- Sourcing of Miocene accretionary lapilli on 'Eua, Tonga; atypical dispersal
- distances and tectonic implications for the central Tonga Ridge.
 4
- 5 JK Cunningham¹ and AD Beard
- 6 7

8

9

- Department of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street London WC1E 7HX
- ¹Corresponding author, <u>jcunni1248@aol.com</u>, present address: 1 Loudens Close, St Andrews, Fife, Scotland, KY16 9EN, (44) 1344 479348
- 12
- 13

14 Abstract

15

16 Volcaniclastics hosting accretionary lapilli on the Tonga Ridge were sourced from the remnant Lau Ridge, prior to Lau back-arc basin opening. For the 'Eua occurrences, an 17 atypical dispersal distance of not less than 70 km is estimated, partly arising from the 18 19 anomalous easterly position of 'Eua. Dispersal within ocean-surface pyroclastic density currents is supported but strike-slip movement in a fault zone south of 'Eua, post 20 Middle Miocene but pre ridge-splitting, can account for part of the dispersal distance by 21 22 vertical axis block rotation, a tectonic process common on the southern Tonga-Kermadec-Hikurangi trend. In this model, the volcano which sourced the 'Eua tephra 23 was on a subjacent block, rather than the block which hosts 'Eua. After deposition but 24 25 prior to the opening of the Lau Basin, the accretionary lapilli on 'Eua became displaced by block rotation c. 40 km towards the Tonga trench and away from source. 26 27 28

29 Keywords

30

Accretionary lapilli; Tonga Ridge; dispersal distance; block rotation; pyroclastic density
 currents.

33

34

35 Introduction

36

37 Accretionary lapilli are highly ordered types of ash aggregate typically associated with

38 explosive eruptions, where they may form in the plume itself or in pyroclastic density

- 39 currents as they interact with the co-ignimbrite ash plume. Dispersal may therefore
- 40 occur subaerially by expansion of the plume, spreading of any atmospheric umbrella
- 41 cloud, and/or by pyroclastic density currents. The 'Eua accretionary lapilli contain
- 42 examples typically 10–15 mm in diameter and are accretionary lapilli *sensu stricto*
- 43 (Brown et al. 2010, Van Eaton & Wilson 2013), as distinguished from less ordered ash
- 44 pellets and fragile ash aggregates (Brazier et al. 1982; Carey & Sigurdsson 1982;
- 45 Wiesner et al. 1995; Brown et al. 2012) which rarely survive in that form but are
- 46 detected in sieve analysis of grain size. Accretionary lapilli have been reported from

47 Miocene volcaniclastics which are exposed on the Nomuka group islands (Ballance et 48 al. 2004) and on 'Eua on the Tonga Ridge (Ballance et al. 2004; Cunningham & Beard 49 2014). The host volcaniclastics were sourced from volcanoes on the Lau Ridge, prior to 50 the splitting of the Lau-Tonga ancestral arc in the latest Late Miocene to form the Lau back-arc basin (Clift et al. 1994, 1995, 1998; Cole et al. 1985; Parson & Wright 1996). 51 52 Reconstruction of the ancestral ridge places the Nomuka group islands, which are 53 positioned on the west of the Tonga Ridge, at modest dispersal distances from potential 54 source. However, 'Eua is the most easterly of the island exposures along the Tonga 55 Ridge by some margin and this contributes to a dispersal distance from source at the 56 limit of most (but not all) documented occurrences of accretionary lapilli. The 57 resolution of the two problems presented by the anomalous position of 'Eua and the 58 exceptional distance from potential source of the accretionary lapilli found on 'Eua is 59 the focus of this paper. The approach taken to address the two problems is firstly to use 60 data from the Tonga Ridge, the Lau Basin and the Lau Ridge to constrain possible 61 locations for the Middle Miocene source volcano which provided the accretionary lapilli 62 on 'Eua, to consider how the distance between source and destination may have been 63 impacted by post Middle Miocene tectonics, including block rotation, and to estimate 64 the minimum actual contemporary distance from source. Thereafter, the paper 65 examines constraints on possible maximum dispersal distances for the relatively large 66 accretionary lapilli from 'Eua. Discussion is then enabled on whether the anomalous 67 position of 'Eua and the unusual dispersal distance of the 'Eua accretionary lapilli from source can be explained by block rotation within the Tonga microplate and/or a 68 69 dispersal distance enabled by a pyroclastic density current which traversed the ocean 70 surface before depositing the accretionary lapilli on 'Eua. 71 **Regional setting** 72 Located on the northern part of the Hikurangi-Kermadec-Tonga trend, the Tonga and 73 Lau Ridges are dominantly open marine, as delineated by the 2000 meter contour (Fig. 74 1A). A number of islands occur, some large, but most are barely emergent and 75 exposures are limited. On the Tonga Ridge, the island of 'Eua is an exception, where an 76 uplifted Eocene basement high and overlying sediments are now exposed subaerially. 77 These sediments include deep marine Middle Miocene volcaniclastics. More is known

