Accepted Manuscript

GEOSCIENCE

FRONTIERS
Interaction between protokimberlite melts and mantle lithosphere: evidence from L
mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia) \‘

I.V. Ashchepkov, T. Ntaflos, Z.V. Spetsius, R.F. Salikhov, H. Downes

PII: S1674-9871(16)30051-2
DOI: 10.1016/j.gsf.2016.05.008
Reference: GSF 458

To appearin:  Geoscience Frontiers

Received Date: 26 January 2016
Revised Date: 27 April 2016
Accepted Date: 1 May 2016

Please cite this article as: Ashchepkov, I.V., Ntaflos, T., Spetsius, Z.V., Salikhov, R.F., Downes, H.,
Interaction between protokimberlite melts and mantle lithosphere: evidence from mantle xenoliths
from the Dalnyaya kimberlite pipe, Yakutia (Russia), Geoscience Frontiers (2016), doi: 10.1016/
j-9sf.2016.05.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.gsf.2016.05.008

L) v L) L) L) v L) v L) L) v L) v L) v L) L) L) L) L) L) L) 0
T°C 0.95 0.90 0.85 0.80 Variation of A
- * _ % Mg Olin equilibrium * :Gf)x, Opx, Gar, Chr, lim logf(O,) .
« &, Dalnyaya Xenolith 1 & With Gpx, Opx, Gar, Chr lim ¢ s 1 a0 i Gar N &
4 s O 2. AbO3 in Opx |
® 3¢ 3.Cn03in Cpx ¢
. ¢ A4 TiQin Chr L a5 | -2
e V¥ 5.CpOzinlim N aqﬁ .
oo v £ $
o & A ez L 3
L4 v. 'Y .A *_ @'
E o N - - - - —.%.I
L < 4 - 4
* *2e l
° A
N L
8 i
o egefeie ©
%%E;J . [
A - 6
R 2 |
L 4 Py L I N 7
_ Fe# Ol in efuiljprium * |
with Cpx*Opx, Cia;i Qhr, IIm * | L g
L) v L) L) L) L) L)
1000 0.05 0.10 0.15 4.0 8.0 6.0 4.0 2.0 0.0




10

11

12
13

14

15

16

I nteraction between protokimberlite melts and mantle lithospher e: evidence from mantle

xenoliths from the Dalnyaya kimber lite pipe, Yakutia (Russia)
V. Ashchepko”, T. Ntaflog, Z.V. Spetsiu$ R.F. Salikhof, H. Downe$
Institute of Geology and Mineralogy, SD RAS, Kogtsuenue 3, 63090, Novosibirsk, Russia

®\ienna University, A-1090 Vienna, Austria
¢ Alrosa Stock Company, Mirny,Lenina 6, Russia
d Department of Earth and Planetary Sciences, Birkbggiversity of London, London, UK

*Corresponding author e-mail address: Igor.Ashcbegkigm.nsc.ru; garnet@igm.nsc.ru;

igora57@mail.ru
phone (fax): 007-950-5918327

fax institute: 007 -383-2332792



17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48

49

Abstract

The Dalnyaya kimberlite pipe (Yakutia, Russia) edms mantle peridotite xenoliths
(mostly Iherzolites and harzburgites) that shovhistteared porphyroclastic (deformed) and
coarse granular textures, together with ilmenité @mopyroxene megacrysts. Deformed
peridotites contain high-temperature Fe-rich clyropgenes, sometimes associated with
picroilmenites, which are products of interactidrite@ lithospheric mantle with protokimberlite
related melts. The orthopyroxene-derived geotHerthe lithospheric mantle beneath
Dalnyaya is stepped similar to that beneath thecbidaya pipe. Coarse granular xenoliths fall
on a geotherm of 35 mWfwhereas deformed varieties yield a 45 mAgmotherm in the 2—

7.5 GPa pressure interval. The chemistry of tmstitwuent minerals including garnet, olivine
and clinopyroxene shows trends of increasiny(Ed=e/(Fe+Mg) with decreasing pressure. This
may suggest that the interaction with fractionafingtokimberlite melts occurred at different
levels. Two major mantle lithologies are distindngid by the trace element patterns of their
constituent minerals, determined by LA-ICP-MS. ©piroxenes, some clinopyroxenes and
rare garnets are depleted in Ba, Sr, HFSE and M&teEepresent relic lithospheric mantle. Re-
fertilized garnet and clinopyroxene are more emithrhe distribution of trace elements
between garnet and clinopyroxene shows that thee¢mdissolved primary orthopyroxene and
clinopyroxene. Later high temperature clinopyroxeraated to the protokimberlite melts
partially dissolved these garnets. Olivines shoereigses in Ni and increases in Al, Ca and Ti
from Mg-rich varieties to the more Fe-rich, defodvand refertilized ones. Minerals showing
higher Fé (0.11-0.15) are found within intergrowths of low-nenite-clinopyroxene-garnet
related to the crystallization of protokimberliteelts in feeder channels. R f(O,) diagrams,
garnets and Cr-rich clinopyroxenes indicate reduelitions at the base of the lithosphere at -
5 log units below a FMQ buffer. However, Cr-podnopyroxenes, together with ilmenite and
some Fe-Ca-rich garnets, demonstrate a more oglidizad in the lower part of lithosphere at -2
to 0 log units relative to FMQ. Clinopyroxenes frammoliths in most cases show conditions
transitional between those determined for garnedsmaegacrystalline Cr-poor suite. The
relatively low diamond grade of Dalnyaya kimbeudiie explained by a high degree of
interaction with the oxidized protokimberlite melghich is greater at the base of the

lithosphere.

Key words: mantle xenoliths; trace element; mekraction; kimberlite; pyrope; Cr-

diopside
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1. Introduction

Mantle xenoliths brought to the surface by kimheréruptions show a wide variety of
compositions and textures. One of the most impbpesblems in understanding the formation
such xenoliths is determining primary features ¢(hese present in the mantle before kimberlite
activity began) and secondary ones superimposéideomantle peridotites prior to (or during)
entrainment in the host kimberlite. Here we presestudy of mantle material from the
Dalnyaya kimberlite pipe in Siberia giving eviderfoe interaction of the mantle with

fractionating protokimberlite melts.

The Dalnyaya pipe, discovered in 1955, is onedhgelst kimberlite pipes (398 270 m)
in the Daldyn field. Like most large pipes in trentral part of the Yakutian kimberlite province
(YKP) (Fig. 1A), Dalnyaya has a Late Devonian af§igashev et al., 2004; Zaitsev and Smelov,
2010; Smelov et al., 2014). It is located in theteeastern part of the Daldyn field (Fig. 1B).
The pipe is composed of two major group | (Mitch&B95) kimberlite varieties, both containing
large amounts of debris mainly macrocrystic olivi@as et al., 2008). Autolithic kimberlite
breccia (AKB) dominates the northern and easterts pahereas massive magmatic porphyritic
kimberlite (PK) forms bodies in the northern andtbeastern parts. It has a relatively low
diamond grade compared to Aykhal, Udachnaya, Yinaile and other pipes which are being
mined, and its greater distance from the miningersdid not allow industrial exploration to
start earlier. Nevertheless, the overall diamorghcay is 10.2 million carats with total price of
about 600,000 dollars, has allowing industrial wiarlstart (Interfax, 2015). In 2011 a new 30
m-deep prospecting quarry was excavated withircémeral part of the pipe which is composed
of PK, in contact with AKB. Both kimberlite varies contain large amounts of mantle xenoliths,

dominantly peridotites with relatively fresh pyrares and olivines.

