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ABSTRACT: 

The primary purpose of this thesis is to examine the innovaBve smart mobility, and second 
life baRery soluBons, represented in the City of Vaasa’s Horizon 2020 IRIS Smart CiBes Rep-
licaBon plan. The objecBve is to find cerBtude of the Lighthouse ciBes’ demonstraBon valid-
ity and feasibility concerning the City of Vaasa’s replicaBon plan. AddiBonally, the aim is to 
study the soluBons’ potenBal to be implemented in Vaasa, and the benefit concerning the 
city’s general plans to reach carbon neutrality by 2030. The secondary object is to examine 
the soluBons’ compaBbility with the IRIS Lighthouse ciBes’ demonstraBons and gathered ex-
periences, and with the recent plans and projects executed in Vaasa related to smart and 
sustainable mobility soluBons. This thesis was commissioned by the City of Vaasa. 

European Union launched 2014 the Horizon 2020 program, aiming to encourage EU naBons 
and their ciBes to take steps to reach carbon neutrality via projects promoBng Smart City 
development. Horizon 2020’s aim is to baRle climate change by encouraging ciBes to be-
come more sustainable. By promoBng innovaBve, efficient, far-reaching and replicable solu-
Bons, from the fields of smart energy producBon and consumpBon, traffic and mobility, in-
formaBon communicaBon technology, and ciBzen engagement, the objecBve can be 
achieved. IRIS Smart City project (Integrated and Replicable soluBons for co-creaBon in 
Sustainable ciBes) was launched in 2017. The project consists of three Lighthouse ciBes and 
four follower ciBes. Vaasa has been part of the project since 2017 as a follower city. The IRIS 
project’s soluBons are first to be studied and demonstrated by the Lighthouse ciBes and then 
to be replicated by the follower ciBes. A replicaBon plan is required to examine and present 
the feasibility and validity of the integrated soluBons, to secure their implementaBon pro-
cess. 

The results of this thesis indicate that the innovaBve smart mobility soluBons, including V2G 
and 2nd life baRery schemes presented in the City of Vaasa’s replicaBon plan, are relevant to 
the City of Vaasa, by being compaBble with the city’s climate and decarbonizaBon goals and 
related sustainable mobility plans and projects executed in Vaasa in the past few years. 
These soluBons play significant role in the Lighthouse ciBes’ demonstraBons, thus showing 
great potenBal for uBlizaBon in the City of Vaasa’s infrastructure, mobility and smart grid 
development plans. The soluBons can advance Mobility as a Service concept, electric vehicle 
uBlizaBon development, and aid in decarbonizaBon, enhancing energy efficiency, creaBng 
new businesses and services, and improving the aRracBveness of the city.  
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Introduc6on 

Climate change, global warming, rising emission levels, and increased energy consump-

Bon have led naBons across the world to iniBate decisive measures to restrain, control 

and turn the negaBve development concerning the climate, environment and ulBmate-

ly the future of our planet. During the past three decades, several internaBonal climate 

agreements have been raBfied to stop the global warming, and decrease the carbon 

dioxide (CO2) levels produced mainly by energy producBon and consumpBon, traffic 

and agriculture. As governments have set goals for the next decades to reduce emis-

sions, and strive to beRer energy efficiency, they are also facing considerable chal-

lenges. Large ciBes are expanding in size and inhabitants, due to the Earth’s growing 

populaBon and the trend of urbanizaBon. Thus, polluBon levels and emissions from 

energy producBon and consumpBon are increasing. AddiBonally, the urban traffic and 

the emissions caused by it are increasing. CiBes are one of the key factors in the fight 

against climate change. MiBgaBng measures performed in the ciBes concerning energy 

producBon, consumpBon, traffic, and related emission, have a direct impact on the fu-

ture of our planet. 

European Union (EU) launched 2014, the Horizon 2020 program, aiming to encourage 

the EU naBons and their ciBes to take acBon to reach carbon neutrality through pro-

jects striving to Smart City development. Over the next 7 years, 17 different Smart City 

project received funding and were launched. Each project was led by 2-3 Lighthouse 

ciBes (LH) from various EU countries, which were joined by 4-6 follower ciBes (FC). 

Every Horizon 2020 Smart City program’s project share similar goals, although their 

soluBons to achieve them may differ. The main objecBve of each project is to baRle 

climate change by innovaBve, efficient, far-reaching and replicable soluBons, from the 

fields of smart energy producBon and consumpBon, traffic and mobility, informaBon 

communicaBon technology (ICT), and ciBzen engagement. Horizon 2020 funded IRIS 

Smart City project (Integrated and Replicable soluBons for co-creaBon in Sustainable 

ciBes) was launched in 2017. The Lighthouse ciBes in the five-year project are Utrecht 

(Netherlands), Gothenburg (Sweden) and Nice Côte d’Azur (France). The follower ciBes 
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are Alexandroupolis (Creek), Santa Cruz de Tenerife (Spain), Focsani (Romania) and 

Vaasa (Finland). 

The City of Vaasa’s climate objecBve is to reach carbon neutrality by 2030. In order to 

achieve this goal, the city has taken several measures during the past decade. It has 

been involved with the EU’s The Covenant of Mayors climate program since 2016. In 

addiBon, several projects and reports have been carried out concerning sustainable 

mobility and urban development, smart grid advancement, and ciBzen engagement. 

Furthermore, the City of Vaasa’s infrastructure and traffic planning, construcBon and 

mobility design and acBvity, and energy consumpBon and producBon, are implement-

ed in a sustainable manner, thus promoBng decarbonizaBon.  

The City of Vaasa was accepted to the IRIS Smart City project in 2017. IRIS is construct-

ed from five different TransiBon Tracks (T.T.), all including variety of integrated soluBons 

(IS), measures by which the objecBves set by the Horizon 2020 program can be 

achieved. IRIS consists of 16 soluBons. First, they are to be researched and demon-

strated by the Lighthouse ciBes, and alerwards replicated by the follower ciBes. How-

ever, in order to reach actual replicaBon and implementaBon of the soluBons, a thor-

ough replicaBon plan must be developed. In the starBng stage of the IRIS project, the 

City of Vaasa expressed its interest in replicaBng all 16 of the replicaBon plan’s inte-

grated soluBons. However, some of the soluBons have proven to be more feasible for 

the City of Vaasa to be replicated than others. AddiBonally, concerning some of these 

soluBons, considerable measures have already been taken, e.g. in the development of 

the city’s heat network, energy producBon, smart grid soluBons, and various construc-

Bon projects. 

The IRIS projects’ TransiBon Track #2 and #3 consist of soluBons concerning innovaBve 

mobility services for the ciBzens, vehicle-to-grid (V2G) technology, and uBlizing second 

life (2nd life) baReries in large-scale storage schemes. These soluBons are also of inter-

est to the City of Vaasa. Smart e-mobility schemes and the development of Mobility as 

a Service (MaaS) concept present high potenBal for replicaBon and final implementa-

Bon. V2G soluBons and uBlizing 2nd life baReries have also potenBal and significance, 
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however, more in the future perspecBve. Yet, the replicaBon plan examines them as 

well. 

Currently, traffic represents approximately 30% of Vaasa’s CO2 emissions. This share is 

esBmated to increase in the future. The IRIS project’s measures targeted at innovaBve 

mobility soluBons, and the Lighthouse ciBes’ mobility, V2G and 2nd life baRery solu-

Bons have to comply with the City of Vaasa’s general decarbonizaBon plans, and the 

designed infrastructure and traffic projects, in order to have significance and validity 

for the replicaBon plan. In addiBon, the replicaBon plan needs not only to find support 

and example from the Lighthouse ciBes’ demonstraBons and experiences. AddiBonally, 

it needs to find cohesion with the other mobility related plans and projects done in 

Vaasa in recent years. The findings and collecBve voice of these projects, and informa-

Bon about the importance of sustainable e-mobility, faster adopBon of electric vehi-

cles, and development charging infrastructure and mobility services, can aid the City of 

Vaasa’s decision-making processes and carbon free development.  
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1. Horizon 2020 

The 2008 financial crisis, and the necessity to cope with its impacts on the European 

economy, iniBated several incenBve programs and projects in the European Union. The 

most significant challenges were to find measures to stabilize the financial and eco-

nomic system in short-term, as well as to protect and create new economic growth and 

opportuniBes for the future. The EU’s economy, and compeBBveness in global scale, 

needed thorough structural reformaBon and fiscal consolidaBon. Thus, research and 

innovaBon became top prioriBes in the new Europe 2020 strategy, receiving significant 

funding and investments. Based on the strategy, the European Union would strive to 

generate substanBal amount of new smart technological and scienBfic breakthroughs, 

hence creaBng new business opportuniBes and jobs via innovaBve products and ser-

vices. FighBng climate change and adapBng to its impacts, reducing emission levels, 

reforming energy producBon and efficiency, and advancing sustainable and compre-

hensive economic growth, became the basis of the Europe 2020 strategy (European 

Commission, 2011 & 2017). 

The EU ushers its member states to turn away from non-renewable, fossil-fuel based 

energy producBon, to sustainable and renewable energy, e.g. wind, solar, hydro, wave, 

geothermal energy and waste incinerated heat. The endeavors to achieve carbon neut-

ral socieBes require various asserBve acBons, including developing ciBes to become 

more environmentally friendly, i.e. smart. Smart ciBes uBlize innovaBvely both central-

ized and decentralized energy producBon with strong renewable energy sources (RES) 

involvement, and emphasizing energy efficiency and sustainability. Smart ciBes exploit 

smart grid and micro grid concepts, electrified transport, i.e. e-mobility, and robust in-

formaBon communicaBon technology, to reduce their carbon footprint. Furthermore, 

new technologies and innovaBons provide tools for more efficient and encompassing 

energy services for these ciBes’ ciBzens and businesses. In 2011, the EU’s Head of State 

and Government, urged the European Commission to combine all of the exisBng EU’s 

funding for research and innovaBon under one joint strategic framework. The extensive 

cooperaBon and consultaBon between the European Parliament and mulBple key 

stakeholders lead to the design of the Horizon 2020 program, which was eventually 
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launched in 2014 (European Commission, 2011 & 2016; Garrido-Marijuan et al., 2017; 

The IRIS Smart CiBes ConsorBum, 2019). 

The EU is commiRed to an ambiBous decarbonizaBon of its economy and environment. 

Diminishing harmful emissions, while constantly adapBng to the growing climate and 

environmental pressure and urbanizaBon, are vitally important measures in achieving 

this objecBve. Once iniBated, the Horizon 2020 program became the Europe 2020 

strategy’s flagship iniBaBve. The Horizon 2020 is the biggest research and innovaBon 

program in the history of the EU, being the main instrument and framework to enable 

the implementaBon of the EU’s research and innovaBon undertaking. The program’s 

architecture was deliberately designed to be simple, in order to avoid unnecessary bu-

reaucracy, and to facilitate most effecBvely the access and launch of the parBcipaBng 

projects. The Horizon 2020 incites market driven innovaBons and research projects, 

thus aiming at direct economic incenBves (European Commission, 2011, 2017 & 2020). 

By combining all exisBng EU research and innovaBon funding, the Horizon 2020’s ac-

cumulated available funding when launched was €77 billion. This amount was to be 

addressed to various EU smart city projects to be iniBated over the next seven years, 

2014-2020, each to have a duraBon of five years. Thus, although the Horizon 2020 

came to its end in 2020, its funded projects carry on their smart city development and 

the Horizon 2020’s legacy to the next decade and beyond. It is also the highest aspira-

Bon of Horizon 2020, that each of its funded smart city project and each city involved, 

conBnue their work to evolve towards ever smarter and more sustainable city envi-

ronments in the future, and to inspire other ciBes to follow their example of sustain-

ability and low-carbon development (European Commission, 2011, 2017 & 2020).  

The Horizon 2020’s foundaBon and main objecBve is to promote sustainable develop-

ment, which received nearly 60% of the program’s preliminary budget. The rest of the 

35% of the budget was designated to consolidated climate and environmental objec-

Bves. Principally, the Horizon 2020’s main-focus areas receiving funding were:  
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• To build a low-carbon and climate resilient future. 

• Encourage circular economy and connecBvity in environmental and economic fields. 

• Promote robust digitalizaBon of European industry and services. 

• Develop the adopBon of electric vehicles and their penetraBon to automoBve mar-

kets, next generaBon baRery technologies, and schemes to advance the progress of 

carbon-free society. 

The Horizon 2020 had several mutually reinforcing themaBc secBons to support its en-

deavors, including excellent science, industrial leadership, societal challenges, innova-

Bon in small and medium sized enterprises, access to venture capital, and spreading 

parBcipaBon with excellence and knowhow. Thus the Horizon 2020, through funding 

for potenBal smart and sustainable projects, it aimed to ensure the EU’s long-term 

compeBBveness via state-of-the-art research and innovaBon acBvity. Moreover, the 

program strived to make the EU more profitable for investments and businesses relat-

ed to smart technologies and innovaBons (European Commission, 2011, 2017 & 2020)  

.  

By securing sufficient financing, the Horizon 2020 was able to maximize the growth po-

tenBal of the European smart energy technology, research and innovaBon work, and 

sustainable development of businesses. In addiBon, the Horizon 2020 approached so-

cietal challenges by distribuBng funds to following focus points:  

• All-embracing, innovaBve, digital, secure and well-being socieBes 

• Climate acBon, resource efficiency and raw materials 

• Smart, secure, clean and efficient energy  

• Smart, green, electrified and integrated transport 

(European Commission, 2011 & 2020)  
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2. Smart Ci6es 

Currently, more than 50% of the world’s populaBon is concentrated in ciBes, or in their 

close proximity. It has been esBmated, that by 2050 that share has risen by addiBonal 

20%. In 2016, there were 28 megaciBes in the world, with populaBon more than 453 

million combined. According to many esBmaBons, the number of these megaciBes will 

be over 40 by 2030. UrbanizaBon is a global megatrend, which has direct effects on 

climate change, rising emission and polluBon levels, and the requirements of energy 

producBon, distribuBon and consumpBon. AddiBonally, urbanizaBon’s impacts on in-

frastructure requirements and land use, residenBal and transport requirements, and 

sustainability on all of its levels: environmental, economic, social and cultural (Sloman, 

2017; Cassandras, 2016). 

The accelerated urbanizaBon and growing environmental awareness have risen con-

cerns and demands to develop ciBes smarter, with the ability to be constantly evolving. 

There is a need for ambiBous sustainability strategies, which aid ciBes intelligently and 

comprehensively by integrated technological soluBons, and which can be demonstrat-

ed on a larger scale, to reach their smart city objecBves. Smart city development pro-

motes innovaBve energy soluBons, smart grid and RES development, and strives to ad-

vance sustainable transport modes, thus affecBng on economic and social levels, and 

enhancing quality of life (QoL). A smart city uBlizes ICT to reach more efficient and in-

telligent standards in achieving carbon neutrality. It preserves natural resources, and 

reduces land use by mature and jointly executed coordinaBon, planning of in-

frastructure and transport design. A smart city strives for implementaBon of green and 

innovaBve technical soluBons, leading to savings in cost and energy, and promoBng 

beRer service delivery (Cassandras C.G., 2016; IEC, 2014; Ferrer et al., 2017; The IRIS 

Smart CiBes ConsorBum, 2019). 

A city can evolve smarter by transforming the exisBng urban infrastructure gradually to 

meet the requirements of a smart city. In addiBon, a city can design and construct new 

city districts, infrastructure and environment by uBlizing the smart city procedures and 

soluBons. These districts will act as example areas, i.e. living labs, and consequently 
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cause changes in adjacent city districts towards smart city development. The smart city 

advancement should have a holisBc approach on sustainability. Measures to reduce a 

city’s impact on environment and to expedite the integraBon of intelligent and efficient 

use of technologies with the urban infrastructure outright form the backbone of envi-

ronmental sustainability. Economic sustainability signifies aRempts to develop a city’s 

economic potenBal, new financial and business models and innovaBons, and advance 

more efficient and annexed service and infrastructural soluBons. A smart city’s aRrac-

Bveness for people, businesses and capital, improves the overall employment, business 

and service possibiliBes, when social sustainability is funcBoning properly. Thus, cost 

reducBons, higher stability and security, and enhancement of quality of life can be 

achieved (IEC, 2014; Ferrer et al., 2017). 

In order to plan, capitalize and implement the best operaBng smart city soluBons, new 

methods, technologies and innovaBons are required. These include efficient and af-

fordable energy producBon based on RES, and invesBng in the development of e-mo-

bility soluBons, smart charging and energy storage schemes, and advanced ICT solu-

Bons. AddiBonally, key stakeholder engagement is relevant, including poliBcal leaders, 

government and city officials, organizaBons, service operators and soluBon providers, 

investors and consumers. Furthermore, local level ciBzen engagement has a paramount 

role in smart city development. By these means, the conBnuance of the smart city de-

velopment can be secured, including the opBmal end-result of ciBzen-awareness and 

aRracBve city environment (IEC, 2014; Ferrer et al., 2017). 
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Figure 1. Smart city concept (Singh, 2014).  

Smart city development can face challenges. They can be financial, technical, social or 

administraBve. CollaboraBon between different stakeholders may prove to be prob-

lemaBc. LasBng and successful partnerships might be difficult to establish. Disagree-

ments about planning, means, prioriBes and objecBves might emerge. Capital may be 

insufficient, or the procurement rules are not appropriate or clear to everyone in-

volved. There may be issues with insufficient standards, regulaBons, even laws. The 

required infrastructure may not be mature enough to hold the integraBon of a planned 

smart soluBon. Lack of required competence or deficiency of necessary local adminis-

traBve capacity may hinder the development. Resistance to change might occur from 

any of the key stakeholder groups. Moreover, the successful development of a smart 

city soluBons and technology, which are easily adoptable by the society, user-friendly 

and reliable, is not self-evident (Ferrer et al., 2017; Van Steen, 2019, IEC, 2014).  

Designing the different sectors of a smart city, indicated in the Figure 1, and predicBng 

the requirements, consequences and benefits of the smart transformaBon, can be 

challenging. In order to evade unnecessary hindering factors and challenges, well-de-
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signed and thoroughly carried out interoperability is vital, alongside with resorBng to 

internaBonally agreed standards and technical specificaBons. Successful coalescence of 

smart infrastructure, technology and exisBng environment is imperaBve for value cre-

aBon and in order to reach the objecBves of a smart city’s predesigned framework. By 

joining horizontal and verBcal integraBon methods, beRer value, robust quality stan-

dards and interoperability can be obtained. Thus, the stakeholder involvement can be 

strengthen, necessary supply chains enhanced and boRlenecks avoided. This is also 

beneficial in order to keep the related costs under control, advance the efficiency of 

the measures required, and ulBmately support and improve the smart energy tech-

nologies’ business environment. By uBlizing both boRom-up and top down strategies 

for knowledge, informaBon and intelligence processing, a smart city’s measures for 

sustainability, service development, data centricity and successful ciBzen engagement 

can be achieved more efficiently. Thereby, the smart city development benefits from 

immediate feedback from its environment and key stakeholders, all joining and being in 

contact with the smart city progress and inducements (IEC, 2014; Ferrer et al., 2017; 

Van Steen, 2019). 

2.1. Smart Grid 

The infrastructures of power systems, from electricity generaBon to uBlizaBon industri-

ally, commercially and residenBally, are currently in the state of significant change. The 

power systems, i.e. grids, are required to evolve, to become smarter. Today’s power 

grid needs to be reliable and efficient, resilient and flexible, secure and technically ad-

vanced, controllable and customer friendly. The main drivers for these requirements 

are the rising global populaBon, urbanizaBon, and environmental issues, e.g. the cli-

mate change, global warming and increased emission levels. They all have an influence 

on internaBonal and naBonal energy and environmental policies, laws and regulaBons 

around the world. AddiBonally, advances in technology, and increased uBlizaBon of re-

newable energy sources steer the development of the power systems towards a new 

age (Malik, 2013; Rodriquez-Molina et al., 2014; Varaiya et al., 2011). 



19

The start of power systems dates back nearly 140 years. The first power staBon in the 

world, Edison Pearl Street GeneraBon StaBon, located in lower ManhaRan, New York, 

USA, and started its operaBon in 1882. Since then, power systems have developed into 

large central power generaBng staBons, supplying electricity through high-voltage net-

works to local distribuBon systems, serving all levels of consumpBon: industrial, com-

mercial and residenBal.  

A tradiBonal power grid uses large power plants to produce raw electricity. The power 

plants are directly connected to the high voltage (HV) networks through centralized 

synchronous generators with high inerBa. The HV networks distribute power to medi-

um voltage (MV) networks and industrial customers through HV/MV substaBons. MV/

LV distribuBon substaBons conduct power to low voltage networks with commercial 

and domesBc customers. Transmission system operators (TSO) provide the power grid 

infrastructure, covering long distances. TSOs are also in charge of the offer and demand 

balance of the grids. DistribuBon system operators (DSO) are responsible for the fea-

tures related to end-user connecBvity concerning the power network (Rodriquez-Mo-

lina et al., 2014; Malik, 2013; Varaiya et al., 2011; Ye, 2018). 

A modern power system’s ideal requirements are high reliability, quality, flexibility and 

efficiency in energy supply. AcBve monitoring and fast reacBon to any changes in the 

power delivery system are also uncondiBonal qualificaBons. Reliability is needed in 

balanced electricity supply, improved energy efficiency, and constant voltage and fre-

quency control. Moreover, increased integraBon of renewable power generaBon, elec-

tricity storage systems, e.g. baRery-energy storage soluBons (BESS), and the rising 

number of EVs, set their own demands for power grids. Furthermore, digitalizaBon and 

increased impact of new technology, wireless communicaBon, and new generaBon se-

curity threats, raise the level of requirements for the funcBonality of current power 

systems even higher. Modern power grid is required to be self-healing in case of power 

disturbances, and resilient to stand all aRacks, physical and cyber. Efficiency in provid-

ing local and system-wide technical services and endeavour to minimize network losses 

are essenBals as well. 
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Unfortunately, the tradiBonal electric power system infrastructure is not designed to 

meet these vast requirements. It is designed on the operaBng model, where electricity 

flows primary in one direcBon, from HV generaBon sources to MV and LV level con-

sumpBon. It has limited cross-border interconnecBons, relying on centralized control. 