- of the Tonga Ridge (Fig. 1B) than the remnant Lau Ridge. Oil industry activity,
- 79 including 5 exploration wells on Tongatapu, proved that a deep basin of sediment
- 80 overlays a presumed volcanic arc basement on the north-central part of the Tonga

81 Platform (Cunningham & Anscombe 1985). Scientific cruises (Scholl & Vallier 1985, 82 Stevenson et al. 1994) confirmed this frontal arc basin extended south and established 83 that the present Tonga Ridge is broken into a number of fault-delineated blocks (Fig. 84 1B). On the southern platform, depocentres are identifiable on the west of the basin on isopach A–B (which includes the Miocene), with the sediments thickening generally 85 86 towards the west. Herzer & Exon (1985) suspected that their alignment along the west 87 side of the basin indicated these sediment "thicks" were fed from volcanic centres 88 "nearby to the west, outside the mapped area". The Lau Ridge bathymetry is very 89 similar to the Tonga Ridge, broadly outlined by the 2000 meter contour (Fig. 1A), but 90 many more islands with a dominantly volcanic aspect dominate the geology (Woodhall 91 1985). Basement rocks are not exposed in the islands, the oldest rocks exposed being 92 Middle Miocene, but volcanism extended from 14.0 to <2.5 Ma, so older geology would 93 have been obscured on volcanic islands. Thus the many Lau Islands which have a long-94 lived volcanic history provide credible candidates for the volcanic centres "nearby to the 95 west, outside the mapped area" of Herzer & Exon (1985). The island arc andesite 96 character of the Lau Volcanic group (14.0–6.0 Ma) and the age range which includes the Middle Miocene, the age of the mafic volcaniclastics on 'Eua, supports the case. In 97 98 order to provide a working model for the sourcing of the accretionary lapilli found on 99 the Tonga Ridge, it is now necessary to constrain possible source locations prior to the 100 partition of the ancestral Lau-Tonga Ridge and then consider how the active tectonics in 101 the region may have re-positioned source or settlement site.

102

103 The accretionary lapilli and the location of possible volcanic sources

104

105 The reported occurrences of accretionary lapilli on the Tonga Ridge are from Miocene 106 volcaniclastics on 'Eua and on two islands in the Nomuka group (Fig. 1B). The 'Eua 107 occurrences (Fig. 2A-C) range up to 20 mm in maximum dimension and typically occur 108 unsorted in grain to grain contact as thin beds up to 20 cm in thickness. The matrix is 109 coarse-grained (>500 µm) or absent. The 'Eua occurrences exhibit characteristics 110 suggesting they settled to pelagic depths (Ballance et al. 2004; Cunningham & Beard 111 2014) while some of the Nomuka occurrences may have been reworked from the 112 original settlement site (Ballance et al. 2004). The 'Eua host volcaniclastics are typically 113 granulestone/sandstone in grain size, with occasional larger clast sizes, none in excess 114 of 30 mm, and a pelagic planktonic foraminiferal fauna. The fauna are dated at Middle

