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Abstract

Purpose — The purpose of this paper is to compare different models’ performance in modelling and
forecasting the Finnish house price returns and volatility.

Design/methodology/approach — The competing models are the autoregressive moving average
(ARMA) model and autoregressive fractional integrated moving average (ARFIMA) model for house price
returns. For house price volatility, the exponential generalized autoregressive conditional heteroscedasticity
(EGARCH) model is competing with the fractional integrated GARCH (FIGARCH) and component GARCH
(CGARCH) models.

Findings — Results reveal that, for modelling Finnish house price returns, the data set under study drives
the performance of ARMA or ARFIMA model. The EGARCH model stands as the leading model for Finnish
house price volatility modelling. The long memory models (ARFIMA, CGARCH and FIGARCH) provide
superior out-of-sample forecasts for house price returns and volatility; they outperform their short memory
counterparts in most regions. Additionally, the models’ in-sample fit performances vary from region to region,
while in some areas, the models manifest a geographical pattern in their out-of-sample forecasting
performances.

Research limitations/implications — The research results have vital implications, namely, portfolio
allocation, investment risk assessment and decision-making.

Originality/value — To the best of the author’s knowledge, for Finland, there has yet to be empirical
forecasting of either house price returns or/and volatility. Therefore, this study aims to bridge that gap by
comparing different models’ performance in modelling, as well as forecasting the house price returns and
volatility of the studied market.
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1. Introduction
Forecasting house price returns and volatility is vital for numerous sectors such as consumers,
policymakers, investors and risk managers. The reasons being, firstly, the housing assets’ dual
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role of investment and consumption; thus, accurate forecasting of house price dynamics plays a
crucial role in asset allocation and investment decision-making. Secondly, housing is a substantial
component of the country’s economy. Notably, in Finland, over half of the households’ total
wealth (50.3%) is in the form of housing (Statistics Finland, 2016). In the USA, housing is the
largest component of household wealth; it represented, respectively, 28.3 and 24.6% of the total
households’ net worth and households’ asset (Financial Accounts Data, 2018). In the UK, Savills
(2019) estimated the housing stock total value to £7.29tn, highlighting an essential part that
housing and its market have in the sustainability of the economy. Thirdly, housing affects the
country’s economy by influencing many parties involved in housing and mortgage activities.
Therefore, accurate house price forecasting would benefit consumers and mortgage parties
(Segnon et al, 2020). Last, insights into house price dynamics provide recommendations to the
housing policymakers and they are the fundamental inputs in outlining housing plans and
policies, as stressed by Zhou and Haurin (2010).

Having noted the importance of the housing market, house price analysis of individual
markets has been the subject of an increasing amount of studies. However, the focus has
been on a restricted number of countries, namely, the USA, UK, Canada and Australia
(Apergis and Payne, 2020). For Finland, even though over half of the households’ total
wealth is in the form of housing, as reported by Statistics Finland (2016), there has yet to be
empirical forecasting of either house price returns or/and volatility. Therefore, this study
aims to bridge that gap by comparing different models’ performance in modelling as well as
forecasting the house price returns and volatility. Thereby providing the information on the
accurate model for modelling and forecasting the Finnish housing market, moreover
extending the ongoing literature on the analysis of the housing market of various countries.

The purpose of the study is to find the most suitable and accurate model for Finnish
house price returns and volatility modelling and forecasting. The number of rooms is used
to categorise the studied dwellings, that is, one-room, two-rooms and larger (over three
rooms) apartments. The 15 studied regions are distributed into 45 cities and sub-areas
following their Zone Improvement Plan (ZIP)-code or postcode numbers. The competing
models are the autoregressive moving average (ARMA) model and autoregressive fractional
integrated moving average (ARFIMA) model for house price returns. The exponential
GARCH (EGARCH) model, the fractionally integrated GARCH (FIGARCH) model and the
component GARCH (CGARCH) model for house price volatility. The models’ choice derives
from Dufitinema and Pynnoénen’s (2020) and Dufitinema’s (2020) studies outcomes. After
testing for ARCH effects, the former article found grounds of long-range dependence in the
house price returns and volatility for a greater number of the Finnish cities and sub-areas.
The latter article used the EGARCH model and found that shocks” asymmetric impact on
housing volatility was recorded in nearly all the Finnish cities and sub-markets. Therefore,
to develop time-series models suitable for this housing market forecasting exercise, for cities
and sub-areas with no ARCH effects, the short memory ARMA model's forecasting
performances and long memory ARFIMA model are compared. For cities and sub-areas
with substantial clustering effects, a short memory GARCH model, in this case, the
EGARCH model’s forecasting performance is weighed up to the GARCH models, which
accommodate the long memory in the conditional variance; those are FIGARCH and
CGARCH models. To assess the models’ out-of-sample forecasting performances, the data is
split into training and test sets. The former set is used to estimate the model and build
predictions; the latter is used to evaluate the model produced forecasts. Results reveal that
the house price return understudy drives the models’ performance for the in-sample fit
examination. While the EGARCH model is the best-ranked model for house price volatility
modelling. The long memory models outclass their short memory peers in the out-of-sample



forecasting for house price returns and volatility. Additionally, the models’ in-sample fit Comparison of
performances vary from region to region, while in some areas, the models manifest a time series
geographical pattern in their out-of-sample forecasting performances. models

The remainder of the paper is organised as follows. The data and methodology used are
described in Section 2; results are presented and discussed in Section 3. Section 4 concludes
and presents further research.

2. Related literature

The housing market is a fundamental factor of the economy of various developed countries
and it has been found to hold strong interlinkages with business cycles. Therefore, it is of
great importance to understand and forecast house price dynamics. However, in the housing
literature, whether the focal point is house price returns and volatility modelling and/or
forecasting, a restricted number of countries has been targeted. These include the USA, UK,
Canada and Australia. Moreover, the emphasis has been on the house price dynamics
modelling while, apart from the USA housing market, research on forecasting individual
housing markets is quite limited. Regarding modelling house prices of the above-cited
countries, Apergis and Payne (2020) provide an extensive literature review with a striking
dominance of the USA and UK studies. The reviewed studies also confirm the evidence of
Autoregressive Conditional Heteroscedasticity (ARCH) effects in different housing markets.
Further, the studies use various Generalised Autoregressive Conditional Heteroscedasticity
(GARCH)-type models to investigate house price returns and volatility dynamics.