The tradiBonal power systems are dependent on non-renewable energy sources (coal, 

gas, petroleum), which cause approximately 40% of the global carbon dioxide (CO2) 

emissions, thus having severe negaBve impacts on the environment. Furthermore, tra-

diBonal power systems are technically opBmized for regional power adequacy, and are 

able only for limited automaBon and situaBon awareness. They lack customer-size data 

to manage and reduce energy use sufficiently for today’s standards (Malik, 2013; 

Rodriquez-Molina et al., 2014; Isaacs, 2004; European Commission, 2006; Varaiya et al., 

2011).  

European Commission’s defines a Smart grid as an electricity network that can cost ef-

ficiently integrate the behaviour and ac8ons of all the users connected to it - generators, 

consumers and those that do both - in order to ensure an economically efficient, sus-

tainable power system with low losses and high levels of quality and security of supply 

and safety (European Commission 2011). 

Smart grids - provide enhancements and expansion to the tradiBonal power grids, their 

maintenance and operaBons, by being flexible, opBmal and bidirecBonal. As illustrated 

in the Figure 2, Smart power generaBon is coordinated, and locally managed, having 

full integraBon of distributed energy generaBon (DG) with RES (wind, solar (PV), hydro, 

wave, geothermal, bio and waste-energy), alongside with large-scale centralized power 

generaBon. Smart grids provide enhanced sensory and control capacity, designed to 

deliver and perform at high-speed, in near- or real-Bme, in order to adjust to integ-

rated DG, RES, energy storage units, EVs, direct consumer parBcipaBon in energy man-

agement (consumpBon and producBon), and efficient communicaBon appliances. 

Smart systems aim to provide user specified secure, quality and reliable power supply 

for the digital age. The customers are provided with beRer tools to manage their en-

ergy consumpBon, not only to act as consumers but having the ability to perform as 

energy producers as well. With improved economic producBvity, high-class demand 
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side management (DMS) and customer-driven value-added services, consumers can 

benefit from cost savings and increment in quality of life. 

 

Figure 2. Smart grid components (Lohrmann, 2017).  

Minimized environmental impact can be achieved by maximizing safety and sustainab-

ility. Smart grid’s operaBon and technology are designed to meet the demands of mod-

ern cyber security, and to assure long-term operaBon of the whole power system. 

Latest advances in wireless communicaBon technology and intelligent informaBon 

management systems are uBlized, in order to secure the most robust and dependable 

operaBon, control and monitoring (Malik, 2013; Rodriquez-Molina et.al, 2014; Isaacs, 

2004; European Commission, 2006 & 2011). 

Smart grid operaBng model includes also the concept and acBvity of microgrids and 

virtual power plants (VPP). Both have become more common by the development and 

decentralizaBon of the power systems. A microgrid is a local cluster of electricity loads 
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and sources, operaBng connected and synchronously with the actual wide area power 

system. A microgrid can be disconnect to "island mode” if necessary, thus funcBoning 

autonomously apart from the actual grid. Microgrids’ features include heavy integra-

Bon of DG sources and RES. Prevalence of microgrids has dramaBcally increased during 

the past 12 years when various communiBes, commercial buildings, public insBtuBons, 

universiBes and military installaBons have started to uBlize the opportuniBes of de-

centralizaBon of power systems.  

A virtual power plant is a coaliBon or system of suppliers, which generates power for 

independent consumpBon, and takes acBvely part in energy sales by uBlizing RES, en-

ergy storage systems (ESS) and cloud-based technology. VPP acts as one large, virtual 

and controllable power plant, ensuring its suppliers an opportunity to operate as a uni-

fied and flexible resource in the energy market, simultaneously achieving energy self-

sufficiency.  

Microgrids and VPPs have in common their compilaBons and opBmizaBon of distrib-

uted energy resources. The biggest difference is that microgrids have a confined net-

work boundary and ability to operate in island mode. Whereas, VPPs can stretch over 

much wider geography, being able to alter size depending upon real-Bme market con-

diBons. The increasing number of microgrids and virtual power plants bring more flex-

ibility to the power systems. The most relevant drivers for this development have been 

the evoluBon of the smart grid concept and its supporBng technological innovaBons, 

including DER, reducBon in costs of consumer sized solar energy and energy storage 

technology. In addiBon, efforts to cut down energy costs in general, and global policy 

efforts to reduce greenhouse gas emissions have contributed to the increment of mi-

crogrids (Hanna et al., 2017; Rodriquez-Molina et al., 2014; Ye, 2018; Bavrani et al., 

2017). 

The smart power systems allow the electricity markets to develop into plagorms oper-

ated by large number of different market actors. The trend is moving away from the 

tradiBonal wholesale market structure towards retail markets, including acBve con-

sumers with energy producBon capabiliBes to act as producers. The level of compeB-
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Bon increases, thus enabling beRer incenBves for cost efficiency and enhance innova-

Bons. The consequences are extensive and require capability for greater flexibility in 

the interacBon between demand and supply. A smart grid does not focus solely on the 

wholesale market, instead it includes all market segments, including trading. A smart 

power system takes into account the end-user behaviour, hence affecBng the energy 

market as a whole. The posiBve outcomes include requirements for market operaBons’ 

increased efficiency, reducBon in energy costs, and the development of the future’s de-

carbonized grid. AddiBonally, consumers gain the possibility by smart meters and two-

way communicaBon, to enhance their energy consumpBon management, cut costs and 

act as energy producers for the grid, with measures such as PV energy, separate energy 

storages and/or with EVs through their baReries (Greve, 2016; Green & Webb, 2016; 

Ye, 2018).  

In smart grids both producers and consumers are making decisions concerning con-

sumpBon, based on prices signalling Bmely the true marginal cost of changing energy 

demand, instead of having tradiBonal flat-rate tariffs with no or liRle possibility to con-

tribute to the energy costs. This dynamic and real-Bme pricing allows the energy mar-

kets to fully exploit and reward its generaBng capability, thus giving way for flexible and 

smart “energy-only” market, promoBng new business models.  

One possible model, which delivers more control and cost effecBveness to network 

providers and transparency of prices for consumers, connects these two operators in 

an evolved market infrastructure, focusing on the potenBal of trade of energy service 

rather than just simply trading energy. The network operators are able to trade more 

efficiently on mulBple plagorms, and with mulBple operators: industrial, commercial, 

domesBc, microgrids, VPPs, EVs etc. AddiBonally, technology companies can sell power 

alongside the meters and/or other devices controlling the consumpBon (Greve, 2016; 

Green, 2016; Ye, 2018). 
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2.2. Smart Transport 

Some of the biggest transport related challenges in today’s growing ciBes are conges-

Bon, polluBon, accidents, noise and scarceness of public space. Enhancing the devel-

opment of diverse transport systems and technology, require deployment of Mobility 

as a Service concept (MaaS), urban mobility governance, and real-Bme data collecBon 

and management. Thus, beRer traffic and infrastructural planning and management 

can be achieved. AddiBonally, there are maRers of social nature to be considered, such 

as beRer ability to improve traffic safety, enhance environmental performance and at-

tracBveness, and advance informaBon management and decision-making. UlBmately, 

the goal is more sustainable and well-funcBoning urban surroundings, with the ability 

to provide beRer quality of life to the ciBzens by efficient, secure and sustainable mo-

bility, energy technology and ICT soluBons (Van Oers et al., 2020; Surdonja et al., 2020).   

Through state-of-the-art energy technology, sustainable transport and ICT soluBons, a 

smart city benefits from improved and precise quality and quanBty measurements, 

aided by real-Bme big data management, analyBcs and modelling. Consequently, 

gained development in knowledge capacity building, transfer and lessons learned, en-

able and amplify the city’s smart aspiraBons. Smart transport, both individual mobility 

and public transport, seek to support and exploit ways of e-mobility systems, conBnu-

ous mobility chains and new mobility services, which are not only efficient and user-

friendly, but cost-effecBve as well (Van Oers et al., 2020; Porru et al., 2020; Dudyck & 

Piatkowski, 2018).  

Private and public transport’s transiBon from internal combusBon engine (IC) vehicles 

to electric, gas and bio fuel vehicles helps to decrease fossil fuel consumpBon, hence 

helping to achieve carbon neutrality in smart ciBes. Transmission from private car 

ownership towards car sharing, i.e. car-pooling, and enhanced smart public transport 

services and increased connecBvity, result in more sustainable transport in general, 

with decreased volume and emission levels, opBmized to meet the demands and re-

quirements of inter-modality. Smart public transport systems is highly flexible, provid-

ing consumers more versaBlity in transport modes, routes, schedules, service providers 
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and payment systems (Van Oens. et al., 2020; Porru et al., 2020; Dudyck & Piatkowski, 

2018).   

UBlizaBon of advanced EV technology and related soluBons, e.g. smart charging and 

V2G schemes, with opBon of combining RES and/or remote energy storage systems, 

are all part of a smart mobility’s structure and integraBve soluBons. FuncBoning MaaS 

concept provides aRracBve and sustainable alternaBve for private transport and vehi-

cle ownership. It avails of intelligent mobility systems, e.g. data management, ICT and 

real-Bme informaBon access. Costs concerning traffic and travel can decreased, con-

gesBons be miBgated, and Bme used in travelling reduced. AddiBonally, the safety fac-

tors of traffic can be enhanced, and polluBon and noise levels reduced. Furthermore, 

smart mobility contributes to the overall design of smart ciBes by transport network’s 

efficiency, beRer management of parking spaces, and advancing public transport’s us-

age rate and its supporBng policies (Van Oers et al., 2020; Surdonja et al., 2020; Dudyck 

& Piatkowski, 2018; Barone et al., 2014).    

  

2.3. Electric vehicles and e-mobility 

Electric vehicle (EV) was invented already in the early 1830’s, decades before the first 

IC engine vehicle invenBon, taking place later that same century. Electric vehicles were 

common unBl the 1930’s, when their share out of the automoBves started to diminish, 

due to their insufficient driving power, overall slowness, short driving range and high 

price. The IC vehicles had reached much higher popularity during the 1920’s, because 

of beRer performance factors, affordability, and invenBon of mass-producBon. It was 

not before the early 1990’s, aler sufficient advancements in power electronics and mi-

croelectronics technologies, when the hybrid EV producBon could start in the United 

States (Sharma et al., 2020; Pavic et al., 2020; Mullan et al., 2012; Matulka, 2014).  

During the first two decades of the 21st century, the demand for EVs has increased 

steadily. The main reasons for this development have been general increment in envir-

onmental awareness, EVs’ much lower carbon emission and air polluBon levels, con-

siderably lower oil use, reducBons in model prices, and improvements concerning 
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power performance, driving range, charging and safety. AddiBonally, external factors 

such as fuel prices, availability of charging staBons and development in consumer char-

acterisBcs have improved the advancement of EVs adopBon and penetraBon into 

automoBve markets around the world. Moreover, the poliBcal, economic and environ-

mental accord over the risks of transport systems’ dependency on petroleum-based 

fuels has contributed to firming the foundaBon for EVs’ ascent (Sharma et al., 2020; 

Pavic et al., 2020; Mullan et al. 2012; Matulka, 2014).  

There are three types of electric vehicles. 

2.3.1  Hybrid electric vehicles (HEVs) 

HEVs represent the most proven and market established EV type. A HEV is powered by 

an IC engine, which receives addiBonal power from an electric motor. The uBlized elec-

tricity is produced either by the IC motor running an electric generator, or from kineBc 

energy, which is harnessed via regeneraBve breaking, and consequently transformed 

into electricity. HEVs are further divided into three subtypes. 

• Series HEV: a combusBon engine drives an electric generator, which charges a 

baRery, providing power to the electric motor. Only the electric motor supplies 

power to the wheels. No mechanical connecBon between the IC engine and the 

transmission exists, thus making it possible for the IC engine to operate at max-

imum efficiency. 

• Parallel HEV: an IC engine and an electric motor are connected parallel for me-

chanic connecBon. The IC engine is the primary power source and the electric 

motor operates as a backup power source or for extra torque. 

• Series-parallel aka combined hybrid HEV: has features from series and parallel 

HEV types. Series-parallel is the most complex and expensive system of the 

three HEV types (Pavic et al., 2020; Quinn et al., 2010; Habib et al., 2015).  
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2.3.2 Plug-in hybrid electric vehicles (PHEVs) 

PHEVs have the capability to run on gasoline or electricity. The ability to use baReries 

to power an electric motor, which can operate as an alternaBve power source and in-

dependently from IC engine for the vehicle, result in petroleum usage reducBon and 

decreases in CO2 emissions. A PHEV has to be plugged into the power grid for charging. 

Thus, it possesses the ability to operate in V2G mode, aler required modificaBons 

have been done for the vehicle.  

2.3.3 BaYery electric vehicles (BEVs) 

The most advanced electric vehicle type is the baRery electric vehicle (BEV), i.e. pure 

electric vehicle. BEVs use solely baReries and electric motor to run and have no IC mo-

tor. BEVs have to be charged as PHEVs. Some of the newest BEV models have the ability 

to operate in V2G mode, and the others can be modified for the ability. BEVs have 

more limited driving range than PHEVs (Pavic et al., 2020; Quinn et al., 2010).  

PHEVs’ and BEVs’ technologies are designed to enable unidirecBonal charging from the 

grid, i.e. grid-to-vehicle (G2V). However, both of these EV types can be designed to en-

able bidirecBonal charging, i.e. vehicle-to-grid (V2G) mode, thus been able to supply 

power from the baReries to the grid. Thus, EVs with V2G capability can be uBlized to 

support the power grid as distributed power storage and supply, and in various ancil-

lary services, e.g. voltage and frequency control, and load following (Drude et al., 2014; 

Sharma et al., 2020).     

BaReries are the most significant and expensive components of PHEVs and BEVs, con-

cerning their compeBBveness. Issues such as cost and climate condiBons are of con-

cern with baReries, as well as energy density and power density, since they affect the 

allowed driving range. BEVs’ driving range can vary from 100 km to 500 km, depending 

on the baRery capacity. AddiBonally, the uBlized baRery technology affects a baRery’s 

cycle life. Lithium-ion based baReries are best suitable for EVs purposes (Lithium-ion 

aka Li-ion or LIB), parBcularly Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) 
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and Lithium Titanate aka LTO (Li2TiO3) baReries. Other lithium based baRery technolo-

gies include Lithium-iron phosphate aka LFP (LiFePO4), Lithium-Sulfur (Li-S) and Lithi-

um-air (Li-O2) baReries. Although these lithium baRery models are also suitable for EV 

use, they are more advanced and expensive than common Li-ion baReries, and sBll in 

the research stage (Sharma et al., 2020; Pavic et al., 2020; BaRery University, 2021). 

Since there are various different sizes and model types of EVs, various different baRery 

models exist as well. The most notable feature of a baRery is the power it can provide. 

Demanding operaBng temperatures, i.e. extreme hot or cold, have the effect to de-

grade a baRery, thus acceleraBng the loss of its capacity and reducing its cycle life. 

Heat has an impact on the baRery by reducing its life, and cold decreases its perfor-

mance temporarily. The most important EV baRery qualiBes are trip-length capability, 

amount of peak power delivered during acceleraBon, and energy harnessed during 

breaking. EV’s baRery management system (BMS) has mulBple tasks to manage. BMS 

esBmates the baRery’s state of charge (SOC) and state of health (SOH) condiBons, and 

monitors and balances the baRery’s cell acBvity. In addiBon, the BMS manages the bat-

tery’s thermal condiBon, safety and protecBon. Moreover, the BMS is the interacBng 

component to the charging staBon, implemenBng an opBmal charging profile for the 

baRery (BaRery University, 2021; BaronB et al., 2016; Sharma et al., 2020). 

A small electric vehicle is usually equipped with a 12–18kWh baRery. A mid-sized fami-

ly sedan baRery has 22–32kWh of power. The most powerful EV models are equipped 

with large-size baRery, capable of producing 60–100kWh, providing extended driving 

range and higher performance. Most EV baReries are guaranteed to have a life span of 

8-10 years or approximately 160 000 km.  

Development in baReries’ cost, lifespan, reliability, sustainability, safety, usability and 

capacity, are all factors determining EVs’ overall success and advancement in automo-

Bve markets globally. AddiBonally, improvements and design of new baRery material 

and chemistry soluBons play a crucial role. For example, designs of baRery packs, ad-

vancements in lithium-ion and nickel metal hydride (NiMH) technologies and manufac-

turing processes, and baReries’ recyclability and end-of-life soluBons (e.g. second-life 
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baRery schemes), will have significant impact on EVs’ future evolvement and success 

trajectory (Pavic et al., 2020; BaronB et al., 2016; BaRery University, 2021). 

2.4. Smart charging 

The fast rising number of EVs require wider, reliable and more comprehensive charging 

infrastructure. As the number of EVs increases, their potenBal impacts on power grids 

ascends as well. Hence, efficient smart charging schemes and management become 

essenBal. In smart charging, an EV and a charging device are in data connecBon. This 

connecBon is further connected with a charging operator via the charging device. The 

charging operator/the owner of the charging device is able to monitor, control and re-

strict the charging remotely, thus opBmizing the energy consumpBon effect to the grid. 

If charging is not managed controllably, a large number of EVs can cause severe peak 

loads to the power grid by increased power and energy demand, hence having signifi-

cant impact on the power quality. Other potenBal effects to the power grid are possible 

negaBve impacts on the various system components, e.g. transformers. Without regu-

laBon and control, charging simultaneously a large number of EVs, i.e. fleets, can cause 

disrupBon to the stability of the whole power system. The rising demand of electricity 

requires enhanced control of DMS, having the capability and tools to uBlize the capaci-

ty harnessed from EVs, their ability of acBng as distributed energy storages and power 

generaBon units for the grid (BaronB et al., 2016; Mullan et al., 2012; Habib et al., 

2015; Sharma et al., 2020). 

Different EV charging technologies are: 

• UnidirecBonal vs. bidirecBonal: 

The charging of EVs can either be unidirecBonal or bidirecBonal. In the first model, aka 

grid-to-vehicle (G2V) soluBon, an EV uses the power grid to charge its baRery. In the 

later model, the EV baRery can also be used to supply power to the grid, i.e. V2G solu-

Bon. 
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• On-board vs. off-board chargers: 

When an EV is equipped with an on-board charger, it can be charged anywhere, where 

a power outlet (plug-in) exists. On-board charger adds more weight to an EV. Whereas, 

an off-board charger requires a charging point or a staBon with power raBng of approx-

imately 50kW to charge the baRery of an EV. 

• Integrated chargers: 

An EV’s electric drive system components take part in charging, which reduces the size 

of an on-board charger, or it is not required at all. Thus, reducBons in cost, weight and 

space usage can be achieved. 

• Wireless aka dynamic charging: 

Electric power is transferred wirelessly to an EV through a power field. The system re-

quires a large size antenna array, which can be supported by inducBve or magneBc res-

onance coupling, microwaves, or laser radiaBon. However, wireless charging is sBll in 

the research stage, and its expenditures are high. Yet, once operaBonal and widely 

available, it has the potenBal to revoluBonize the whole transportaBon system (BaronB 

et al., 2016; Sharma et al., 2020).    

In charging, the current and voltage needs to be constantly controlled. This can be best 

achieved by either keeping the current or voltage constant. AddiBonally, different lev-

els of charging exist. Level 1 charging or slow charging is designed for residenBal out-

lets, for on-board charger models with 120V AC ouRake. Level 2 aka semi-fast charging 

is suitable for charging staBons, and are capable for five Bmes faster charging than the 

level 1, thus being able to fully charge an EV in 5-7 hours. Level 3 aka fast charging uses 

DC power with constant current and voltage. Its charging power exceeds 100kW, re-

quiring charging technology of considerable size, thus being suitable only for off-board 

charging. Fast charging is opBmal, e.g. in public transport and commercial logisBcs us-

age, where baRery charging should not last more than 30-60 minutes (Sharma et al., 

2020).   
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However, smart charging soluBons require new kind of charging schemes: 

• Uncontrolled, Bme-of-use smart charging: 

Smart charging based on opBmizaBon of Bme-of-use is the simplest form of smart 

charging. It incites the end-users to uBlize off-peak periods for charging from peak 

Bmes. AddiBonally, it is relaBvely straighgorward to implement Bme-of-use charging, 

since its external stakeholder control does not exist. Time-of-use charging has proven 

its effecBveness in delaying EV charging unBl off-peak periods at low EV penetraBon 

levels (Paulraj, 2019; Virta, 2021). 

• UnidirecBonal controlled charging (V1G): 

Either EVs or the charging infrastructure can adjust their charging rate in unidirecBonal 

controlled charging. The grid operator oversees the charging process via controlling 

signals. Daily esBmaBon of the local available charging capacity is provided by Open 

Smart Charging Protocol (OSCP), and Open Charging Point Protocol (OCPP) to the 

Charge Point/Spot Operator (CPO), which adjusts EVs’ charging profiles to the available 

charging capacity. 

• BidirecBonal V2H / V2B / V2X smart charging: 

Smart charging scheme, which provides an EV baRery’s power supply to be connected 

to its close surroundings, performing as a back-up power source increasing self-con-

sumpBon. Hence, it does not stress the actual power grid but funcBons as an alternat-

ive power source. This scheme can add flexibility and reliability to, e.g. homes (V2H), 

buildings (V2B) or some other objects’, e.g. facility, appliances, lighBng etc., electricity 

consumpBon (Paulraj, 2019; Virta, 2021).  