115 Miocene, c. 14 Ma, with sparse re-worked slightly earlier fauna (Quinterno 1985; 116 Chaproniere 1994), indicating depths of deposition are not less than 1600 meters. A 117 range of sediment gravity flow types (Ballance et al. 2004) are reflected in the host 118 formation, with rare westwards-dipping cross-beds (Fig. 2D). Tappin & Ballance (1994) 119 reported a WNW verging flame structure. In contrast, the 'Eua beds of accretionary 120 lapilli exhibit a narrow size distribution in that they are large, typically 10-15 mm in 121 diameter, and the matrix is fines-depleted or absent. These features are applied to 122 terminal velocity calculations by Cunningham & Beard (2014) to argue that these beds 123 were the result of settling to pelagic depths and were not delivered by sediment gravity 124 flows or submarine pyroclastic flows. The upper size constraint of volcanogenic clasts 125 in the 'Eua volcaniclastics contrasts with the Nomuka host rocks; on Mango in the 126 Nomuka group of islands, Middle (?) Miocene volcaniclastics contain indications of the 127 proximity of volcanic edifices, such as volcanic boulder-bearing debris flow deposits 128 (Ballance et al. 2004). Further south on the T-E block, the detection of volcanic 129 sources is assisted by the availability of close-spaced oil industry data (Gatliff et al. 130 1994). With the high rates of sediment supply implicit in island arc environments, the 131 problem of distinguishing reef structures from buried volcanic edifices is important and 132 has been reviewed (Alexander 1985; Herzer & Exon 1985; Pflueger & Havard 1994; 133 Tappin et al. 1994). Only one volcanic edifice was detected along the Tonga Ridge, in 134 the B-C Late Oligocene to Early Miocene interval and on Block D. No ambiguous 135 structures at all were identified on the T–E block within the interval which includes the 136 Middle Miocene (Gatliff et al. 1994) and "No volcanic structures sourcing unit A-B 137 have yet been identified on the Tonga Ridge" (Tappin et al. 1994). Thus the 138 seismostratigraphy reveals no obvious local source on the Tonga Ridge for the 139 accretionary lapilli, either for the Nomuka group or the 'Eua occurrences. The regional 140 setting suggests that sources would be to the west and on the remnant Lau Ridge, where 141 long-lived volcanic islands exist. 142 Tectonics 143 The study area of the SW Pacific is a tectonic province with a relatively well-

144 documented geological history, particularly with respect to back-arc extension/basin

145 formation processes (Packham 1978; Tappin 1993; Sager et al. 1994; Tappin et al.

146 1994; Parson and Wright 1996; Taylor et al. 1996). In the south of the region, on the

147 Tonga-Kermadec-Hikurangi trend, subducting oceanic plate encounters continental

148 crust on South Island, New Zealand (Lamb 2011). Further north, the environment is

149	oceanic. A more sophisticated model for Lau Basin formation (Figs. 3A, 3C) replaced a
150	simple mid-oceanic type spreading centre model with a two-phase model (Parson et al.
151	1994; Parson & Wright 1996; Taylor et al. 1996). The Lau basin floor geology is
152	asymmetric; patterns of strong positive magnetic intensity are exhibited east of a line
153	running NNW across the Lau Basin at roughly 317 ⁰ , reflecting the new oceanic crust
154	being created at the Central and Eastern Lau spreading centres. However, west of that
155	line and east of the 2000 meter isobath on the Lau Ridge, an irregular terrain of north-
156	trending horst/grabens occurs where specific magnetization events were not well
157	delineated, attributed to diffuse spreading to form "extended arc crust". In broad terms,
158	the ancestral Lau/Tonga Ridge arc crust split and experienced extension to the east of
159	the active arc volcanoes on the remnant Lau Ridge by:
160	• graben/half-graben faulting accompanied by intrusive activity which mark the
161	location of repeated "failed" spreading centres (creating the "extended arc
162	crust"), before:
163	• formation of new crust occurred continuously at more typical mid-ocean ridge
164	type spreading centres (the Central Lau Spreading Centre/East Lau Spreading
165	Centre, which were initiated in the north of the Lau Basin and propagated
166	southwards.
167	During these processes, Lau Ridge and intra-basin volcanism occurred and eventually
168	ceased, before restoration of back-arc volcanism on the currently active Tofua Arc. The
169	net effect is that of an apparent rotation of the Tonga Ridge, the current active arc, some
170	20^{0} clockwise, away from the remnant Lau Ridge segment of the ancestral arc. With no
171	compelling evidence to support a source on the Tonga Ridge, 'Eua appears to be at a
172	considerable distance from a source which must have existed further to the west on the
173	ancestral Lau-Tonga ridge. Using present sea-bed depth contours at 1000 and 2000
174	meters to estimate the width of the ancestral arc elements, an outline reconstruction
175	(Fig. 3B) is achieved by rotating the Tonga Ridge in the horizontal plane back to the
176	west by the c. 20^0 estimated by Sager et al. (1994). On Block T–E, the distance
177	between the western edge of the Tonga Ridge and 'Eua, where it thins against the proto-
178	'Eua submergent high is c. 61 km (Fig. 3A), before correction for extension due to
179	post-Middle Miocene faulting. Post-Middle Miocene sub-vertical fault patterns on the
180	Tonga Ridge segment do not suggest this will be material, when compared with pre-
181	Middle Miocene graben/half graben faulting which may be listric at depth. However,
182	the threat of underestimation of extension due to unidentified small faults (Twiss &