In this paper, we have investigated mineral contfprs from xenoliths and concentrates
of both PK and ABK facies using electron probe mianalyzes (EPMA) and LA-ICP-MS, and
have reconstructed the mantle section beneatheeag has been previously done for the
Sytykanskaya pipe (Ashchepkov et al., 2015). Téwmuence of abundant Cr-poor, Fe-rich
clinopyroxenes and the unusually large amountbr@#nite intergrowths and ilmenite-bearing
xenoliths, including garnet wehrlites and Cr-begmeridotites, suggest a high degree of
interaction of protokimberlites with mantle perides, which probably influenced the diamond

grade.
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2. Samples

All ~300 xenoliths studied were collected from tlevly excavated quarry in August-
September, 2012. They are relatively fresh andagoritesh pyroxenes and even olivines.
Commonly they are 3-10 cm in size. We did not saggesamples from AKB and PK in this
study. The latter contains more abundant and fresholiths, but megacrysts and their
intergrowth in AKB are more abundant. Large gaifraenite-clinopyroxene intergrowths
described in previous publications (Rodionov etE88, 1991) were not found, because the

quarry mainly exposes PK facies.

3. Analytical methods

Preliminary analyses were made of 40 xenolith&im-section using the Camebax Micro
electron microprobe in IGM SB RAS. In addition, mdhan 75 xenoliths were analyzed in thin
sections at the University of Vienna. For more tBarhigh precision microprobe analyses were
done for two crystals per sample. We also analyagrals from concentrates of PK (370) and
ABK (420) facies separately, whereas minerals cdidditional ~50 mantle xenoliths were
analyzed in grain-mounts. Previous studies of talnyaya pipe were devoted to the comparison
of indicator minerals between the two kimberlitepls (Rodionov et al., 1984), and to the
intergrowths of pyrope garnet, clinopyroxene anteihite megacrysts, and the ilmenite-bearing
peridotites and pyroxenites (Rodionov et al., 19881). Analyses from a previous study of
ilmenite-chromite-diopside intergrowths (Ashcheplatal., 2014) were also included in the data
base as well as analyses of iimenite-bearing gagrexenites from Rodionov et al. (1988,

1991) and Genshatft et al. (1987).

The procedure of the Electron Probe MicroanalysBMA) used for the analyses of
concentrates and xenoliths in mounts in IGM SB R&\@escribed by Lavrent’ev et al. (1987).
Routine conditions and precision of the analyseSarhebax Micro microprobe were also
published (Sobolev et al., 1973, 2009a; Lavrendiest Usova, 1994; Ashchepkov et al., 2010a,
2012, 2013a,b, 2014, 2015). The detailed work arob#ns (75) in thin sections was done at the
University of Vienna using a Camecal00-SX microprobll analyses were done using mineral
standards with wavelength-dispersive spectrometersgleration voltage and beam current were
15 kV and 20 nA, respectively, and standard coiwagirocedures were applied. Trace elements
in olivines from xenoliths were also performed witle Cameca 100SX. For the high precision

4
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analyses of olivine, the acceleration voltage ok¥0a slightly defocused beam current of 60
nA were applied. In order to increase the precisiod reduce the effect of noisy background on
very low elemental concentrations, a 120 secondtiag time on peak position and on both low
and high background positions, were used. As stdrfdathe major elements (Si, Fe, Mg, Ca)
natural olivine was used and for Ni, Cr, Al, Mn, talealloys was used. Precision varies from 7

to 25 ppm for trace elements in olivine like Ni, @f, Mn and Ca.

Mineral concentrates were analyzed by laser alatiductively coupled LA-
ICP-MS at the Analytic Centre of IGM SB RAS (Ashpkev et al., 2008). An additional 52
LA-ICP-MS analyses were obtained with the samepgant for minerals in thin sections of the
xenoliths studied by EPMA in Vienna University (Plgmentary File 1, Tables 1, 2). Analyses
of trace elements of xenoliths in mounts and thkictisns were obtained by LA- ICP-MS
methods using a Finnegan Element | mass spectroareddaser ablation system Nd YAG: UV
New Wave 133 nm in Analytic Center of IGM SD RAS€eldetails were described in previous
publications (Ashchepkov et al., 2012, 2013a, 20d,4a, b, 2015; Afanasiev et al., 2014).

4. Petrographic description of the xenoliths

The set of >300 xenoliths covers the petrograparations in the lithospheric mantle
beneath the Dalnyaya pipe (Fig. 2). Most of theerather small (1 to 3 cm) and it is difficult to

judge their structure using such small amounts atienmal.

The xenoliths belong to both the green Cr-bearuige sand black low-Cr suite described
in previous publications (Rodionov et al., 1993pdviof them are relatively fertile or depleted
garnet lherzolites (Fig. 2I) (25 vol. %) and hampies (Fig. 2P, U) (15 vol. %) (Fig. 3). Garnets
in fertile xenoliths are only partly altered butdoarse grained harzburgites they are intensely
kelyphitized. Many xenoliths (> 45 vol. %) contdaright emerald-green Cr-diopsides which
form veins and micro-veins (Fig. 2E, Q, W), sometiiogether with rather large bright red
rounded garnets. Xenoliths which are unusuallyoled in garnets and clinopyroxenes (Fig. 2G,
J),(i.e. tending towards garnet websterites) canstb—7 vol. % of the studied collection.

Garnet dunites (Fig. 2X) are very scarce (1-249l. Spinel harzburgites (Fig. 2p) comprise
>12-10 vol. %. Giant-grained pyroxenites with pletdamellae of orthopyroxene and rare

garnets (Fig. 2D) occur very rarely (<2 vol. %) pical eclogites were not discovered in this
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collection but clinopyroxene-garnet-ilmenite intergths were described previously (Rodionov
et al., 1988, 1991).

Garnet peridotites frequently show porphyroclagidures (Fig. 2H, K, L, R) with two
generations of olivine and intergranular Cr-diopsidSometimes olivine aggregates are grouped
into clusters which may originally represent lacjigine grains are now recrystallized (Fig. 2H,
K, R). The coarse-grained peridotites are rareraaihly are represented by depleted
harzburgites with or without garnet. Some xensléhe composed of rounded polycrystalline
fragments (Fig. 2T) cut by dark aggregates inclggiyroxenes, ilmenites (Fig. 2M) and
sulfides cemented by more Fe-rich olivines. limegitains commonly together with Fe-rich
pyroxenes are located in intergranular spacestiegetith mica and sulfides which are often
replaced by djerfisherite. llmenite peridotitesnfr®alnyaya are texturally unequilibrated (Fig.
2M, Q) and differ from those found in Sytykansk&gahchepkov et al., 2015) and Udachnaya
pipes (Pokhilenko et al., 1976). Abundant mica ggwere found in one Dalnyaya peridotite,

and in rare cases mica is accompanied by richtemmehiboles (Supplementary File 4).

In the Dalnyaya megacryst associations, ilmenitaase abundant than garnet and
chromite. Elliptical iimenite nodules up to 8 cmdiameter often containing clinopyroxene and
olivine inclusions and intergrowths (Fig. 2A, B, @)cur in the ABK. Garnet-ilmenite-
clinopyroxene associations including giant-graimadeties are more common in ABK facies
than in PK.

5. Chemistry of minerals

Compositions of pyrope garnets from concentratestijéll in the lower part of the Iherzolite
field (Sobolev et al., 1973) with concentration€CsfOs reaching 13 wt. %. Some plot in the
harzburgite and even dunite fields (Fig. 3), whemarnets from xenoliths generally fall in the
Iherzolite field. Wehrlitic garnet megacrysts oosgle from the low-Ca xenolith suite contain up
to 2.5 wt. % C4Osor even belong to the Cr-rich group. The Cr-richngés from xenoliths have
higher TiG concentrations. The PK contain higher amount off sab-calcic and pyroxenitic

garnets compared to xenoliths and ABK garnet pajuia.

All Cr-bearing clinopyroxenes from the kimberliieavy fractions have low Al contents.
A few Al-rich varieties (up to 6 wt. % ADs3) are found among the Fe-rich samples (up to 4.5 wt
% FeO) in ilmenite-bearing and porphyroclastic gatites (Fig. 4). N2O contents, together
with Cr,O3 and MgO, decrease with increasing FeO, whereagiFi®arly constant.

6
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Orthopyroxenes which contain 4-5 wt. % FeO showeiases of AlO; and CaO
(Supplementary File 2, Fig. 3), decreases ebgand NiO, and high scatter in TiQAs the

content of FeO reaches 7 wt. %,®4 and CsOsdecrease and CaO and Fiecome constant.

liImenites from AKB and PK show similar trends bl fatter shows higher scatter in
NiO, Al,Ozand CpOs. Two sub-trends dividing at 51 wt. % Ti@re seen in ilmenites from the
AKB (Fig. 5). The first show stable gb;contents at ~ 0.9 wt. % whereas Mg- and Ti-rich

varieties show variations in €93 ~0.5-1.2 wt. % and dispersion of other components.

limenites in the peridotite xenoliths, as well hgge from the intergrowths with
clinopyroxenes, belong mainly to the Mg-rich type (o 16 wt. % MgO). Significant
differences in the Ti@-Al,O3 trends suggest that iimenites from AKB and PK wereed in
different stages. However, ilmenites from Dalnydganot show the division into three groups

which is typical for the pipes from the Zarnitsaster (Amshinsky and Pokhilenko, 1983).

Chromites are rarely found in the xenoliths; thegur mostly in the rims of garnets and
in the Garnet-free chromite-bearing IherzoliteseyrBhow three major intervals in/Og and
only a few plot within the diamond window. In chriéenfrom the xenoliths, Ti@enrichment
increases with GOs (i.e. with increasing pressure) (Fig. 6), but ©nent is much higher (35—

55 wt. % CgOg3) in chromites from the concentrates.

Phlogopites are relatively scarce in xenoliths fidainyaya compared with the Alakit
field pipes like Sytykanskaya (Ashchepkov et a)1%2). Most phlogopites occupy positions in
the variation diagrams just on the boundary betvgeattered grains and typical micro-veined
phlogopite-bearing associations and may relatateraction with intergranular melts as was

determined for xenoliths from the Sytykanskaya gigehchepkov et al., 2015) (Fig. 7).

The richterite amphiboles from Dalnyaya xenoliths i§-Na type (see Supplementary
File 4) and differ from those found in peridotitenoliths from Alakit kimberlites which are
mostly K-rich (Ashchepkov et al., 2015).

Four large clusters and six small groups of oligioan be distinguished from their
variations of trace components vs” Fehe first cluster (1) is a low-Fe group {Fe0.05-0.6)
which comprises relic peridotites correspondingitchean dunites. Cluster Il with f0.07—

0.9 is composed of fertile peridotites, whereagsgwsamples (Cluster I11) with E€0.09-0.10
may be related to refertilized peridotites. We adesthat the most Fe-rich group (Cluster 1V)
with F€’=0.11-0.13 is related to interaction with protokariie melts. In general, the magmatic
components Ca, Al, Mn show increases with, Bet Ti and Cr demonstrate more complex

7
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trends in separate intervals (Fig. 8). Generalatese of Ni is common and is explained by

interaction with the essentially carbonatitic amalherlite melts (Bussweiler et al., 2014).

6. Thermobar ometry

6.1 Comparison of pressure-temperature (PT) estiesator mantle lithosphere beneath

the Dalnyaya pipe

The pyroxene geotherm with the inflection at 6 GBayd, 1973) constructed for
Lesotho was reproduced for sub-continental lithesighmantle (SCLM) beneath Udachnaya in
Daldyn field (Boyd et al., 1997) and appeared af@ithe SCLM beneath Dalnyaya pipe.

P—T estimates based on orthopyroxene thermobaromieti e most reliable geotherm
according to our comparisons (Ashchepkov et allp2@011, 2012, 2013a, b, c, 2014). Opx
barometry was widely used in mantle reconstruct{gmsnerty and Boyd, 1984). We used for
the construction of the simple and reliable geathére combination (McGregor, 1974; Brey
and Kohler, 1990) (Fig. 9A). Opx-based and Gar-@mthods (Nickel and Green, 1985; Nickel,
1989; Brey and Kohler, 1990) (Fig. 9A, B, C) redpay, with the Opx or Opx-Cpx (Brey and
Kohler, 1990) thermometers produce nearly coingdiT plots (Wu and Zhao, 2011).

The mantle lithosphere beneath the Dalnyaya piteyéred and shows two major
pressure intervals with a gap from 5 to 6 GPa,evbéneath the Udachnaya pipe this interval is
represented by coarse Gar-harzburgites and edddihchepkov et al., 2012, 2014) (see
Supplementary File 2, Fig. 5). In the SCLM bendadglachnaya there are 6 definite layers in the
lithospheric mantle and the number of rock-typdsgher (Ashchepkov et al., 2010, 2013b;
2014; lonov et al., 2010). At least four groupsiirthe lower and middle part of the Dalnyaya
mantle section are close or nearly the same ae thetermined from the Udachnaya SCLM (see
Supplementary File 2, Fig. 5B). The low-T groupnird to 6 GPa is represented Al diagram
for Dalnyaya by several points. The middle groupegponding to a pyroxenite layer
(Pokhilenko et al., 1999) is cooler. The shallowgsups which are common in Udachnaya
SCLM are not represented, mainly because the sanlke large Cpx and Gar grains were

analyzed while the shallow depleted harzburgiteewenitted.

Comparison of different combinations of thermometand barometers shows that PT
estimates using Gar-Opx barometry (Nickel and Gr&@85; Brey and Kohler, 1990) (Fig.
9A,B,C) practically reproduces the Opx geotherme Tn—Cpx -based geotherm (Nimis and
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Taylor, 2000) (Fig. 9D) reproduces the same gragohe Opx-based PT points but show
displacement to higher pressures for the Fe-Crifipaompositions. The Cpx method based on
jadeite-diopside exchange for the peridotitic appenitic associations (Ashchepkov et al.,
2011) (Fig. 9E) shows that the high pressure braonomposed of the sheared and
porphyroclastic peridotites consists of two semagroups which differ in temperature. In
general, it produces the much higher temperatuséhgem probably related to the
protokimberlite stage. This universal Cpx-basedrttodarometry which could be applied to the
low-Cr basic and Cr-rich ultrabasic and eclogiyistems (Ashchepkov et al., 2011) (Fig. 9 E)
also traces all the Opx-points but the proportibthe high temperature associations is much
greater. The reason is not only in the differemcnérmometry but also that the lower-Cr

associations were not used for thermometry by Ge+@pthods.

The garnet geotherm (Ashchepkov et al., 2015) 9Eptraces practically all the groups
of the orthopyroxene geotherm but continues inéohtigher pressure part, showing that the

interval from 6 to 5 GPa is rather depleted in opyroxenes as well as the low pressure part.

The chromite-based geotherm (Supplementary Fifeg25) corresponds mainly to the
middle and low pressure intervals. limenite-bas€@dftimates from the xenoliths
(Supplementary File 2, Fig.5) reflect the condisiai high pressure interactions in the lower
part of the mantle section and of mantle metas@meaitn the middle part accompanied by

formation of phlogopite and amphiboles.

6.2 P—-T-X—f(Q) reconstructions of mantle sections

The P-T—(0,) estimates based on the monomineral thermobargrffethchepkov et al.,
2010, 2012, 2013a, b, c, 20144, b, 2015) enabie ke PTXfQ diagrams for all xenoliths
samples together (Fig. 10A) and separately foctmeentrates (Fig. 10B, C) as was previously
done for the Sytykanskaya pipe (Ashchepkov eRéll5). In general, the geotherm for minerals
from xenoliths is very similar to that for the miegnbeneath the Udachnaya pipe (Ashchepkov et
al., 2013). Thé>-F€' plot shows several garnet trends demonstratingasing Féwith
decreasing pressure (see the arrows) which are oarmmmantle columns worldwide (Fig. 10A,
B, C) (Ashchepkov et al., 2010, 2012, 2013a, bCtinopyroxene and even olivine (pressure
determined from the associated Cpx) repeats thesdd; possibly this is the result of some
rapidly differentiated melts in different pressuimeshe mantle column formed in several stages.

Clinopyroxene and ilmenites P-Fé’ plot often relate to the most Fe-rich branches
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corresponding to the lIIm-Cpx intergrowths nearlith®sphere base. THe-T-X—fQ,) diagram

for the xenoliths shows that many associationsatequilibrated, the Cpx are often much more
Fe-rich compared to the garnets and olivines aisdgmot a temperature- dependent Fe-Mg
distribution (Krogh, 1988; Kohler and Brey, 1990he garneP-CaO trends are divided into
three lines with different CaO contents. The highedues are typical for garnets near the
lithosphere asthenosphere boundary (LAB) and thlkdsit values are in garnets of the
pyroxenite-wehrlite associations. They are relabef@rtilization processes produced by
carbonatitic protokimberlite melts (Howarth et @014; Pokhilenko et al., 2015).

The P-T—Xdiagrams based on minerals from the concentra¢edidded (Fig. 10B,C)
into two parts at 4.0 GPa. TReF€’ trends show a rapid increase of FeO with decrgasin
pressures corresponding to the evolution of ilneetiénd produced by the protokimberlites. The
AKB concentrates demonstrate some enrichment afeggin CaO and FeO from 3.5 to 4.5 GPa
compared with those from PK. This suggests thegmas of pyroxenites in the middle part of
the mantle column. The ilmenite trendAaFe’ diagrams is divided into two intervals at

Fe'=0.12, probably related to two stages of protokirfiteeevolution.

In theP—(O,) diagram (Fig. 10), the garnets and several ciinmgenes near 5 GPa show
a trend which is common for the SCLM worldwide (Mo@mon et al., 2001; McCammon and
Kopylova, 2004), showing increasingly reduced ctiads with depth. The ilmenite trend traces
the diamond stability as in the Sytykanskaya pAsh¢hepkov et al., 2015) which suggests
relatively close(O,) conditions for megacrystic associations derivednf protokimberlites and
megacrystic clinopyroxenes. Some increas¢n) occurs in the lower part of the SCLM and
several garnet points are located within the oeidizeld, coinciding with the oxygen fugacity
conditions for the ilmenites and clinopyroxenesjolihin general resemble the oxygen fugacity

of protokimberlite melts (Hofer et al., 2009).

This highly oxidized level is marked also by seVv&ar, Cpx and llm points near 3 GPa.
Oxidized associations correspond to the essentiallyonatitic compositions of the kimberlitic

parental melts, according to the lines of£®@oncentrations (Stagno et al., 2013).

The P-T-X—f(Q,) diagrams for the xenoliths (Fig. 10A) also showphesence of two
major pressure intervals in SCLM divided at 3.5 GH#e lower part shows a high degree of
heating which is commonly associated with shearadtla and is often related to interaction
with protokimberlite melts (Agashev et al., 2013h&hepkov et al., 2013b) as in the SCLM
beneath the Udachnaya pipe. However, in the Dalmydpye they are represented by
porphyroclastic and micro-veined peridotites. TlrReHT points on diagram (Figs. 9, 10) are
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marked by orthopyroxene, orthopyroxene-garnet dindgyroxene thermobarometry and form
convection branch below 6 GPa (Boyd et al., 19€@ihopyroxeneP—T estimates yield hotter
geotherms compared with those produced by otheenalimn Temperatures based on the two
pyroxene methods (Wells, 1977; Taylor et al., 1B1@&y and Kohler, 1990) are higher than
those that are orthopyroxene-based (Brey and Koh#90). So the orthopyroxene-based
geotherms are essentially cooler than Cpx-onlyreg#és (Nimis and Taylor, 2000). The
common Gar-Opx barometry (Nickel and Green, 1988yBind Kohler, 1990) in combination
with the two pyroxene temperature gives similaslagghtly hotter conditions than the

orthopyroxene-based method.

Garnets in th&—Fé diagram reveal linear trends in the lower pardiafjram and also in
the upper part which definitely differ from thosetermined for concentrates from kimberlites.
The upper interval is divided at 3.0-2.5 GPa shgwiiregular heating and increasing of Fe# for
garnets and pyroxenes. The lowest pressure inté®aR.0 GPa is again highly heated and

represented by the Fe-rich associations.

The P—(O,) diagram for garnets from xenoliths shows a lirssareasingd(O,) trend
from -3.5 to -1.5AFMQ in the pressure interval from 7.5 to 2GPa, Wwh&cnarrower than the
range shown by the minerals from concentrates (fg4.). llmenites from the xenoliths show a
rather wide range in @Dz up to 6 wt. % at near 3.5 GPa. Clinopyroxenes mastirespond to
more oxidizing conditions than garnets. The presaiceveral lInP-F€’ trends as well as for
Gar and Cpx suggest that the lower and middle péttse peridotite mantle column were

subject to several stages of melt percolation.

7. Trace elements
7.1. Trace elements in peridotitic minerals

Trace element concentrations in garnet, clinopgnexand ilmenite grains from the
concentrates (Supplementary File 1, Tables 1, @ xanoliths are generally very similar (Figs.
11, 12). Garnets mainly show HREE-enriched rourttepas, although those from concentrates
have higher HREE compared with those from xengliftsich show a dominant harzburgitic
pattern with a slight depression from Yb to Dy ometimes a humped pyroxenitic pattern with
a peak at Sm (Fig. 11C). All garnets have stromgefsions in Sr, Ba, Zr—Hf and Ta—Nb.
Garnet of dunitic type has deep trough from Smto Garnets from the mineral concentrates
from kimberlites mostly have similar round patterBeme of them show slightly lower HREE
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content and only one belongs to the depleted dutypie with the inflected REE pattern close to
S-type, but it does not show a deep high fieldgtiie element (HFSE) trough (Supplementary
File 2, Fig. 13).

Among the clinopyroxenes, the dominant type shawasymmetric bell-like pattern
with a peak at Nd and nearly flat patterns fromtd &b with troughs at Ba, Hf and deeper
troughs at Zr and Pb. (Fig. 11A). The other clinopgnes show various patterns; two have REE
patterns with an inflection in Eu and Gd and aneilgir in incompatible trace elements to garnets
with deep Ba and Pb troughs. Two others show itdttor sinusoidal REE patterns with
inflections in Gd and Dy and elevated incompatédEments with peaks in Nb and Pb (Fig.
11D).

All olivines have W-shaped REE patterns with abumods range from 1 to 0.01 relative
to primitive mantle (PM) (McDonough and Sun, 199&th local elevation near Gd and Th.
Most olivines show depressions in Ba, Sr, Y, Zr, Nib, Ta and a peak at Pb. Orthopyroxene
shows a more enriched U-shaped REE near 0.1/PMracel element spider diagram similar to
those from mantle xenoliths from Bezymianny (lomdal., 2013) with peaks in Th, U, Hf and
troughs or elevated Ta, Nb. Y. The only analyzelogdpite (intergrowing with olivine) reveals
peaks in Ba, Sr, Pb, elevated HFSE especially Zalirough in Y (Fig. 11D).

7.2 Trace elements in minerals from low-Cr suite

liImenite intergrowths with clinopyroxenes represtet low-Cr suite (Moore and
Belousova, 2005). Clinopyroxenes from the interghman general are similar to those of
magmatic-type clinopyroxenes from lherzolites arne peaks in U and Ba. Trace element
patterns in the ilmenites in intergrowths in gehara nearly the same as those from megacrysts
(Fig. 12A). They mostly have low abundances andiapsd REE patterns with inflections in
Gd and Eu, as in orthopyroxenes. In trace eles@der diagrams they show peaks in Nb-Ta
and Zr—Hf with smaller peaks in Pb but minima inT¥wo other enriched ilmenite grains
demonstrate concave, inclined patterns in REE &néted incompatible elements group but

nearly the same levels in HFSE and without Y an@sal

The trace element patterns for the minerals froenctimcentrates are in general very
similar to those analyzed in xenoliths. But mosthef clinopyroxenes belong to the low-Cr
varieties and are closer to the high temperatusef@n xenoliths and lIm intergrowth and
show patterns which are close to those from theciestions described above (Fig. 12B).
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8. Discussion

8.1. Comparison of P-T—X sections of Dalnyaya witther mantle columns beneath
YKP

The mantle column beneath the Dalnyaya pipe shome special features compared to
those beneath other pipes in the Daldyn field. €amends in th®—Fe’ diagram consist of
several branches of increasing.F@tarting from the LAB at least four different &s occur in
the mantle column, which may represent the tratesiaog and differentiating melts. The
deepest level (7-5.5 GPa) corresponds to the mmieftective viscosity of the mantle in the
presence of melts (Karato, 2010) or water (Pegi@t0) or an increase in oxygen fugacity,
features which are commonly combined as a restittafsion of protokimberlite melts
(Goncharov et al., 2012; Doucet et al., 2014). Lebaaring in the upper levels is also possible
in the presence of melts and volatiles (Katayans. e2009). Possibly this took place in the
mantle beneath Dalnyaya because deformed varigéksrather high pressure ranges from >7
to 4.5 GPa.

Compared to the mantle sections beneath other fapgs in the Daldyn field such as
Udachnaya and Zarnitsa, the Dalnyaya mantle sedties not show the presence of eclogites

and, even in the concentrates, orange eclogiteggpeets are not frequent.

The double”—CaO trend detected for garnets in Dalnyaya xerglithmost likely a sign
of the reactions with Ca-rich melts, because Claedcvarieties are typical for the high
temperature varieties show signs of re-fertilizatibhe presence of sub-calcic garnets, which
form several clots and trends in the lower pathefmantle section, suggests a rather high
diamond grade of this pipe. TReCaO trend for analyzed xenoliths with large amaifrgarnet
and clinopyroxene is nearly constant within thé &Pa interval, probably as a result of the
influence of evolving melts. Evolving intergranutaelts probably also had some influence.
Pyroxenites showing most variability in composisand TRE content are found mainly near

the LAB and within the middle pyroxenite layer.

8.2 Trace elements evidence for mantle peridotitelation

From trace element geochemistry, two major typgseoidotites exist in the lithospheric

mantle beneath Dalnyaya. The first group is char&std by negative anomalies in Ba, Sr, Pb
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and sometimes Y and Nba. These features are found mainly in orthopyresesome garnets
and two clinopyroxenes. The other lithology cormugts to mantle that has interacted with
plume-related melts, possibly protokimberlites. yhaee enriched in Ba, Sr and HFSE and have
lower LILE concentrations. We tried to determine tAndencies of the changes of major and

trace elements of different minerals in differeadls of the mantle column.

Olivines show several trends of enrichments iPATji,Ca vs Pressure (GPa), on the
(Supplementary File 2, Fig.9A), which probably tetato the evolution of the melts with which
they were in equilibrium. Greater enrichment of magrelated components occurs near the
LAB.

Clinopyroxenes also show enrichment of Sr* (Si¥d,xSm,), Pb, U/Pb, Zr and Y with
slightly decreasing pressure. This may mean tlzattian with the intruded melts occurred in 3
separate intervals probably corresponding to inéelite magma chambers for the
protokimberlite melts. In the top of each intergatresponding to 6, 4.5 and 2.5 GPa, where
melt concentration should be higher, the degréatefaction with wall-rock peridotites is also
more intense. Increasing Ni in clinopyroxene shiwvesinfluence of ultramafic material or could
also possibly be a result of contamination as ha@gevith Cr in ilmenites (Fig. 10A of

Supplementary File 2)

Garnets appear to have experienced major refetidiz because their REE patterns are
not harzburgitic. Only four of them show sinusoiBHE patterns and may be related to the
primary type. There are correlations between thg& Blgpe ((La/Yby or (Gd/Yb),and values of
Sr* minima or Y*, Pb*, which results from the deas® of the slope for the parental melts
(Supplementary File 2, Fig. 10B) or degree of défgiation. The inclination of the HREE
garnet slopes in the mantle column decreases mdtieasing temperature which is explained by
mineral physics (Blundy and Wood, 1994). The degfegepletion is generally higher in the
upper part of the mantle. But some characteristicslatively depleted harzburgite associations

are found for some garnets in the lower parts eintfantle.

The strong enrichment in the LILE components wiiommonly accompanies
phlogopite and amphibole metasomatism (Gregoiet. €2002) was not detected for most
samples; only a few minerals in association witlogbpites show enrichment in Rb and Ba.
However, most garnets show Nb—Ta enrichment sirtoléinose from the Arkhangelsk

kimberlite province (Afanasiev et al., 2013).
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8.3. Reconstructed parental melts for minerals froranoliths

The trace element compositions of melts reconstduasingKp values (Hart and Dunn,
1993) for the main type of clinopyroxene relateddfertilization almost completely coincide
with those of the kimberlite melts from Dalnyayai having a gentle inclined pattern with Sr
minimum (Kargin et al., 2011) and even a small Ta-Hdmp. Some clinopyroxenes reveal
primary lherzolitic features in their more compkpider-diagrams and higher (La/Xlratios.
Formation of clinopyroxene in the sheared peridstivas caused by intrusion of protokimberlite
melts, which produced megacrysts, porphyroclastitsheared peridotites (lonov et al., 2010;
Agashev et al., 2013). Some peridotites with o\mietciated structures and veins with ilmenites
and associated clinopyroxenes are possibly thestiep in the formation of polymict breccias
(Giuliani et al., 2013) (Fig. 13A).

The melts reconstructed from the garnets haverdiftgpatterns depending on the
partition coefficient used (Hauri, 1994; Harte afickley, 1997; Green et al., 2000; Bedard,
2006; Tuff and Gibson, 2007; Fulmer et al., 2010niS et al., 2013; Katzyura et al., 2015) (see
Fig.8 of Supplementary File 2). If we ulkg for silicate melts (Green et al., 2000) which are
lower in HFSE and LILE compared to those for cadide-silicate melts (Girnis et al., 2013;
Katzyura et al., 2015), the obtained spider-diagrahrow gently sloping patterns close to those
obtained for the clinopyroxenes, except for the BW@ich are closer to those of kimberlites
(Kargin et al., 2011).( Fig. 13C) NeverthelessltREE for the clinopyroxene and garnet do not
coincide entirely, nor do Ta—Nb and Zr—Hf; furthema garnet shows much lower (La/&m)
ratios than clinopyroxene, demonstrating incompéepeilibration. Resulting in trace element
patterns almost completely coincide with clinopyrng trace element spider-diagrams from
Vitim mantle melts (Ashchepkov et al., 2011) whaoke also typical for plume melts formed by
1 % melting of garnet peridotites. (La/Sndeviations in garnet and clinopyroxene suggesis th
the melts which produced the garnets resulted fimsolution of primary clinopyroxenes. This
“garnetization” may be caused by addition of wabgpanding the stability field of garnets and

increasing pressure during ancient subduction.

The calculated melts for the olivines and orthopgree using partition coefficients after
Imai et al. (2012) and Bedard (2006) show REE padtevhich are inflected in Gd and are
higher in LREE compared with melts in equilibriuntiwmclinopyroxene (although this may
result from uncertainty in partition coefficienigF13B). These inflected patterns are a common
feature for most orthopyroxene from mantle xensl Kamchatka (lonov et al., 2013) and

other xenolith localities in subduction settingsh{fnaru and Arai, 2009) and probably reflect a
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primary subducted nature for the peridotites. €haslts mostly have negative anomalies of
Nd-Sm and Ta—Nb which are typical for subductidatesl melts. However, U, Th and LILE
contents are similar to orthopyroxene from pertéatenoliths from Bezymianny (lonov et al.,
2013).

The reconstructed melts for the ilmenites estimatgdg Ky values of Zack and Brumm
(1998) with addition for HFSE (Klemme et al., 20@6general have very similar REE patterns
to those determined for the megacrystic pyroxenBes they are particularly high in HFSE and
Pb. The depression from La to Sm cannot be exaldiyechromatographic effects but is more
likely a result of selective removal of clinopyrarefrom the rock, which may also explain the
W-shaped pattern for the parental melts of oliand orthopyroxene. Only two ilmenites show
trace element multicomponent diagrams which resertiiase of the host kimberlites (Kargin et
al., 2011).

We checked the equilibrium of the garnet-clinopyo& pair using the partition
coefficients for clinopyroxene/garnet. In mostaesathey repeat the shapes of kaecalculated
for the garnet Iherzolites and harzburgites fromRimsch pipe (Gibson et al., 2008), which were
established to be equilibrated in trace elemerdssotopic features (Lazarov et al., 2013). But
those from Dalnyaya with closepKn REE show some disequilibrium features suchhas t
curved patterns in La—Nd and relative enrichmenhénHFSE, which means that the parental
melts were much closer to kimberlitic than thoseeptal to the garnets (Fig. 14A). However,
threeKp showing irregular patterns in REE diagrams relatedinopyroxene which was less
enrich trace components which did not react wititgkimberlites as those analyzed in SCLM
beneath the Finsch pipe (Fig. 16 of Supplementdey2y.

Equilibrium between Cpx and Ilm in intergrowthsnigt complete. Only one sample
(DI175) shows a smooth partition coefficient pattae calculated the llm/melt partition. It
shows higher values of the HFSE than those deteuhriy Zack and Brumm (1998) with similar
method for the IIm-Cpx intergrowth from Hawaii culaite basaltic xenoliths. However, the
calculated parental melts for ilmenites are evea énriched in REE than with the previous K
set (Fig. 14B).

8.4 Evolution of the melts in the mantle column beath the Dalnyaya pipe

We suggest that the relic associations of garnetgyroxene and especially the
orthopyroxene with HFSE depressions may repreberdaimicient SCLM beneath the Daldyn
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field. But they do not have positive anomalie®Rlat Sr and U which are the typical features of
subduction-related fluid and melts, so they repressther deep material which did not

experience subduction.