• BidirecBonal Vehicle-to-grid (V2G): 

With V2G soluBon, an EVs can be uBlized as a distributed power source and storage for 

the grid. Thus, it is more evolved smart charging method than controlled V1G or bidi-

recBonal charging for self-consumpBon. Furthermore, in V2G smart charging/discharg-

ing, EVs’ baReries can be uBlized in ancillary services, including voltage support and 
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frequency control, load following and funcBoning as secondary reserve for grid flexibili-

ty and reliability. In V2G smart charging, the TSO is capable of purchasing energy from 

EV owners if the peak demand requires it. Hence, V2G has higher commercial value, 

which can encourage consumers to acquire an EV (Paulraj, 2019; Virta, 2021; Habib et 

al., 2015). 

2.5. Vehicle-to-grid solu6ons 

Through V2G, EVs can be uBlized as an addiBonal power source to the grid. With great 

number of EVs, i.e. fleets, V2G operaBng model reduces the dependency on oil, and 

lowers CO2 emissions. AddiBonally, V2G has the capability to enhance stability, reliabili-

ty, efficiency, and generaBon dispatch of a distributed network, thus increasing the en-

Bre power grids’ performance. Majority of the EVs are not uBlized in traffic all the Bme. 

Instead, they spend vast amounts of Bme parked, where they could be connected to 

the grid. Once staBonary, the baReries of EVs are not uBlized for driving, thus forming 

an enormous source of distributed energy storage, which could be used as an exten-

sion and support to the electricity supply system, in smaller or larger scale. The baRer-

ies represent zero-cost energy storage for the grid use, since they already have been 

purchased for the EVs’ use (Mullan et al., 2012; Habib et al., 2015; Quinn et al., 2010).  

V2G concept has major benefits. Large amount of EV baReries have the capacity to 

store excess electricity during low-demand hours, and release it back to the grid when 

the energy demand is at its highest, as illustrated in the Figure 3. EV baReries have 

rapid response Bme for storing energy, and they are capable of providing low-cost aid 

through various ancillary services, e.g. voltage support, frequency regulaBon, load fol-

lowing and aiding in black starts. In addiBon, EV baReries are able to increase and en-

hance renewable energy generaBon to the grid, e.g. by interconnecBon with smart 

homes’ photovoltaic (PV) panels in urban areas, thus balancing and adding stability to 

the power system. By and large, V2G soluBon can also generate revenue for the all par-

Bes involved: the electricity system operator (SO), aggregators, electricity retailers and 

the EV owners (Mullan et al., 2012; Habib et al., 2015; Quinn et al., 2010).  
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Figure 3. Vehicle-to-grid (V2G) operaBng model (EVConsult, 2021).   

2.6. Second life baYeries 

EV baReries’ end-of-life purpose raises many quesBons and concerns. Should the bat-

teries be disposed or recycled, or could their purpose be prolonged? Is a baRery sBll 

usable and does it have any value, aler its capacity and performance levels have de-

clined, i.e. the baRery has reached the end of its “first life”, its original purpose?  

Nowadays, when circular economy’s procedures and values are common concepts, the 

maRer of EV baReries’ end-of-life has become more important as well. Finding a “sec-

ond life” (2nd life) for the used EV baReries is receiving wide aRenBon globally. EV bat-

teries’ second life could benefit the baReries’ manufacturers, user and potenBally cre-

ate new businesses and revenue streams. Thus, granBng a baRery a second life would 

have posiBve environmental and economic effects. As transportaBon steadily trans-

forms from IC powered vehicles to electric vehicles, the number of lithium-ion baRer-

ies in and out of use rises considerably (IEA 2019; Engel et al., 2019).  

Normally, an EV lithium-ion baRery’s first life lasts approximately 8-10 years, aler 

which it is no longer suitable to funcBon as a baRery in regular EV usage. However, the 
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baRery sBll has 70-80% of its capacity lel. Then, three end-of-life opBons exist: dispos-

al, recycling or conBnuance of uBlizaBon in a less demanding baRery applicaBon, e.g. 

having a 2nd life. Disposal of an EV baRery possesses environmental concerns to be 

taken into account, the reason why it is a best opBon only for damaged baReries. 

Moreover, disposal without recycling is not economically sensible. Recycling, i.e. col-

lecBng the baRery’s valuable metals is an expensive procedure. With lithium-ion bat-

teries, it is more expensive to recycle a baRery than it is to mine new lithium. The cost 

of recycling a baRery is approximately €/kg (10€/kWh), which is three Bmes higher 

than can be expected from selling the used baRery on the market. Because reclaiming 

lithium is so costly, less than 10% of all used EV baReries’ lithium are recycled, and vast 

numbers are been disposed, resulBng great losses in the baReries’ sBll exisBng value. 

By reusing the baRery and harnessing its 2nd life potenBal, its lifespan’s total use and 

value can be captured (Jiao, 2016 & 2020; Desarnaud, 2019).     

In 2019, the global amount of sold electric vehicles (PHEV & BEV) was over 2 million 

units, raising the total global number of EVs in use to 7.2 million. According to esBma-

Bons, in the year 2025 the total number of EVs in the world will reach 100 million, with 

25% market share of all cars sold globally in each year. In 2030, over 250 million EVs are 

expected to exist in use, and approximately 45 million new ones to be sold every year. 

The ascending development of EV industry will increase the number of out-of-use lithi-

um-ion baReries drasBcally (IEA 2020; Hossain, at al., 2019, Desarnaud, 2019; Engel et 

al., 2019; Jiao, 2020; Van Troeye, 2019). 

According to esBmaBons, in 2030 the accumulated amount of energy generated by the 

EVs’ lithium-ion baReries in global scale, counBng both new baReries and those taken 

out of use, will be 3.6-17.6GWh. Some esBmate this amount to be even as high as 

200GMh. In 2063, the amount will be anything between 32.3-1010GWh, according to 

the lowest and most opBmisBc evaluaBons. This development has a descending reflec-

Bon on new lithium-ion baRery prices, which are dropping already regardless this fac-

tor, due to their own market development. Currently the price of a new lithium-ion 

baRery is around $200-300/kWh, whereas in 2025 the price is esBmated to be 
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$90-100/kWh. The decrease in prices is due to the increase of number of EVs sold in 

the markets.  

A great potenBal exist for 2nd life baReries in staBonary energy-storage applicaBons, 

which require less frequent baRery cycling (100-300 cycles/year). If a new EV baRery 

has 22kWh energy, aler its first life it sBll holds 15-17kWh, which can enable a second 

life of 10 more years, if uBlized shrewdly (IEA 2020; Hossain, at al., 2019, Desarnaud, 

2019; Engel et al., 2019; Jiao, 2020; Van Troeye, 2019). 

By fully uBlizing the growing number of 2nd life baReries, the need for new baReries 

would be lesser, resulBng in reducBon of natural resources’ exploitaBon. Second life 

baReries present no added burden on the environment. Instead, they enable an af-

fordable energy storage soluBon, able to operate in various staBonary energy-storage 

applicaBons, and enhance smart grid and renewable energy development. UBlizing 2nd 

life baReries is scalable, affordable and sustainable. However, for safety reasons, 2nd life 

baReries require tesBng before they can be uBlized. However, therealer they are a vi-

tal mean tackling the growing energy consumpBon issues (Colthorpe, 2019; Jiao, 2016 

& 2020). 

Second life baReries can perform as staBonary primary energy storages in smaller 

scale, or as back-up storages in more demanding usage. In peak demand, 2nd life bat-

teries can aid in ancillary services such as voltage support, frequency regulaBon, black 

start and load following, as indicated in the Table 1. They can also be exploited to oper-

ate with PV as storage use in microgrid purposes for various premises, municipaliBes 

and neighborhoods, or even in small town scale, funcBoning for the local smart grid. In 

transmission-deferral applicaBon, 2nd life baReries can provide power support to a 

neighborhood grid transformer, when the energy demand is higher than the trans-

former’s capacity. 2nd life baReries charge during off-peak periods and are ready to in-

ject the power back to the grid when needed. Second life baReries can also funcBon as 

electrical appliances for water and living-space heaBng, and as a reserve storage in the 

case of localized blackouts (Table 1). 2nd life baReries parBcipaBon in electricity supply 

in residenBal applicaBons is best uBlized for private usage, e.g. for common electricity 
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management, to share locally produced green energy, or to reduce energy bills and en-

vironmental energy producBon and consumpBon impacts (Hossain et al., 2013; Van 

Troeye, 2019; Bobba et al., 2018; Casals et al., 2019).   

In commercial applicaBons electricity demand is higher, thus the need for higher num-

ber of baReries is necessary. Second life baReries can be used in load following, i.e. 

aiding in balancing the generaBon of electricity and the load. AddiBonal commercial 

applicaBons for 2nd life baReries include acBng as reserve for localized blackouts and 

emergencies. Second life baReries can also replace, at least parBally, the much more 

expensive first life baReries in the applicaBons.  

The power demand is the highest in industrial applicaBons, where 2nd life baReries can 

funcBon as storage and backup for RES, and in ancillary services, such as voltage sup-

port, frequency regulaBon and load following. 2nd life baReries can also have a signific-

ant part in maintaining uBliBes power reliability at lower cost, than what would be pos-

sible with new baRery storage units. (Hossain et al., 2013; Engel, H. et al., 2019; Pal-

izban & Kauhaniemi, 2016). 
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Table 1. The suitable applicaBons for Lithium-ion baReries (Palizban & Kauhaniemi, 
2016). 

 

In transport applicaBons, 2nd life baReries can be uBlized in EV charging staBons, for 

fast charging without overloading the local energy supply. They can even serve as dis-

tributed storage units for citywide tram networks. Although 2nd life baReries are not 

able to funcBon as well and reliably as a new baReries for everyday EV usage, the 

70-80% capacity they possess can power a vehicle for short range mobility needs, e.g. 

for local traveling and commuBng, and powering city shuRles, school buses, fork lils, 

e-scooters and bikes, and even ferries. AddiBonally, second life baReries can be used to 

form a basis of vehicle leasing businesses, such as tax services, delivery firms etc. They 

can be uBlized for V2G applicaBons, and telecom base staBons and data centers as 

backup power sources (Hossain et al., 2013; Melin, 2018; Bobba et al., 2018; Casals et 

al., 2019). 
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2.7. Mobility as a Service (MaaS) 

Concerns over urbanizaBon and climate change, increased environmental awareness, 

and latest advancements in digitalizaBon, vehicle, internet, and informaBon commu-

nicaBon technologies, have affected strongly to transport and mobility markets. Mobil-

ity as a Service (MaaS) concept aims to transform the purely operaBonal transport 

model to comprehensive, sustainable and user focused mobility service assortment, 

resorBng to modern boRom-up approach instead of tradiBonal top to boRom. The ob-

jecBve is to provide all MaaS users an unbreakable mobility chain possibility, enabling 

one-step mobility within a MaaS’ region, i.e. a city (Yellowlees, 2017; Stopka et al., 

2018). 

The main objecBve of MaaS is to advance the energy efficiency and fluency of urban 

transport and mobility, prioriBzing constantly the end-users benefit. MaaS joins the 

public and business sectors with the users, striving to increase the aRracBveness of 

public transport and enhancing the operability of unbreakable mobility chains. It pro-

motes cycling and walking as an alternaBve-choice of mobility to vehicle ownership. In 

addiBon, the development and uBlizing innovaBve mobility soluBons are part of MaaS, 

e.g. car sharing, and uBlizing EV fleets’ power supply potenBal in V2G soluBons and 

smart charging schemes. Furthermore, the concept can aid in traffic congesBon miBga-

Bon, and reduce the need for parking spaces, thus affecBng to urban aRracBveness and 

land use. Moreover, organizaBons can benefit from MaaS by being able to improve 

their logisBcal services more efficiently (The Finnish Government, 2016; The Ministry of 

Environment, Finland, 2017; Yellowlees, 2017; Stopka et al., 2018). 

Successful and well-funcBoning Mobility as a Service does more than just develops 

transport and mobility. It has wide economic and environmental scopes. By enhancing 

the uBlizaBon of digitalizaBon and ICT, collaboraBon of its stakeholders, and disman-

tling unnecessary regulaBons and bureaucracy, MaaS improves the compaBbility of all 

different actors being part of its operaBng model. Hence, it aids new business models 

to break into markets, and improves the service environment. The main objecBve is to 

develop user friendly, market oriented and high quality mobility services, which oper-
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ate seamlessly as one economically and environmentally sustainable, digital and con-

stantly evolving system. (The Finnish Government, 2016; The Ministry of Environment, 

Finland, 2017).   
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3. Horizon 2020 Lighthouse projects 

The European Union’s Horizon 2020 program includes several individual smart city 

projects, which are based on Lighthouse (LH) and follower ciBes (FC) concept. Each in-

dividual project is built around three Lighthouse ciBes and minimum of three follower 

ciBes, located in different EU states. The Lighthouse ciBes develop, test and demon-

strate different integrated, innovaBve, and market-orientable soluBons in the fields of 

sustainability, smart energy and smart city soluBons. The LH ciBes act as role models 

for the follower ciBes, which are obligated to replicate the LH ciBes’ demonstraBons.  

It is essenBal for each project’s success, that the demonstrated LH soluBons are replic-

able for the follower ciBes, either as an independent project, or on city district level. 

The follower ciBes are not expected to replicate every soluBon demonstrated by the LH 

ciBes. However, the variety of integrated soluBons is vast, and each city’s choice of se-

lecBon depends on the city’s ambiBons, characterisBcs, geographical locaBon, technical 

level, resources, administraBon, culture, and set goals in sustainability and economic 

growth (European Commission, 2016 & 2017; Ferrer et al., 2017).  

MaRers concerning a city’s capability to be accepted in a smart city project, and de-

termining how advanced its smart city level is, depend on how advanced the city is in 

the following: 

• State of Sustainable Energy and AcBon Plan (SEAP) 

• The level of smart grid soluBons in general 

• The uBlizaBon of RES 

• AdopBon of EVs and related technologies, i.e. innovaBve smart charging in-

frastructure 

• State of sustainable mobility and Mobility as a Service concept 

• UBlizaBon of 1st and 2nd life BESS 

• Sustainable buildings and construcBon soluBons 

• Level of state-of-the-art ICT soluBons 

(European Commission, 2016 & 2017; Ferrer at al., 2017) 
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A Lighthouse city’s goal is to achieve significant improvements in energy sufficiency, 

with encompassing uBlizaBon of various RES: wind, solar, hydro, wave, and geothermal 

energy, waste incinerated heat and energy storages. A LH city’s integrated electricity 

soluBons should be able to support the invocaBon of V2G, smart charging, and EV fleet 

soluBons. State-of-the-art ICT soluBons are vital for improved planning, management, 

control and maintenance of smart applicaBons and acBons. By guaranteeing successful 

implementaBon of robust ICT soluBons with smart energy and transport soluBons, 

physical urban infrastructure and operaBonal technologies in buildings, the adopBon of 

MaaS can be enhanced, and ciBzen/user engagement executed successfully (European 

Commission, 2016 & 2017; Ferrer at al., 2017). 

The concept of Smart CiBes and CommuniBes (SCC) is a network of Horizon 2020 fund-

ed Smart City projects. The various projects may have different characterisBcs. Howev-

er, they share a common goal: to achieve a sustainable, carbon neutral and environ-

mentally friendly smart city operaBng model, driven by replicable smart energy innova-

Bons and technologies. Each Horizon 2020 smart city project has a duraBon of five 

years, in which it is required to gain results. That is to say, the FC ciBes are required to 

demonstrate smart city soluBons, and their follower ciBes are to replicate them or at 

least design a valid replicaBon plan to implement the smart city soluBons (European 

Commission, 2017).  

The Horizon 2020 Smart CiBes network consists of the following smart city projects, 

with menBoned LH ciBes, number of follower ciBes, and project start dates: 

• Atelie (Amsterdam & Bilbao, 6 FCs,  2019) 

• Poctyf (Alkmaa &, Evora, 6 FCs, 2019) 

• Sparcs (Espoo & Leipzig, 5 FCs, 2019) 

• CityXchange (Limerick & Trondheim, 5 FCs, 2018) 

• Making City (Groningen & Oulu, 6 FCs, 2018) 

• IRIS (Gothenburg, Nice Cote e d’Azur & Utrecht, 3 FCs, 2017) 

• MatchUP (Antalya & Dresden, 4 FCs, 2017) 

• Stardust (Pamplona, Tampere & Trento, 4 FCs, 2017) 
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• mySMARTlife (Hamburg, Helsinki & Nantes, 3 FCs, 2016) 

• Ruggedised (Glasgow, RoRerdam & Umeå, 3 FCs, 2016) 

• GrowSmarter (Barcelona, Cologne & Stockholm, 5 FCs, 2015) 

• Remourban (No}ngham, Tepebasi/Eskisehir & Valladolid, 2 FCs, 2015) 

• Replicate (Bristol, Florence & San SebasBan, 3 FCs, 2015) 

• Sharing CiBes (Lisbon, London & Milan, 3 FCs, 2015) 

• SmartEnCity (Tartu, Souderborg & Vitoria-Gasteiz, 2 FCs, 2015) 

• Smarter Together (Lyon, Munich & Vienna, 3 FCs, 2015) 

• Triangulum (Eindhoven, Manchester, Stavanger, 3 FCs, 2015) 

(EU Smart CiBes InformaBon System, 2020) 

For each parBcipaBng city, it is essenBal that the planning of smart ciBes’ infrastruc-

tures and processes can be integrated seamlessly with related exisBng naBonal policies 

and regulaBons. FuncBoning and successful business models, as well as finance and 

procurement processes are important for a smart city projects advancement and suc-

cess. AcBve engagement of ciBzens and key stakeholders enhances wider perspecBve 

planning and more thorough decision-making processes. The district level integraBon 

of smart homes and buildings, use of RES, smart mobility and energy storage soluBons, 

and exploiBng smart management systems with integraBon of reliable ICT soluBons, 

resonate a strong posiBve example for other city districts to follow. The end-result is 

more sustainable, energy efficient and holisBc smart city development, which can be 

imitated by ciBes not yet part of the SCC (The IRIS Smart CiBes ConsorBum, 2017; 

Massink, 2019). 



43

4. IRIS - Integrated and Replicable Solu6ons for Co-Crea6on in 

Sustainable Ci6es 

IRIS smart city project was iniBated in 2017. The project is funded by the European 

Union’s Horizon 2020 program, with duraBon of five years (2017-2021). IRIS Lighthouse 

ciBes are Gothenburg (Sweden), Nice Cote d’Azur (France), and Utrecht (Netherlands). 

These ciBes act as living laboratories for demonstraBon, integraBon and implementa-

Bon of innovaBve energy efficient areas, flexible smart energy soluBons and ap-

plicaBons, incremenBng the uBlizaBon of RES and ESS, e.g. baRery-energy storage solu-

Bons with first and 2nd life baReries, heat energy storages, and EVs’ energy storage ca-

pacity via V2G and PV integrated systems. AddiBonally, the LH ciBes strive for intelli-

gent use of state-of-the-art ICT soluBons, sustainable mobility schemes and services, 

and interacBve ciBzen engagement. The paramount goal is to improve the urban life, 

and to ensure sustainable, secure and affordable energy for living and mobility for all 

ciBzens and businesses. To achieve this, coaliBon of universiBes, research organiza-

Bons, innovaBon agencies, local authoriBes and private experBse have joined forces in 

collaboraBon. To enforce this, the LH ciBes cooperate acBvely with the follower ciBes; 

Alexandroupolis (Greece), Focsani (Romania), Santa Cruz de Tenerife (Spain) and Vaasa 

(Finland) (Massink, 2019; Angelakoglou et al., 2019; Nikolopoulos et al., 2018; Crombie 

et al., 2018).  

The IRIS project consists of five TransiBons Tracks, which all include various integrated 

smart city soluBons. Once a Lighthouse city has successfully demonstrated an acBvity 

of an innovaBve smart city soluBon in their environment, a follower city is able to cre-

ate a replicaBon plan for the chosen integrated soluBons, and determine their sched-

ule, resources, partners, which are the requirements for successful implementaBon. 

Not all of the soluBons demonstrated by the LH ciBes’ are required, or can be replicat-

ed by the follower ciBes. Each parBcipaBng city, a follower and a Lighthouse, has its 

own baseline, needs, framework and goals when starBng the IRIS Smart City endeavor, 

determining which integrated soluBons form its replicaBon plan (The Smart CiBes Con-

sorBum, 2017; IMCG, 2020; Massink, 2019). 
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The five IRIS project’s transiBon tracks and their integrated soluBons, shown in the Fig-

ure 4, are: 

TransiBon Track #1:  

Smart Renewables and Closed-loop Energy PosiBve Districts:    

• PosiBve energy buildings 

• Near zero energy retrofit district 

• SymbioBc waste heat networks 

TransiBon Track #2: 

Smart Energy Management and Storage for Grid Flexibility: 

• Flexible electricity grid networks 

• Smart mulB-sourced low temperature heat networks with innovaBve 

storage soluBons 

• UBlizing 2nd life baReries for smart large-scale storage schemes 

TransiBon Track #3: 

Smart e-Mobility Sector: 

• Smart solar V2G EVs charging 

• InnovaBve mobility services for the ciBzens 

TransiBon Track #4:  

City InnovaBon Plagorm (CIP) Use Cases 

• Services for urban monitoring 

• Services for city management and planning 

• Services for mobility 

• Services for grid flexibility 

TransiBon Track #5: 

CiBzen Engagement & Co-creaBon: 

• Co-creaBng the energy transiBon in your everyday environment 

• ParBcipaBng city modelling 
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• Living labs 

• Apps and interfaces for energy efficient behavior 

(The Smart CiBes ConsorBum, 2017; IMCG, 2020; Massink, 2019)     

 

Figure 4. IRIS TransiBon Tracks and the integrated soluBons (The Smart CiBes Consor-
Bum, 2017; IMCG, 2020).     
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5. Transi6on Track #2 & #3 ac6vi6es in the IRIS Lighthouse ci6es 

The trend of increasing urbanizaBon adds pressure on well-funcBoning traffic, its re-

quirements, applicaBons and services. IRIS LH ciBes’ goal is to reduce carbon emissions 

and polluBon levels from traffic, and raise the level of sustainable transport by e-mobil-

ity soluBons, uBlizing the MaaS concept, and invesBng in sustainable public transport. 