183 Moores 2007), supports the application of a non-trivial provision, say 10%, which 184 would bring the 61 km estimate down to c. 55 km pre-fault extension. The Tonga 185 frontal arc basin segment terminates abruptly on the west with down-to-Tofua faulting 186 (Herzer & Exon 1985). The footprint of any volcanic source on the remnant Lau Ridge segment requires estimation. The profile of the currently active Tofua arc volcanoes 187 188 provide possible analogues of Lau Ridge volcanic sources. At base, these range up to c. 189 30 km in width, excluding composite structures which are wider (Chase 1985, Fig. 1). 190 On this basis, 55 plus 15 km = 70 km is indicative of the minimum distance from a 191 source on the eastern edge of the remnant Lau Ridge segment. If the source volcano 192 was originally in what is now the extended arc crust of the western Lau Basin, this 193 figure is increased, but no data is available from the ODP sites in the Lau Basin to 194 constrain this possibility, as none of these reached the Middle Miocene (Fig. 3A). A 195 much higher figure is required if a structure in the position of Ono-i-Lau is considered. 196 In the Lau Basin at the longitude under study, c.105 km of extended arc crust exists and 197 the distance from Ono-i-Lau to the eastern edge of the Lau Ridge is 75 km. 198 The more local effects of individual block rotation are now considered. During re-199 processing of oil industry data on the T-E Block, it was noted that a number of 200 physiographic features of the block would be explained if it had rotated 30° 201 anticlockwise (Gatliff et al. 1994). One feature is the atypical triangular shape of the 202 Tongatapu-'Eua block as a whole (Fig. 1B), as reflected at the 1000 m isobath. 'Eua is 203 closer to the eastern margin of the frontal arc basin than any other basement high, and as 204 an emergent island with an elevation of 912 meters, is much higher. To further explore 205 whether there is seismostratigraphic/geophysical support for the rotation proposition, a 206 number of sources of data were superimposed on Blocks A, B and T–E (Fig. 4). There 207 are clearly a number of departures from the Tonga Ridge NNE-SSW ridge-parallel 208 structural trend, localised to the southern margin of Block T–E. On Block T–E, a trend 209 in total magnetic intensity highs, broadly coincident with basement highs (Gatliff et al. 210 1994) departs from trend and is deflected east of 'Eua. Further south, on Blocks A and 211 B, a trend of magnetic intensity anomalies (Stevenson & Childs 1985), coincident with 212 ridge-parallel gravity/basement highs, is abruptly curtailed as the southern margin of the 213 T–E block is encountered. The 'Eua Channel Fault, a major structural feature on the 214 southern Tonga Ridge, disappears north of the Block T–E southern margin, where the 215 Tongatapu/'Eua Channel depocentre was identified (Herzer and Exon 1985, Gatliff et 216 al. 1994).