Regarding forecasting house prices, as mentioned above, the widely studied market is
the US housing market. Crawford and Fratantoni’s (2003) work paved the way; the authors
investigated the performance of three types of models in forecasting the US home prices for
the state of Texas, FL, OH, CA and Massachusetts. The three used models were Autoregressive
Integrated Moving Average (ARIMA), Regime-Switching and GARCH. The authors found that
the Regime-Switching models performed better in-sample fit, while the ARIMA models
delivered superior out-of-sample forecasts. However, Milles (2008) criticised Crawford and
Fratantoni’s (2003) study by pointing out that, in a Monte Carlo study, Bessec and Bouabdallah
(2005) found the Regime-Switching model to provide poor out-of-sample forecasts and it was
recommended to use other nonlinear approaches. Specifically, the author used the Generalised
AR (GAR) model and found that the GAR outperformed GARCH and ARIMA models in the
out-of-sample forecasting. Li (2012) carried out in-sample and out-of-sample evaluation
performance of the GARCH, Asymmetric Power ARCH (PARCH) and RiskMetrics model on
the US housing market pre- and post-2008 financial crisis. The author’s empirical results
revealed that for the in-sample estimation, the benchmark model, the RiskMetrics performed
satisfactorily, while all models achieved poor post-crisis out-of-sample forecasts. Recently,
Segnon et al. (2020) introduced and used the Markov-Switching Multifractal (MSM) process to
model and forecast the US house price volatility for 10 major cities, namely, Miami, Boston,
New York, Chicago, San Diego, WA DC, Los Angeles, San Francisco, Denver and Las Vegas.
The authors tested the MSM’s forecasting abilities in comparison to the GARCH-type models;
their results suggested that improved forecast accuracy is achieved through MSM and
FIGARCH frameworks.

Broadly, despite the housing market analysis growing literature, whether the focus is on
modelling house prices, forecasting their dynamics or a combination of two; special attention
has been given to a limited number of countries. No particular empirical forecasting of either
house price returns and/or volatility has been undertaken for the Finnish housing market, even
though more than half of the households’ total wealth is in the form of housing (Statistics
Finland, 2016). Therefore, this article aims to fill that gap by comparing different models’
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performance in modelling as well as forecasting the house price returns and volatility.
Furthermore, previous studies used the family-home property type data sets; the article at
hand, however, uses apartments (also referred to as, a block of flats) type data. The number of
rooms categorises the studied dwellings: one-room, two-rooms and larger apartments (over
three rooms) types. The reasons for using flats property type data are their fast-growing
popularity as a place to live in Finland and their increased attractiveness to both consumers
and investors. At the end of 2018, Statistics Finland Overview reported that apartments
counted for nearly half of all occupied dwellings, they represented 46%. Detached and semi-
detached was the second favourable house type, with 39%, followed by terraced with 14%.
Regarding the investment aspect, apartments continue to strengthen their position in the
Finnish residential property market with foreign, domestic as well as individual investors
continue to increase their portfolios across the country (KTI, 2019). In addition, in the same
viewpoint of housing investment and portfolio allocation, this analysis uses metropolitan as
well as ZIP-code level data for cross-examination and comparison of housing investment on the
city and sub-market levels.

3. Data and methodology

The data used in this study are quarterly house price indices, retrieved from Statistics Finland’s
PxWeb databases (2020). The number of rooms categorises the studied types of dwellings: one-
room, two-rooms and larger (over three rooms) apartment types. The considered period spans
from the first quarter (Q1) of 1988 to the fourth quarter (@4) of 2018 and the 15 considered
regions are Helsinki, Oulu, Tampere, Lahti, Pori, Turku, Seingjoki, Jyvaskyld, Lappeenranta,
Kuopio, Himeenlina, Vaasa, Kotka, Joensuu and Kouvola. The regions of Helsinki, Turku and
Tampere form an important and growing area, called the growth triangle in Southern Finland.
Currently, the area accounts for, respectively, 49 and 55.5% of the Finnish population and total
gross domestic product (GDP). The Oulu region, called the Northern Finland growth centre, is
also amongst the well-performing region with substantial economic development and
population growth. The other regions also show significant expansion and economic
performance. These regions are then divided into 45 cities and sub-areas according to their ZIP-
code or postcode numbers. Dufitinema (2020) details the regions’ ranking and division. The
number of inhabitants ranks regions and postcode numbers divide them.

The methodology used in this study is an extension of Dufitinema’s (2020). That is, house
price indices are transformed into log-returns. The process is done for each city and sub-area in
every apartment type. Next, first-order autocorrelations are filtered out from the returns. The
task is done by determining the appropriate order of the ARMA model using the Akaike and
Bayesian information criteria (respectively, AIC and BIC). Then, from the transformed returns,
ARCH effects are tested. Thereafter, the current study extends this methodology by examining
the ARMA and ARFIMA models’ forecasting performances for cities and sub-areas with no
substantial ARCH effects. The EGARCH model’s forecasting abilities are compared to the
FIGARCH and CGARCH models for cities and sub-areas with substantial clustering effects.

Regarding testing for ARCH effects, details are given and results are described in
Dufitinema (2020). In a nutshell, both used tests Lagrange Multiplier (LM) and Ljung-Box
(LB) found, in all three considered types of apartments, that clustering effects were
significant in the majority of the cities/sub-areas. Specifically, the results are as follows: in
the one-room flats category, the evidence of clustering effects was found in 28 out of 38
cities/sub-areas. In 27 out of 42 and 31 out of 39 in, respectively, the two-rooms and larger
(over three rooms) flats category. Moreover, as in forecasting the house price dynamics of
the considered types of dwellings, short memory and long memory time series models are
compared, we make use of Dufitinema and Pynnonen’s (2020) study outcomes. The results



summary is as follows: in those cities/sub-areas with no significant clustering effects, in the Comparison of
one-room apartment type category, 8 out of 10 exhibited long memory behaviour. Meaning time series
that their Geweke and Porter-Hudak (1983) (GPH) estimates of the fractional differencing models
parameter d varied from 0 to 0.5. The two returns series were anti-persistent [d € (—0.5,0)].
In both two-room and larger (over three rooms) apartment categories, one sub-area
displayed anti-persistence behaviour while the rest 14 and 7 returns series exhibited long-
range dependence behaviour in the respective groups. These results are used as
hyperparameters of the ARFIMA models in the estimation procedure.
The same applies to Dufitinema and Pynnonen’s (2020) findings on the long-range
dependence in those cities/sub-areas with substantial ARCH effects. In squared as well as
absolute house price returns, in all three apartment types, the fractional differencing parameter
d was estimated and the outcomes indicated a very persistent long memory behaviour in the
house price volatility. Both metrics results are used as hyperparameters of the FIGARCH
models in the estimation procedure and the best model is assessed based on different model
selection tools. This approach of tuning the parameter d, that is, estimate the long memory
parameter first and get the other parameters estimations using these d estimates, is at the core
of most semiparametric estimation approaches (Lopes and Mendes, 2006; Hardle and Mungo,
2008). Furthermore, as pointed out by different researchers such as Tsay (2013), when GARCH-
type models are used to assess asset returns, an assumption of a normal distribution is not
tenable. An appropriate distribution must accommodate asset returns characteristics, for
instance, skewness and fat tails. Therefore, based on AIC and BIC, appropriate distribution is
selected, for each city and sub-area in every apartment type, amongst univariate distributions,
namely, Student ¢ (“Std”), Generalised Error (“‘GED”) and their skew variants (“sStd” and
“sGED”).

