
Article

Co-precipitation synthesis of reduced graphene 

oxide/NiAl-layered double hydroxide hybrid and its 

application in flame retarding poly(methyl 

methacrylate)

Hong, Ningning, Song, Lei, Wang, Bibo, Stec, Anna A, Hull, T 
Richard, Zhan, Jing and Hu, Yuan

Available at http://clok.uclan.ac.uk/10865/

Hong, Ningning, Song, Lei, Wang, Bibo, Stec, Anna A, Hull, T Richard, Zhan, Jing and Hu, Yuan 

(2014) Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide 

hybrid and its application in flame retarding poly(methyl methacrylate). Materials Research 

Bulletin, 49 (1). pp. 657-664. ISSN 00255408  

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.1016/j.materresbull.2013.09.051

For more information about UCLan’s research in this area go to 
http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to 
http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including
Copyright law.  Copyright, IPR and Moral Rights for the works on this site are retained 
by the individual authors and/or other copyright owners. Terms and conditions for use 
of this material are defined in the http://clok.uclan.ac.uk/policies/

CLoK

Central Lancashire online Knowledge
www.clok.uclan.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/42136403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://clok.uclan.ac.uk/policies/
http://www.uclan.ac.uk/research/
http://www.uclan.ac.uk/researchgroups/


 
Co-precipitation synthesis of reduced graphene 
oxide/NiAl-layered double hydroxide hybrid and its 
application in flame retarding poly(methyl methacrylate) 
Ningning Honga, Lei Songa, Bibo Wanga, Anna A. Stecb, T. Richard Hullb, Jing Zhana, Yuan Hua 
 
a State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China 
b Centre for Fire and Hazards Science, University of Central Lancashire, Preston PR1 2HE, UK 

Abstract 
A reduced graphene oxide/NiAl-layered double hydroxide (RGO-LDH) was synthesized through a 
simple co-precipitation route. NiAl-layered double hydroxide (NiAl-LDH) nanoparticles were 
homogeneously dispersed on the reduced graphene oxide (RGO) nanosheets, which were 
simultaneously reduced during the process. RGO-LDH exhibited three steps of weight loss, leaving 
high residue. RGO-LDH was then solution blended into poly(methyl methacrylate) (PMMA) to 
investigate its effect on reducing flammability of the composite. With the incorporation of RGO-LDH, 
the thermal stability of PMMA composite was improved. Moreover, RGO-LDH endowed PMMA with 
the largest reduction in the heat release rate, smoke production and CO production rate relative to 
RGO or NiAl-LDH alone. RGO-LDH could decrease the production of volatiles including hydrocarbons, 
carbonyl compounds and epoxy compounds from the PMMA composite. The improved flame 
retardancy was ascribed to the combined effect of the physical barrier of RGO and the catalytic 
carbonization of NiAl-LDH. 

1. Introduction 
As an emerging two-dimensional material, graphene, consisting of monolayer of sp2-hybridized 
carbon atoms, has currently been the focus of research due to its unique mechanical, thermal and 
electrical properties [1]. One important application is the use of graphene to reduce the flammability 
of polymers. It has been reported that addition of graphene confers good flame retardancy to 
certain polymers similar to other typical nanofillers, such as carbon nanotubes and 
montmorillonite [2] and [3]. Such improvement might be attributed to the physical barrier effect of 
layered graphene which slows down the release of flammable gases and protects the underlying 
matrix from further burning. Huang's group has reported the use of graphene as flame retardant 
additive in polymers [2] and [4]. Wu et al. found that the pyrolysis temperature of polystyrene was 
significantly increased with the incorporation of reduced graphene oxide (RGO) [5]. Thermal RGO 
onto which polypropylene has been grafted was not only easily dispersed in polymers, but also 
dramatically improved the thermal stability [6]. However, there are at least two problems hindering 
the application of graphene as a flame retardant: (1) although graphene shows a promising prospect 
as a flame retardant, its efficiency is not enough to meet many requirements when graphene is used 
alone [7]; (2) the restacking of as-reduced graphene, due to van der Waals forces, limits the 
homogeneous dispersion of graphene in the matrix [8] and [9]. 
Another class of lamellar materials, layered double hydroxide (LDH), has received much attention in 
recent years due to its special hydrotalcite-like structure. The basic building unit of LDH is brucite 
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layers. The partial replacement of interlayer metal ions by trivalent ones leads to an excess positive 
charge [10] and [11]. Therefore, hierarchical nanostructures based on LDH and other nanomaterials 
are usually assembled through electrostatic interaction [12]. One big advantage of LDH is the highly 
tunable properties realized by changing the interlayer composition and ratio of the metals, which 
makes its use possible in catalysis, pollutant treatment, flame retardancy and medical 
materials [10] and [13]. The effect of chemical composition and the dispersion of LDH on the flame 
retardancy of thermoplastic polymers, especially poly(methyl methacrylate) (PMMA), was 
investigated in detail. Previous report demonstrated that LDH containing transitional metals could 
be well dispersed in PMMA, and also enhanced thermal stability and reduced flammability could be 
achieved [14]. However, LDH reinforced PMMA composites still remain a challenge to flame retard 
efficiently. 
Fang et al. have investigated the synergistic effect between carbon nanotubes and LDH on the flame 
retardancy of polypropylene and observed a noticeable reduction in the peak heat release rate 
(PHRR) [15]. There were already some reports about the fabrication of graphene/LDH 
nanocomposites with enhanced electrochemical performance and adsorption capacity [16] and [17]. 
Inspired by the synergistic effect between LDH and carbon nanomaterials, we have synthesized a 
hybrid of RGO and LDH containing a transitional metal, for example RGO/NiAl-LDH, in an attempt to 
design a more efficient flame retardant. In addition, we believe that the distribution of LDH on the 
surface of RGO could hinder the restacking of interlayer nanosheets, thus increasing the degree of 
an exfoliation [18]. 
It is well known that the RGO has a pronounced tendency to agglomerate after drying owing to its 
high surface energy. Fortunately, the remaining functional groups make RGO hydrophobic, which 
allows it to disperse readily in organic solvents. Also, the oxygen functionality increases the 
compatibility between RGO and certain polar polymers. Therefore, solution mixing has been widely 
adopted for preparation of graphene filled PMMA, polyurethane and polyamide composites with 
significant enhancement [19], [20] and [21]. In addition, the presence of polar groups on the LDH 
structure is also beneficial for the good dispersion in PMMA matrix, thus the dispersion state of the 
hybrid will be greatly improved. 
In this study, a one-pot co-precipitation method was used to fabricate a hybrid consisted of RGO and 
NiAl-LDH (RGO-LDH) and its structure was characterized in detail. The RGO-LDH hybrid was then 
incorporated into PMMA to investigate the combined effect of RGO and NiAl-LDH on the flame 
retardancy of the composite. It was anticipated that the hybrid could impart PMMA with better 
flame retardancy due to the physical barrier of RGO and the catalytic carbonization of NiAl-LDH. 

2. Experimental 
2.1. Materials 

Natural graphite powder (Spectrum Pure), Ni(NO3)2·6H2O, Al(NO3)3·9H2O, Na2CO3, NaOH, and 
CHCl3 were purchased from Sinopharm Chemical Reagent Co., Ltd. (China). KMnO4, NaNO3, 
H2SO4 (98%), N2H4·H2O, H2O2 (30%) and HCl (37%) were bought from Guangfu Fine Chemial Research 
Institute (Tianjin, China). PMMA was provided by Shenma Company (Henan, China). 

2.2. Preparation of RGO-LDH 

GO was prepared from oxidation of graphite powder by Hummers's method [22]. The RGO-LDH 
hybrid was prepared by a one-pot co-precipitation process. Briefly, GO (0.32 g) was dispersed into a 
flask containing 150 mL of NaOH (0.20 M) and Na2CO3(0.05 M) solution by ultrasonication. Then, 
Ni(NO3)2·6H2O (0.075 M) and Al(NO3)3·9H2O (0.025 M) dispersed in 150 mL H2O was added into the 
above mixture with vigorous stirring. Subsequently, the pH value of the solution was adjusted to 
10.5 by addition of 0.2 M NaOH solution. The mixture was first heated to 60 °C and then stirred at 
reflux temperature (95 °C). 0.75 mL of N2H4·H2O was then added quickly to the above solution. After 
refluxing for 6 h, the suspension was centrifuged, washed, and dried at 60 °C. As a comparison, NiAl-
LDH and RGO were prepared under the similar experimental condition. 
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2.3. Preparation of PMMA composites 

The PMMA based composites were prepared by a solution-blending method. Typically, 0.8 g of RGO-
LDH was dispersed in CHCl3 by bath sonication to form a uniform suspension. Afterwards, 39.2 g of 
PMMA pellets were added to the suspension and mechanically stirred at 80 °C for 3 h. Then, the 
PMMA/RGO-LDH was cast into Petri dish and dried at 60 °C for 12 h to remove the solvent. Other 
samples containing 0.4 wt.% graphene and 2 wt.% NiAl-LDH were prepared using the same 
procedure. Finally, the samples were hot-pressed at 200 °C and 10 MPa to form sheets with suitable 
sizes. 

2.4. Measurements and characterization 

X-ray diffraction (XRD) patterns were obtained using a Japan Rigaku D/Max-Ra rotating anode X-ray 
diffractometer equipped with a Cu-Kα tube and Ni filter (λ = 0.1542 nm). 
Fourier transform infrared (FTIR) spectra of the samples were recorded on a Nicolet 6700 
spectrometer (Nicolet Instrument Company) in the 500–4000 cm−1 region. 
Raman spectroscopy was carried out with a SPEX-1403 laser Raman spectrometer (SPEX Co., USA) 
with excitation provided in back-scattering geometry by a 514.5 nm argon laser line. 

Transmission electron microscopy (TEM) micrographs and selected area electron diffraction (SAED) 
were obtained by JEOL 2010 with an acceleration voltage of 200 kV. Specimens for the high 
resolution electron microscopy (HRTEM) measurements were obtained by dripping the suspension 
onto a Cu grid supported carbon film. 

The morphology of the sample after being gold-sputtered was studied by a PHILIPS XL30E scanning 
electron microscopy. The specimens of PMMA composites were cryogenically fractured at room 
temperature, and then sputter-coated with the conductive layer. 

Thermogravimetric analysis (TGA) was carried out on the TGA Q5000 IR thermogravimetric analyzer 
(TA instruments) using a heating rate of 20 °C/min in nitrogen and/or air. 

The combustion test was performed on the cone calorimeter (FTT, UK) test in accordance with ISO 
5660 standard. Each specimen was wrapped in an aluminium foil and exposed horizontally to 
35 kW/m2 external heat flux. 
Thermogravimetric analysis/infrared spectrometry (TG–IR) of the samples was performed using the 
TGA Q5000 IR thermogravimetric analyzer that was interfaced to the Nicolet 6700 FTIR 
spectrophotometer. 

3. Results and discussion 
The crystal structures of the GO, RGO, NiAl-LDH and RGO-LDH hybrid were characterized by XRD (Fig. 
1). The XRD pattern of GO exhibits a sharp peak at 10.4° indicating the interplanar spacing of the 
(0 0 2) is about 0.85 nm. After the co-precipitation process, the peak for (0 0 2) plane is shifted to 
24.8°, because the oxygen-containing groups in the structure are removed. The width of the peak is 
attributed to a turbostratic arrangement of graphene stacked sheets [23]. The diffraction peaks at 
11.4°, 23.1°, 35.2°, 39.3° and 46.5° are ascribed to the (0 0 3), (0 0 6), (0 1 2), (0 1 5) and (0 1 8) 
planes of typical hydrotalcite-like NiAl-LDH [24]. The basal spacing around 7.7 Å calculated from the 
(0 0 3) plane indicates the intercalation of CO3

2− ions into the interlayer spaces. The XRD pattern of 
RGO-LDH hybrid is almost identical to that of pure NiAl-LDH, and no characteristic peak of RGO is 
observed. These results indicate that the NiAl-LDH is well anchored on the RGO sheets, which 
effectively prevents the restacking of the as-reduced graphene [18]. 
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Fig. 1. XRD patterns of the as-prepared GO, RGO, NiAl-LDH and RGO-LDH respectively. 

 
Fig. 2 shows the FTIR spectra of the RGO-LDH hybrid together with GO, RGO and NiAl-LDH. GO shows 
characteristic peaks at 3416, 1722, 1592, 1226 and 1047 cm−1, which are assigned to the O-H stretch, 
carbonyl C=O stretch, aromatic C=C stretch, epoxy C-O stretch and alkoxy C-O stretch, respectively. 
After the co-precipitation process, the peaks of the oxygen functional groups almost disappear. The 
FTIR spectrum of RGO only displays three weak peaks at 3435, 1564 and 1203 cm−1 corresponding to 
the O-H stretch, aromatic C=C stretch and C-O stretch respectively. For the NiAl-LDH, the broad 
bands around 3453 and 1635 cm−1 are attributed to the stretching mode and bending mode of 
the -OH groups of the LDH layer, respectively. The bands around 1369 and 762 cm−1 are assigned to 
the vibration of CO3

2− (v3) and CO3
2− (v2), indicative of the characteristics of interlayer carbonate 

anions. Furthermore, the absorption band below 700 cm−1 is ascribed to the characteristic peak of Ni
O and Al O vibrations in the lattice of LDH [11] and [25]. As shown in Fig. 2, almost all the 

characteristic peaks corresponding to NiAl-LDH are observed in the spectrum of RGO-LDH. 
Compared with NiAl-LDH, there is a shift in the peak location of RGO-LDH alongside the decreased 
absorption intensities due to the incorporation of RGO. 

 
Fig. 2. FTIR spectra of the GO, RGO, NiAl-LDH, and RGO-LDH hybrid. 
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Raman spectroscopy was used to investigate the structural changes of the samples during the co-
precipitation process. In carbonaceous material, there are two prominent D and G bands 
corresponding to the defect structures and sp2 carbon, and their intensity ratio (ID/IG) is a measure of 
disorder degree and average size of the sp2 domains [26]. Fig. 3 shows the Raman spectra of GO, 
RGO, NiAl-LDH and RGO-LDH samples. GO displays a strong D band at 1354 cm−1 and a weak G band 
at 1632 cm−1. A decreased ID/IG value (1.35) is observed for RGO, indicative of partial recovering of 
the graphitic structure. The bands of NiAl-LDH at 555 cm−1 and 1063 cm−1 originate from the 
hydroxyl layers and stretching mode of CO3

2− of the LDH [27]. In the case of the RGO-LDH, 
the ID/IG value (1.86) is increased as compared to GO, indicating a decrease in the size of 
sp2 domains. 

 
Fig. 3. Raman spectra of the GO, RGO, NiAl-LDH, and RGO-LDH hybrid. 

 
TEM observations were employed to characterize the morphologies of RGO, NiAl-LDH and RGO-LDH 
hybrid. As shown in Fig. 4a, RGO consists of thin carbon nanosheets with lateral size of several 
hundred nanometers. Some of the graphene layers are folded over each other. Fig. 4b indicates that 
NiAl-LDH is plate-like with a microscopically smooth surface. The thin sheets are almost regular 
hexagons with a mean diameter of about 300 nm. In the case of RGO-LDH hybrid, the surfaces of 
RGO sheets are homogeneously attached by many nanoparticles (Fig. 4c). The size of nanoparticles is 
uniformly distributed in the range of 6–10 nm due to the presence of graphene templates [18]. As 
can be seen, the restacking of RGO nanosheets is effectively prevented due to the attachment of 
NiAl-LDH particles. SAED shown in the inset of Fig. 4c was performed on RGO-LDH hybrid. The 
diffraction rings in this region can be ascribed to the layered structure of LDH, which is consistent 
with XRD analysis [28]. HRTEM measurement of RGO-LDH hybrid (Fig. 4d) indicates that the RGO 
supported LDH nanoparticles are well crystallized. The lattice fringes with a distance of 0.75 nm are 
indicated by white lines, which can be indexed as the (1 1 0) plane of crystallized LDH phase. 
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Fig. 4. TEM images of RGO (a), NiAl-LDH (b), RGO-LDH (c) and HRTEM image of RGO-LDH 
hybrid (d). The inset in panel c is the SAED pattern of RGO-LDH. 

 
Fig. 5 shows the TGA and derivative thermogravimetric (DTG) curves of RGO-LDH in both nitrogen 
and air. Summary data are listed in Table 1. The temperature of maximum degradation for each step 
is taken as Tmax. The RGO-LDH exhibits three distinct steps of weight loss: The first weight loss from 
100 to 300 °C corresponds to the release of water adsorbed and intercalated in the RGO-LDH; the 
second step takes place in the temperature range from 300 to 500 °C, attributed to the 
dehydroxylation of the LDH layers and removal of CO2 from the interlayer carbonate anions [29]; at 
high temperature (500–700 °C), different reactions occur: the weight loss in nitrogen is ascribed to 
the reduction of Ni2+ to Ni0 by carbon, while in air it may result from the combustion of the RGO 
skeleton [30]. 
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Fig. 5. TGA and DTG curves of RGO-LDH in both nitrogen and air atmosphere. 
 
Table 1. TGA data for the RGO-LDH hybrid in both nitrogen and air atmosphere. 

Atmosphere Tmax1 (°C)  Tmax2 (°C)  Tmax3 (°C)  Residue at 800 °C (wt.%)  

N2 197 327 609 60.2 

Air 180 312 618 63.7 

 
The dispersion state and interfacial interaction are considered to be the controlling factors that 
affect various properties of polymer composites. In order to investigate the dispersion of the hybrid 
in PMMA, SEM was used to observe the morphology of the composites. Fig. 6 shows the SEM images 
of the fractured surfaces for pure PMMA and its composites with hybrid. PMMA is an amorphous 
glassy polymer, thus its fracture surface exhibits frangible features (Fig. 6a). However, some scaly 
patterns are observed on the surface of PMMA/RGO composite, which implies that the RGO is 
tightly adhered to the matrix (Fig. 6b) [31]. The strong interaction arises from the hydrogen bonds 
between the remaining oxygen-containing groups of RGO and the carbonyl groups of PMMA. As 
revealed in Fig. 6c, some irregular protuberances are observed in the NiAl-LDH reinforced PMMA 
composite. Similarly, the PMMA/RGO-LDH composite presents a rough fracture surface with narrow 
bands visible, indicating good compatibility between RGO-LDH and PMMA (Fig. 6d) [32]. This 
demonstrates that the restacking and aggregation of RGO hybrid is prevented by the applied 
solution mixing. 
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Fig. 6. SEM images for the fractured surfaces of pure PMMA (a), PMMA/RGO composite (b) 
PMMA/NiAl-LDH composite (c) and PMMA/RGO-LDH composite (d). 

 
The influence of RGO-LDH on the thermal stability of PMMA was investigated by TGA in air 
atmosphere. Fig. 7 shows the TGA (a) and DTG (b) curves for pure PMMA, PMMA/RGO, PMMA/NiAl-
LDH and PMMA/RGO-LDH. The detailed data are listed in Table 2. Thermal degradation of pure 
PMMA shows only one step and no residue remains. After the addition of RGO, the T−5% (defined as 
the temperature where 5% of weight loss occurs) decreases by 12 °C due to the high thermal 
conductivity of RGO. However, the maximum decomposition rate decreases slightly with little 
residue remaining perhaps because the RGO inhibits final thermal degradation of PMMA. In the case 
of PMMA/NiAl-LDH composite, more char residue (2.2 wt.%) is left due to the catalytic carbonization 
effect of LDH [33]. Enhanced thermal stability of PMMA is obtained as observed by the greater 
residue of 3.7 wt.%, which is attributed to the combination of the physical barrier effect of RGO and 
the catalytic carbonization of NiAl-LDH [15]. 
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Fig. 7. TGA (a) and DTG (b) curves for pure PMMA, PMMA/RGO composite, PMMA/NiAl-
LDH composite and PMMA/RGO-LDH composite in air. The inset in (a) shows an enlarged Y-
axis of weight remaining. 
 
Table 2. TGA data for pure PMMA, PMMA/RGO composite, PMMA/NiAl-LDH composite and 
PMMA/RGO-LDH composite in air. 

Sample T−5% (°C)  Tmax (°C)  Residue at 750 °C (wt.%)  

PMMA 332 382 0.6 

PMMA/RGO 320 384 1.4 

PMMA/NiAl-LDH 326 386 2.2 

PMMA/RGO-LDH 330 380 3.7 
 
The flammability of the composites was characterized by cone calorimetry, which is useful for 
studying their fire behaviors [34]. Important parameters include the time to ignition (TTI), heat 
release rate (HRR), CO production rate (COPR), average specific extinction area (ASEA) and peak CO 
yield (PCOY). Fig. 8 shows the plots of HRR and COPR of PMMA and its composites and their data are 
summarized in Table 3. Pure PMMA is easily ignited (TTI = 31 s) and quickly burns up with a sharp 
PHRR value of 918 kW/m2. It is clear that the addition of RGO in the PMMA leads to a 17% reduction 
in the PHRR and a 79% reduction in the PCOY, but shows little effect on TTI and ASEA. Such 
reduction may be attributed to the barrier effect of RGO in the matrix which slows down the 
combustion process [2] and [35]. For the PMMA/NiAl-LDH composite, a relatively lower reduction in 
the PHRR and PCOY is observed, but the TTI is increased to 34 s. The flame retardancy is attributed 
to the endothermic heat of the decomposition of LDH and the catalytic carbonization effect of the 
NiAl-oxide formed [36]. It is worth noting that RGO-LDH further reduces the PHRR to 
688 kW/m2 with respect to RGO or NiAl-LDH alone, indicating that the combination of two additives 
imparts better flame retardancy to PMMA [7]. The TTI of PMMA/RGO-LDH is longer than that of 
pure PMMA. Furthermore, the values of ASEA and PCOY of PMMA/RGO-LDH composite are lower 
than those of other composites, which indicates that the loading of LDH onto the surface of RGO 
improves the catalytic efficiency in reducing fire hazards, such as smoke and toxic gases [37]. 
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Fig. 8. Heat release rate (a) and CO production rate (b) versus time curves for pure PMMA, 
PMMA/RGO composite, PMMA/NiAl-LDH composite and PMMA/RGO-LDH composite. 
 
Table 3. 
Cone calorimeter data for pure PMMA, PMMA/RGO composite, PMMA/NiAl-LDH composite 
and PMMA/RGO-LDH composite in air at 35 kW/m2. 

Sample TTI (s) PHRR (kW/m2) ASEA (m2/kg) PCOY (kg/kg) 

PMMA 31 918 112.7 2.699 

PMMA/RGO 31 764 135.2 0.563 

PMMA/NiAl-LDH 36 797 188.1 0.682 

PMMA/RGO-LDH 34 688 78.8 0.033 
 
Pure PMMA burns up, but a small quantity of black residue was collected for the PMMA/RGO-LDH 
composite after the cone calorimeter test. The residue of PMMA/RGO-LDH composite was 
investigated by SEM as shown in Fig. 9a. A large amount of amorphous char and nanoparticles 
covered by carbon are observed in the residual char. The whole char residue seems to form a planar 
structure. The char residue was also characterized by XRD with the result shown in Fig. 9b. There are 
three characteristic peaks appearing at 44.4°, 51.7° and 76.3°, which can be attributed to the 
diffractions of (1 1 1), (2 0 0) and (2 2 0) planes of metallic Ni. It is concluded that Ni nanoparticles 
are formed in situ from the reduction of NiAl-LDH by the reductive pyrolytic species of PMMA [38]. 
The possible carbonization promoting process of PMMA by the RGO-LDH is illustrated in Fig. 9c. 
Firstly, the RGO-LDH hybrid is directly incorporated into PMMA to prepare the PMMA/RGO-LDH 
composite by solution-blending. During the combustion process, the layered RGO will prevent the 
pyrolytic species from escaping. Meanwhile, the supported NiAl-LDH particles are reduced in situ to 
Ni particles, which serve as catalytic sites for char formation. 
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Fig. 9. (a) TEM image and (b) XRD pattern of the residue of PMMA/RGO-LDH composite 
after cone calorimeter test, and (c) schematic illustration for char formation through catalyzing 
carbonization of PMMA by RGO-LDH hybrid. 

 
TG–IR was used to analyze differences between the pyrolytic products from PMMA and 
PMMA/RGO-LDH composite during thermal degradation (Fig. 10). It is observed that the maximum 
volatilized products of PMMA appear at 17.6 min whereas those of PMMA/RGO-LDH appear at 
18.4 min. In addition, the quantity of gaseous species from the latter is lower than that from the 
former. The main pyrolytic species of PMMA are hydrocarbons (2960 and 1448 cm−1), carbonyl-
containing compounds (1749 cm−1), aromatic compounds (1632 cm−1), and aliphatic ethers 
(1165 cm−1) [37] and [39]. The delay of peak appearance is attributed to the barrier effect of RGO 
and the reduction in the quantity of volatilized products is mainly due to the catalytic role of NiAl-
LDH [33]. The combined effect of RGO and NiAl-LDH results in the improved flame retardancy of 

PMMA composite. 
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Fig. 10. FTIR absorbance of pyrolysis products for PMMA and PMMA/RGO-LDH 
composite versus time: (a) total, (b) hydrocarbons, (c) carbonyl compounds, (d) 
hydrocarbons, (e) epoxy compounds and (f) ether. 

4. Conclusions 
A hybrid RGO-LDH has been successfully synthesized by a one-pot co-precipitation method, and its 
structure was characterized by XRD, FTIR, Raman spectroscopy, TEM and TGA. NiAl-LDH 
nanoparticles with a uniform diameter of 6–10 nm were homogeneously anchored on the RGO 
nanosheets, which were simultaneously reduced from GO. In both nitrogen and air, the thermal 
decomposition of RGO-LDH contained three steps and a high quantity of residue was left. RGO-LDH 
was well dispersed in PMMA and its influence on reducing flammability of the composite was 
investigated. The thermal stability of PMMA was improved with the addition of RGO-LDH, as 
revealed by the enhanced residual weight. Furthermore, the flame retardancy of the PMMA 
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composite was also improved, as evidenced by the obvious reduction in PHRR and COPR values. The 
amount of residue was enhanced through promoting char formation of PMMA catalyzed by RGO-
LDH, as demonstrated by the visible reduction and delay of volatile products. Such improvement was 
attributed to the combined effect of the physical barrier of RGO and the catalytic carbonization of 
NiAl-LDH. 
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