AddiBonally, integraBng smart management and control to EV charging infrastructure, 

the possibility of uBlizing photovoltaic (PV) solar panels with EVs’ charging, V2G, and 

RESS, including 2nd life baReries, play significant role in IRIS LH ciBes’ demonstraBons 

(Nikolopoulos & Pramangioulis et al., 2018; Nikolopoulos & Tryferidis et al., 2018). 

The development of sustainable urban transport calls for soluBons evolving its techno-

logy, infrastructure and services towards green direcBon, by encouraging ciBzens to 

promote public transport, e-mobility soluBons and vehicle sharing. Smart transport’s 

requirements are accessibility, reliability, flexibility and cost-effecBveness. State-of-the-

art technologies, digitalizaBon, ICT soluBons, and open data access for consumers are 

part smart transport. Mobility as a Service and mulBmodality are concepts, which aim 

to provide integrated, versaBle and efficient transport system, which advances sustain-

able mobility based (gas and/or e-buses, modes of cycling, walking) door-to-door ser-

vices, promoBng mode-independent connecBon service, thus reducing private car 

ownership (Nikolopoulos & Pramangioulis et al., 2018; Nikolopoulos & Tryferidis et al., 

2018). 

As EVs become more popular, eventually taking over the global automobile stock dur-

ing the next few decades, various posiBve impacts as well as challenges will emerge. 

The development can affect favorably on countries’ environments, energy producBons, 

efficiencies and economies. However, while integraBng large EV fleets with an energy 

grid may have great advantages, it might result unpredictable energy flows as well, if 

not managed properly. Successful integraBon of RES with e-mobility soluBons, and 

fleets of private and shared EVs and e-buses, require sophisBcated smart charging in-

frastructure, management and control. Charging a large number of EVs simultaneously, 

should not be able to put uncontrollable amount of added stress on a power grid. Ad-
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diBonally, charging should not only be well designed, it needs to be well scheduled, 

and offer vehicle-to-grid (V2G) possibility. Thus, EV owners are able to switch from be-

ing just electricity consumers to take part of producing energy and selling it to the grid, 

i.e. to become prosumers. IntegraBng RES and smart charging not only maximizes the 

profits of RES, but by allowing high level of self-consumpBon and -sufficiency to EV 

owners, it reduces grid stress and possible EV charging power peaks. Hence, RES com-

bined with smart charging enhances the financial value of grid flexibility (Nikolopoulos 

& Pramangioulis et al., 2018; Nikolopoulos & Tryferidis et al., 2018). 

IRIS project’s TransiBon Track #2, Smart Energy Management and Storage for Grid Flex-

ibility includes three integrated soluBons that can be demonstrated by the LH ciBes and 

replicated by the FC. The T.T. #2’s third soluBon, U8lizing 2nd life baGeries for smart 

large- scale storage schemes is examined in this thesis. AddiBonally, this thesis concen-

trates on IRIS TransiBon Track #3’s Smart e-Mobility Sector, containing integrated solu-

Bons, Smart solar V2G EVs charging, and Innova8ve mobility services for the ci8zens. 

The later soluBon consists e-mobility, car sharing, and MaaS concept, prioriBzing in 

public transport, and other sustainable mobility applicaBons. These subcategories aim 

at increasing the deployment of EVs in private and public transport. AddiBonally they 

strive to enhance EV fleet management schemes to the end-users, and MaaS services 

to reduce number of private vehicles by increasing public transport, car sharing sys-

tems and services. Moreover, the use of RES in the mobility applicaBons and services is 

essenBal feature for the soluBons (Nikolopoulos & Pramangioulis et al., 2018; Nikolo-

poulos & Tryferidis et al., 2018). 

The manner by which the TransiBon Track #3 soluBons and the T.T. #2’s soluBon, UBliz-

ing 2nd life baReries for smart large scale storage schemes, are demonstrated in the IRIS 

Lighthouse ciBes differ somewhat from each other. Although Utrecht, Gothenburg and 

Nice all have some similariBes in their chosen soluBons, they also have several inde-

pendent fields of interest in the 2nd life baRery, and intelligent mobility soluBons. The 

City of Vaasa, as a follower city, strives to find the most suitable integrated soluBons, 

concerning 2nd life baReries and Smart e-Mobility, to be assessed and replicated in its 

own environment. However, before Vaasa’s replicaBon can be analyzed, the demon-
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straBons of the Lighthouse ciBes need to be examined. These demonstraBons are con-

Bnuing. 

5.1. Gothenburg, Sweden – T.T. #2 and T.T. #3 solu6ons and demonstra-

6ons 

1. TransiBon Track #2: UBlizing 2nd life baReries for smart large scale storage 

schemes: 

• DemonstraBon and study of a 350V DC building microgrid uBlizing 140kW 

roolop PV installaBons with a  200kWh 2nd baRery storage: 

Gothenburg’s Akademiska hus, took part in the IRIS project, and has demon-

strated how DC system is able to provide advantages when local microgrid level 

electricity is produced with solar panels and stored in 2nd baRery system. The 

study has explored the re-usefulness of EV baReries in staBonary energy stor-

age applicaBons. The baReries were primary expected to provide aid in peak 

power shaving, as well as storing locally produced PV electricity for later use. 

Secondarily, the constructed system enables Akademiska hus to buy and store 

electricity from the grid at off-peak periods, for later peak-period consumpBon 

or sales. The DC system has provided secure supply and enhanced energy effi-

ciency (Löveryd et al., 2020; Pavic et al., 2018).  

Gothenburg’s demonstraBons, concerning the integrated soluBon, UBlizing 2nd  

life baReries for smart large-scale storage schemes, has indicated both maRers 

of potenBal and challenging aspects, as clarified in the Table 2. 
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Table 2. MaRers of potenBal and challenging aspects of Gothenburg’s demonstraBon 
of the soluBon, UBlizing 2nd life baReries for smart large-scale storage schemes 
(Löveryd et al., 2020; Pavic et al., 2018). 

MaYers of poten6al: Challenges:

Sweden possesses a strong unified polit-

ical determinaBon that the reducBon of 

CO2 and GHG emissions must proceed 

swilly. IniBaBves and innovaBons striving 

to achieve this goal receive a strong polit-

ical support. 

Subsidies are mandatory in the introduc-

Bon phase of 2nd life baRery soluBons. 

However, this makes the topic a subject 

of a lengthy poliBcal debate, hindering 

the development of business models and 

market introducBon.

2nd life baReries can act as energy storage 

units for various size soluBons and de-

mands, and provide capacity to aid in grid 

flexibility and reliability through various 

ancillary services, e.g. load following, fre-

quency regulaBon, voltage support and 

aiding in the case of local black outs.

Management of the collecBon, storing 

and ownership or the received data, and 

financial profit from the 2nd life baRery 

soluBons are not clear. ParBcularly, inter-

faces concerning the baReries’ ownership 

due to their prolonged life, present a 

challenge.

2nd life baReries can advance and en-

hance the uBlizaBon and development of 

RES.

Uncertainty and uBlizaBon of “old baRer-

ies” may cause opposiBon. Hence, ciBzen 

engagement and guidance are vital, as 

are “change agents” – people and organ-

izaBons acBng as early adaptors in uBliz-

ing 2nd life baReries. 

Fast moving technological development 

and emerging smart energy innovaBons 

push forward the uBlizaBon of 2nd life 

baReries.

BaReries and large-scale storage solu-

Bons require large investments and have 

long payback periods. 

Fire safety regulaBons have to examined 

and secured, concerning 2nd life baRery 

uBlizaBon in building applicaBons.
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2. TransiBon Track #3: Smart e-Mobility Sector: 

From the T.T. #3’s two soluBons, Smart solar V2G EVs charging and InnovaBve 

mobility services for the ciBzens, Gothenburg concentrates on the laRer, since 

the city’s EV charging infrastructure and EV pool size is not yet comprehensive 

enough for large scale V2G soluBons. 

Gothenburg’s innovaBve smart mobility soluBon is called EC2B, i.e. Easy to Be. 

EC2B is built on Mobility as a Service concept, aiming to combine seamlessly the 

use of private vehicles, shared vehicles, bicycles and public transport, in order to 

be able to provide funcBoning and user-oriented services and unbreakable mo-

bility chain. The emphasis is on e-mobility - EVs, e-buses and e-bikes. EC2B 

strives to uBlize mobility management elements, supported by enhanced ICT 

soluBons. InformaBon services from service provides to end-users is a precondi-

Bon to EC2B. Gothenburg’s primary objecBve is to reduce CO2 emissions by 

80-90% by 2035, and to have the city’s traffic totally electrified by 2030, private 

and public. To succeed in achieving this ambiBous goal, Gothenburg relies on 

EC2B soluBon, invests heavily in high-performance e-bus fleet, and plans to en-

courage the EV adopBon through developing charging infrastructure (Lund, 

2020; Pavic et al., 2018).   

EC2B aims to reduce private car ownership by offering a new mobility concept to 

ciBzens, through a versaBle and aRracBve alternaBve to car ownership. By in-

creasing the number of EVs, EC2B helps to reduce CO2 emissions, as well as air 

polluBon and noise levels. By providing an easy access and conBnuous mobility 

chains, by uBlizing variety of transport modes, users are encouraged to exercise 

more sustainable travel habits. Furthermore, EC2B aims to promote vehicle shar-

ing community approach. With car sharing, less vehicles are present in the traf-

fic, thus congesBons can be miBgated. Car sharing reduces the need of parking 

spaces, being a posiBve maRer for property owners, since parking spaces and 

underground garages are expensive. Thus, EC2B possesses the ability to opBmize 

land use (Lund, 2020; Pavic et al., 2018). 
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Despite its many posiBve features, EC2B does face challenges as well. The trans-

formaBon from private car ownership to public transport or shared mobility can 

raise opposiBon. Mobility as a Service is not a familiar concept to public in gener-

al, requiring new ways to engage the ciBzens. The existence of viable business 

models for all service providers involved in EC2B presents challenges. AddiBonal-

ly, standardizaBon requires more clarity (Lund, 2020; Pavic et al., 2018).  

Gothenburg’s Smart e-Mobility demonstraBons are:  

• EC2B for tenants in Brf Viva:  

EC2B provides users alternaBve to car ownership, allowing easy access to a vari-

ety of transport modes, e.g. e-cars, e-bikes or public e-transport. The objecBve is 

to enable an easy access service of conBnuous mobility chain in the city, regard-

less where end-users live, work or spend their leisure acBviBes. In this demon-

straBon, EC2B was implemented for tenants of 132 apartments in Brf Viva build-

ing in Gothenburg, where no private car parking is available. VersaBle mobility 

services and limiBng car parking encourages tenants to favor more sustainable 

transport habits, and to use own cars only when it is necessary. 

• EC2B for employees on Campus Johanneberg:  

The EC2B concept was adjusted to meet the demands of the employees in the 

campus area of Johanneberg, Gothenburg. In addiBon, by providing an easy ac-

cess to a wide range of transport opBons, a new funcBon was developed within 

the EC2B mobile applicaBon for the employees, allowing them to send receipts 

of their travel expenses, e.g. car rental fees or public transport Bckets, directly 

from the applicaBon to their employer’s financial department, in order to re-

duce administraBve procedures. Thus, through offering aRracBve opBons for 

local business travel and commuBng, employees can be less dependent on dri-

ving their own cars to work or resorBng to private cars on business trips. Hence, 

more sustainable transport habits can be promoted, and traffic can be reduced 

in the campus area (Lund, 2020; Pavic et al., 2018). 
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Gothenburg’s demonstraBons, concerning the integrated soluBon, InnovaBve 

mobility services for the ciBzens, has indicated both maRers of potenBal and 

challenging aspects, as clarified in the Table 3. 
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Table 3. MaRers of potenBal and challenging aspects of Gothenburg’s demonstraBons 
of the soluBon, InnovaBve mobility services for the ciBzens (Lund, 2020; Pavic et al., 
2018). 

MaYers of poten6al: Challenges:

The developing digitalizaBon advances 

EC2B, e-mobility, and the required infra-

structure.

MaaS is a new phenomenon for con-

sumers and service providers, which can 

cause challenges.

MaaS can aid in the need to reduce park-

ing slots and volume of city’s traffic. 

Property developers/owners can cut 

costs on parking places, improve their 

real estates’ value, or develop their land 

use.

The role of public transport in MaaS is 

sBll unclear in Swedish legislaBon, thus 

hindering the joining of public transport 

authoriBes in MaaS.

MaaS can enable new business models, 

opens new revenue streams and creates 

new jobs.

To find a business model, which would 

work for all the parBes involved in the 

MaaS soluBon is a challenge. LucraBve 

financial end-result for all parBes requires 

collaborated, well-planned and thor-

oughly executed service.

More and more people are concerned 

about the environment, and doing their 

part for sustainability and uBlizing green 

soluBons. EC2B enables an easy way to 

be environmentally friendly. In addiBon, 

MaaS has great environmental impacts. It 

reduces CO2 emissions, decreases the 

traffic, and improves the aRracBveness 

and safety of the city.

Private car ownership and clinging a}-

tudes for the issue, require Bme and pa-

Bence to change. CiBzen engagement, 

funcBoning EC2B MaaS model and 

change agents can have an encouraging 

effect.

MaaS and alternaBve ways of mobility 

reduce individuals costs, concerning own 

an own car.
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  5.2. Nice, France – T.T. #2 and T.T. #3 Solu6ons and Demonstra6ons 

1. TransiBon Track #2: UBlizing 2nd life baReries for smart large scale storage 

schemes: 

• Flexible electricity grid networks, including PV, 2nd life baReries and lighBng 

network:  

The demonstraBon integrates local RES with decentralized baRery storage (1st 

and 2nd life baReries) and EV charging infrastructure (both public and private) 

under a common Local Energy Management System. ObjecBve has been to test 

different operaBon strategies of such connected assets, focusing on the delivery 

of flexibility services to the power grid. The demonstraBon is organized by vari-

ous service providers, from the management of a single asset to the whole dis-

trict scale, in order to achieve funcBoning and reliable interface with energy ser-

vice markets via aggregaBon. The demonstraBon performs as a pilot for the elec-

tricity industry, serving as a model for further development and replicaBons. 

Considerable amount of knowledge has been gained from the research, which 

has been shared with the key stakeholders to further the mulBfaceted debate 

concerning smart local energy management systems, and enhancing the dissem-

inaBon, communicaBon and replicaBon acBviBes (Keim et al., 2019; ARour et al., 

2019; Barre et al., 2018). 

• UBlizing 2nd life baReries for smart large-scale storage schemes, including PV, 

EVs and V2G):  

The objecBve has been to cross-compare the performance of 1st and 2nd life BESS 

for similar applicaBons within the building sector. Both baRery types, 1st life 

BESS of the EVs via V2G charging poles, and the 2nd life BESS stack, has been 

used to provide staBonary BESS based energy services within the IMREDD smart 

building block and in Nice Méridia’s Palazzo Meridia posiBve energy buildings. By 

using similar BESS capaciBes, baReries’ performance and behavior has become 

more easily comparable. 
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IMREDD and Palazzo Meridia have demonstrated collecBve self-consumpBon at 

building scale, which is a new concept for commercial and residenBal customers 

in France. Part of the buildings’ energy efficiency strategies have been to uBlize 

RES integrated to 2nd life baReries. The demonstraBon of the performances of 

menBoned BESS technology, in providing building and grid ancillary services, e.g. 

in opBmizing self-consumpBon and enhancing PV’s efficiency. The posiBve re-

sults from Palazzo Meridia and IMREDD has provided a beRer assessment of 

BESS’ integraBon possibiliBes into the energy system (Keim et al., 2019; ARour et 

al., 2019; Barre et al., 2018). 

Nice’s demonstraBons, concerning the integrated soluBon, UBlizaBon of 2nd life 

baReries for smart large scale storage schemes, indicated both maRers of poten-

Bal and challenging aspects, as clarified in the Table 4.  
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Table 4. MaRers of potenBal and challenging aspects of Nice’s demonstraBons of the 
soluBon, UBlizing 2nd life baReries for smart large-scale storage schemes (Keim et al., 
2019; ARour et al., 2019; Barre et al., 2018). 

MaYers of poten6al: Challenges:

The technology for uBlizing 2nd life baRer-

ies is available. AddiBonally, ICT required 

hardware and solware is available for 

high performance monitoring and control 

acBviBes.

Currently, too many protocols and stand-

ards hinder the forming of a uniform op-

eraBng model between different actors, 

making management and control of plat-

forms is difficult. In addiBon, regulaBon on 

BESS and the uBlizaBon of 2nd life baRer-

ies is not on mature level yet.

Several EU driven policies and reforms 

and the French law promote advance-

ment of decentralized energy systems 

and increased uBlizaBon of RES. Addi-

Bonally, the development of BESS is con-

sidered important, thus 2nd life baRery 

uBlizaBon as part of it. 

Currently, fully operaBng V2G model is 

not allowed in France’s Public Distribu-

Bon Grid. It is only allowed when operat-

ing behind private property, and as 

defined by French grid code. Hence, the 

development of pervasive V2G uBlizaBon 

presents challenges for both French pub-

lic and private e-mobility services, limit-

ing also the uBlizaBon of 2nd life baReries 

in V2G soluBon.

The RES related projects among neigh-

borhoods are considered to improve the 

approval of RES uBlizaBon and related 

technologies, including 2nd life baReries. 

France’s energy market design, and taxing 

of grid transport and distribuBon, does 

not favor consumers for becoming 

prosumers. Currently, the minimal energy 

bid size is 1MW, prevenBng smaller play-

ers and consumers entering the e-mar-

ket.  
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2. TransiBon Track #3: Smart e-Mobility Sector: 

• Smart solar V2G EVs charging: 

The soluBon relies in strong smart charging infrastructure development. Smart 

charging integrates EVs, charging staBons, intelligent charging soluBons, and 

charging operators’ share data connecBons. Smart charging monitors and man-

ages the use of the charging devices, to opBmize electricity’s consumpBon and 

flow direcBon (V2G). By monitoring a large pool of charging staBons equipped 

with fast charging points, which can belong either to public or private networks, 

more flexibility can be provided to the public electricity grid. This can happen by 

implemenBng power shaving and shiling through unidirecBonal controlled 

charging (V1G), or by other energy services such as using EVs’ baReries as ener-

There is high potenBal and anBcipaBon 

for various new business models and 

markets, concerning RES, BESS (including 

2nd life baReries) and V2G.

It is somewhat unclear by the French law, 

that what does the concept “energy self-

consumpBon” consist of? Including also 

EVs’ V2G operaBng model, and usage of 

BESS.

RES, BESS and EV technologies uBlizaBon 

aid in carbon footprint reducBon, and 

raising energy efficiency and grid flexibil-

ity.

There are various contractual and finan-

cial issues to be sorted out between all 

parBes involved. CommercializaBon and 

financial viability are not yet on mature 

level for the uBlizaBon of 2nd life baRer-

ies.

Non-renewable energy sources are sBll 

too lucraBve opBon for the energy mar-

ket. Carbon taxes need to be on a higher 

level, other tradable carbon bonds must 

become more effecBve and promoBon of 

RES has to increase. 
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gy reserves for grid flexibility. The integraBon of such strategies can result in the 

opBmizaBon of the total energy consumpBon, and possibly generate a new rev-

enue stream for EV charging infrastructure (EVCI) operators and owners (Keim & 

Tawil-Jamault et al., 2019; ARour et al., 2019; Barre et al., 2018).  

• InnovaBve mobility services for the ciBzens: 

The aim has been to opBmize the operaBon of a fleet of shared EVs by coupling 

the booking, and forecasBng the uBlizaBon of the EVs to the smart charging 

management of the EVCI. This has resulted in higher uBlizaBon rate of the 

shared EVs, hence increasing the turnover received from the vehicles. AddiBon-

ally, it has increasing the efficiency raBo between the charging staBons and the 

fleet of EVs. The demonstraBon has indicated that opBmizing the use of shared 

vehicles can have a favorable effect on the reliability and efficiency of the im-

plementaBon of smart charging services (Keim & Tawil-Jamault et al., 2019; At-

tour et al., 2019; Barre et al., 2018).   

Nice’s demonstraBons, concerning the integrated soluBons, Smart solar V2G EVs 

charging, and InnovaBve mobility services for ciBzens, indicated both maRers of 

potenBal and challenging aspects, as clarified in the Table 5. 
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Table 5. MaRers of potenBal and challenges of Nice’s demonstraBons of the soluBons,  
Smart solar V2G EVs charging, and InnovaBve mobility services for the ciBzens (Keim & 
Tawil-Jamault et al., 2019; ARour et al., 2019; Barre et al., 2018). 

MaYers of poten6al: Challenges:

The technology for the soluBons is avail-

able. MulBple of EV and charging infra-

structure and soluBon providers exist, 

and ICT soluBons are on mature level. 

Monitoring and control aspects of char-

ging need to be invesBgated and tested 

fully for the services’ utmost reliability 

and aRracBveness.

Based on the previous point, smart char-

ging services can proceed to further de-

velopment, iniBaBon of services, and 

eventually to commercial exploitaBon.

EVs booking predicBon (where and 

when), and free-floaBng operaBon (EV 

chargeable both in public and private 

charging staBons anywhere in the city) 

are not mature yet and need to be tested 

further. AddiBonally, regulaBons for free- 

floaBng charging require thorough exam-

inaBon and work between key stakehold-

ers. 

The French law supports the develop-

ment of e-mobility and its related techno-

logies to be exploited, in order to reduce 

emission and polluBon levels, and pro-

mote higher environmental, economic 

and social sustainability.