217 The three total magnetic intensity highs immediately east of 'Eua on the Tongatapu-218 'Eua block appear to be displaced by a strike-slip fault c. 40 km to the east of the trend 219 of the magnetic intensity anomalies on Blocks A and B. This would have the effect of 220 anticlockwise rotation sensu Gatliff et al. (1994). Further south on the Tonga-221 Kermadec-Hikurangi trend, Lamb (2011) reviews the tectonics and kinetics of faulting 222 in the leading Australian plate continental crust, which accommodates the effects of 223 non-orthogonal subduction. The distinctive faulting styles described include those 224 which could explain features on the T–E block (Cunningham & Anscombe 1985, Fig. 2) 225 by inverting the rotation effect of strike slip faulting on arcuate faults (Lamb 2011, Fig. 226 18 a), combined with dextral strike slip faulting on a curved strike slip fault "hinge" 227 (Lamb 2011, Fig. 18 f). Block rotation may be contemporaneous with or post-date 228 block formation. Block formation by ridge-traverse faults may have begun "long before 229 the block geometry became so prominent after Late Miocene time" (Scholl & Herzer 230 1994). Since the western margin of the T–E block has a down-to-Tofua NNE-SSW fault 231 pattern consistent with the other blocks, any rotation, as noted by Gatliff et al. (1994), 232 must have occurred before the ancestral Lau Tonga arc splitting commenced in the late 233 Late Miocene (5.3 Ma). An event at c. 10 Ma was detected by sediment backstripping 234 analysis on the Tonga Ridge at ODP 841 (Clift et al. 1994) and hence in the early Late 235 Miocene. We now propose a model by which block rotation may have contributed 236 towards the dispersal distance anomaly. The model crucially suggests that, pre-ancestral 237 Lau-Tonga Ridge splitting, a Middle Miocene volcano on what would become 238 subjacent Block A sourced the 'Eua accretionary lapilli found on what would become 239 Block T–E. Anticlockwise block rotation after deposition, but before Lau Basin opening 240 commenced in the late Late Miocene, affects Block T-E, but not A or N. After rotation 241 of this block, the Nomuka Group islands maintain their distance from source volcano, 242 but 'Eua has been displaced tectonically 40 km eastwards from the tephra source. The 243 distance between source and resting place for the accretionary lapilli has been increased 244 by 40 km even before ridge splitting in the latest Late Miocene carries 'Eua further east. 245 246 Constraining dispersal distances for accretionary lapilli

The evidence for final deposition of the 'Eua accretionary lapilli by settling through a
marine column of not less than 1600 meters, as presented in Cunningham & Beard
(2014), has been summarised earlier. The processes by which they could have reached
the point of settlement will now be reviewed. The present Tofua active volcanic arc

URL: http://mc.manuscriptcentral.com/nzjg

251 (Fig. 1B) is composed of emergent, barely emergent and submarine volcanic edifices at 252 modest depths and may be a good proxy for the Middle Miocene ancestral active 253 volcanic arc, given the dominantly volcanic insular geology as described earlier for the 254 remnant Lau Ridge. The ash clouds within which ash aggregates form (Brown et al. 255 2012) are typically associated with subaerial explosive volcanic eruptions, although 256 shallow marine eruptions can also be contenders if they breach water depths (McBirney 257 1963; Wright & Gamble 1999; White et al. 2003) with the creation of an atmospheric 258 ash cloud. The 'Eua accretionary lapilli may therefore have formed during an 259 explosive volcanic eruption initiated subaerially from an emergent volcanic edifice or at 260 shallow depths. In addition, proximity of the ocean surface permits the possibility of 261 formation of accretionary lapilli in secondary ash-rich steam clouds as pyroclastic 262 density currents enter the sea (Dufek et al. 2007). Dispersal may take place subaerially 263 within the eruption plume/umbrella cloud or as pyroclastic density currents travel across 264 the sea surface (Allen & Cas 2001; Carey et al. 1996; Maeno & Taniguchi 2007). The 265 substantial distances by which less-ordered ash aggregates can be dispersed from source 266 subaerially are well established; ash aggregates dispersed in the eruption plume at Mt St 267 Helens were detected at 200 km from source (Carey & Sigurdsson 1982). In contrast, 268 the dispersal of relatively large and dense accretionary lapilli within the eruption plume 269 must be restricted by their significant mass to more modest dispersal distances from the 270 source volcano, as constrained in tephra dispersal models (Walker et al. 1971; Walker 271 1981; Carey & Sparks 1986; Pfeiffer et al. 2005; Folch 2012). Accretionary lapilli are 272 technically lapilli, falling within the 2–64 mm range, (Schmid 1981; Fisher & 273 Schmincke 1984). Lapilli-sized tephra can be dense juvenile/country rock clasts, mafic 274 scoria or vesicular silicic pumice clasts. Reported specific gravities of accretionary lapilli, which are dominantly silicic, are in the range of 1200–1500 kg m⁻³ (Sparks et al. 275 276 1997). The 'Eua examples are mafic in composition and should therefore be at the upper 277 end of this spectrum or slightly exceed it. Isopleths for 16 mm-sized lapilli for known 278 eruptions show maximum dispersal distance in the range of 20–30 km (Carey & Sparks 1986), for tephra at density of 2500 kg m⁻³ and "larger centrimetric and millimetric 279 280 fragments typically settle in minutes to few hours at distances of the order of tens of km 281 from the volcano" (Folch 2012). Grain size directly influences terminal velocity of 282 descent of a particle. This varies significantly with height in the atmosphere and 283 departure from sphericity (Dellino et al. 2005). These parameters are accommodated in 284 most tephra transport and dispersal models. Table 1 provides indicative terminal