3.1 Models for forecasting house price returns

House prices returns are predicted for cities/sub-areas with no substantial clustering effects,
meaning those regions with both constant mean and variance. The types of models tested
relate to this constant mean/variance specification of the series. The ARMA models fulfil
this property; however, they do not capture the long-memory behaviour that house price
returns of these cities/sub-areas exhibit. Therefore, their forecasting performances are
compared to the models that accommodate the high persistence present in the returns series;
those are ARFIMA models.

3.1.1 Autoregressive moving average model. ARMA models have been a leading major
of modelling and forecasting in numerous areas of finance and economics. In the housing
market, we refer to Jadevicius and Huston (2015) and the references therein. Jadevicius and
Huston assess the ARMA'’s application for forecasting the Lithuanian housing market in
particular and extend their findings to the global housing market. The ARMA model is a
combination of AR and MA processes (Box et al., 1994). Its standard specification is as
follows:
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where Z ¢;71_; represents the AR portion of the model and Z 0,a;_; represents the
i—1 i—1

model’s MA portion. By assumption, 7, is stationary, for a collect specification of the ARMA
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model; otherwise, the series has a unit root and it is termed as AR Integrated MA (ARIMA)
process. However, Dufitinema and Pynnonen (2020) have conducted unit root tests on the
studied house prices returns and concluded that the null hypothesis of a unit root in all
return series in all the three apartment types was rejected at least at the 5% level. Hence,
stationarity was ensured across all cities and sub-areas, in all apartment types.

3.1.2 Autoregressive fractional integrated moving average model. ARFIMA models are
the extension of the ARIMA models to accommodate the time series’s long-memory
behaviour. They were independently put forwarded by Granger and Joyeux (1980) and
Hosking (1981). The standard specification of an ARFIMA model is as follows:

O(L)1-L0)"Y;=0L)e, t =1,2,...,

where Y; denotes the discrete-valued studied time series, d is the fractional differencing
parameter and €, is a white noise with £(€;) = 0 and variance a?. L is the lag operator or
back-shift operator such that LY; = Y;_1. ®(L) and ©(L) are the AR and MA polynomials in
the lag operator, respectively. That is, ®(L)=1-¢L—....— ¢,[’ and
OL)=1—-61L—...— 0,

The value of d — the long memory parameter — dictates the properties and the
interpretations of the ARFIMA model. If d = 0, ARFIMA reduces to ARIMA and the process
is stated to exhibit short memory. If d € (—0.5,0), it is characterised as anti-persistence or
long-range negative dependence. The process is said to manifest long memory or long-range
positive dependence if d € (0,0.5) and it is non-stationary with mean reversion if
d € [0.5,1), whereas it becomes non-stationary without mean reversion if d > 1.

3.2 Models for forecasting house price volatility
For regions with time-varying variance, meaning those cities and sub-areas with evidence of
ARCH effects, GARCH-type models are used to forecast house price volatility. Motivated by
the persistence or long memory behaviour found in these cities/sub-areas’ house price
volatility, short memory GARCH models are compared to the GARCH models that
accommodate the long memory property. The EGARCH model is selected amongst the short
memory GARCH models, over the standard GARCH. The grounds of the EGARCH selection
are the evidence of asymmuetric effects of shocks on housing volatility recorded in the
studied types of dwellings and its effective performance over the Glosten ef al’s (1993) GJR-
GARCH model in modelling the studied house prices’ asymmetric volatility (Dufitinema,
2020). Amongst the GARCH models that accommodate the long memory in the assets’
conditional variance, the selected ones are the FIGARCH and CGARCH models. The
FIGARCH model allows a slower hyperbolic rate decay of shocks, making it the best
candidate for explaining and capturing the high degree of autocorrelation in financial
market volatility. The CGARCH model investigates the conditional variance’s long- and
short-run movement by decomposing the conditional variance into permanent and transistor
components. Both models have been applied more often of late compare to, for instance, the
Integrated GARCH (IGARCH) model (Engle and Bollerslev, 1986). The reason is that Tayefi
and Ramanathan (2012) have found the IGARCH model to be too restrictive as it implicates on
the conditional variance, an infinite persistence and consequently, shocks persist forever.

There is an extensive collection of studies on the FIGARCH and CGARCH applicabilities
to model and/or forecast different assets’ volatility. In the housing markets, Milles (2011)
used the CGARCH model to investigate whether there is long-range dependence in the US
home price volatility. The author found that housing markets of over half of the US
metropolitan areas exhibited persistent volatility. For those regions, the CGARCH model



provided better forecasts than the standard GARCH model. The Milles’s choice of the Comparison of
CGARCH was based on Maheu’s (2005) Monte Carlo study, which showed that the CGARCH time series
captured long-range dependence better than FIGARCH in equity markets. On the other models
hand, Feng and Baohua (2015) discovered that the FIGARCH model could well catch the
long memory of the Zhengzhou house price volatility. To that end and for the models’ cross-
check assessment, this article uses both FIGARCH and CGARCH models to forecast house
price volatility of the considered types of dwellings.

3.2.1 Exponential generalised autoregressive conditional heteroscedasticity model. Let R,
denotes the asset log-return at time t. The standard form of the conditional volatility model
is as follows:

Rl‘ = + €, EtNN(O, 0'?),

where v, is the conditional mean, o is the conditional standard deviation and e is the error term.
Given that many financial assets exhibited volatility clustering, instead of modelling the variance
of the innovation €, as a constant, Bollerslev (1986) proposed a GARCH process where the
conditional variance o2 is a function of past volatility and previous squared errors. That is,

q p
ol =w+ Z aiel .+ Z B]-a'?,j, o
i=1 =1

where @ > 0 is the intercept, ;; > 0 (coefficients of ;) and 8; > 0 (coefficients of a?fj) are
referred to, respectively, as the ARCH and GARCH parameters.To investigate the potential
asymmetric effects of shocks on conditional variance, Nelson (1991) proposed the EGARCH model.
The model enables negative shocks to have a distinct impact on conditional variance than positive
shocks, an observation which is termed to leverage effects. Its standard specification is as follows:

Ry =v, + €4, GtNN(O, 0'?),

q )4
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where «; and «; + 7; indicate, respectively, the effects of good and bad news. I;; is the
indicator function and it equals to one if €;,_1 < 0 and zero otherwise. Implying a more
sizable influence (a; + yi)e?fi with y; > 0 of a negative shock €, while a positive shock
€,;have little influence a;€?_; to o7.

3.2.2 Fractionally integrated generalised autoregressive conditional heteroscedasticity
model. The evidence of slow decay in correlations of squared and absolute returns of
financial assets gave rise to the FIGARCH model, first introduced by Baillie ef al. (1996). The
model adds the fractional differences in the standard GARCH process, thereby explaining
and capturing the high degree of autocorrelation in financial market volatility.

The GARCH process in equation (1) can be written as:

0',2 =w+ a(B)E? + ,B(B)a'?,
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where B is the lag operator such that a(B) = 1B+ aoB? +...+ B’ and
B(B) = B1B+ ByB* + ...+ B,B. Its equivalent ARMA type representation is given by:

[1-aB) - BB)e;=w+ [1 - B(B)]u,

where #; = €2 — o?. From this formulation, Engle and Bollerslev (1986) presented the
IGARCH model by allowing the presence of unit root in 1 — a(B) — B8(B) as follows:

[1-aB)-BB)|1-Be =w+[1-BB)|u. ©

However, as discussed above, the IGARCH model is too restrictive as shocks persist forever.
Hence, the introduction of the FIGARCH model, where the fractional differencing operator
1- B)d with 0 < d < 1 replaces the first difference operator (1 — B) in equation (2). The
general form of the FIGARCH model is as follows:

[1-a(B) - B(B)](1-B) e, =w+[1-BB)]u.

If d =0, the FIGARCH model reduces to the standard GARCH, while if d = 1, it turns into an
IGARCH model.

3.2.3 Component generalised autoregressive conditional heteroscedasticity model. Lee
and Engle (1999) developed the CGARCH model by decomposing the conditional variance
into permanent and transitory components, thereby investigating the long- and short-run
volatility movements. Unlike in the GARCH process where the conditional variance reverts
to a long-run constant mean w in equation (1), the CGARCH model allows a time-varying
mean reversion of the conditional variance. Its specification is as follows:

q b4
o} :C]tJrZOli(f?fi—Qtfi) +Z,3j<0'?7j—6]t7j), &)
-1 =1

ar=wtpai+ (e, —ly) @

Equation (4) represents the long-run (permanent) component of the volatility; the time-
varying mean reversion of the conditional variance. It describes how the GARCH model’s
intercept is now time-varying following first-order autoregressive type dynamics, and thus,
captures the long memory portion of volatility. Equation (3) describes the short-term
(transitory) component of the volatility, which is the difference between the conditional
variance and its trend (o7 — g;). To ensure the stationarity conditions, the sum of (e, )
coefficients must be less than 1 and p < 1 for the persistence of the transitory and
permanent components. If p = ¢ =0, the CGARCH model reduces to the standard GARCH.

3.3 Forecast evaluation

To test and compare the prediction abilities of the above-mentioned models; the data is
divided into training and test set. The training set, which consists of 25 years of sample data,
is used to build the models (estimation sample: 1988:91-2013:Q4). The test set is used to
evaluate the models’ predictive accuracy; it consists of 5years of sample data (forecasting
sample: 2014:Q1-2018:Q4). The forecasting process starts by estimating each model on the



training data set. Thereafter, the one-step-ahead (quarter) volatility forecasts are built using Comparlson of
the estimated model. Finally, the predicted volatility (6-?) and the proxy of the true volatility time series
(0% are compared. models

When evaluating volatility forecasts, one has to deal with the problem that the true
volatility o2 is unobserved. Various studies have proposed the appropriate proxy of o such
as the squared returns (Brooks and Persands, 2002; Sadorsky, 2006). Patton (2011) discussed
that squared returns are a rather noisy proxy for the true conditional variance and that a
conditionally unbiased estimator of the conditional variance, the realised volatility (RV), is a
more efficient estimator than the squared returns. Recently, Xingyi and Zakamulin (2018)
pointed out that the usage of realised daily volatility and available intraday data provided
better forecast accuracy in the stock market. In the housing market, Zhou and Kang (2011)
also used realised volatility calculated from assets returns as o proxy. Following this
study, in this article, the true volatility is also proxied by realised volatility built as a rolling
sample. Furthermore, in line with other studies on volatility forecasting, two popular
metrics, namely, the root mean squared error (RMSE) and the mean absolute error (MAE), is
used to evaluate the studied models’ forecasting accuracy. The former metric has the benefit
of penalising large errors as it gives errors with larger absolute values more weight than
errors with smaller absolute values, which makes it useful when large errors are particularly
undesirable. The latter metric gives the same weight to all errors. Both are negatively-
oriented scores, meaning that lower values are better. The two measures are defined as
follows:

RMSE = | L3 (52— 0?)" and MAE - 1 0r
- Ni:l l l _Nz':l l

where N is the number of forecasts, 62 is the forecast volatility and o is the true volatility.

4. Results and discussions

4.1 Forecasting house price returns

The ARMA and ARFIMA models’ performances are compared, in each apartment category,
for cities and sub-areas with no substantial clustering effects, meaning those regions with
both constant mean and variance. Recall that in the one-room apartment category, there are
10 cities/sub-areas and eight of them exhibited long memory behaviour. In the two-room and
larger (over three rooms) apartment categories, there are 15 and 8 cities/sub-areas,
respectively. In total, 14 and 7 returns series exhibited long-range dependence behaviour in
each apartment category, respectively. Table 1 reports the house price returns’ best
performing in-sample and out-of-sample models for each city and sub-area, in each
apartment type. In Appendix, Table Al details the Akaike information criteria (AIC) of each
model, while Table A2 presents the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE); the used metrics in evaluating the forecasting accuracy of every
model. A lower criteria value describes a better model’s performance.

To investigate which feature (short or long memory) is crucial in the Finnish house price
returns modelling, results are mixed; the two models’ performances differ by apartment
types and across cities and sub-areas. Firstly, in the one-room flat category, the ARMA
model ranks as the leading in-sample performing model in six out of eight cities/sub-areas.
Secondly, in the two-room flat category, it is the ARFIMA model, which excels in 11 out of
14 cities/sub-areas. Last, in larger (over three rooms) flat type, both models split the ranking
as the ARMA model fits the house price returns best in three cities/sub-areas, while
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Table 1.