Formation of the garnets with primitive round tratement patterns may be related to a
refertilization probably associated with plume raelthis event was definitely prior to intrusion
of the melts which created the shearing and metassm similar to processes in mantle column
beneath Udachnaya pipe (Solov'ev et al., 2012; idotky et al., 2013; Agashev et al., 2013).
In general garnets and clinopyroxenes are essgndértilized similar to the mantle beneath
Finsch pipe (Lazarov et al., 2012). It seems thtsamafic melt equilibrated with the peridotites
evidenced by the garnet and olivine from enrichefdrtilized peridotites having Fe 0.09-

0.10. Some pyroxenes may have been equilibratddtiagise garnets but most of them are more
Fe-rich and closer to protokimberlites which, aduoog to minerals from polymict breccias and
sheared peridotites, have’Ed.11-0.13. These large scale processes of ititmand
refertilization have also been found in many kinfikefocalities such as Udachnaya (Howarth et
al., 2014; Pokhilenko et al., 2015) and are commaskociated with metasomatism by silicate-
carbonatite melts.

It seems that this was the stage close to the ftowmaf the channels through which the
protokimberlite melt rose and in which megacrystsagon the walls (Moore and Lock, 2002;
Ashchepkov et al., 2014). This was followed by reréase of temperature and interaction with
protokimberlite melts accompanied by an increadeepiCa and Ti. The more Fe-rich varieties
may represent samples of the low-Cr suite, whicl bearelated to contact zones with the
protokimberlite melt. Formation of ilmenites witlepleted W-shaped REE patterns may be due
to interaction of melts with rather depleted petitdobecause melts commonly move through
olivine-rich aggregates. Clinopyroxenes, olivinel@me orthopyroxene found as inclusions in
the ilmenite nodules are not the result of exsolutr pegmatoid intergrowth (Haggerty et al.,
1975) but look like material captured by the kimibermush or later inflows of the
protokimberlite melts. Thus, we can suggest a stalgie evolution of the mantle beneath

Dalnyaya pipe as was suggested for the Kaapvatlrc(Konzett et al., 2013).

8.5. Schemes of refertilization

The PTX diagrams show that refertilizing melts evartruded at several levels in the
SCLM, at 6.5, 5.5 and 4.5 GPa according to clinopgne thermobarometry (Figs. 11 and 12).
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The diagrams for the garnets show that they alsaroed in the 3-2 GPa level. The changes of
characteristic ratios and incompatible elementsfrelatively fertile to more depleted in the
upper part of the mantle section suggest thattigfation originated in the asthenosphere. We
measured the garnets for trace elements mainly fneniot branch. The agents that caused
refertilization should be related to the last pluewent. The question is why the garnets are not
equilibrated with the clinopyroxenes. It is likeghat garnets were growing when the distant most
evolved melts with higher carbonatite fractions evieteracting with the peridotites, dissolving
original orthopyroxenes and clinopyroxenes and thag are richer in CaO than the garnets
from the low temperature branch (Fig. 12). In tulimopyroxenes with higher HREE than in
equilibrated peridotites from Finsch (Lazarov et 2013) should have dissolved some garnet
material. They grew later during increasing intécacnear the developing channels and in many
cases show great compositional variations. A ptessiechanism is that intruded melts were
rising the intergranular spaces, accompanied bigréiitiation (Burgess and Harte, 2004), i.e.,
assimilation fractionation crystallization (AFC) €0Paolo, 1984). This would be followed by an
increase of the incompatible elements together thightypical peridotitic components. The
second possibility is that the melts evolved inasafe chambers and rose up step by step so that

the interaction took place mainly near the chambadsfeeders.

The high temperature Fe-rich clinopyroxenes showarmease of Cr with decreasing
pressures. It is likely that that this is AFC witbntamination of parental melts derived from
peridotites. But ilmenites which possibly crystagll from a separate liquid show a small

increase of Cr during ascent.

Modeling of AFC with different schemes (Fig. 15¢limding dissolution of garnets (or
clinopyroxene) and crystallization of clinopyroxener garnet) or both together from partial
Iherzolite melts (Ashchepkov et al., 2011) or kimiibe melts (Kargin et al., 2011) (Figs. 17-20
in Supplementary File 2) shows some similaritiethwhe analyzed natural garnets and
clinopyroxenes (Fig. 14A, B, Fig. 15). Dissolutiohclinopyroxene explains the bell-like REE
patterns for the garnets but cannot explain minimdREE. Dissolution of garnet explains the
elevated HREE of clinopyroxene. Trace element carepts could be reduced by contamination
in orthopyroxenes and increase in HFSE content dfitenite dissolutionlt is possible to show
how the trace element components could be redugcedrtamination in orthopyroxenes and
increasing HFSE content rises after ilmenite digsmh (Fig. 15D). Using uncontaminated
kimberlites compositions without HFSE anomaliesegméng to melting degree F~1%) or partial
melts from primitive peridotites close to basaks1 %) (Ashchepkov et al., 2011) can satisfy
the flat incompatible elements part of the origimate element compositions of garnets if we
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use & for silicate melts (e.g. Green et al., 2000). 8sihg carbonatite-silicate melt
coefficients (Girnis et al., 2013; Kazyura et aD15) produces elevated HFSE patterns.
However, many garnet compositions show flat HRERima from Ho to Yb which could be
derived from the original depleted source. It isgssary to melt a major amount of
orthopyroxenes or another mineral to form U-shapBE&EE pattern. Orthopyroxene melting is a

common model for silica enrichment of carbonatimberlite melts (Brett et al., 2015).

8.6. Significance of melt interaction for diamondade

The relatively low diamond grade of the Dalnyaypeptould be the result of several
processes. First is the high degree of mantle metassm by highly oxidized melts. This is
visible also in the NS mantle transect (Fig. 28upplementary File 2) of the SCLM from the
Daldyn field. Nearly half of the clinopyroxenestmnokenoliths fall outside the diamond stability
field in theP-fO, diagrams, together with the ilmenites. The very tmncentration of eclogites
and pyroxenites is also an unfavorable factor beeaearly half of the diamonds in productive
kimberlites belong to the eclogite type, accordimgheir inclusions (Sobolev et al., 2004;
Logvinova et al., 2005). The amount of sub-cal@megts, which probably were produced by
percolation of reduced fluid in Archean time (Kl&en David et al., 2014) within the dunite

channels (Pearson and Wittig, 2014), is also redbtilow compared to the other large pipes.

9. Conclusions

(1) The peridotite mantle beneath the Dalnyaya pipgerwent multistage metasomatism and,

was affected by oxidized melts related to protoleniites during the final stage;

(2) Many mineral associations in the mantle colargnot thermally and chemically

equilibrated:;

(3). The lithospheric mantle beneath the Dalnydpa s layered and consists of five stepped

layers which were heated to different degrees;

(4). The SCLM beneath Dalnyaya contains very saralbunts of eclogites and pyroxenites and
originally was built up by peridotites which couid island arc-type, but lack the signs of U, Sr,

Ba subduction-related metasomatism.
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983
984 Figure captions
985 Fig. 1. Location of Dalnyaya pipe within the YKPdaDaldyn-Alakit kimberlite fields in
986  Siberian platform. (A) General scheme of Siberigatan and kimberlite fields. (B) Scheme of
987 the area around Dalnyaya pipe from Google maps.
988
989  Fig. 2. Scanned images of thin sections of marmhekiths from Dalnyaya pipe. (A-C) limenite
990 megacrysts with clinopyroxene and polyphase inohsi (D) low-Cr websterite. E, F:
991  clinopyroxene-rich clusters in garnet lherzolitds; G, J) garnet-rich clusters in peridotite; (&,
992  orthopyroxene-rich clusters in garnet Iherzolitéls, R) deformed peridotites; (K, N, S)
993  porphyroclastic peridotites; (M, O, W) ilmenite-bbieg vein in garnet peridotite; (T)
994 fragmentation of peridotite — and clinopyroxeniyedsotokimberlite melt; (U) garnet peridotite
995 interacted with melt; (V) garnet harzburgite; (Xjacse garnet dunite
996
997  Fig. 3. Compositions of the pyropes (A) from AKB)(PK and (C) peridotitic xenoliths from
998 Dalnyaya pipe. In GOz vs CaO plot, the composition of garnets from Rodioet al. (1984) are
999  shown by small dots. In addition the analyses efrttineral grains from xenoliths and those
1000 analyzed by ICP are shown by stars (see legend).
1001
1002  Fig.4. Compositions of Cr-diopsides from (A) AKBB)(PK and (C) peridotitic xenoliths from
1003  Dalnyaya pipe.
1004
1005  Fig. 5. Compositions of chromites in peridotitiawdiths from Dalnyaya pipe and from (A)AKB
1006 and (B)PK according to Rodionov et al.(1984).
1007
1008  Fig.6. Compositions of ilmenites from AKB (A) an&KPB) from Dalnyaya pipe. In addition the
1009 analyses of the mineral grains from xenoliths du$¢ analyzed by ICP are shown by stars (see
1010 legend).
1011
1012  Fig.7. Compositions of phlogopites from mantle Xéhe from Dalnyaya pipe. Fields of
1013  disseminated and veined phlogopites from SytykayeskAshchepkov et al., 2015) pipe are also
1014  plotted
1015
1016  Fig.8. Variation diagrams for olivines from mantenoliths from Dalnyaya pipe relative to"Fe
1017  from the routine EPMA analyses.
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Fig.9. Comparison of the Orthopyroxene-based gewth@d) OpxT (°C) (Brey and Kohler,
1990) P (GPa) (McGregor, 1974) al®d-T estimates obtained with other combinations of
thermobarometers; (B) (GPa) (Brey and Kohler, 1990T+°C) by Cpx; (C)P (GPa) (Brey and
Kohler, 1990) and (°C) by Opx.T (°C) (Brey and Kohler, 1990) aritl(GPa) by (Nickel and
Green, 1985); (DP-T by (Nimis and Taylor, 2000); (&) (°C) (Nimis and Taylor, 2000Corl-
(GPa) (Ashchepkov et al., 2015Cpx); (F)°T) (O’Neil and Wood,1979 Mono) —([©Pa)
(Ashchepkov et al., 2015Gar).

Fig. 10. (A)P-T—X—HO,) diagram for minerals from xenoliths found in Dgdya pipe

kimberlite. 140 xenoliths from our collection armh®e associations from Rodionov and
colleagues (1983, 1993); (B}-T-X—O,) diagram for the minerals from the heavy mineral
separates of PK; ((-T-X—O,) diagram for the minerals from the heavy mineegdagates of
ABK. Symbols: 1. OpxT (°C) (Brey and Kohler, 1990) \B (GPa) (McGregor, 1974). 2. Cpx:
T (°C) vsP (GPa) (Nimis and Taylor, 2000); B.(°C) (Nimis and Taylor, 2000) \B (GPa)
(Ashchepkov et al., 2011); 4. same for pyroxenifes;he same for pyroxenes analyzed by ICP.
for garnets: 6T (°C) (O'Neill and Wood, 1979P (GPa) (Ashchepkov et al., 2010), Chromite 7.
T (°C) (O'Neill and Webb, 1987 (GPa) (Ashchepkov et al., 2010); 8. limenite megsts T

(°C) (Taylor et al., 1998} (Ashchepkov et al., 2010); 9. The same for xehsjit.0. For

Olivines F&-P (GPa) (Ashchepkov et al., 2011) (Cpx associated @f); 11.T (°C)-P (GPa)
(Brey and Kohler, 1990). In tHe-T plot the approximate the diamond-graphite tramsiti
Kennedy and Kennedy (1976) is shownPHi{(O,) plot the diamond stability field is after
Stagno and Frost (2013).

Fig. 11. REE and spider diagrams for minerals fpamdotitic xenoliths from the Dalnyaya
pipe. Normalization to primitive mantle (PM) afféicDonough and Sun (1995).

Fig. 12. REE and spider diagrams for ilmenite meggis and their clinopyroxene Inclusions(A)
and the minerals from concentrates of the Dalnyaga(B). Normalization to primitive mantle
after McDonough and Sun (1995).

Fig. 13. REE and spider diagrams for calculatedsmelequilibrium with (A) clinopyroxenes,
Kp after (Hart and Dunn, 1993); (B) olivines and ogfiroxeneKp after (lonov et al., 1995);
(C) garnets from refertilized peridotites, (D) ilnie2 megacrysts and their clinopyroxene
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inclusions. The dashed lines represent the rangardferlite compositions in Dalnyaya pipe
after Kargin et al. (2011). Partition coefficiefds clinopyroxenes (Hart and Dunn, 1993), for
garnets (Green et al., 2000) and for ilmenites Kzawl Brumm, 1998; Klemme et al., 2006).

Normalization to primitive mantle after McDonoughdaSun (1995).

Fig. 14. Partition coefficients determined. (A) i@pyroxenes /garnet for the relatively
equilibrated associations garnet-clinopyroxene}c(lBopyroxenes /ilmenite for the ilmenite-
clinopyroxene intergrowths and calculated ilmemitek coefficient for the sample DL175.

Normalization to primitive mantle after McDonoughdaSun (1995).

Fig. 15. Different variations of protokimberlite fhevolution (calculated according to AFC
model of DePaolo, 1981) and compositions of theemails in equilibrium. (A) Gar from melt
assimilating CpxR=0.5); (B) Cpx from melt assimilating Gar; (C) Cfsam melt assimilating
Opx (R=0.5); (D) Gar from melt assimilating IlIriKp for Gar/Melt (Green at al., 2000), for Cpx
(Hart and Dunn, 1993). Normalization to primitiveantle after McDonough and Sun (1995).
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Dalnyaya all peridotitic minerals ananlyzed by LA-
ICP-MS in thin sections

Minerals from peridotite xenoliths
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Fig.12

limenite - diopside nodules
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Melts in equilibrium with clinopyroxenes Melts in equilibrium with olivines and orthopyroxenes
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Partition coefficients Cpx/Gar

Field for partition coefficients Cpx/Gar
for Finsch peridotites (Lazarov et al., 2013 )
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from the melt assimilating Gar

TRE patterns for Cpx crystallizing from kimberlite melts
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Mantle column beneath Dalnyaya kimberlite pipe consist of several (5) layers heated from
bottom

Peridotite mantle beneath Dalnyaya interacted with protokimberlite melts in several stages
Many mineral associations in the mantle column are not thermally and chemically equilibrated

SCLM beneath Dalnyaya pipe contains only small amounts of eclogites and pyroxenites