V2G operaBng model is not allowed cur-

rently on the Public DistribuBon Grid, 

only when operaBng behind private 

property, and as defined by French grid 

code. Hence, the development of V2G 

uBlizaBon is very challenging for both 

French public and private e-mobility ser-

vices.

Smart charging technologies promote 

various charging schemes: standard, 

semi-fast and fast charging, providing dif-

ferent residenBal areas or property-own-

ers opBons to find opBmal charging solu-

Bon.

The energy market design, and taxing of 

grid transport and distribuBon do not fa-

vor consumers becoming a prosumers. 

Currently, the minimal energy bid size is 

1MW, prevenBng smaller players entering 

the e-market.
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5.3. Utrecht, Netherlands – T.T. #2 and T.T. #3 Solu6ons and Demonstra-

6ons 

1. TransiBon Track #2: UBlizing 2nd life baReries for smart large scale storage 

schemes: 

• Solar V2G charging points for EVs, uBlizing 2nd life baReries:  

The City of Utrecht has uBlized 18 smart solar V2G charging staBons for EVs in its 

demonstraBon district. The charging points are interconnected with PV-systems. 

These bi-direcBonal charging staBons provide the infrastructure both moBvaBon 

and financial interest in integraBon of smart energy management. The demon-

BeRer and wider charging infrastructure 

network reduces the hindering factors for 

EVs’ adopBon.

User acceptance may be low for share-

able EVs, and parBcularly for V2G solu-

Bons, which technology and charging 

schemes may not only be challenging for 

consumers but also for service providers.

Carbon footprint and polluBon reducBon, 

lower noise levels.

More incenBves related to EV pricing, 

V2G schemes, and shared EVs operaBng 

models, (e.g. prices, taxing, tariffs) are 

needed for consumers to start purchasing 

EVs instead of IC engine cars, or resort to 

car sharing.

EV baReries enable V2G operaBng model, 

enabling new business and revenue gen-

eraBon models. V2G schemes aid power 

systems through distributed energy stor-

age capabiliBes, and via capability to par-

Bcipate in enhancing a grid’s flexibility 

and reliability through ancillary services.

Energy market sBll favors cheaper non-

renewable energy sources. Carbon taxes 

need to be on a higher level, other trad-

able carbon bonds must become more 

effecBve, and promoBon of RES has to 

increase.
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straBon are carried out by combining sustainable transport, and maximizing self-

consumpBon, thus enabling grid stress reducBon, and unlocking the financial 

potenBal of grid flexibility. By combining the EVs’ and e-buses’ V2G capabiliBes 

with staBonary 2nd life baReries, and receiving support by open ICT for intercon-

necBon, performance monitoring and new informaBon services for aggregators, 

grid operators, municipality and ciBzens, the demonstraBon in the selected ar-

eas of Utrecht has been successful (Van der Ree et al., 2019; Harmelink et al., 

2019; Peekel et al., 2018). 

• Solar V2G charging points for e-buses, uBlizing 2nd life baReries:  

The City of Utrecht has uBlized 10 smart solar/wind V2G charging staBons for e-

buses in the demonstraBon district of Westraven. The e-bus charging staBons 

provide valuable monitoring and research data for the ambiBon to integrate 

smart energy management, thus being a reliable test bed of how large charging 

powers can be connected to the grid most opBmally (Van der Ree et al., 2019; 

Harmelink et al., 2019; Peekel et al., 2018). 

• StaBonary storage in apartment buildings:  

The City of Utrecht has demonstrated district-wide addiBonal staBonary storage 

in 12 apartment buildings. The storage consists of 2nd life baReries, which are 

interconnected to primary V2G-storage and PV-systems by ICT. The 2nd life bat-

teries are able to provide a significant contribuBon, by making the grid more sta-

ble and resilient. In addiBon, the system has provided an important component 

for the city-wide virtual power & storage plant, which can provide sustainable 

energy and promote e-mobility, thus causing notable reducBons in CO2 emis-

sions, and enhance flexibility services on low and medium tension levels (Van 

der Ree et al., 2019; Harmelink et al., 2019; Peekel et al., 2018). 

• Smart energy management system:  

The demonstraBon district’s energy management system (EMS), with the dis-

trict’s ICT plagorm have been able to prove interconnecBon and monitoring at 

district scale, thus allowing the deployment of the Universal Smart Energy 



62

Framework (USEF), i.e. the business model concerning the value of flexibility. 

The USEF smart EMS has been able to assess the value of the flexibility delivered 

at low and medium tension grids levels, to the transmission system operator 

(TSO) and to the distribuBon system operator (DSO) (Van der Ree et al., 2019; 

Harmelink et al., 2019; Peekel et al., 2018). 

Utrecht’s demonstraBons concerning the integrated soluBon, UBlizing 2nd life 

baReries for smart large-scale storage schemes, indicated both maRers of po-

tenBal and challenging aspects, as clarified in the Table 6. 
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Table 6. MaRers of potenBal and challenges of Utrecht’s demonstraBons of the solu-
Bon, UBlizing 2nd life baReries for smart-large scale storage schemes (Van der Ree et 
al., 2019; Harmelink et al., 2019; Peekel et al., 2018). 

2. TransiBon Track #3: Smart e-Mobility Sector: 

• V2G EVs:  

Utrecht’s car sharing system We Drive Solar has been demonstrated in the city’s 

demonstraBon district. Fourteen solar powered V2G EVs are in use. AddiBonally, 

the city’s demonstraBon site, apartment building block Bo-Ex, purchased four e-

vans for maintenance and service use. By and large Utrecht’s IRIS demonstra-

MaYers of poten6al: Challenges:

The uBlizaBon of 2nd life baReries can ex-

tend the baReries lifeBme with addiBonal 

10 years, thus delaying the need for re-

cycling or disposal, thus opening possible 

new venues for revenue generaBon.

Business models and investments for 2nd 

life baRery applicaBons are not yet eco-

nomically viable.

Longer life for EV baReries, with their first 

and 2nd life, will force the price of new 

baReries to decrease.

More knowledge and research is required 

about the uBlizaBon of 2nd life baReries, 

potenBal soluBons and monitoring tac-

Bcs.

Circular economy is a priority maRer for 

the EU, and 2nd life baRery uBlizaBon and 

the possible benefit that can be gained 

from them, can enhance the circular eco-

nomy’s success.

More knowledge about regulaBons, in-

cenBves, taxing and management is re-

quired.

The uBlizaBon of 2nd life baReries can aid 

in reducBon of CO2 emissions, and help 

to increase the use of RES with greater 

efficiency, thus helping in beRer grid flex-

ibility and reliability.

UBlizing used baReries can face opposi-

Bon, e.g. due to safety issues and issues 

concerning a}tudes. Guidance and end-

user engagement is required.
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Bons has served as a living lab and a catalyst for fast upscaling of smart energy 

and mobility management for the whole city of Utrecht. BidirecBonal charging 

infrastructure’s development for the whole city has started. Once ready, it will 

enable large-scale V2G smart charging. We Drive Solar is able to provide a sus-

tainable alternaBve mode of transport for the IRIS district residence. AddiBonal-

ly, it aids in NOx, fine parBcular maRer, CO and CO2 emissions reducBon. More-

over, the baReries of the shared EVs contribute to smart energy management, 

combining sustainable transport with opBmal self-consumpBon, thus reducing 

grid stress, and unlocking the financial value of grid flexibility (Van der Ree et al., 

2020; Harmelink et al., 2019; Peekel et al., 2018). 

• V2G e-buses: 

The City of Utrecht uBlizes 10 smart solar V2G e-buses. The e-buses and their 

charging staBons will provide a green mode of public transport for the IRIS dis-

trict residents, and reduce emissions. In addiBon, the e-buses have generated 

large amounts of research data for the ambiBon to integrate smart energy man-

agement, and enabled tesBng of how large charging powers can be best operat-

ed with the grid (Van der Ree et al., 2020; Harmelink et al., 2019; Peekel et al., 

2018). 

Utrecht’s demonstraBons concerning the integrated soluBons, Smart solar V2G 

EVs charging, and InnovaBve mobility services for the ciBzens, indicated both 

maRers of potenBal and challenging aspects, as clarified in the Table 7. 
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Table 7. MaRers of potenBal and challenges of Utrecht’s demonstraBons of the solu-
Bons, Smart solar V2G EVs charging, and InnovaBve mobility services for the ciBzens 
(Van der Ree et al., 2020; Harmelink et al., 2019; Peekel et al., 2018). 

MaYers of poten6al: Challenges:

Increasing number of EVs in the traffic 

will reduce CO2 emissions, improve local 

air quality and decrease noise levels.

To engage ciBzens to use We Drive Solar 

service requires guidance and acBve en-

gagement. It can be a challenge trying to 

change one’s habit away from car owner-

ship, to start promoBng car sharing and 

public transport instead.

Car sharing enables the City of Utrecht to 

develop low-traffic districts.

The educaBon and income level of the 

populaBon has an effect. More highly 

educated and with higher income indi-

viduals are prone to be more environ-

mentally aware, than individuals with 

lower income and educaBonal levels. 

EV baReries enable V2G operaBng model, 

which can aid power systems through 

distributed energy storage capability, and 

via parBcipaBng in grid enhancing flexibil-

ity and reliability services such as peak 

shaving, load shiling etc. Thus, new 

business and revenue generaBon models 

can emerge.

V2G operaBng model needs to be studied 

thoroughly and piloted properly before 

successful, safe and profitable service can 

be iniBated. Wide stakeholder involve-

ment is required.

The City of Utrecht provides various in-

cenBves to promote car sharing systems, 

e.g. aRracBve parking licenses, lower 

parking norms and conBnuously develop-

ing the MaaS concept for higher quality. 
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6. Finland’s Na6onal Climate and Sustainable Mobility Goals 

In 1994, Finland signed the United NaBon’s agreement on necessary acBons to be tak-

en against climate change. Three years later the Kyoto protocol, i.e. United NaBons’ 

Framework ConvenBon on Climate Change, was raBfied. Its goal was to pledge the in-

dustrialized countries and their economies in the transiBon to restrain and demote 

greenhouse gas (GHG) emissions, honoring the agreed individual climate targets.  

In 2015, Finland signed the Paris Agreement, which strives to enhance the measures 

taken globally against climate change, in order to prevent the global temperature rising 

over 1.5 - 2 Celsius degrees in the 21st century. In 2016, the Government of Finland set 

the naBonal energy and climate strategy for 2030, which is regulated by the Ministry of 

Environment. The strategy has to meet the set goals and requirements of the Finnish 

Government’s energy and transport policy. The policy’s main objecBve is to reduce the 

GHG emissions by 40% by 2030, and 80% by 2050 from the 1990 level. The share of 

RES out of the naBon’s energy producBon is aimed to be increased by 27% before 

2030. In 2005, Finland’s total carbon footprint was 33,7Mt CO2. The new aim set in 

2016 determined 2030’s carbon footprint to be 20,6Mt CO2 (The Government of Fin-

land, 2016; Ministry of the Environment, 2017). 

The Government of Finland has set decisive naBonal goals to reduce traffic caused 

emissions by 50% by 2030 from the 2005 level. AddiBonally, the goal to increase RES’ 

share of transport’s total energy consumpBon has been set at 20%. To achieve these 

goals, the emissions from traffic need to be reduced by 50% by 2030, signifying a total 

effect of 3,1Mt CO2. Currently uBlized transport fuels need to be replaced with less pol-

lutant renewable opBons, e.g. hydrogen, biofuels and syntheBc fuels, or by heavily in-

creasing alternaBve power mean vehicles’, i.e. EVs, share compared to internal com-

busBon engine powered vehicles. Finland’s aim is to have minimum of 250.000 EVs in 

traffic by 2030 (The Government of Finland, 2016; Ministry of the Environment, 2017; 

PasBnen & Vallenius, 2018). 
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Regardless the number of EVs in traffic, vehicles and the whole transport system needs 

to improve their energy efficiency. The transport system needs to go through transfor-

maBon by invenBng new services and ways of mobility, and by uBlizing digitalizaBon 

and ICT. This includes Mobility as a Service concept, developing infrastructural endeav-

ors jointly with traffic, and invesBng extensively in sustainable mobility: public trans-

port, cycling and walking. AddiBonally, the energy efficiency of mobility needs to 

evolve, so it is able to reach the naBonal goals. Hence, adopBng new motor and power 

technologies, and reducing the weight of the vehicles, are essenBal measures to be 

taken in account (The Government of Finland, 2016; Ministry of the Environment, 

2017; Enell-Nilsson et al., 2019; Kiiskilä & Ristamäki, 2019; PasBnen & Vallenius, 2018).        

In Finland, approximately 60% out of all ground traveling takes place by uBlizing a pri-

vate car. Bus transportaBon consBtutes of 5%, and all rail traffic (trains, trams) only 2%. 

In comparison, 22% of the Finnish people prefer walking to motor transport, and 8% of 

people like to travel by a bicycle. As for the purposes of using different means of 

ground travelling, 25% takes place for occupaBonal purposes, 35% for leisure acBviBes, 

30% for shopping and errands, and 10% for acBng as a driver for someone else. The 

share of sustainable mobility (walking, bicycling, public transport) trips out of all 

ground travel trips is 15%, and from ground travelling in general 37%. Approximately 

3% out of all public transport trips are connected trips (PasBnen & Vallenius, 2018).  

The most relevant Finnish laws ruling over transport and mobility, and their effects on 

environment, are the climate law (609/2015), the environmental protecBon law 

(527/2014), the vehicle law (1090/2002) and the public transport law (869/2017). With 

these laws, the Finning Government aims to secure sustainable and environmentally 

aware development of transport and mobility, and the technology and services in-

volved. AddiBonally, the laws strive to ensure the ability to reach the climate goals set 

by the EU and the Finnish Government. Furthermore, they aid to fight against climate 

change, reduce emission levels, and to advance the uBlizaBon of new technologies of 

private motoring and public transport (Ministry of the Environment, 2014 & 2015; Min-

istry of Transport and CommunicaBons, 2003 & 2017). 
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7. Vaasa’s Decarboniza6on and Sustainable Mobility Goals 

Vaasa has commiRed steadfast to the climate work and the Government of Finland’s 

set decarbonizaBon goals. Vaasa’s City Council set a target for the city in December 

2019, to achieve carbon neutrality by 2030. Other objecBves in Vaasa’s Energy and Cli-

mate Program 2019 are: 

• Improving energy efficiency by saving energy and intensifying its use. 

• Increasing the use of renewable energy sources. 

• Developing efficient energy services for neighbourhoods, constructors and ren-

ovators. 

• Buying only green electricity for public buildings. 

Sustainability and energy efficiency form the framework for Vaasa’s environmental and 

mobility goals. Smart mobility has high importance in Vaasa’s city planning and future 

goals, since it aids to advance the wellbeing of the ciBzens, populaBon growth, em-

ployment, and economic growth. The transiBon process to reach carbon neutrality by 

2030 requires fast and decisive measures, without forge}ng to secure the future for 

Vaasa’s ciBzens, industry and services. Hence, innovaBons, research and development, 

new business concepts, and collaboraBon between key stakeholders are required. 

In addiBon, energy efficiency and becoming energy self-sufficient are in the City of 

Vaasa’s interest. To accomplish these goals, the use of renewable energy sources (wind, 

solar, waste and thermal heat) is planned to be increased, and Vaasa’s residenBal ar-

eas’ energy consumpBon to be reduced. By doing so, the GHG emissions can be cut 

down by 70% before 2030. Currently the biggest causes of CO2 emissions in Vaasa are 

the district heaBng (DH) 31%, traffic 29%, separate heaBng 17%, and the energy con-

sumpBon of the inhabitants 13% (The City of Vaasa, 2016 & 2019; Enell-Nilsson et al., 

2019; Siirilä, 2019; Sweco ympäristö Oy, 2014). 

SubstanBal cut downs to the emissions caused by the traffic, presents a challenge for 

Vaasa, since private car ownership level is very high in the city’s region. Most of Vaasa’s 



69

inhabitants commute, shop and go to their leisure Bme acBviBes by driving an own car.  

Moreover, public transport needs further development from its current level. Shiling 

to use solely public transport or other means of sustainable mobility, are influenced by 

encouragement to change one’s habits and a}tudes, providing an easy access to rele-

vant informaBon concerning mobility, and improvements done to the public transport 

services and mobility chains. In fully funcBoning mobility chain, a person is able to 

travel any distance in a city by using public transport with e.g. bicycles, buses, e-scoot-

ers and rental EVs, without having to spend excess Bme of searching next mean of 

transport (The City of Vaasa, 2016 & 2019; Enell-Nilsson et al., 2019; Siirilä, 2019).  

The emissions from the traffic are planned to be reduced by 90% by 2030. Hence, the 

development and uBlizaBon of public transport has to be improved considerably, with 

heavier investments in sustainable bus alternaBves - electric and bio. AddiBonally, the 

bus routes need development, in order to meet efficiently Vaasa’s mobility needs and 

ciBzens’ requirements for public transport services. In 2017 there were 1.2 million 

travels done by public transport in Vaasa. The goal is to quadruple the number of trav-

els to 4.8 million travels by 2035. Furthermore, Vaasa is developing its cycling in-

frastructure and services with specialized bicycle routes and lanes, city bike services, 

and ensuring the cycling routes are safe and cleared of snow during winter months 

(Enell-Nilsson et al., 2019; Siirilä, 2019; Lindeqvist et al., 2020).  

Sustainability and carbon footprint reducBon are not only the city’s goals. The organi-

zaBons need to do their own share by encouraging their employees to commute by 

using sustainable mobility forms: public transport, cycling, walking, and car sharing. 

The climate acBons and achieving the set goals require planning, coordinaBon and co-

operaBon between the City of Vaasa, the local organizaBons and insBtuBons, and ciB-

zens of Vaasa. 

The biggest drivers for Vaasa’s sustainable transport and smart mobility development 

are based on its vast energy technology experBse, urbanizaBon trend and new possibil-

iBes provided by new technologies. New technical soluBons and appliances, digitaliza-

Bon, ICT and data analyBcs can reduce traffic congesBons, thus causing fewer accidents 



70

and reducing emissions. As a result, the environment becomes cleaner, and the general 

health of the people improves. Sustainability, new technologies of energy producBon, 

RES and mobility soluBons require heavy investments and commitment in decision-

making. CooperaBon and clear roles in economy and policies need to be drawn. Re-

quired technologies are available, the biggest challenge is how to implement new 

technologies most efficiently to already exisBng system, or how to construct a com-

pletely new system, e.g. new smart city district, and connect it to old city infrastructure 

(Enell-Nilsson et al., 2019; Siirilä, 2019; The City of Vaasa, 2016 & 2019; Sweco ym-

päristö Oy, 2014). 

Vaasa aRempts to develop its mobility jointly with its infrastructure development. 

Hence, the results can be expected to be the most robust and enduring, and being able 

to stand future development endeavors. Currently there are several large-scale ongo-

ing or near-future planned infrastructure construcBons, which require major changes 

in exisBng transportaBon system, and in the design of completely new transport solu-

Bons. Vaskiluoto district’s reconstrucBon with construcBon of a local energy company’s 

new faciliBes and Vaasa harbor’s enlargement are undertakings, which will take several 

years and modify the districts transportaBon requirements and infrastructure anew. 

Similar kind of large construcBon, where newly planned city districts’ construcBon 

takes place jointly with designing and construcBng the transportaBon system, is the 

district of Ravilaakso. Low energy district Ravilaakso will be constructed in 3-4 phases, 

starBng in 2022, providing significantly lower energy consumpBon housing soluBons 

and district energy storage system, which helps to achieve higher energy efficiency. 

AddiBonally, the Ravilaakso district will have readiness for e-mobility, with adequate 

charging infrastructure and incenBves for car sharing (The City of Vaasa, 2016; Sweco 

ympäristö Oy, 2014; Tenho et al., 2018; Kurikka-Oja & Kumpula, 2015).  

  

7.1. The Covenant of Mayors 

In 2016, Vaasa was accepted in the EU’s The Covenant of Mayors for Climate and Ener-

gy program. The program aims to gather together thousands of local governments 

around the European Union states and outside Europe, which are commiRed to im-
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plemenBng the EU’s climate and energy objecBves. The program was iniBated in 2008, 

and over the years, the Covenant of Mayors has grown to be a global program. Thus 

far, over nine thousand local and regional authoriBes from 53 countries around the 

world have goRen involved. The Global Covenant of Mayors exploits the experience 

gained over the past eight years in Europe, and is building on the key success factors of 

the iniBaBve: the boRom-up governance, the mulB-level cooperaBon model, and the 

context-driven framework for acBon. The Covenant of Mayors program is directly 

linked to the EU’s climate and energy policy framework (The Covenant of Mayors, 

2020). 

Each Covenant member has to commit to a Sustainable Energy and AcBon Plan (SEAP) 

to be involved in the program. The essence of SEAP are the Baseline Emission Invent-

ory, and the Climate Risks & Vulnerability Assessment, which aid in monitoring and 

steering the acBons of sustainability for reducing the carbon footprint. SEAP’s primary 

objecBves by 2050 are intense carbon footprint reducBon, enhancing the capability to 

adapt to the climate change’s impacts, and securing people’s access to reliable, afford-

able and sustainable energy. (The Covenant of Mayors, 2020).   

7.2. Sustainable mobility plan, MoveIT project, and BothniaTM project 

The Finnish government has set a naBonal target to reduce emissions from 

traffic by 50% before 2030 from the 2005’s level. Based on naBonal policies, the City of 

Vaasa decided on Sustainable Mobility Plan in 2019. The plan, implemented together 

with Traficom and WSP Finland Oy, reviews Vaasa’s strategies related to transport, mo-

bility and related infrastructure. It aims to develop guidelines and soluBons for means 

of daily sustainable transport in the city, and clarify the measures to be taken with 

traffic, so that Vaasa can achieve carbon neutrality before 2030. The Sustainable Mobil-

ity Plan (2019) defines the vision, objecBves, intervenBons and reporBng system for 

mobility in Vaasa, thus providing vital informaBon about how and when the IRIS solu-

Bons could be replicated in Vaasa. In addiBon, the program has strong focus on ciBzen 

engagement (Enell-Nilsson et al., 2019; The City of Vaasa, 2019; Siirilä, 2019).  
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However, the development of the Sustainable Mobility Plan was preceded by 

“Vaasa Arena for Change” workshop, both illustrated in the Figure 5 with other related 

projects connected to sustainable transport in Vaasa. The workshop was part of by 

BothniaTM project, funded by the European Regional Development Fund 

(ERDF), the City of Vaasa and the University of Vaasa. One main objecBve of the Both-

niaTM project was to idenBfy stakeholder and ciBzen engagement’s importance for the 

community’s sustainability development. AddiBonally, the project concentrated on in-

volvement and influence of change agents for a community, in achieving the sustainab-

ility goals. This acBvity can be referred to the IRIS integrated soluBon Community Build-

ing by Change Agents demonstrated in Utrecht (The City of Vaasa, 2019; Enell-Nilsson 

et al., 2019).  

 

Figure 5. Vaasa’s strategies, policies, plans and programs related to carbon neutrality 
goals and sustainable transport (Onkalo et al., 2021). 

T h e Va a s a A r e n a fo r C h a n g e w o r k s h o p g e n e ra t e d t h e fo l l o w i n g 

key noBficaBons about the mobility objecBves best serving the ciBzen’s desires:   

• Public transport usage to be quadrupled by 2035.  

• The cycling modal share to be tripled by 2035.   

• Traffic emissions to be reduced by 90% by 2035.  

• Reduce CO2 emissions.  
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• Low-carbon soluBons should receive the highest priority in infrastructure de-

velopment.   

• Increase the uBlizaBon rate of a shared cars and public transport, and increase 

their revenues. 

• Reduce the number of cars in public spaces. 

• Reduce the need to build expensive underground parking spaces and street 

level parking.    

• CoordinaBon of planning to be enhanced considerably.     

• Sustainable commuBng/mobility to be placed on organizaBons’ agenda.   

(Enell-Nilsson et al., 2019) 

AddiBonally, the Sustainable Mobility Plan includes several measures for years 

2019-2022, indicated in the Table 8, to improve services and infrastructures for cyclist 

and pedestrians, which are outside the IRIS implementaBon and replicaBon model. 

However, there are several plans to improve the services, technologies, infrastructure, 

and mobility soluBons, which can be linked directly to the IRIS T.T. #3 integrated solu-

Bons, enabling lessons learned from the LH ciBes’ demonstraBons, and replicaBon in 

Vaasa’s environment, clarified in the Table 8. Some of the Sustainable Mobility Plan’s 

acBviBes have indirect IRIS replicaBon plan connecBons, since those acBviBes support 

or enhance Vaasa’s replicaBon plan’s integrated soluBons. 
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Table 8. Planned acBviBes of Sustainable Mobility Plan, which have either direct or in-
direct link to the IRIS replicaBon plan (Enell-Nilsson et al., 2019; Onkalo et al., 2021). 

Sustainable Mobility 
Plan Ac6vity 

Imple-
menta6on 
planned 

Descrip6on INDIRECT IRIS 
replica6on pos-
sibility 

Development of the city 
centre for pedestrians 

2019-2021
 

Support innovaBve iniBat-
ives. Increasing pedestrian 
zones in the city centre 

T.T. #3, IS 3.2 
MaaS

Development of safety, 
accessibility and quality 
related to pedestrian 
zones and cycling paths 

2022 FuncBoning network in-
cluding green zones 

T.T. #3, IS 3.2 
MaaS 

Project to improve ex-
isBng cycling paths 

2020-2030
 

Improvement of exisBng 
cycling paths 

T.T. #3, IS 3.2 
MaaS 

Planning of new cycling 
routes and prioriBes 

2021 - 
2022 

Update the city centre 
plan, pilot for new cycling 
path in the city centre 
etc.

T.T. #3, IS 3.2 
MaaS & CiBzen 
engagement T.T. 
#5  

Specific budget for cyc-
ling 

2020 Financing plan mobility T.T. #3, IS 3.2 
MaaS & mobility 
chains

Development of parking 
facility plan for cycling 

2020-2021
 

Plan on parking faciliBes T.T. #3, IS 3.2 
MaaS & mobility 
chains

Improve condiBons dur-
ing winter season for 
light traffic

2020-2021
 

Service levels and main 
network for cycling and 
pedestrians 

T.T. #3, IS 3.2 
MaaS & mobility 
chains

Sustainable Mobility 
Plan Ac6vity 

Imple-
menta6on 
planned 

Descrip6on DIRECT IRIS rep-
lica6on possibility

Sustainable Mobility 
Plan 

2019 Strategic document based 
on the City Strategy 

T.T. #3, IS 3.2 
MaaS

Annual plan for com-
municaBon on sustain-
able mobility 

2020 Plan for communicaBon, 
goals, stakeholders, 
budget  

Co-creaBon and 
ciBzen engage-
ment T.T. #5 & T.T. 
#3, IS 3.2 MaaS 
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Development of public 
transport 

2021 Improve services, routes, 
smart soluBons, connec-
Bons etc.  

T.T. #3, IS 3.2 
MaaS

Procurement or sub-
sidies to e- or biogas 
buses 

2021 Implement EU decisions 
on procurement  

T.T. #3, IS 3.1 e-
buses and char-
ging systems  & 
T.T. #3, IS 3.2

Improving public image 
of public transport 

2020 Co-creaBon with ciBzens, 
service provides 

Co-creaBon and 
ciBzen engage-
ment T.T. #3, IS 3.2 
MaaS & T.T. #5 Cit-
izen engagement 

Digital services for mo-
bility 

2020-2021
 

Real Bme service on pub-
lic transport, piloBng plat-
form for different ap-
plicaBons, payment sys-
tems and services related 
to mobility 

Services for smart 
mobility T.T. #3, IS 
3.2 MaaS,  
Data plagorm T.T. 
#4, IS 4.3 Services 
for Mobility  

Plan to develop mobility 
hubs 

2019-2020
 

Development of hub for 
mobility services and 
connecBons to districts 

T.T. #3, IS 3.2

Raising awareness of 
employers and private 
enterprises about sus-
tainable mobility 

2022 Awareness, co-creaBon 
and engagement to facil-
itate mobility plans for 
private sector employers 

CiBzen engage-
ment T.T. #3, IS 3.2 
& T.T. #5  

Raising awareness of 
smart energy and mo-
bility soluBons 

2022 Subsidies and guidance to 
housing associaBons for 
sustainable mobility and 
energy efficiency (EVs, 
charging infrastructure, 
shared vehicles, e-bikes, 
mobility services)

Services for smart 
mobility, and cit-
izen engagement 
T.T. #4, IS 4.3 & T.T. 
#3, IS 3.1 & 3.2   
 

Data collecBon 2019 Data collecBon and sys-
tem available on city 
web-site 

Data plagorm, 
and smart char-
ging T.T. #4, IS 4.3 
 & T.T. #3 
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In addiBon, the City of Vaasa, in collaboraBon with Vaasa Region Development Com-

pany VASEK, the University of Vaasa, and the Center for Economic Development, 

Tr a n s p o r t a n d t h e E n v i r o n m e n t ( E LY ) , i m p l e m e n t e d M o v e I T - 

Low Carbon Dioxide Transport Services in the Vaasa Region by 2030 project in 

2019. The project was funded by Pohjanmaan liiGo through European Regional Devel-

opment Fund (EAKR), together with local ELY, the City of Vaasa and the Municipality 

of Mustasaari. MoveIT prepared an analysis of the current situaBon, and 

vision for the public transport and other mobility soluBons in Vaasa region. The focus 

of the project report is Mobility as a Service, and the development of 

the mobility chains in the Vaasa region.  Thus, the report provides a baseline for most 

of the issues related to mobility in IRIS TransiBon Track 3, Smart e-Mobility sector (Siir-

ilä, 2019). 

The key subjects of the MoviIT project concerning Vaasa were: 

• Sustainable mobility and reducBon of traffic. 

• Enhance cycling and walking possibiliBes in the city’s center and region. 

• Changes in mobility’s services, digitalizaBon and user behavior. 

• Zero and low-carbon vehicles and fuels. 

Pilot on public-private 
partnership in new 
housing construcBon 
projects 

2022-2027
 

Improve quality of hous-
ing areas and related 
outdoor spaces, EVs, 
shared vehicles, e-bikes, 
charging, mobility ser-
vices. Model to measure 
benefits 

T.T. #2, T.T. #3, IS 
3.1 & 3.2 , T.T. #5 

More efficient and flex-
ible use of public 
spaces  

2020 Co-operaBon and easy 
access to public spaces. 
Shared parking places  

T.T. #3, IS 3.2 & 
CiBzen engage-
ment T.T. #5 

ParBcipatory planning 
and budgeBng 

2021-2022
 

Co-creaBon and engage-
ment of ciBzens for plan-
ning and budgeBng 

CiBzen engage-
ment T.T. #3 & T.T. 
#5  
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8. Vaasa’s IRIS replica6on plan  

T.T. #1: Smart Renewables and Closed-loop Energy Posi6ve Districts 

Integrated solu6on  Project name  Partners  Es6mated peri-
od  

✅ IS-1.1: Posi6ve energy buildings 
 (Nice: Palazzo Meridia (self-con-
sumpBon, RES, BESS) & IMREDD 
+ Gothenburg: Brf Viva (PV, BIPV, 
local ESS, 2nd life 
baReries) + Utrecht: Bo-Ex (RES, 
Smart metering) 

New energy pos-
iBve community 
building in the 
city cente  

The City of Vaasa, local 
energy distribuBon sys-
tem operator (DSO) 
Vaasan Sähköverkko Oy, 
local electricity company 
Vaasan Sähkö Oy, con-
structor etc.

TBA

IS-1.2:  
Near zero energy retrofit district  
(Utrecht: Bo-Ex) 

Olympia block, 
RisBnummi dis-
trict etc.

The City of Vaasa, Oy 
Pikipruukki FasBghets 
Ab, VOAS

TBA

✅ IS-1.3: Symbo6c waste heat net-
works   

Vaskiluoto heat 
storage

Vaasan sähkö Oy, waste 
incinerator plant owner

TBA

T.T. #2: Smart Energy Management and Storage for Grid Flexibility 

Integrated solu6on  Project name  Partners  Es6mated peri-
od   

✅ IS-2.1:  
Flexible electricity grid networks  

Smart Grid (pre-
vious project: 
Sundom Smart 
Grid)

Vaasan Sähkö Oy, Vaas-
an Sähköverkko 
Oy, The University of 
Vaasa  

TBA

✅ IS-2.2: Smart mul6-
source low temperature district 
hea6ng with innova6ve storage 
solu6ons  
(Gothenburg: 350 V DC building mi-
crogrid uBlizing 140kW roolop PV 
installaBons, 200kWh 
BESS + Nice: Flexible electricity grid 
networks + Utrecht: V2G, smart 
charging, BESS) 

SuvilahB self-
sufficient district 
&Ravilaakso low-
temperature 
DH  

The City of Vaasa, Vaas-
an Sähkö Oy, Westen-
ergy Oy

TBA

IS-2.3: U6lizing 2nd life baYeries 
for smart large scale storage scheme
s 
(e.g., Nice: 
IMREDD (RES, BESS) + Utrecht: apart
ment buildings and V2G 
storage schemes, e-buses, smart 
charging  + Gothenburg: low tem-
perature DH 45/30 system & cooling)

TBA The City of Vaasa, Vaas-
an sähkö Oy, Vaasan 
sähköverkko Oy e-
vehicle manufacturer/-s 

TBA 
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T.T. #3: Smart e-Mobility Sector  

Integrated solu6on  Project name  Partners  Es6mated peri-
od  

IS-3.1: Smart solar V2G EVs char-
ging (Utrecht: We Drive Solar 
+ Gothenburg: EC2B + Nice: Smart-
Solar V2G)  

TBA Vaasan sähkö Oy, Vaasan 
sähköverkko Oy, The City 
of Vaasa  

TBA 

✅  IS-3.2: Innova6ve mobility ser-
vices for the ci6zens  
(Gothenburg: EC2B Viva & 
Campus, MaaS + Nice: InnovaBve 
Mobility Services, EV 
fleet + Utrecht: WeDriveSolar)

EC2B Ravilaakso: 
EVs (fleets), car 
sharing, smart 
charging 
schemes, Sus-
tainable mobility, 
cycling, public 
transport devel-
opment   

ConstrucBon company, 
The City of Vaasa, a 
vehicle provider (TBA)  

2022-2025  

T.T. #4: City Innova6on Plagorm (CIP) 

Integrated solu6on  Project name  Partners  Es6mated peri-
od  

IS-4.1: Services for urban monitor-
ing  
(Nice: Sensors data collecBon in air 
quality + Gothenburg: CIM 
pilot + Utrecht: Monitoring E-Mobil-
ity, Smart Street LighBng with mulB-
sensoring)

TBA Vaasan sähkö Oy, The 
City of Vaasa

TBA

IS-4.2: Services for city management 
and planning  
(Nice: BIM/CIM data 
display + Gothenburg: CIM 
plagorm + Utrecht: 3D City Innova-
Bon Model)

TBA The City of Vaasa TBA

IS-4.3: Services 
for Mobility (Nice: Data control and 
monitoring for Smart e-
mobility + Utrecht: Monitoring E-
Mobility)

TBA The City of Vaasa TBA

IS-4.4:  
Services for Grid Flexibility  
(Nice: Data interoperability with en-
ergy cloud + Gothenburg: The City 
InformaBon Plagorm + Utrecht: 
Monitoring Grid Flexibility)

ConnecBon to IS 
1.1, 1.2, 2.1, 2.3, 
3.1 & 3.2  

The City of Vaasa, Vaas-
an sähkö Oy

TBA
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Table 9. Vaasa’s replicaBon plan in full (Onkalo et al., 2021). 

From the Table 9, presenBng Vaasa’s replicaBon plan, one should first noBce the five 

different TransiBon Tracks, and how they are further divided into 16 integrated solu-

Bons in total. From these soluBons, the ones the City of Vaasa is planning to imple-

ment, or is already uBlizing, are specifically marked. In addiBon is indicated, which LH 

ciBes’ demonstraBons are behind Vaasa’s replicaBon plans. The second column is re-

served for Vaasa’s planned replicaBon project in specific. The key project partners and 

tentaBve schedule are shown in columns three and four, respecBvely.  

T.T. #5: Ci6zen Engagement  

Integrated solu6on  Project name  Partners/Engagement Es6mated peri-
od  

✅ IS-5.1:  
Changing everyday energy use  
(Utrecht: Community building by 
change agents) 

TBA (relaBon to 
TT#1 
& TT#3 acBviBes
)  
  
RisBnummi dis-
trict, The 
Olympia-block 
(TBA) 

The City of Vaasa, the 
University of Vaasa, 
Novia, RisBnummi dis-
trict and The Olympia-
block ciBzens, residents 
associaBons, 
district councils, Vaasa S
etlemen} AssociaBon

TBA

IS-5.2:  
Par6cipatory city modelling 

TBA  The City of Vaasa, cit-
izens

TBA

✅ IS-5.3: Living labs 
 (Utrecht: Co-creaBon in Local Innov-
aBon Hub) 

LähiöInno (RisBn
ummi district, 
The Olympia-
block)

 The City of Vaasa, The 
University of Vaasa, 
NOVIA, RisBnummi dis-
trict and The Olympia-
block ciBzens, resident 
associaBons, district 
councils, Vaasa Setle-
men} AssociaBon 

2020-

✅ IS-5.4: Behaviour changing In-
forma6on (Nice: Public awareness 
campaign Energy – School & Collège; 
Youth & Family + Utrecht: Campaign 
District School Involvement) 

Energy Educa-
Bon Path 

The City of Vaasa, pupils 
and students in Vaasa 
and their families, 
teachers and schools’ 
staff 

2017-
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T.T. #5 deals with various aspects of ciBzen engagement. However, ciBzen engagement 

as an acBvity is considered very important aspect in the IRIS project, and therefore it 

must be included in every single TransiBon Track’s integrated soluBon. Concerning 

TransiBon Track #2’s integrated soluBon 2.3 UBlizing 2nd life baReries for smart large-

scale storage schemes, no designated project is visible in the Table 9. This indicates 

that the City of Vaasa does not currently have plans to replicate this soluBon, which 

sBll requires further invesBgaBon. SBll and all, this soluBon will be addressed more 

thoroughly later on in this thesis. 

As for TransiBon Track #3, the integrated soluBons 3.1 Smart solar V2G EVs charging, 

and 3.2 InnovaBve mobility services for the ciBzens, both are of interest for the City of 

Vaasa. ParBcularly for the IS 3.2, the City of Vaasa has various plans for replicaBon 

acBviBes. AddiBonally, the IS 3.1 is of interest, although not yet feasible for replicaBon. 

However, the soluBon has great potenBal in the future, benefiBng from growing EV 

stock, enhancing local smart grid development, and advancing certain IRIS integrated 

soluBons’ development, e.g. IS 2.1, 2.3, 3.2 and 4.4 (Onkalo et al., 2021). 
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9. IRIS - Replica6on Ac6vi6es of Transi6on Track #2 and #3 in 

Vaasa 

The City of Vaasa’s strategy to achieve carbon neutrality by 2030, and the city’s Sus-

tainable Mobility plan, both have ambiBons to increase sustainable models of mobility, 

e.g. public transport, e-mobility and Mobility as a Service concept. These ambiBons can 

also be found from the T.T. #2’s IS 2.3, and the T.T. #3’s IS 3.1. and 3.2 of the Vaasa repli-

caBon plan. 

9.1. U6lizing 2nd life baYeries for smart large-scale storage schemes 

Currently, there are no energy storage soluBons in Vaasa applying 2nd life baReries. 

While the applicaBon of 2nd life Li-ion baReries for energy storage soluBons is an inter-

esBng and potenBal concept in terms of future’s energy soluBons in Vaasa area, the 

limiBng factor currently is the extremely low level of adopBon of PHEVs and BEVs in 

Vaasa, and in Finland in general. In the end of 2020, there were liRle over 

45.000 PHEVs and approximately 9.700 BEVs in use in Finland, as shown in the Figure 

6. On the naBonal level, the adopBon of hybrid electric vehicles (HEV) is sBll far greater 

than PHEVs and BEVs.  

The uBlizaBon of 2nd life baReries and their development into a viable market in Fin-

land, requires strong progressive development of e-cars and e-buses sold for private 

and public sector, and uBlizaBon in traffic among all vehicles. Thus, eventually the stock 

of 2nd life baReries will grow, and the development of their uBlizaBon can start. Other 

affecBng factors to non-exisBng uBlizaBon of 2nd life baReries are the relaBvely weak 

development of MaaS concept and its sustainable mobility soluBons and e-mobility in 

general. In addiBon, the scarceness of smart charging, charging infrastructure, and in-

novaBve soluBons to exploit 2nd life baReries in smart energy soluBons, e.g. intercon-

necBon with RES, and baRery energy storage soluBons acBng as energy storages for 

buildings, hinder the uBlizaBon of the 2nd life baReries (Onkalo et al., 2021).  
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Figure 6. PHEVs (orange & blue) and BEVs (green) in traffic in Finland 31.12.2020 (Trafi-
com, 2020). 

  
Although 2nd life baReries for staBonary applicaBons are not applicable currently, nor in 

the near future, for the City of Vaasa, such energy storage soluBons do represent pos-

sibiliBes for Vaasa region subsequently, as indicated in the Table 10. However, currently 

no plans exist to replicate second-life baRery demonstraBons as done in Utrecht, Nice 

and Gothenburg. As the number of baRery electric vehicles grows, and the supply of 

2nd life baReries will increase substanBally from the current level, then an implementa-

Bon plan will be called for. More invesBgaBon on the subject is required, in order the 

maRer of uBlizing 2nd life baReries to become well-grounded (Onkalo et al., 2021).   
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Table 10. The maRers of potenBal and challenges of uBlizing 2nd life baReries in Vaasa 
(Onkalo et al., 2021). 

MaYers of poten6al: Challenges:

NaBonal and regional policies and goals 

support measures striving for energy effi-

ciency, use of sustainable energy sources 

and soluBons of energy storing. 

Investments in 2nd life baReries are not 

yet economically viable. Without sub-

sidies, it is very challenging for new busi-

ness models for 2nd life baRery soluBons 

to emerge. Legal and financial circum-

stances need to be changed as well. 

Many of the internaBonal studies indicate 

that the uBlizaBon of 2nd life baReries is 

cheap. The expenses of the baReries 

largely concern the baReries’ “first life”. 

Knowledge of the uBlizaBon of 2nd life 

baReries is limited and may cause preju-

dice. 

The technology for the uBlizaBon of 

2nd life baReries is available. However, 

certain soluBons may require more exam-

inaBon and research, depending on the 

case.   

Security issues, e.g. fire safety, concern-

ing the uBlizaBon of 2nd life baReries is of 

serious concern, and require further in-

vesBgaBon.

2nd life baReries have 8-10 years of capa-

city lel, and are environmentally safe 

and sustainable energy storage/source, if 

examined properly and handled correctly. 

Recycling a baRery aler its first life is 

more expensive, and disposal may pos-

sess environmentally dangerous issues. 

More regulatory framework is needed in 

the uBlizaBon and trade of 2nd life baRer-

ies, not only in naBonal level but interna-

Bonally as well. ExisBng regulaBon does 

not support enough the commercializa-

Bon of 2nd life baReries in wider perspect-

ive.  

There are several potenBal and re-

searched ways of uBlizing 2nd life baRer-

ies: in buildings, e-mobility, MaaS and 

ancillary services for the local power grid. 

The market is not mature yet for 2nd life 

baReries’ usage in most countries. More 

Bme has to pass for EVs to increase their 

share of vehicles in use. 
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The uBlizaBon of the 2nd life baReries 

adds more length and value for the life 

cycle of a baRery, which can benefit the 

baRery manufacturer, grid operator and 

the baRery owner. 

The biggest hindering factors learned 

from the LH ciBes demonstraBons were 

surprising. The price of the uBlized 2nd life 

baReries was high. AddiBonally, in order 

to build a sufficient baRery pack inside an 

apartment building for its energy use, 

substanBal amount of work and invest-

ment was required, and the feedback 

from the inhabitants was not posiBve. 

The conclusion is that the market needs 

to mature and more research and pilot 

tesBng is necessary. 
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9.2. Transi6on track #3: Smart e-Mobility sector  

TransiBon Track #3’s integrated soluBons are studied based on their replicaBon possib-

iliBes in Vaasa’s new Ravilaakso district, illustrated in the Figure 7. The main stakehold-

ers for the IS 3.1 Smart solar V2G EV charging, are the DSO, being responsible for the 

technical infrastructure and services related to possible V2G soluBons, with a company 

providing the shared EVs, and the constructor companies responsible for building dis-

trict’s houses.   

 

Figure 7. Ravilaakso replicaBon area shown in red (Onkalo et al., 202). 

 IS 3.1’s biggest challenges are the lack of knowledge related to consumer 

behavior, and the sustainability and economic feasibility of the soluBons. Currently, it is 

highly difficult to idenBfy the available EV stock in the Vaasa region. Thus, it is very 

challenging to, reliably idenBfy the exact number of EV owners capable of uBlizing V2G 

service, if such a service would exist. AddiBonally, currently only a few vehicle manu-

facturers allow V2G applicaBon, why small number of V2G enabled EVs are sold in all 
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together in Finland. However, growing number of EV manufacturers are constantly de-

veloping V2G enabled EVs, and rising number of such models are being introduced to 

the automoBve markets at growing rate  (Onkalo et al., 2021). 

Moreover, is it very challenging to draw exact conclusions on what extend the local 

power grid would benefit from the possible local V2G charging infrastructure, or what 

kind of impact would the soluBon have on the durability of the EV baReries. AddiBon-

ally, not enough knowledge exists on what would be the true economic 

benefits for the EV owners.  For the IS 3.1, there is a need to improve the knowledge of 

the development of the V2G soluBons and services, and what are the financing opBons 

for developing such services for a city such as Vaasa, where customer base is minimal 

compared to the charging infrastructure required. There is also need to gain more 

knowledge about customer behavior concerning V2G soluBons.   

The stakeholders of IS 3.2 InnovaBve mobility services for the ciBzens, were idenBfied 

during the TransiBon Arena workshop, with parBcipants from the City of Vaasa (civil 

servants and board members), the University of Vaasa, NOVIA University of Applied 

S c i en ces , Reg i o n a l D eve l o p ment C o mp any VAS E K, an d Tech n o l o gy 

Centre Merinova. Smart Mobility Services are considered as an opportunity to develop 

new concepts, especially in densely populated urban areas, and the development 

needs to involve organizaBons, ciBzens and service providers.    
  

For Vaasa’s plan to replicate Gothenburg’s EC2B demonstraBon, the main challenges 

are related to the sustainability of business models, and the uncertainty of human be-

havior. EC2B is based on complex agreements between different third parBes, housing 

developers, a plagorm developer and an EV provider. For EC2B in Gothenburg, the 

Lighthouse partner was a company, which took an acBve role in supplying the share-

able EVs. The company in quesBon may provide knowledge and technology to possible 

replicaBon partners in Vaasa (Onkalo et al., 2021). 
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9.2.1. Smart solar V2G EVs charging  

V2G and Smart solar charging soluBons are closely linked to TransiBon Track #2 

Smart Energy Management and Storage for Grid Flexibility, to its both integrated solu-

Bons 2.1, Flexible electricity grid networks, and 2.2, UBlizing 2nd life baReries 

for smart large-scale storage schemes. In addiBon, the IS, Smart solar V2G EV’s char-

ging, is connected to TransiBon Track #4’s IS 4.4, Services for grid flexibility.  

Currently, there are approximately 25 public e-charging staBons in Vaasa region, illus-

trated in the Figure 8. Several operators exist, and can be expected, that in the future 

the number of charging staBons will mainly raise by private operators. Currently, there 

are no acBviBes related to V2G soluBons in Vaasa (Onkalo et al., 2021).   

 
Figure 8. LocaBon of e-charging staBons in Vaasa. AddiBonal three staBons are located 
further out of the center of the city (latauskarYa.fi, 2020). 

http://latauskartta.fi
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The City of Vaasa has planned for the new near-zero energy district Ravilaakso, a small 

fleet of vehicles for sharable use. It has been calculated, that a shared car in the dis-

trict would replace six personal cars. It is yet uncertain, whether the vehicles will be 

EVs. TentaBve planning is that they will be.  

Ravilaakso is a new residenBal area of 83 apartment buildings and 45 townhouses in 

Vaasa, which will be inhabited by approximately 2500 people. The district’s area was 

used as a horse race track before it was decommissioned in 2016. Civil engineering 

work began in 2019, and the construcBon of buildings is planned to begin in 

2022. Once finished the total living area of the Ravilaakso district will be approximately 

135 000 m2.  In the developed Ravilaakso district, the aim is to achieve the highest pos-

sible level of energy independence and sustainability. One of the most important envi-

ronmental goals of the City of Vaasa is to reduce the city’s carbon footprint. This has 

been taken into account, when planning the energy and mobility soluBons for Ravilaak-

so (Onkalo et al., 2021).    

Smart charging and interconnecBon with PV are expected to play a major role in the fu-

ture’s smart grid operaBons. When the EV penetraBon rate will reach the 

level, where the DSO and the flexibility of its operaBons will need the adopBon of addi-

Bonal smart energy technologies, e.g. involvement of RES, V2G and RESS, V2G presents 

high potenBal for ancillary services. Through large number of EVs, smart charging and 

management, providing extra electricity to the system when needed is possible. 

Moreover, V2G can funcBon as a distributed energy storage, or a storage network, not 

only on regional but on naBonal level as well. 

  
Currently the City of Vaasa has no intent to replicate the IS 3.1, due to the fact, that the 

demand for smart solar V2G EVs’ charging is negligible in Finland in general, i.e. there is 

no V2G service available and smart charging infrastructure is yet to be developed. 

However, when EVs become increasingly popular, and viable business model/-s for V2G 

soluBons and services shall eventually emerge (indicated in the Table 11), planning 

of the replicaBon can conBnue. The demonstraBon conducted in the LH city Gothen-
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burg, related to e-buses and their charging system (V2G), could be replicated later aler 

the project period, if the City of Vaasa will invest in e-buses (Onkalo et al., 2021).     
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Table 11. The maters of potenBal and challenges of uBlizing V2G schemes in Vaasa 
(Onkalo et al., 2021). 

Maters of poten6al: Challenges:

EU expresses a strong poliBcal commit-

ment towards e-transport and MaaS 

concept.

The City of Vaasa has already made an in-

vestment in biogas buses, and required 

infrastructure for local bio fuel produc-

Bon. Transferring to e-transport requires 

a new investment plan.  

The investment cost of a bidirecBonal ad-

justable charging system is higher than in 

G2V system. However, it is the most cost-

effecBve and economically profitable al-

ternaBve once uBlizing V2G in full extent 

becomes widespread. 

In order to uBlize EVs’ baReries in the ex-

isBng energy system, a new implement-

able and lucraBve business 

model has to emerge. 

The required technology is already avail-

able. 

EVs are more expensive than IC powered 

vehicles. E-buses demand charging infra-

structure, for example fast charging sta-

Bons at each endpoints of the route. 

These staBons can be very expensive. 

Well-funcBoning, effecBve and full elec-

trificaBon of the city’s bus fleet requires 

fast charging infrastructure capacity, 

manageable in size as well. 

The rising number of EVs and reducBon 

of fossil fuel driven cars in traffic, will lead 

to reducBon of CO2 emissions, improve-

ment of air quality, and reducBon of 

noise levels. 

User acceptance of smart charging can 

prove to be a barrier for quite some 

Bme. For many of the end-users such a 

service, and their awareness of its full 

potenBal, requirements and effects, can 

be relaBvely limited. 
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The contribuBon EVs have to the reduc-

Bon of air-polluBon might convince cit-

izens to favour the adopBon of e-mobility 

and shared transportaBon, such as 

shared EVs. 

However, for V2G soluBons, only a few 

vehicle 

manufacturers exist currently, who 

allow the use 

of EV baReries in the V2G operaBng 

model. Many of the available EV models, 

and charging 

infrastructure models, have too 

low technical performance and 

capacity, to manage detailed V2G 

schemes. 

V2G operaBng model enables EVs to be 

uBlized as distributed storage system for 

the grid, and in various ancillary services, 

providing more grid flexibility.

The main idenBfied technical barriers re-

lated to the power infrastructure and e-

charging staBons are the compaBbility 

of the charging staBons with the local 

power network, and availability of power 

of the local network. 

V2G enables aRracBve mean for econom-

ical profitability, concerning the DSO, ag-

gregators, service operators, and the EV 

owner. 

As the number of EVs increases, it is im-

portant that the charging acBvity and in-

frastructure are managed intelligently, to 

avoid power peaks, and the need for ad-

diBonal power caused by charging. Com-

ponents for implemenBng smart charging 

at the property level already exist, but 

only at the higher grid network levels.

More defined, detailed and well-con-

structed regulatory framework is re-

quired as V2G schemes become 

more current. 

Lack of wide smart charging infrastruc-

ture network.
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A considerable challenge is to sBmulate ciBzens to change their habits of using private 

cars, and start acBvely promoBng and uBlizing more sustainable mobility alternaBves, 

such as public transport, resorBng to car sharing, and buying EVs instead of cars ran by 

fuel. Private car ownership and private car commuBng are very common in Vaasa. 

Therefore, increasing the uBlizaBon of public transport and car sharing are challenging 

issues. The replicaBon of integrated soluBon 3.2 should be combined with the replica-

Bon of integrated soluBon 5.1, Changing everyday energy use, which concentrates on 

ciBzen engagement, and affecBng to the energy behaviour.  

EVs and Mobility as a Service reduce consumers' carbon footprint and open new types 

of business opportuniBes. The energy storage potenBal provided by e-cars and e-buses 

via V2G soluBon, combined with smart energy and charging management, have the 

potenBal to aid, or even opBmize the energy self-consumpBon of buildings, reduce grid 

stress, and unlock the financial value of grid flexibility.  Aler the development of more 

advanced V2G systems takes place, and enough informaBon about suitable business 

models and technical requirements are available, the City of Vaasa can invesBgate the 

soluBon’s potenBal anew, and make decisions for further V2G schemes. Prior to that, 

local pilot project should be carried out, since more research is required on the subject 

(Onkalo et al., 2021).   

   

9.2.2. Innova6ve Mobility services for the Ci6zens  

Traffic is the second biggest source of CO2 emissions in Vaasa, consisBng of 29% of 

emissions outside the trading sector. The other CO2 sources are district heaBng 50%, 

consumer energy consumpBon 13%, agriculture 4% and waste management 3%. In the 

close future, traffic will raise to be the biggest source for CO2 emissions, when 

the poliBcal decision to ban fossil fuels in heaBng will come into full effect, and the en-

ergy efficiency of living will increase. To achieve a dramaBc reducBon of traffic related 

CO2 emissions, various new methods of technology and emission miBgaBon are re-

quired (Liljeström et al., 2019).   
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Some of Vaasa’s challenges are that the number of vehicles per person is high (630 

vehicles per 1000 persons) and the share of vehicles using alternaBve fuels or power-

ing technology is low. However, several posiBve steps have been taken. New biogas 

buses have been added to the city’s bus fleet. The City of Vaasa has built a system for 

local biogas producBon and purchased 12 biogas buses for the city’s internal transport 

service. AddiBonally, new bus routes have been developed, in collaboraBon with Vaasa 

region’s biggest employing companies. AddiBonally, ciBzen’s opinions and wishes have 

been heard, e.g. through the city’s webpage and in BothniaTM project. Currently, ap-

proximately 1.2 million trips are done in Vaasa by public transport annually. Based on 

the BothniaTM project, this amount is planned to be doubled by 2025 

and quadrupled by 2035 (Enell-Nilsson et al., 2019; Siirilä, 2019; Lehtomaa et al., 

2012).   

Organizing a market based public transport in Finland is challenging, due to long dis-

tances and the difference in the sizes of the ciBes. Smart mobility services are con-

sidered as an opportunity to develop new concepts of sustainability, especially 

in densely populated urban areas.  Vaasa is aiming to improve the service level in the 

mobility sector, mainly in public transport, improving the cost and resource efficiency. 

The target is to receive cheaper unit cost for the services and beRer uBlizaBon level.  

One of the main objecBves is fully funcBoning shared transport system, which 

would include cars, bicycles and e-scooters. For shared transport system, the main tool 

is system monitoring on data, and devices connected to the transport service system. 

Further development of e-mobility and the use of biogas and/or e-buses in Vaasa’s 

transport, are also main objecBves for the Vaasa´s logisBc plan. Well planned and ex-

ecuted public transport, increments in schedule and efficient rouBng, aid in the man-

agement of traffic congesBon and achieving carbon neutrality (Enell-Nilsson et al., 

2019; Siirilä, 2019).          

The share of cycling in Vaasa is 12%, presenBng good potenBal for growth. Distances in 

the city are short, the terrain is relaBvely flat, and the number of students, who uBlize 

bicycles a lot, is approximately 13 000. Nearly 80% of the ciBzens of Vaasa 
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live within cycling distance from the city’s center, which is maximum of 5 km. In 

2018, a bike sharing system was tested in the city center and in the Vaasa 

University’s campus area with posiBve results. AddiBonally, renBng an electric scooter 

is possible in Vaasa. This service was introduced in 2020, and it has quickly gained pop-

ularity.  

SBll and all, as indicated previously in the Table 8, improving services and infrastructure 

for cycling and pedestrians is not directly involved with IRIS TransiBon Track soluBons. 

However, well-funcBoning services, technologies, soluBons and infrastructure concern-

ing the T.T. #3’s Mobility as a Service concept: public transport, e-mobility, funcBoning 

mobility chains, uBlizing digitalizaBon, smart charging and monitoring, are at least in-

directly linked to light traffic. AddiBonally, the T.T. #4’s Services for mobility and the T.T. 

#5 CiBzen engagement, possess indirect linkage to improving the environment, services 

and infrastructure of light traffic in connecBon to the T.T. #3. Moreover, ciBzen en-

gagement as an acBvity has to be part of every IRIS integrated soluBon, regardless, 

which TransiBon Track is in quesBon.   

   
ReplicaBon of LH city Gothenburg’s VivaBf/EC2B demonstraBon is under more 

detailed scruBny, in order to be uBlized in Ravilaakso district. This planned project is 

part of acBvity described in the Sustainable Mobility Plan’s Pilot on public-private part-

nership in new housing construc8on projects.  The EC2B’s plagorm model could also 

be used in other new housing construcBon projects, as well as in other housing associ-

aBons and public housing companies (Onkalo et al., 2021).      
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Table 12. The maRers of potenBal and challenges of InnovaBve mobility services for 
the ciBzens, in Vaasa (Onkalo et al., 2021). 

MaYers of poten6al: Challenges:

There is a strong naBonal and local polit-

ical commitment to achieve sustainable 

mobility. The City of Vaasa is commiRed 

to reach carbon neutrality by 2030.  

Vaasa’s populaBon is growing steadily, 

se}ng high requirements for the city’s 

accommodaBon needs. Large part of this 

growth needs to be accommodated with-

in the current city boundaries. This will 

be carried out through more compact 

building, increasing the number of homes 

per km2. Simultaneously, the city 

center has to remain aRracBve and ap-

proachable, and capable to meet 

the needs of the growing number of cit-

izens.

Curtailing private car ownership, or 

private car mobility, can be sensiBve 

poliBcal issues. Hence, delays or avoid-

ance of making such potenBally unpopu-

lar decisions may occur.

The City of Vaasa is working 

proacBvely to promote the development 

of MaaS concept. By promoBng public 

transport, e-mobility and related ser-

vices, digitalizaBon and ICT in transport 

services, car sharing and smart charging, 

the city’s mobility objecBves can be 

achieved.

It can be challenging to find a business 

model viable for all actors involved 

in MaaS soluBon. Developing and main-

taining the digital plagorm requires in-

vestments and capital. For some mobility-

service providers it may be challenging to 

find sufficient amount of funding 

for planned sturdy MaaS soluBon on all 

levels.  
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MaaS connected to accommodaBon can 

reduce costs for property developers, as 

it might reduce the number of parking 

lots needed, or building expensive under-

ground parking garages. It can also lower 

mobility costs for users, if ownership of a 

car becomes unnecessary. For mobility 

service providers, it might aRract new 

customers. 

To sBmulate ciBzens to change their 

habits of using private cars, and start act-

ively promoBng and uBlizing car sharing 

system or public transport instead, or 

switching from IC powered cars to EVs, 

can be challenging. Private car ownership 

is an individual right and maRer of 

choice.

Technology is already available. As the service to be developed in this 

case (Maas/EC2B) is primarily targeted at 

newly built housing projects, it is mainly 

available for people with good economic-

al status.

For new construcBon areas, the City of 

Vaasa can apply lower parking norm, 

e.g. parking spaces that need to be re-

served per dwelling. The city is preparing 

pilots projects on how to acBvely sBmu-

late the development 

of MaaS concepts, by reducing parking 

places, which can be required 

if MaaS concept is uBlized. However, the 

urban plans and building regulaBons 

define how many parking lots are re-

quired in different buildings areas. Any 

excepBons are decided during the per-

mi}ng process. 

  

Decision-making involves different stake-

holders, public and private actors. To find 

common vision of goals and prioriBes 

may be challenging.
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The new Ravilaakso district is planned to have a Well-being city block, financed by a 

social services foundaBon (2 apartment buildings) for seniors. Car sharing is part of the 

plan, and the FoundaBon is planning 1-2 EVs for the block. The FoundaBon will be the 

owner of the housing block, consisBng of total 103 apartments, thus guaranteeing 

good condiBons for shared vehicle use. AddiBonally, the FoundaBon will provide a 

number of e-bikes for its block. Ravilaakso district has big ambiBons for car sharing in 

general. Moreover, the City of Vaasa has negoBated with a constructor and a construc-

Bon project developer about another block in Ravilaakso, which also intends to ac-

quire a few shareable cars for the area. 

In order to replicate Gothenburg EC2B demonstraBon, the FoundaBon responsible for 

the Well-being block in Ravilaakso, will engage its residents in an early stage via mar-

keBng and advising the use of services available when new residents are in the process 

of moving into the district. The replicaBon of integrated soluBon 3.2 InnovaBve Mobil-

ity services for the CiBzens, should be replicated jointly with the integrated soluBon 5.1 

Changing everyday energy use for best possible end-result (Onkalo et al., 2021).   

Improved services should lead to reduc-

Bon of the CO2 emissions, improvement 

of local air quality and reducBon of noise 

levels. AddiBonally the volume of traffic 

should reduce.

More clarity to regulatory and legislaBve 

framework, incenBves, tariffs, prices for 

consumers and service providers are 

needed.

The City of Vaasa can apply lower parking 

norm in new development 

areas, where property developers are 

able to make new arrangements for mo-

bility services, such as vehicle and bike 

sharing.

Can advance V2G schemes.
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The business model for EC2B model operaBng in Ravilaakso has not yet been decided 

in detail. However, as a business concept, MaaS has several potenBal aspects, enabling 

new services and businesses, as indicated in the Table 12. For the FoundaBon respons-

ible for the Well-being block in Ravilaakso district, due to car sharing, less parking 

places are needed to be built than normally required by the building regulaBon, thus 

saving considerably in expenditures. In average, one parking place can cost from sever-

al thousands to tens of thousands of euros. In addiBon, the inhabitants can get more 

services related to developed sharing concept, e.g. e-bikes, e-scooters and a phone ap-

plicaBon. This applicaBon can also be used for managing and booking other shared re-

sources.  The applicaBon and digital plagorm developer will get access to 

new markets for its products, and possibility to further develop its business in Vaasa.  

AddiBonally, Ravilaakso district’s mobility plan requires providing shared vehicles, 

e.g. cars, bikes, e-scooters etc., generaBng profit for the service providers.  Moreover, 

the City of Vaasa will benefit financially from the increased uBlizaBon of the public 

transport, from the Bcket sales.  Most of the other possible replicaBon acBviBes related 

to the Sustainable Mobility Plan are done by the City of Vaasa, and are dependent on 

the city’s budget. The project is based on EC2B service, which involves several actors: 

end-users, various service providers, housing foundaBons etc., aiming to develop high 

quality, aRracBve and sustainable mobility services, shown in the Figure 9 (Onkalo et 

al., 2021; Lä}lä, 2015).     

  

Figure 9. EC2B governance model for Ravilaakso district (Onkalo et al., 2021). 
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 EC2B enables housing development, where one does not have to take into account the 

aspect of vehicle ownership. This is managed through packaging flexible mobility ser-

vices, counselling and community for sharing- concept. EC2B aids real estate de-

velopers, who want to offer the market a modern and urban housing concept, with 

lesser number of cars in the district. This can be achieved through a package 

soluBon of sustainable and flexible mobility, which is aRracBve to both customers or 

residents and authoriBes. EC2B benefits mobility service providers, who want to reach 

large and affluent market for their sustainable mobility services. It will form a funcBon-

ing part of a comprehensive service for sustainable mobility, easily accessible.  EC2B 

advances Vaasa’s aspiraBons to create a more aRracBve urban environment and sus-

tainable development with fewer cars and a significantly more efficient land use 

(Onkalo et al., 2021). 

The implementaBon of EC2B’s replicaBon for Ravilaakso district will proceed as 

follows:   

1. Evalua6on of Gothenburg’s demonstraBon in collaboraBon with the Found-

aBon, EV provider-company, and the City of Vaasa.    

2. Feasibility study of the EC2B will be developed. IdenBficaBon of providers 

of shared resources and content of the plagorm, and services need to be 

idenBfied.   

3. Risk analysis includes risk idenBficaBon and descripBon of risk miBgaBon 

acBviBes.   

4. Financial analysis includes the invesBgaBon of financing schemes and fund-

ing from each partners’ business case. Several naBonal and EU funding 

sources exist. At this stage, the City of Vaasa should to decide, how it should 

act to referred required parking norm and number of used shared 

vehicles.    

5. Detailed design documents. The FoundaBon of Well-being city block and 

main stakeholders will develop the technical documents required for im-

plementaBon.   

6. Agreements. Depending on the project definiBon, agreements between dif-

ferent partners of the implementaBon have to be formed, to define re-
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sponsibiliBes and business models. If part of the implementaBon is out-

sourced, the public procurement will be carried out according to the na-

Bonal legislaBon.   

7. Project implementa6on. The development of required services and ap-

plicaBons for the plagorm, and construcBon phase of required infrastruc-

ture, including construcBon works, equipment installaBon etc.    

8. Commissioning. Before operaBon, the commissioning step is recognized as 

of high importance, due to the innovaBve and complex nature of the de-

signed measures (Onkalo et al., 2021).   

NaBonal funding sources include: 

• The Government of Finland 

• The Finnish InnovaBon Fund SITRA   

• MoBva Ltd. - Sustainable Development Company  

• Business Finland for public and private projects  

• Regional level funding sources, e.g. Pohjanmaan liiGo   

 (Onkalo et al., 2021). 
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Table 13. EU financial instrument for TransiBon Track #3 (Nikolopoulos et al., 2018). 

 

9.2.3.   Conclusions on ambi6ons and planning concerning ac6vi6es for 

the T.T. #3 Smart e-Mobility Sector  

The City of Vaasa’s Sustainable Mobility Plan approaches the acBviBes described in the 

IRIS replicaBon plan’s T.T. #3 with wide perspecBve, including e.g., biogas buses, cycling, 

pedestrian areas, and route planning. Simply waiBng for EVs to become more popular, 

or car sharing becoming commonly used mean of mobility, the basic problems caused 

by high level of private car ownership, and increments in traffic flows and congesBon, 

conBnue. Any incenBves promoBng EV growth should not conflict with the objecBves 

of public transport development, they can both aid to achieve the carbon neutrality 

goals. 

Vaasa’s firm ambiBon is to achieve funcBonal and economically viable public transport 

system that will be smart and include combinaBon of different services and means of 

mobility. Smart mobility can funcBon as an opportunity to develop new market-based 
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mobility services in an urban area, to complement public transport and the sustainable 

mobility chain (Onkalo et al., 2021). 
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10. The development of the T.T. #2 and #3 replica6on ac6vi6es 

in Vaasa  

Aler the City of Vaasa has concluded its IRIS replicaBon plan, the actual execuBon and 

further development of the integrated soluBons, the implementaBon of technologies, 

soluBons and services, based on the LH ciBes demonstraBon and the replicaBon plans 

can start. This stage will require the involvement of various stakeholders and third par-

ty soluBon and service providers, contractors etc. However, in order to take the right 

acBons in the future, concerning 2nd life baReries, V2G, and Smart e-mobility soluBons, 

and to build a stable and lasBng model for the uBlizaBon of these soluBons in Vaasa, 

foresight and knowledge sharing is necessary.  

When planning the replicaBon acBviBes of the T.T. #2 and #3 soluBons, one should take 

into account, as lessons-learned, the LH ciBes’ posiBve and negaBve experiences about 

the soluBons. In addiBon, the City of Vaasa’s policies, goals and ambiBons to reach car-

bon neutrality before 2030, has paramount importance. Furthermore, the previous 

projects and studies conducted in Vaasa, i.e. Sustainable Mobility Plan, BothniaTM 

project, and MoveIT project, about decarbonizaBon, sustainability, and improvements 

concerning energy efficiency, traffic and mobility, should be paid aRenBon to. Thus, the 

replicaBon plan and future acBviBes can become successful, and find congruence be-

tween the IRIS project’s objecBves and the goals of the various previous projects, and 

enhancing the City of Vaasa’s ambiBons, decision-making processes and stakeholder 

engagement. The later objecBve aims to secure wider acceptance for the replicable 

soluBons, being in align with plans and projects already done.  

The Figure 10 indicates that the joined posiBve experiences the LH ciBes shared about 

the uBlizaBon possibiliBes of 2nd life baReries, consists mainly of environmental effects, 

RES and grid support possibiliBes, and new business opportuniBes. The 2nd life baRer-

ies are considered to be a great asset in the future’s smart grid operaBons, and sup-

porBng factor in e-mobility as well. The negaBve experiences consist of challenges con-

cerning immature regulatory circumstances, business models and support systems, and 
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safety issues to be further developed. Vaasa’s observaBons, shown in the Figure 11, are 

in align with the LH ciBes experiences concerning the uBlizaBon of 2nd life baReries, 

although Vaasa has no immediate plans to replicate 2nd life baRery soluBons. Thus, 

Vaasa has fewer posiBve factors to represent concerning the uBlizaBon of 2nd life bat-

teries.   

 

Figure 10. Lighthouse ciBes’ common posiBve and negaBve factors on UBlizing 2nd life 
baReries for large smart scale storage schemes. 

Lighthouse cities’ common positive factors on 
Utilizing 2nd life batteries for smart large scale 
storage schemes: 
- Environmental aspects: reductions in emissions and 
pollution. 
- Increases the utilization and efficiency rate of RES. 
- Aids in energy storage and grid flexibility. 
- Supports circular economy. 

Lighthouse cities’ common negative factors on 
Utilizing 2nd life batteries for smart large scale 
storage schemes: 
- Requires clearer regulatory framework. 
- Not commercially viable yet.  
- Open questions: incentives, taxing, pricing etc. 
- Safety issues. Inspections required prior to 
utilization.
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Figure 11. Vaasa’s posiBve and negaBve similariBes on UBlizing 2nd life baReries for 
smart large-scale storage schemes with the LH ciBes. 

The Figure 12 indicates, that the LH ciBes’ posiBve experiences and reacBons concern-

ing V2G and Smart e-Mobility soluBons, consist of environmental aspects, but even 

more so of opportuniBes in potenBal new business and service models, via exploiBng 

MaaS and V2G schemes. In Utrech, Nice and Gothenburg the MaaS concept and V2G 

are strongly considered as possible game changers in mobility, i.e. inter-connectable 

soluBons, which will, when developed further, provide substanBal economic and social 

value, and transform mobility and EV charging/discharging acBvity in the process.  

For Vaasa, both MaaS, and V2G in parBcular, are concepts of the future. Their potenBal 

value is recognized, although not as strongly as in the LH ciBes, as indicated in the Fig-

ure 13. This prudence is due to the fact, that in the LH ciBes MaaS and V2G are consid-

ered to be soluBons soon ready to advance to larger scale implementaBon. In these 

ciBes and countries they represent, as in more vastly populated Central-Europe in gen-

eral, EV charging network development, as well as e-car and e-bus adopBon, are more 

advanced than in Finland. Moreover, car sharing and MaaS concepts, although sBll to 

be developed further, are de facto phenomena set to succeed in the IRIS LH ciBes, 

there is not only a strong interest towards it but also a great demand. In Vaasa and in 

Vaasa’s positive observations about Utilizing 2nd life 
batteries in smart large scale storage schemes, with the LH 
cities: 
- Sustainable solution, supports circular economy. 
- Posesses strong commercial potential. 
- Can aid in energy storage and grid flexibility solutions.  

Vaasa’s negative observations about Utilizing 2nd life 
batteries in smart large scale storage schemes, with 
the LH cities: 
- Safety issues, requires research and inspection prior 
to utilization. Attitudes not supportive. 
- Market immature, economic viability weak. Subcidies 
required in the future. 
- Regulatory framework, and effects to supply chain 
unclear.  
- EV adoptation still to low for used battery stock to 
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Finland in general, EV adopBon is sBll relaBvely low and wide EV charging in-

frastructure is scarce, although both expected to improve considerably in next few 

years. AddiBonally, lack of encompassing and clear policy and market framework con-

cerning V2G is a challenge, whereas Mobility as a Service concept has a strong poliBcal 

and regulatory support in Finland.    

The LH ciBes’ joined negaBve factors are to do with issues hampering the opportuni-

Bes, e.g. under-developed market and parBcularly the regulatory basis, and issues con-

cerning new business models. In addiBon, opposing consumer a}tudes, and required 

further tesBng and research required, are seen as barriers, since they obstruct the de-

velopment MaaS and V2G schemes in parBcular.  

 

Figure 12. Lighthouse ciBes’ common posiBve and negaBve factors on V2G and Smart 
e-Mobility soluBons. 

  

Lighthouse cities’ common positive factors on Smart e-
Mobility solutions: 
- Environmental aspects: emissions reductions, sustainability. 
- Potentials of MaaS solution: advancements in mobility, 
business and service potential, reduction of costs, reduction of 
traffic and customer satisfaction. 
- V2G charging: enhances EV adoption, opens new service and 
business models, aids in smart grid operations.  

Lighthouse cities’ common negative factors on Smart e-
Mobility solutions: 
- Challenges in user acceptance: car ownership, attitudes. 
- V2G requires more testing: technical, grid operability, 
monitor & control, charging and booking and EV schemes. 
- Market design requires development: incentives, prices 
and tariffs, regulations, prosumer activity etc.
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Figure 13. Vaasa’s posiBve and negaBve observaBons about Smart e-Mobility with the 
LH ciBes. 

When comparing maRers concerning Vaasa’s IRIS replicaBon plan T.T. #2 and #3, to 

other Vaasa’s decarbonizaBon, sustainability and mobility projects and plans, it is for 

the benefit to analyze the similariBes and try to find the common objecBves within 

these projects. Although, Vaasa’s Sustainable Mobility Plan, Bothnia TM project, and 

MoveIT project have differences in focuses and approaches, they share many common 

factors as well. By lisBng these common factors, it is possible to analyze whether 

Vaasa’s IRIS replicaBon plan’s T.T. #2 and #3 soluBons follow the most joined and mutu-

al view of how Vaasa can achieve its carbon neutrality goal by 2030.  

Vaasa’s positive observations about Smart e-Mobility, with 
the LH cities: 
- Reductions in emissions, pollutions and noice level. 
- Decreases volume of traffic. 
- MaaS promotes widely sustainable mobility goals, potential 
for new service/business models, and advances V2G schemes. 
- Strong political support for MaaS and sustainable mobility 
solutions. 
- V2G enhances EV adoption, supports grid flexibility 

Vaasa’s negative similarities on Smart e-Mobility, with 
the LH cities: 
- User acceptance: private car ownership, attitudes. 
- Challenge to find a working business model profitable 
for all involved players. 
- Further research and testing about V2G services, 
management and impacts on power grid required. 
- More thorough regulatory & legislative framework 
needed for V2G: tariffs, pricing, taxes, procumer activity, 
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Table 14. The common objecBves between Sustainable Mobility Plan, Bothnia TM and 
MoveIT projects, and their connecBon to the City of Vaasa’s IRIS replicaBons plan’s 2nd 
life baRery, and Smart e-Mobility soluBons. 

As the Table 14 indicates, Vaasa’s IRIS replicaBon plan’s T.T. #2’s integrated soluBon UBl-

izing 2nd life baReries for smart large scale storage schemes, and T.T. #3 in general, i.e. 

Smart e-Mobility Sector, are in align with the previous plans set, and projects done in 

Vaasa, concerning sustainable mobility, and goals to reach carbon neutrality by 2030. 

Although the replicaBon plan’s integrated soluBons concerning 2nd life baReries and 

smart e-mobility schemes, possess many new features, technologies and measures not 

necessary as widely addressed in the previous projects, the replicaBon plan and the 

previous plans strive for a common goal: more sustainable and carbon neutral mobility 

in Vaasa.  Moreover, it is noteworthy that the IRIS replicaBon plan supports the object-

ives of the previous plans and projects. 

Previous plans and projects: IRIS:

Increase sustainable services Mobility as a Service (MaaS)

Enhance public transport MaaS

Start uBlizing e-buses MaaS, V2G, 2nd life baReries

Advance zero & low carbon mobility MaaS, V2G, 2nd life baReries

Reduce emissions from traffic MaaS, V2G, 2nd life baReries

Introduce car sharing MaaS

Increase the number of EVs and char-

ging infrastructure

MaaS, V2G, 2nd life baReries
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11. Conclusions  

The City of Vaasa’s goal is to become a carbon neutral city by 2030. In order to achieve 

this objecBve the city’s plans and measures concerning energy producBon and con-

sumpBon, infrastructure, construcBon, mobility and ciBzen engagement need to sup-

port each other for the common goal. In 2016, the City of Vaasa was accepted to the 

EU’s Covenant of Mayors project, and in 2017 to the EU’s Horizon 2020 program, to be 

part of its IRIS Smart City project. IRIS (Integrated and Replicable soluBons for co-cre-

aBon in Sustainable ciBes) consists of three Lighthouse ciBes and four follower ciBes. 

Horizon 2020 aim is to baRle climate change and aid to achieve carbon neutrality by 

developing ciBes to become smarter, and promote innovaBve, efficient, far-reaching 

and replicable soluBons, from the fields of smart energy producBon and consumpBon, 

traffic and mobility, ICT and ciBzen engagement. First, IRIS project’s soluBons are to be 

studied and demonstrated by Lighthouse ciBes, and then replicated by the follower cit-

ies. ReplicaBon plan is required to examine and present the feasibility and validity of 

the soluBons. 

IRIS project is composed of five TransiBons Tracks, which all consist several different 

integrated soluBons. IRIS’ TransiBon Track #3, Smart e-Mobility Sector, consists of two 

soluBons, Smart solar V2G EVs charging, and InnovaBve mobility services for the cit-

izens. The study of these two soluBons; their feasibility for the City of Vaasa in correla-

Bon with the Lighthouse ciBes demonstraBons and experiences, the City of Vaasa’s 

carbon neutrality plans, and the previous projects and plans executed in Vaasa con-

cerning mobility, is the objecBve of this thesis. Furthermore, the IRIS’s TransiBon Track 

#2 soluBon, UBlizing 2nd life baReries for smart large scale storage schemes is studied, 

since it is closely related to the TransiBon Track #3’s soluBons in the Lighthouse ciBes, 

bearing a direct connecBon to EV, e-mobility (e-buses), V2G and Mobility as a Service 

soluBons. 

The Lighthouse ciBes’ demonstraBons indicate that the Smart e-Mobility Sector, and 

2nd life baRery soluBons have significant potenBal and importance for developing 

smart and innovaBve e-mobility and EV charging soluBons, Mobility as a Service 
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concept, and baRery storage schemes. The demonstraBons promote the development 

of smart charging, uBlizaBon of V2G model, introducBon of innovaBve e-mobility solu-

Bons, and exploitaBon of 2nd life baReries. In addiBon, the demonstraBons are able ex-

press that the soluBons menBoned do have the potenBal to create substanBal financial 

value from creaBng new business opportuniBes, while promoBng sustainable carbon 

neutral development.  

Nevertheless, it is important to express that the LH ciBes are beRer capable to imple-

ment these soluBons into their environment than the follower ciBes. The LH ciBes are 

bigger and located in countries and highly populated areas where related technologies’ 

adopBon is higher. The number of EVs is higher in LH ciBes, the charging infrastructure 

is more developed, the state of public transport, parBcularly e-transport, is more ad-

vanced, and the ciBes’ environment, resources and related market development are 

more mature and more ready for the soluBons. In all of the IRIS LH ciBes, the MaaS 

concept design is relaBvely mature with strong emphasis on e-public transport, car 

sharing, conBnuing mobility chains, strong uBlizaBon of digitalizaBon and ICT soluBons, 

and innovaBve mobility services.  

Due to more developed EV stock and e-mobility, the LH ciBes are beRer capable to 

study and develop V2G and 2nd life baRery soluBons. In order to enhance V2G operat-

ing model, e.g. the LH ciBes Utrecht in Netherlands and Nice in France, are working in 

close collaboraBon with car manufacturer Renault and the local DSOs. In order to uBl-

ize 2nd life baReries, the LH ciBes have collaborated with local housing cooperaBves, 

and found use for the used baReries in energy storage applicaBons in apartment build-

ings, instead of recycling or disposing them. However, in order to have access to a suffi-

cient number of used baReries required the applicaBons, high enough adopBon of EVs, 

and well-established and developed public e-transport is required. Hence, there will be 

enough 2nd life baReries available. In the LH ciBes, e-buses have been in use for several 

years. During the past couple of years, the baReries of these buses have reached the 

end of their first life, thus been ready to take on the role of the 2nd life.  
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The integrated soluBons belonging to the IRIS TransiBon Track #3, Smart e-Mobility, are 

considered valuable in Vaasa’s IRIS replicaBon plan, and in other mobility related pro-

jects done in Vaasa is recent years. These soluBons are considered important factors to 

support Vaasa’s strategy to achieve carbon neutrality by 2030. The IS, InnovaBve mobil-

ity services for the ciBzens, possesses the highest potenBal value, including Mobility as 

a Service concept, enhancing sustainable public transport and car sharing, and devel-

opment of conBnuous mobility chains. Moreover, the development of cycling and walk-

ing infrastructure are part of MaaS concept in broader sense, although these ways of 

mobility are not part of IRIS replicaBon plan.   

Traffic consists of nearly 30% of Vaasa’s current CO2 emissions. This percentage will rise, 

since the share of CO2 produced by energy producBon and consumpBon is decreasing 

due to miBgaBng acBons taken and affecBng in these sectors. In addiBon, a challenging 

factor in Vaasa is that private car ownership is very high, and the level of the public 

transport does not currently promote enough higher usage level of public transport. 

Thus, the public transport’s effect on decreasing the carbon footprint from the traffic is 

not substanBal enough.  

In Vaasa, in order to decrease the emissions from the traffic drasBcally, significant 

changes should be made concerning the public transport. Possible measures are to in-

crease the number of buses (e-buses or gas) in use. AddiBonally, new bus routes may 

be needed, e.g. to have more main routes, and these routes to be supported by feeder 

routes operaBng in the districts, connecBng and collecBng passengers for the main 

routes. Furthermore, the schedules of the routes should be efficient, based on reliable 

regularity, covering districts later in the evening hours and operaBng regularly and 

longer in the weekends as well. With measures such as these, the service level and us-

age of the public transport can be increased, the level of private car uBlizaBon can be 

decreased, the development of the MaaS concept can gain the robust basis it requires, 

and the emissions from the traffic can be lowered in Vaasa. Furthermore, an advanced 

MaaS concept can promote new services and businesses, ciBzens’ saBsfacBon and 

well-being, and the City’s aRracBveness. The uBlizaBon of e-buses can also, in Bme, 
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introduce the possibility of uBlizaBon of 2nd life baReries, for example in storage solu-

Bons for apartment buildings.  

In addiBon, V2G soluBon’s potenBal for Vaasa is notable. However, it requires higher 

naBonal and local EV adopBon at first, smart charging infrastructure and smart grid de-

velopment, and pilot tesBng. Although, the level of EV adopBon is lower in Finland 

than it is in the IRIS LH ciBes’ countries, the annual number of sold EVs in Finland is 

growing steadily, hence increasing the naBon’s EV adopBon strongly in the next 5-10 

years. UBlizaBon of soluBons such as V2G and 2nd life baReries can really start to de-

velop strongly and reach their true validity aler that. 

The City of Vaasa’s IRIS replicaBon plan has strong compaBbility with the previous pro-

jects, plans and workshops done in Vaasa, i.e. MoveIT, BothniaTM and Sustainable Mo-

bility Plan. Although, each of these projects approaches the themes of sustainable mo-

bility and traffic emissions’ reducBon with an individual emphasis, a unifying message 

and goal can be found: promoBon and enhancement of sustainable mobility, public 

transport, e-mobility, MaaS and car sharing. V2G and 2nd life baRery soluBons support 

these goals. Thus, a very adamant and clear aspiraBon exists in Vaasa concerning the 

development of mobility. The same aspiraBon is strong and visible in the City of Vaasa’s 

replicaBon plan’s soluBons, concerning InnovaBve mobility, V2G and 2nd life baRery 

soluBons.     

To work with this study was a strong and rich learning experience and rewarding pro-

cess. It required collecBng and studying vast amounts of background data, which was 

found from numerous reports, arBcles and websites. However, the biggest learning ex-

perience took place when I was offered an opportunity to join The City of Vaasa’s IRIS 

replicaBon plans’ task team in the October 2020. The work required collaboraBng with 

various stakeholders and experts linked to the project and being accepted to IRIS 

teams-meeBngs, webinars and correspondence with the Lighthouse and other follower 

ciBes about the progress and soluBons of the replicaBon plans. AddiBonally, I was able 

to obtain excepBonally deep, mulB-level and privileged insight not only to Vaasa’s rep-
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licaBon plan process and the City’s decarbonizaBon goals, but also to the Horizon 2020 

IRIS project as a whole. 

This thesis leaves the door open for new studies about the actual IRIS replicaBon acBv-

iBes done in Vaasa, whenever they will take place. For example, a targeted research 

about the development and measures concerning Mobility as a Service concept in 

Vaasa, or about the new Ravilaakso district have validity and importance for further 

studies. The Ravilaakso district, in its development and construcBon stage, and later on 

when it is finished, enables highly aRracBve research ground for new studies, varying 

from e-mobility, car sharing and smart charging to low-temperature heat networks, 

smart houses and ciBzen engagement.  
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