House price returns —
best performing
models

One room flats

Regions Cities/sub-areas In-sample Out-of-sample
Helsinki hki3 ARMA ARMA
Tampere tre ARFIMA ARFIMA

tre2 ARMA ARMA
Oulu oulu2 Anti-persistent
Lahti 1ti2 ARFIMA ARMA
Joensuu jnsu ARMA ARFIMA
Vaasa vaasa ARMA ARFIMA

vaasal Anti-persistent
Himeenlinna hnlinal ARMA ARFIMA
Kotka kotkal ARMA ARFIMA

Two rooms flats
In-sample Out-of-sample

Tampere tre ARFIMA ARFIMA

tre3 ARFIMA ARFIMA
Turku tkul ARFIMA ARFIMA

tku3 ARFIMA ARFIMA
Oulu oulu ARFIMA ARMA

oulul ARMA ARMA

oulu2 ARMA ARMA
Lahti 1til ARFIMA ARMA

1ti2 ARFIMA ARFIMA
Kuopio kuo2 ARFIMA ARFIMA
Joensuu jnsu ARFIMA ARFIMA
Vaasa vaasal ARMA ARFIMA
Lappeenranta Itra2 ARFIMA ARFIMA
Kotka kotka ARFIMA ARFIMA

kotka2 Anti-persistent

Three rooms flats
In-sample Qut-of-sample

Helsinki hki2 ARMA ARFIMA
Oulu oulu2 ARFIMA ARFIMA
Lahti 1ti2 ARMA ARFIMA
Pori pori ARFIMA ARMA
Joensuu jnsu ARFIMA ARMA

jnsul Anti-persistent
Kouvola kou ARMA ARFIMA
Hémeenlinna hnlina ARFIMA ARFIMA

Notes: This table reports the house price returns best performing in-sample and out-of-sample models, for each
city and sub-area, in each apartment type. The “anti-persistent” refers to the series with long-range negative
dependence, meaning that their estimated fractional differencing parameter d varied from —0.5 to 0

ARFIMA performs well in four out of seven cities/sub-areas. These results are in line with
Jadevicius and Huston’s (2015) study outcomes and Hepsen and Vatansever’s (2011)
recommendations. Jadevicius and Huston highlighted that the ARIMA modelling approach
strongly contributes to examining housing markets. Hepsen and Vatansever pointed out
that house price modelling with ARIMA provides perceptions for a range of stakeholders.
Moreover, the ARFIMA model’s ability to capture the long memory feature of the house
price returns, notably in the two-room flat category; stresses the high persistence of house
prices (Dufitinema and Pynnonen, 2020).



The out-of-sample forecast performance of the two models is investigated by estimating the Comparison of
models on the training data set, generating 5-year returns forecasts and validating the time series
constructed predictions using the test set. Generally, in all three apartment types, the ARFIMA models
model outperforms the ARMA in most regions. The ARFIMA model provides the best returns
forecasts in 5 out of 8 10 out 14 and 5 out of 7 cities/sub-areas in the one-room, two-room and
larger (over three rooms) flats categories, respectively. Given the strong evidence of long
memory found in the Finnish house price returns by Dufitinema and Pynnénen (2020), these
results confirm again the long memory models’ ability to capture these long-range
dependencies and their superiority in forecasting house price returns. In the two-room apartment
category, an interesting observation emerges, the best in-sample performing model also produces
accurate out-of-sample forecasts. This remark is noted in 11 out of 14 cities/sub-areas. On the one
hand, it contradicts previous studies, which expressed that a better in-sample fit does not
automatically suggest a superior forecasting performance (Newell ef al, 2002; Stevenson and
McGrath, 2003). On the other hand, the remark aligned with Jadevicius and Huston’s (2015)
findings that the same model [ARIMA(3,0,3)] provided superior in- and out-of-sample modelling
results for the Lithuanian housing market.

In summary, regarding modelling the Finnish house price returns, the short or long
memory model’s performance is driven by the house price data set under study. Therefore,
across cities and sub-areas, one must enable different house price dynamics instead of
imposing one model on the full data set. With respect to forecasting house price returns, the
long memory models outclass their short memory peers. This result highlights the
advantage of long memory models in forecasting different asset prices.

4.2 Forecasting house price volatility

For regions with time-varying variance, meaning those cities and sub-areas with substantial
ARCH effects, short and long memory GARCH models are compared. Those are the
EGARCH, FIGARCH and CGARCH models. Table 2 reports the house price volatility’” best-
performing in-sample and out-of-sample models for each city and sub-area, in each
apartment type. In the Appendix, the models’ in-sample fits are detailed in Table A3 and
their RMSE and MAE forecasting accuracies in Table A4.

Mostly, the best-ranked model for the Finnish house price volatility modelling, in all
three apartment types, is the EGARCH model. It comes on top in 17 out of 28 cities/sub-areas
exhibiting clustering effects in the one-room flat category. It leads in 19 out 27 and 23 out 31
cities/sub-areas in, respectively, two-room and larger (over three rooms) flat categories.
These outcomes are in line with Dufitinema’s (2021) findings, who underlined, using the
Stochastic Volatility framework, that the stochastic volatility model with leverage effects
was also the leading in-sample performing model for the studied type of dwellings. The
results also highlight, once more, the importance of asymmetric volatility features in
modelling house price volatility. In the rest of the regions, the FIGARCH model alternatives
with EGARCH and takes the lead. This pattern is noted in 11, 6 and 7 cities/sub-areas in the
respective flat categories. The exceptions of this general pattern are Turku and Vaasa cities
in the two-room apartments and Jyvaskyla-city in the category of larger (over three rooms)
apartments, where the CGARCH model excels in comparison to the other two models.

The out-of-sample forecasting performance of the three models is examined. The
forecasting exercise starts with an estimation of the models on the training set. Next, using
the estimated models, 5-years volatility forecasts are generated in the form of one-step
ahead. Finally, the built predictions are validated on the test set. Mostly, the long memory
GARCH models overcome their short memory counterparts in all three apartment types.
The CGARCH model provides the superior forecasts in, respectively, 14 out of 28, 11 out of
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Table 2.

House price
volatility — best
performing models

One room flats Two rooms flats Three rooms flats
Cities/sub- Out-of- Out-of- Out-of-
Regions areas In-sample  sample In-sample  sample In-sample sample
Helsinki hki FIGARCH EGARCH FIGARCH FIGARCH EGARCH CGARCH
hkil FIGARCH CGARCH EGARCH FIGARCH EGARCH EGARCH
hki2 FIGARCH EGARCH EGARCH EGARCH - -
hki3 - - FIGARCH CGARCH EGARCH CGARCH
hki4 EGARCH CGARCH EGARCH CGARCH EGARCH EGARCH
Tampere tre - - - - EGARCH EGARCH
trel EGARCH  FIGARCH EGARCH  FIGARCH FIGARCH FIGARCH
tre2 - - EGARCH  FIGARCH EGARCH CGARCH
tre3 EGARCH  EGARCH - - FIGARCH CGARCH
Turku tku EGARCH  FIGARCH CGARCH EGARCH EGARCH CGARCH
tkul EGARCH  CGARCH - - EGARCH FIGARCH
tku2 EGARCH EGARCH EGARCH CGARCH EGARCH CGARCH
tku3 FIGARCH CGARCH - - EGARCH CGARCH
Oulu oulu EGARCH  CGARCH - - EGARCH CGARCH
oulul EGARCH  CGARCH - - EGARCH EGARCH
Lahti 1ti EGARCH CGARCH EGARCH CGARCH EGARCH CGARCH
1til EGARCH  FIGARCH - - EGARCH FIGARCH
Jyvaskyld  jkla EGARCH CGARCH EGARCH CGARCH CGARCH FIGARCH
jklal FIGARCH FIGARCH EGARCH EGARCH FIGARCH EGARCH
jkla2 FIGARCH CGARCH EGARCH  FIGARCH FIGARCH EGARCH
Pori pori FIGARCH FIGARCH EGARCH  EGARCH - -
poril EGARCH  FIGARCH EGARCH CGARCH FIGARCH FIGARCH
pori2 - - EGARCH  FIGARCH - -
Kuopio kuo EGARCH  FIGARCH FIGARCH CGARCH EGARCH FIGARCH
kuol FIGARCH FIGARCH EGARCH  FIGARCH FIGARCH CGARCH
kuo2 EGARCH  CGARCH - - EGARCH EGARCH
Joensuu jnsul EGARCH CGARCH FIGARCH EGARCH - -
Seindjoki seoki - - FIGARCH EGARCH FIGARCH CGARCH
Vaasa vaasa - - CGARCH CGARCH EGARCH CGARCH
vaasal - - - - EGARCH EGARCH
vaasa2 - - - - EGARCH CGARCH
Kouvola kou EGARCH CGARCH EGARCH  FIGARCH - -
Lappeenrantalrta FIGARCH FIGARCH EGARCH CGARCH EGARCH FIGARCH
Irtal FIGARCH CGARCH FIGARCH EGARCH - -
Irta2 - - - - EGARCH FIGARCH
Hameenlinna hnlina EGARCH  FIGARCH EGARCH  FIGARCH - -
hnlinal - - EGARCH  CGARCH EGARCH FIGARCH
Kotka kotka FIGARCH CGARCH - - EGARCH FIGARCH
kotkal - - EGARCH  CGARCH - -

Note: This table reports the house price volatility best performing in-sample and out-of-sample models for
each city and sub-area, in each apartment type

27 and 13 out of 31 cities/sub-areas in the one-room, two-room and larger (over three rooms)
flats categories. The FIGARCH model follows with superior performance in 10, 9 and 10
cities/sub-areas in the respective flat categories. These findings are consistent with Milles’s
(2011), who concluded that the CGARCH provided better forecasts than the standard
GARCH for the US home price volatility. Moreover, Lee and Reed (2014), in regard to the
Australian housing market, also acknowledged the CGARCH model’s ability to decompose
the price volatility into “permanent” and “transitory” components. And thereby, be a better
candidate to capture the short- and long-run movements of volatility.



A regional pattern is noted in few regions where the same model produces better out-of- Comparison of
sample forecasts in all three apartment types. In Tampere-areal, the FIGARCH is the time series
leading model throughout all apartment types, while the CGARCH model stands out in models
Lahti-city. These results suggest that the house price volatility of the former region is
characterised by a significant degree of autocorrelation. While the conditional variance of
the latter city includes two components (permanent and transitory).

In summary, for a larger number of Finnish cities and sub-areas, the EGARCH model is
the best model for modelling their house price volatilities. In the remaining regions, the
EGARCH switches places with the FIGARCH model. However, no geographical is noted; the
performance of the model varies from region to region. Hence, again as above, when
modelling house price volatility, one must enable different house price dynamics across
cities and sub-areas and types of apartment. Regarding the models’ out-of-sample
forecasting performances, the long memory models (CGARCH and FIGARCH) take the lead,
dominating their short-memory counterparts. Apart from few regions (one city and one sub-
area), the models’ forecasting performances vary across cities and sub-areas and by type of
apartment — no geographical or regional pattern is noted.

5. Conclusions, implications and further research

Over recent years, housing market forecasting has been the theme of extensive research due to
the vital role of house price forecasts in asset allocation, consumption, investment, policy decision-
making and also in predicting mortgage defaults. This article determines, in the Finnish housing
market, which model is best able to forecast movements of both house price returns and volatility.
The two competing models are the ARMA model and ARFIMA model for house price returns.
For house price volatility, the EGARCH model is competing with the FIGARCH and CGARCH
models. The study uses quarterly house price indices for 15 main regions in Finland, spanning
from the first quarter (Q1) of 1988 to the fourth quarter (Q4) of 2018.

There are several important findings. Firstly, to investigate whether the short or long
memory feature captures the house price returns movements, the models’ performance is
driven by the house price data set under investigation. In contrastingly, the ARFIMA model
tops in the house price returns forecasting; it outperforms the ARMA model in most regions.
This result indicates that the long-range dependencies that house price exhibits are a crucial
component in their forecasting. Secondly, the EGARCH model ranks as the leading model
for the Finnish house price volatility modelling, highlighting the importance of asymmetric
volatility in the house price volatility modelling. The long memory GARCH models
(CGARCH and FIGARCH) outperforms the EGARCH in forecasting the house price
volatility, indicating the long term dependence in house price volatility and the ability of
long memory models to capture and predict this property of house price volatility. Last, in
all three apartment types, no geographical or regional pattern is noted for models’ in-sample
fit; each model’s performance varies from region to region for both house price returns and
volatility. For the out-of-sample analysis, however, some interesting observations emerge.
For house price returns, especially in the two-room flat category, the same model provides
the best in- and out-of-sample forecasts. While for the house price volatility, in two regions,
the same model comes on top across all apartment types.

These outcomes have some vital housing investment and policy implications. For consumers,
investors and policymakers, who monitor the house price volatility and whose decisions are based
on future house price movements, accurate forecasts help their decision-making. Moreover, precise
predictions are essential for housing investment risk assessment and are more significant insights
for portfolio allocation across Finland and apartment type. Additionally, as interlinkages have
been found between housing markets and the economic cycle of various developed countries, a
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view into house prices outlook would be beneficial for economists and policy institutions. Also, as
pointed out by Balcilara ef al (2015), forecasting housing market movements plays a significant
role in monetary policy authorities and their willingness to “lean against the wind”.

Furthermore, as housing has been found to play a crucial role in macroeconomic factors
fluctuations (Kishor and Marfatia, 2018), it would be of interest to investigate the interaction
between house prices and the variables such as unemployment rates and interest rates from
region to region. The information from these macroeconomic predictors can be further used
to improve the forecast accuracy. In the same viewpoint, the existence of the structural break
in the studied housing market merits an examination. In this aspect, the data can be split into
subsamples supported by the break dates and thereby improving forecast accuracy.
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Appendix
One room flats
Regions Cities/sub-areas ARMA ARFIMA
Order (p,q) AIC Order (p,d,q) AIC
Helsinki hki3 271 685.503 (2,0.14,1) 687.823
Tampere tre 1,1 678.811 (2,0.20,2) 662.259
tre2 1,1 747.802 0,0.31,2) 752.563
Oulu oulu2 (1,0) 723.337 Anti-persistent -
Lahti 1ti2 1,0 798.635 (1,0.24,2) 794.762
Joensuu nsu 0,3 730.946 (1,0.05,2) 732.678
Vaasa vaasa 0,1) 785.643 0,0.15,3) 786.159
vaasal 0,1) 702.467 Anti-persistent -
Hiameenlinna hnlinal 0,3 662.039 (1,0.09,2) 663.959
Kotka kotkal 0,3 625.391 (2,0.46,0) 634.882
Two rooms flats
ARMA ARFIMA
Order (p q) AIC Order (p,d,q) AIC
Tampere tre 2,1) 587.509 (2,0.27,1) 585.939
tre3 (2 2) 631.758 (2,0.31,2) 630.768
Turku tkul 2,0 699.340 (3,0.06,0) 696.621
tku3 (O 3) 721.061 0,0.15,3) 703.969
Oulu oulu 2,0) 627.435 (0,0.30,3) 626.219
oulul (1 2) 658.029 0,0.39,3) 659.520
oulu2 0,0) 705.876 0,0132) 707.335
Lahti 1til (2 0) 712.556 (2,0.16,0) 709.631
1ti2 1,2) 677.356 (1,0.36,0) 676.637
Kuopio kuo?2 (2 O) 662.183 (2,0.20,1) 659.772
Joensuu jnsu 3,0 727.037 (2,0.29,0) 725.219
Vaasa vaasal (O 2) 673.098 0,0.16,2) 675471
Lappeenranta Itra2 1,0) 761.701 (1,0.01,2) 751.964
Kotka kotka (O 2) 737.003 0,0.16,2) 725.713
kotka2 0,2 659.653 Anti-persistent -
Three rooms flats
ARMA ARFIMA
Order (p,q) AIC Order (p,d,q) AIC
Helsinki hki2 1,0) 653.996 (1,0.14,0 654.658
Oulu oulu2 0,3 708.763 0,0.19,2) 706.500
Lahti 1ti2 22 707.073 (2,0.37,2) 710.338
Pori pori 22 770.727 (1,0122) 765.959
Joensuu nsu 1,0) 783.782 0,0.27,2) 780.175
jnsul (1,0) 712.655 Anti-persistent -
Kouvola kou 0,3 778.805 0,041,2) 779.629
Hémeenlinna hnlina 0,3) 776.563 (0,0.26,3) 771.045

Notes: This table records, for every city and sub-area, the estimated Akaike information criteria (AICs) for
model comparison. The favourable model is the one witd the minimum AIC value. The “anti-persistent”
refers to the series with long-range negative dependence, meaning that their estimated fractional
differencing parameter d varied from —0.5 to 0. The best model’s values are marked in bold

Comparison of
time series
models

Table A1l.
In-sample fit —
returns models




THMA

Table A2.

Results of RMSE and

MAE —return
models

One room flats
Regions Cities/sub-areas ARMA ARFIMA
RMSE MAE RMSE MAE The best model
Helsinki hki3 0.0393 0.0341 0.0404 0.0346 ARMA
Tampere tre 0.0344 0.0265 0.0336 0.0265 ARFIMA
tre2 0.0642 0.0495 0.0676 0.0530 ARMA
Oulu oulu2 0.0695 0.0507 Anti-persistent - -
Lahti 1ti2 0.0713 0.0500 0.0714 0.0507 ARMA
Joensuu jnsu 0.0595 0.0485 0.0588 0.0471 ARFIMA
Vaasa vaasa 0.0831 0.0703 0.0814 0.0678 ARFIMA
vaasal 0.0879 0.0751 Anti-persistent - -
Hémeenlinna hnlinal 0.0558 0.0544 0.0548 0.0537 ARFIMA
Kotka kotkal 0.0548 0.0548 0.0393 0.0393 ARFIMA
Two rooms flats
ARMA ARFIMA
RMSE MAE RMSE MAE The best model
Tampere tre 0.0133 0.0102 0.0131 0.0099 ARFIMA
tre3 0.0285 0.0219 0.0278 0.0214 ARFIMA
Turku tkul 0.03622  0.02978 0.03623 0.02977 ARFIMA
tku3 0.0335 0.0231 0.0330 0.0223 ARFIMA
Oulu oulu 0.0295 0.0237 0.0297 0.0239 ARMA
oulul 0.0405 0.0354 0.0406 0.0354 ARMA
oulu2 0.0451 0.0327 0.0451 0.0329 ARMA
Lahti 1til 0.0551 0.0441 0.0552 0.0442 ARMA
1ti2 0.0298 0.0217 0.0290 0.0212 ARFIMA
Kuopio kuo?2 0.0389 0.0311 0.0372 0.0296 ARFIMA
Joensuu jnsu 0.0344 0.0284 0.0334 0.0272 ARFIMA
Vaasa vaasal 0.0322 0.0261 0.0321 0.0261 ARFIMA
Lappeenranta Itra2 0.0526 0.0454 0.0526 0.0453 ARFIMA
Kotka kotka 0.0587 0.0489 0.0584 0.0488 ARFIMA
kotka2 0.1010 0.0894 Anti-persistent -
Three rooms flats
ARMA ARFIMA
RMSE MAE RMSE MAE The best model
Helsinki hki2 0.0117 0.0101 0.0116 0.0099 ARFIMA
Oulu oulu2 0.0461 0.0392 0.0455 0.0382 ARFIMA
Lahti 1ti2 0.0454 0.0382 0.0439 0.0351 ARFIMA
Pori pori 0.0776 0.0577 0.0779 0.0578 ARMA
Joensuu jnsu 0.0675 0.0550 0.0678 0.0554 ARMA
jnsul 0.0667 0.0578  Anti-persistent - -
Kouvola kou 0.0681 0.0558 0.0668 0.0546 ARFIMA
Hiameenlinna hnlina 0.0527 0.0405 0.0524 0.0399 ARFIMA

Notes: This table records the root mean squared error (RMSE) and the mean absolute error (MAE) values
of the two competing models in forecasting the house price returns. The estimation sample is 1988:01-2013:
Q4, whereas the forecasting sample is 2014:Q1-2018:Q4. The “anti-persistent” refers to the series with long-
range negative dependence, meaning that their estimated fractional differencing parameter d varied from
—0.5 to 0. The best model’s values are marked in bold




Comparison of

One room flats : :
EGARCH FIGARCH CGARCH time series
Regions Cities/sub-areas Order (g,p) AIC  Order(g.dp) AIC  Order(gp) AIC models
Helsinki hki 1,3 4.781 (1,0.58,3) 4.745 1) 4.758
hkil 22 5.608 1,0471) 5529 (120 558
hki2 (4R)) 4.966 (2,0583)  4.844 2,1 4939
hkid 23  5.500 (30723 5562 23 562
Tampere trel (3,2 5.694 (3,0.54,2) 5.845 1,2 5.945
tre3 32  5.812  (1,0201) 5923 1) 5961
Turku tku 23) 5.487 2,0.15,1) 5.587 1,1 5572
thul 32  5.992  (1,017,1) 6202 1) 6203
tku2 23 6.423 (1,0.54,1) 6.666 1,1) 6.701
thu3 33 6444 (30233 6.432 (1) 6505
Oulu oulu 23 5.662  (1,-0.20,1) 5.690 1,1 5.763
oulul 23  5.874  (1,0021) 6033 1) 6060
Lahti Iti (3,2 6.123 (1,0.07,1) 6.151 1,2 6.153
1ti1 23  6.556  (1,0821) 6642 1) 6683
Jyviskyld jkla (3,2 5.760 (3,0.15,2) 6.029 (3,3 5.779
iklal 31 5795 (1-0052) 5.685 (L) 5910
jkla2 3,3 6.781 (1,0.37,2) 6.706 1,1) 6.904
Pori pori 23 6746  (1-0192) 6.621 (1) 6898
poril 1,2 6.840 (2,0.13,1) 7.091 1) 7.164
Kuopio kuo 31  5.496 (20341 5713 @1  57%
kuol 21 6.329 (2,0.30,1) 6.297 2,3 6.310
kuo2 33  6.321 (20583 6593 12 6659
Joensuu jnsul 2,2 6.002 (1,-0.09,3) 6.065 1,1) 6.188
Kouvola kou 1,3  6.551 (20051 6605 12 6627
Lappeenranta Irta 2,2 6.045 (2,042,1) 5.989 1,1) 6.032
Irtal 33 6.616 (30423 6.538 (12 6672
Hiameenlinna hnlina (3,2 6.146 (1,0.10,1) 6.222 1,1) 6.264
Kotka kotka @) 6.239 (30282 6.223 (1) 6303
Two rooms flats
EGARCH FIGARCH CGARCH
Order (g,p) AIC  Order (¢,dp) AIC Order (q,p) AIC
Helsinki hki @3 4579  (1,0371) 4.576  (L1) 4601
hkil 2,3) 5.536 (1,0.27,1) 5.695 1,1 5.738
hki2 23 4719 (10731 4747 1,1) 4768
hki3 (1,3) 5.207 (2,0.081) 5.162 23 5.193
hki 1,3 5.026 (200L1) 5132 1) 5085
Tampere trel 1,3 5.011 (1,0.34,2) 5.183 1,1 5.255
tre2 33 5.633 (10272 5702 1,1) 5825
Turku tku (31 5133 (1,019,1)  5.102 1,3 5.086
thu2 23 5.854 (1,0111) 5871 1) 5890
Lahti Iti (2,20 5.056 (2,0.20,2) 5.120 21 5.176
Jyvaskyla ikla 22 4.956 (10351 5085 1,1) 5070
jklal 2,20 5.233 (2,042,3) 5.308 1,1) 5.394
ikla2 1,3 5.745  (1,0091) 5811 1,1 5793
Pori pori 2,3 5.891 (1,0.23,1) 5.923 1,2) 5912
poril 33 6.211  (20041) 6316 @1) 633
pori2 1) 6.251  (1,0171) 6328 1) 6414 Table A3.
Kuopio kuo @1 5146 (10262 5.087 (1) 5176 Tn-sample fit —

(continued) volatility models




THMA

Two rooms flats
EGARCH FIGARCH CGARCH
Order (g,p) AIC  Order (¢,dp) AIC Order (q,p) AIC

kuol (31) 5.708 (3,0.37,1) 5875 21 5.896
Joensuu jnsul 23) 6.053 (1,0.083)  6.047 1 6.176
Seindjoki seoki (1,1) 6341 (2,044,1) 6.339 1,1 6.370
Vaasa vaasa (31) 5418 (2,0.36,2) 5329 (2A)) 5.323
Kouvola kou (31) 5.948 (1,0402)  6.034 1,2 6.129
Lappeenranta Irta 3,1 5.455 (3,0.15,1) 5.511 21 5.566

Irtal (1,20 6.011 (2-0321) 5.912 (1,1 6.094
Héameenlinna hnlina 2,3) 5.769 (1,0.01,1) 5.832 1,1 5.818

hnlinal 22) 5.943 (3,040,3) 5964 1,2 6.059
Kotka kotkal 23 6.269 (2,042,2) 6408 1,2 6.404

Three rooms flats
Regions Cities/sub-areas EGARCH FIGARCH CGARCH
Order (g,p) AIC  Order (g, d,p) AIC Order(q,p) AIC

Helsinki hki 22 4.908 (1,0452)  5.011 (0W)) 5.010
hkil (31 5.826 (1,0.70,1)  5.962 (OW)) 5.968
hki3 21 5.350 (1,044,1) 5373 (080 5.404
hki4 22 5.193 (1,009,1)  5.335 1 5313
Tampere tre (32 5.134 (2,037,1) 5190 (0W)) 5.185
trel (1,2 5.759 (30.36,1) 5.743 1,2 5.828
tre2 31 6.035 (1,027,1)  6.109 (080 6.230
tre3 (1,2 5176 (1,0322) 5.087 1,2 5.199
Turku tku (32 5.419 (1,0.36,1) 5442 (0W)) 5.435
tkul 23 6.064 (1,042,1)  6.068 11 6.074
tku2 (1,3 5.798 (3,0.54,1)  5.867 (08)) 5.900
tku3 23) 5.547 (1,062,1)  5.679 1,2 5.700
Oulu oulu 23) 5.275 (30.37,2)  5.369 (080 5.395
oulul (1,2 5.680 (1,041,1) 5828 11 5.837
Lahti Iti 11 5.579 (1,007,1) 5675 (080 5.687
Itil (31 6.064 (2,011,1)  6.138 1 6.179
Jyvaskyld jkla (33 5.681 (3,0.29,1)  5.649 1,2 5.628
jklal (1,1) 5965 (2,0.382) 5.935 1,2 5.965
jkla2 (32 6.271 (30331 6.243 (0W)) 6.394
Pori poril (31) 6.504 (1,027,3)  6.455 1,2 6.618
Kuopio kuo (33 5.528 (3,0.24,1)  5.656 1,2 5.709
kuol (1,1) 6.501 (2,0.332) 6.381 11 6.503
kuo2 22 5.601 (2,0.15,1) 5872 (080 5.873
Seindjoki seoki (1,2) 6.651 (1,029,1) 6.522 11 6.688
Vaasa vaasa 21 5.776 (1,021,1) 5820 (080 5.883
vaasal 22 6.050 (2,0.16,1)  6.207 11 6.252
vaasa2 1) 6.769 (2,1.00,2)  6.955 (0W)) 6.781
Lappeenranta Irta 22 5.977 (2,0.21,1) 6.153 1,1 6.209
Irta2 31 6.326 (1,082,3)  6.465 1,2 6.583
Hémeenlinna hnlinal (33) 6.445 (2,0.58,3) 6.637 11 6.685
Kotka kotka 1,2 6.275 (3,0.69,1)  6.367 (08)) 6.344

Notes: This table records, for every city and sub-area, the estimated Akaike information criteria (AICs) for
model comparison. The favourable model is the one with the minimum AIC value. The best model’s values
Table A3. are marked in bold
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