velocities over a range of heights (Pfeiffer et al. 2005) for particles of $\Phi = -4$ (=16 285 mm), density of 1500 kg m⁻³, and departure from sphericity. These particles are close to 286 the typical size of the 'Eua accretionary lapilli. The density of 1500 kg m⁻³ is 287 288 appropriate, as discussed earlier (advanced palagonitisation obscures the original 289 density of the constituent glass particles). These figures would underestimate terminal 290 velocity for the notably spheroidal 'Eua accretionary lapilli. The range of contemporary prevailing wind speeds in the Lesser Antilles range from 5.55 m sec⁻¹ in the stratosphere 291 292 and up to 25 m sec⁻¹ in the upper troposphere (Sigurdsson et al. 1980). Based on input of the 16 mm clast isopleth for Cotopaxi layer 3, Burden et al. (2011) estimate plume 293 height between 26 km and 32.5 km with a wind speed of 35 m sec⁻¹. If these wind 294 speeds were applicable to the SW Pacific in the Middle Miocene, the effects of wind 295 296 advection should be modest for tephra the size of the 'Eua accretionary lapilli. 297 Complexity is introduced by the formation of aggregates during plume development, 298 whether in the form of accretionary lapilli or less-ordered ash aggregates, as this is 299 complex to model (Costa et al. 2010); accretionary lapilli often occur in 300 phreatomagmatic eruptions, where phase changes involving latent heat release might 301 increment the upwards convection vector and counter the dominant role, in most 302 models, of the downward terminal ("settling") velocity of descent. Modelling of the 303 phreatomagmatic 25.4 ka Oruanui event (Van Eaton et al. 2012), an ultra-Plinian event, 304 instead of a simple plume/high level umbrella cloud with lower level co-ignimbrite ash 305 clouds, produced "hybrid" ash clouds generated both from the plume and from buoyant 306 co-ignimbrite ash clouds which rise to plume heights. Concentrically layered 307 accretionary lapilli similar to those in 'Eua were dispersed at distances of 120 km from 308 source (Van Eaton & Wilson 2013) in this event. The 25.4 ka Oruanui event is 309 statistically unusual; only 156 (2.3 %) such events are reported from a total of 6736 in 310 the Smithsonian Institute database (Siebert and Simkin 2002–2014). Occurrences from 311 more modest events are reported from dispersal within the Soufriere St Vincent plume 312 at 36 km from source (Brazier et al. 1982) and dispersed within pyroclastic density 313 currents at Mt St Helens at c. 25 km (Fisher et al. 1987), and these are closer to ash 314 pellets as defined (Brown et al 2010; Van Eaton & Wilson 2013), rather than 315 accretionary lapilli. Surface dispersal over the ocean surface is now considered. 316 Pyroclastic density currents can partition into a coarse, dense-clast rich submarine flow 317 and a dilute pyroclastic surface flow running at the surface on entering the sea, as seen 318 with experiments and simulations referred to observed/inferred events and their deposits 319 (Freundt 2003; Trofimovs et al. 2006; Dufek & Bergantz 2007; Trofimovs et al. 2008; 320 Dufek et al. 2009). Observations of the deposits of the Kos Plateau Tuff (Allen & Cas 321 2001) supported this model, with the loss of the coarsest vent and conduit-derived lithic 322 clasts over the sea due to sinking, while over land, saltation was considered to have 323 preserved the coarser element in the resulting ignimbrites. Saltation may also occur over 324 water and be accentuated by the occurrence of pumice rafts (Fiske et al. 2001) while, 325 conversely, transport capacity will be influenced by areal dilution, as momentum 326 transfer between large and small particles is diminished (Dufek & Bergantz 2007; 327 Dufek et al. 2009). Such surface flows have travelled for considerable distances (Table 328 2), carrying bomb and lapilli-sized clasts, in addition to ash and hot gas. In conclusion, 329 for plume/umbrella cloud dispersal within the atmosphere, the "tens of km" metric is 330 supported. For pyroclastic density current-enabled dispersal over land, only a 331 statistically unlikely ultra-Plinian event is capable of providing dispersal via the 332 atmosphere for the minimum 70 km dispersal scenario, (considering the source was 333 close to the eastern edge of the remnant Lau Ridge segment). In contrast, for 334 pyroclastic density current-enabled dispersal across the ocean surface, there is some 335 evidence that relatively modest magnitude events could provide dispersal distances 336 which contribute significantly to the scenario.

337 Discussion and conclusions

338 The accretionary lapilli on 'Eua, Tonga, occur in Middle Miocene pelagic volcaniclastic 339 sediments with no evidence for a proximal volcanic source. A contemporary distance 340 which is unlikely to be less than 70 km, and may be much more, from a source on the 341 Lau segment of the ancestral Lau-Tonga Ridge, is estimated from seismostratigraphic 342 and other data. This is much farther than would be expected for dispersal of these 343 spheroids of significant mass, unless an exceptional ultra-Plinian source is invoked. 344 Tephra fall associated with an ultra-Plinian event on the scale of the Oruanui at 25.4 ka 345 (Van Eaton & Wilson 2013) could, *prima facie*, resolve the dispersal distance problem, 346 since the dispersal distances of accretionary lapilli in the atmosphere by the eruption 347 plume and pyroclastic density currents in that event were substantial. However, there is 348 no field evidence in the area under study for an ultra-Plinian event in the Middle Miocene. At 530 km³ DRE, the Oruanui event is exceptional and unit 8, which contains 349 350 the highly dispersed occurrences, exhibits characteristics which suggest that the eruption produced an extremely high mass eruption rate ($\geq 10^9$ kg s⁻¹), with numerical 351 352 simulations (Van Eaton et al. 2012) implying the potential for transportation of tephra to 353 stratospheric heights. Explosive volcanic events of a much more modest magnitude, but 354 driving pyroclastic density currents over the ocean surface, have dispersed tephra to considerable distances (Table 2), with larger tephra being carried as far as 65 km. The 355 356 restriction of upper size carried, depending on mass flux during the event, has 357 significance for the Tongan insular Miocene, where the absence of clasts exceeding 30 358 mm has been attributed to some trapping mechanism elsewhere (Ballance et al. 2004) 359 for clasts of greater size. Delivery by sediment gravity flows is probable for most of the 360 volcaniclastics on the 'Eua high (Tappin & Ballance 1994; Ballance et al. 2004). 361 However, for any component of the 'Eua volcaniclastics delivered by ocean surface 362 pyroclastic density currents, a alternative process by which upper grain size is restricted is suggested. Furthermore, the rare westwards-dipping cross-beds in the 'Eua 363 364 volcaniclastics (Fig. 2D) may be attributable to sediment overloading on the 'Eua high 365 by periodic ocean surface pyroclastic density currents and consequential westwards backflow. 366 367 While delivery by pyroclastic density current over the ocean surface may explain all or 368 part of the dispersal distance issue, it does not explain the anomalous position of the 369 'Eua high; 'Eua is positioned much further from the western edge of the Tonga Ridge 370 than any other island. The discontinuities in trends at the southern Block T–E margin, 371 interpreted as block rotation of a particular type, provides a tectonic explanation for this 372 anomaly. The relative thickness of sediment in the Tongatapu/'Eua Channel depocentre 373 (Fig. 4) fits well within this model: with block rotation occurring in the Late Miocene, 374 but pre-splitting, the Tongatapu-'Eua Channel basin would have been 40 km closer to 375 the source volcanoes to the west for part of the interval 14 - 5.3 Ma, thus only 30 km 376 from source on the minimum 70 km scenario. 377 For the rotation event to have contributed 40 km to the 'Eua accretionary lapilli 378 dispersal distance, a number of conditions must apply. Firstly it must pre-date splitting 379 of the ancestral Lau/Tonga Ridge which commenced in latest Late Miocene (5.3 Ma), 380 secondly post-date the deposition of the accretionary lapilli on proto-'Eua at 14 Ma, and 381 thirdly, the accretionary lapilli must have been sourced from a volcano on the ancestral 382 Lau-Tonga Ridge segment which became Block A. 383 We favour a model where the accretionary lapilli on 'Eua finally settled through a 384 marine column of not less than 1600 meters. