. As
described in Section 2.2.1, the first pivot coordinate contains all the relative infor-
mation of the part used as the pivot, and as such reflects the part’s proportion of the
whole composition. This indicates that there is a difference between the proportions
of MVPA between the control and intervention groups.

In addition to the intervention, there are several explanatory variables available,
such as age and sex. To begin, we can study how these variables affect the compo-
sition of activities by generating four sets of pivot coordinates, one for each part of
the composition. Each set of coordinates has a different compositional part as the
pivot. By fitting a separate regression model for the first coordinate of each coor-
dinate transform, we can determine which explanatory variables affect which parts.
Since the models are based on different transformations, they cannot be directly
compared with each other, but they may be informative on how the explanatory
variables affect the composition of daily activities.
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Table 5: Separate regression models for the first coordinate of four
different sets of pivot coordinates.

Compositional part Term Estimate Std. Error t-statistic p-value

(Intercept) 1.25 0.04 29.24 0.00
Intervention : Yes -0.04 0.03 -1.44 0.15
Measurement time: 3 -0.03 0.04 -0.88 0.38
Measurement time: 6 -0.03 0.04 -0.73 0.47
Measurement time: 12 0.04 0.04 1.06 0.29
Sex: Female -0.10 0.03 -3.04 0.00

Sedentariness

Age: Over 65 0.07 0.03 2.54 0.01

(Intercept) -0.22 0.03 -6.99 0.00
Intervention : Yes -0.03 0.02 -1.31 0.19
Measurement time: 3 0.05 0.03 1.64 0.10
Measurement time: 6 0.09 0.03 3.42 0.00
Measurement time: 12 -0.01 0.03 -0.48 0.63
Sex: Female 0.13 0.03 4.94 0.00

Light physical activity

Age: Over 65 0.04 0.02 2.14 0.03

(Intercept) -1.88 0.06 -28.97 0.00
Intervention : Yes 0.11 0.04 2.87 0.00
Measurement time: 3 0.01 0.06 0.17 0.87
Measurement time: 6 -0.06 0.06 -0.99 0.32
Measurement time: 12 -0.06 0.06 -1.00 0.32
Sex: Female -0.03 0.05 -0.63 0.53

Moderate physical activity

Age: Over 65 -0.11 0.04 -2.62 0.01

(Intercept) 0.85 0.03 27.54 0.00
Intervention : Yes -0.05 0.02 -2.68 0.01
Measurement time: 3 -0.02 0.03 -0.81 0.42
Measurement time: 6 -0.01 0.03 -0.42 0.68
Measurement time: 12 0.03 0.03 1.12 0.26
Sex: Female 0.01 0.03 0.45 0.65

Sleep

Age: Over 65 0.00 0.02 -0.19 0.85
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The initial model for the first coordinate of each transformation is

z1 = β0 + β1xint + β2xsex + β3xtime + β4xage + ϵ,

where the explanatory variables xi are all categorical, and ϵ is a normally distributed
error term. Table 5 shows the results of the four regression models fitted on the first
coordinates of the pivot transformations. Each model gives a general impression
of how the compositional part in question is affected by the specific explanatory
variables. Disregarding the intercepts, we can first note that the intervention, i.e. the
presence of an activity tracker, has a positive effect on moderate to vigorous physical
activity, and a negative effect on other types of activities. This indicates that the
intervention group is more inclined towards moderate and heavy activity than the
control group, at the expense of other activity types. The effects of intervention on
MVPA and sleep are also statistically significant based on the F-test, with p < 0.05.

The time since starting the study, measured in months, does not appear to have
an effect on most activities. The exception is light activity, where there seems to be
a significant increase compared to the beginning at the six month mark. Sex has a
significant effect on sedentariness and light activity, with women being more active.
Age significantly affects all parts but sleep, with those over 65 showing less moderate
activity and more lighter activity and sedentariness. Based on these preliminary
findings it would seem appropriate to include all variables, aside from time, as the
analysis continues. We will still include time for the sake of completeness, as well
as the possibility that it has interesting interactions with the other variables.

Next, we will fit a model based on balances, as defined in Section 2.2.2. In this
case, since we are interested in changes in activity, the first binary partition can be
based on contrasting light and moderate-to-heavy activity with sleep and sedentary
behaviour. The partitions corresponding to the balance coordinates are depicted
in Table 6. Coordinate 1 contrasts sleep and sedentary behaviour with physical
activity, and the second and third coordinates contrast the members of these two
pairs with each other. As with the pivot coordinates, a model is fitted for each
coordinate separately.

Coordinate Sed. LPA MVPA Sleep
1 - + + -
2 0 + - 0
3 + 0 0 -

Table 6: Binary partitioning for the REACT dataset. Partition 1:
Physical activity vs. Sleep and Sedentary behaviour. Partition 2: LPA
vs. MVPA. Partition 3: Sedentary behaviour vs. Sleep.

The model again uses all explanatory variables, that is

z = β0 + β1xint + β2xsex + β3xtime + β4xage + ϵ,

where the explanatory variables are categorical and ϵ is a multinormal error term.
The estimation results can be seen in Table 7.
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Table 7: Regression models for three balance coordinates. z1: Physi-
cal activity against sedentariness and sleep. z2: Light physical activ-
ity against moderate and vigorous activity. z3: Sedentary behaviour
against sleep.

Coordinate Term Estimate Std. Error t-statistic p-value

(Intercept) -1.82 0.06 -30.38 0.00
Intervention : Yes 0.08 0.04 2.09 0.04
Measurement time: 3 0.05 0.05 0.91 0.36
Measurement time: 6 0.03 0.05 0.63 0.53
Measurement time: 12 -0.06 0.05 -1.16 0.25
Sex: Female 0.08 0.05 1.67 0.09

z1

Age: Over 65 -0.06 0.04 -1.48 0.14

(Intercept) 1.02 0.05 22.08 0.00
Intervention : Yes -0.09 0.03 -3.03 0.00
Measurement time: 3 0.02 0.04 0.55 0.59
Measurement time: 6 0.09 0.04 2.30 0.02
Measurement time: 12 0.03 0.04 0.66 0.51
Sex: Female 0.10 0.04 2.62 0.01

z2

Age: Over 65 0.09 0.03 3.17 0.00

(Intercept) 0.24 0.02 14.13 0.00
Intervention : Yes 0.01 0.01 0.78 0.44
Measurement time: 3 -0.01 0.01 -0.44 0.66
Measurement time: 6 -0.01 0.01 -0.65 0.52
Measurement time: 12 0.01 0.01 0.37 0.71
Sex: Female -0.07 0.01 -5.15 0.00

z3

Age: Over 65 0.04 0.01 4.09 0.00
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Table 8: Statistical significance of different terms in three separate
regression models for balance coordinates. z1: Physical activity against
sedentariness and sleep. z2: Light physical activity against moderate
and vigorous activity. z3: Sedentary behaviour against sleep.

Coordinates

Term z1 z2 z3

(Intercept) 0.00 0.00 0.00
Intervention: Yes 0.00 0.69 0.36
Age: Over 65 0.72 0.06 0.91
Measurement time: 3 0.29 0.23 0.39
Measurement time: 6 0.39 0.17 0.27
Measurement time: 12 0.87 0.42 0.90
Sex: Female 0.85 0.00 0.04
Intervention : Age 0.00 0.80 0.03
Intervention : Time 3 0.69 0.95 0.60
Intervention : Time 6 0.70 0.28 0.66
Intervention : Time 12 0.67 0.79 0.46
Intervention : Sex 0.23 0.38 0.50
Age : Sex 0.05 0.07 0.43
Age : Time 3 0.19 0.47 0.44
Age : Time 6 0.08 0.73 0.09
Age : Time 12 0.11 0.37 0.05
Sex : Time 3 0.99 0.10 0.83
Sex : Time 6 0.72 0.16 0.70
Sex : Time 12 0.44 0.27 0.46

Based on the balance-based regression models, it can again be seen that the
intervention has a statistically significant effect on activity. Those with activity
trackers spent on average more time on physical activitities than the control group,
and additionally had a larger percentage of their physical activity be moderate or
vigorous. This agrees with the earlier models and visual examinations. Out of
the other explanatory variables, being female seems to increase the proportion of
physical activity comparered to sedentary behaviour, the proportion of light activity
compared to heavier activity, and the proportion of sleep compared to sedentariness.
Being over 65 on the other hand indicates an increased proportion of sedentary
behaviour compared to physical activity, increased proportion of light activity over
heavier activities, and an increased proportion of sedentariness compared to sleep. It
should be noted that since the dataset only includes subjects approximately between
60 and 70 years of age, the results do not necessarily translate directly to subjects
younger or older than those.

With several categorical variables, it is possible that there are multiple interac-
tion terms that could improve our models. Table 8 shows the p-values for the terms
in models that have been saturated with every possible two-way interaction. The
coordinates are the same balance coordinates as in the previous model. A few of
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Table 9: Fitted regression models for three balance coordinates with
interaction terms. z1: Physical activity against sedentariness and sleep.
z2: Light physical activity against moderate and vigorous activity. z3:
Sedentary behaviour against sleep.

Coordinate Term Estimate Std. Error t-statistic p-value

(Intercept) -1.82 0.07 -27.15 0.00
Intervention: Yes 0.23 0.06 3.95 0.00
Age: Over 65 -0.09 0.10 -0.95 0.34
Sex: Female -0.01 0.07 -0.08 0.94
Intervention : Age -0.26 0.07 -3.51 0.00

z1

Age : Sex 0.20 0.10 2.10 0.04

(Intercept) 1.00 0.05 19.13 0.00
Intervention: Yes -0.07 0.04 -1.60 0.11
Age: Over 65 0.21 0.07 2.79 0.01
Sex: Female 0.16 0.05 3.09 0.00
Intervention : Age -0.02 0.06 -0.36 0.72

z2

Age : Sex -0.13 0.07 -1.71 0.09

(Intercept) 0.25 0.02 12.79 0.00
Intervention: Yes -0.02 0.02 -1.26 0.21
Age: Over 65 0.04 0.03 1.43 0.15
Sex: Female -0.06 0.02 -3.21 0.00
Intervention : Age 0.05 0.02 2.35 0.02

z3

Age : Sex -0.02 0.03 -0.88 0.38

the interactions appear significant, namely those between the intervention and age,
and age and sex. None of the interactions with time are especially significant, which
justifies leaving them out of further analyses.

Leaving in only the signicant terms of the saturated model, as well as age and
sex, the model we are left with is

z = β0 + β1xint + β2xsex + β3xage + β4xintxage + β5xsexxage + ϵ.

The results can be seen in Table 9. Intervention and its interaction with age sig-
nificantly affect the first coordinate, but in opposite directions. While those with
a tracker are more inclined toward exercise, being older than 65 cancels this out
completely. The interaction between age and sex also positively affects the first
coordinate, meaning older women are more likely to exercise.

Age by itself is only significant with regard to the second coordinate, with older
people being more inclined towards lighter activity. Sex on the other hand is sig-
inificant to both the secondary coordinates, indicating that women prefer lighter
activity and sleep more compared to men.

The normality of the data can be tested with various standard distributional
tests. We can begin with some visual inspections, using the same balance coordi-
nates as earlier. Figures 5 and 6 show histograms and normal Q-Q plots for the
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Figure 5: Histograms for balance coordinates. z1: Physical activity
against sedentariness and sleep. z2: Light physical activity against
moderate and vigorous activity. z3: Sedentary behaviour against sleep.
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Figure 6: Normal Q-Q-plots for balance coordinates. z1: Physical
activity against sedentariness and sleep. z2: Light physical activ-
ity against moderate and vigorous activity. z3: Sedentary behaviour
against sleep.

balances. The histograms seem to indicate normal distributions, although the first
two coordinates seem to have elongated tails. This is also reflected in the quantile
plots, which show the first and second coordinates dipping quite far away from the
theoretical line. This could indicate that the data are not normally distributed.

We can also perform a battery of formal Anderson-Darling normality tests for
ilr-transformed coordinates. After transforming, univariate normality tests are per-
formed for each individual coordinate, and multivariate tests are performed for com-
binations of the coordinates. A robust method for performing these tests is provided
by the R-package robCompositions (Templ, Hron, and Filzmoser 2011). Other ways
of testing normality are discussed in Section 3.3.

Based on the tests, it seems that the normality of the data can’t be assumed.
Each test has an extremely low p-value (p < 0.01) , which means that the null
hypothesis of normally distributed data must be rejected. The results agree with
different tests or different coordinate transformations, such as the Shapiro-Wilk test
performed on balances.

While failing the normality tests may indicate that approaches such as linear
models are not appropriate, we can still justify them with asymptotic arguments.
As stated in Theorem 1, asymptotic normality holds for the averages of random
compositions at sufficiently large sample sizes, implying that the inferences based
on the previous models can be seen to be at least approximately valid.
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Table 10: Point estimates for the balance coordinates of different
groups. z1: Physical activity against sedentariness and sleep. z2: Light
physical activity against moderate and vigorous activity. z3: Sedentary
behaviour against sleep.

Control Intervention

Sex Age z1 z2 z3 z1 z2 z3

Under 65 -1.82 1.00 0.25 -1.60 1.00 0.25
Male

Over 65 -1.92 1.20 0.29 -1.95 1.18 0.34

Under 65 -1.83 1.16 0.18 -1.60 1.16 0.18
Female

Over 65 -1.72 1.23 0.20 -1.75 1.21 0.25

Since the final model uses only categorical variables, we can combine the esti-
mated coefficients to form estimates for each combination of categories. These are
presented in Table 10. Level 0.95 confidence intervals for the estimates are presented
in Table 11. The same general conclusions as before can be drawn. The table espe-
cially makes it easy to see that the intervention positively affects the ratio of physical
activity and sedentariness, but only among those who are under 65. In the control
group, younger men are more inclined to physical activity than older men, but the
reverse is true for women. In the intervention group, both sexes are more inclined
to physical activity when under 65. Men are more inclined to heavier activity than
women, and as both get older, the proportion of light activity compared to heavier
activity increases.

As noted in Definition 13, it is simple to transform a set of ilr coordinates back
into compositional form. Since we have estimated the sets of coordinates for the
different groups, we can also transform these into estimated average compositions.
These are found in Table 12. The compositions have again been closed to 1440 min-
utes, or 24 hours. The compositions yield largely the same conclusions as obtained
from Table 10, but in a quantitative form. For example, for participants under 65
the activity tracker seems to be connected to a roughly 40 minute increase in light
activity over the course of the day.

5.2 Within-composition regression

In addition to the background variables, we can study how the different activity
types affect each other by using within-composition regression. For instance, we
may choose to study how the time spent while sedentary is affected by the time
spent on other activities. For this, we can form three models, one for each activity
type to be used as an explanatory variable. Pivot coordinates are formed for each
model so that sedentariness is the pivot variable and the covariate being studied is
the second variable. Each model has the form

z1 = β1 + β2z2 + β3z3 + ϵ,

where z1 is the first pivot coordinate, z2 is the second coordinate, which contains
the covariate being studied, and z3 is the third coordinate, containing the rest of
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Table 11: Level 0.95 confidence intervals for the point estimates of
balance coordinates for different groups. z1: Physical activity against
sedentariness and sleep. z2: Light physical activity against moderate
and vigorous activity. z3: Sedentary behaviour against sleep.

z1 z2 z3

Sex Age 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

Control
Under 65 -1.96 -1.69 0.89 1.10 0.21 0.28

Male
Over 65 -2.23 -1.60 0.95 1.45 0.19 0.38

Under 65 -2.09 -1.57 0.95 1.36 0.11 0.26
Female

Over 65 -2.36 -1.08 0.74 1.73 0.02 0.38

Intervention
Under 65 -1.84 -1.36 0.89 1.10 0.21 0.28

Male
Over 65 -2.53 -1.37 0.82 1.54 0.20 0.47

Under 65 -1.98 -1.23 0.95 1.36 0.11 0.26
Female

Over 65 -2.65 -0.86 0.60 1.82 0.02 0.47

Table 12: Estimated average compositions for movement behaviours
during 24 hours, obtained from balance coordinates via an inverse trans-
form. The closure constant is set to 1440 (minutes). Sed.: Sedentari-
ness. LPA: Light Physical Activity. MVPA: Moderate to Vigorous
Physical Activity.

Control Intervention

Sex Age Sed. LPA MVPA Sleep Sed. LPA MVPA Sleep

Under 65 703.52 192.69 47.15 496.65 675.06 231.69 56.69 476.56
Male

Over 65 719.57 202.66 37.04 480.73 746.38 192.81 36.31 464.51

Under 65 669.47 213.28 41.62 515.63 640.76 255.80 49.92 493.52
Female

Over 65 656.84 244.89 42.77 495.51 683.68 233.80 42.06 480.46
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Table 13: Fitted models for within-composition regression. Each model
has been formed by creating a pivot transform with sedentariness as the
pivot variable. The models were then manipulated so that the second
coordinate contains all relative information about the explanatory part
being studied, and the coordinates were used as explanatory variables
for the model.

Explanatory part Term Estimate Std. Error t-statistic p-value

(Intercept) 0.10 0.02 4.81 0.0
z2 -0.44 0.02 -18.45 0.0Light physical activity
z3 -0.72 0.01 -54.39 0.0

(Intercept) 0.10 0.02 4.81 0.0
z2 -0.40 0.01 -31.44 0.0Moderate-to-Vigorous physical activity
z3 -0.74 0.02 -30.85 0.0

(Intercept) 0.10 0.02 4.81 0.0
z2 0.84 0.02 43.23 0.0Sleep
z3 -0.02 0.02 -1.04 0.3

the relative information.
The summaries of the fitted models are shown in Table 13. As explained in

Section 3.4.2, only the z2 parameter should be considered meaningful. It can be
seen that sleep has a positive coefficient, whereas the two physical activity classes
have negative ones. This means that as the proportion of sleep among the three
explanatory parts increases, the proportion of sedentariness compared to the other
three types also increases. On the other hand, increasing the amount of physical
activity leads to the proportion of sedentariness decreasing. Sleep seems to have the
strongest effect, and MVPA the weakest. The results seem to indicate that replacing
sleep with physical activity leads to a decreasing amount of sedentariness.

6 Discussion

Based on just the activity data, it seems that using an activity bracelet does indeed
have a positive effect on physical activity. This is not particularly surprising, given
that this is what the bracelets were designed for. Other factors such as sex and age
also had some effect, which may indicate starting points for further research. Since
the participants of the study were relatively aged, it might be worthwile extending
the study to younger people.

Compositional models seem to fit analysis of movement behaviours quite well. It
might also be worth considering what other areas of public health could benefit from
compositional analysis. Aspects of daily life such as food consumption could easily
be adapted into compositional form, and it is easy to imagine that analysing them
could lead to interesting results. On the other hand, as technology for measuring
things such as brain patterns or body functions continue to advance, compositional
analysis might become relevant in analysing the data produced.

The models used to analyse the data were basic linear models. Due to the ques-
tionably normality of the data, it might be worthwile to analyse them with more
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advanced models that could additionally take into account possible unusual fea-
tures. For example, individuals may differ in how they retain the increased activity
level after receiving a bracelet. Furthermore, in the models used the time points
were treated as independent. In reality, each individual’s measurements were prob-
ably heavily dependent on their first measurement. Taking this type of dependency
into account requires using techniques such as random effect models. Since random
compositions are largely based around the regular normal distribution, there are no
major theoretical obstacles to applying longitudinal analysis techniques to composi-
tional data, and mixed-effect models have been used successfully in the past (Wang,
Wang, and Wang 2019).

While this thesis covers most of the basic theory necessary for analysing compo-
sitional data, many interesting applications were left out due to space constraints
or for falling outside the scope of the analysis. These include topics such as compo-
sitional cluster analysis, compositional correlation analysis, compositional processes
and so on. The field is also constantly undergoing new developments, so it is worth-
wile to keep up-to-date on the latest research.

Appendix A R packages used in the thesis

Package Version Reference
haven 2.3.1 Wickham and Miller 2020
dplyr 1.0.2 Wickham et al. 2020
robCompositions 2.3.0 Templ, Hron, and Filzmoser 2011
compositions 2.0-0 van den Boogaart, Tolosana-Delgado, and Bren 2020
ggplot2 3.3.3 Wickham 2016
ggtern 3.3.0 Hamilton and Ferry 2018
knitr 1.30 Xie 2020
kableExtra 1.3.1 Zhu 2020

Table A1: A list of R packages used for handling, analysing and visu-
alising the data.

References

Aitchison, John. 1986. The Statistical Analysis Of Compositional Data. Chapman
& Hall.
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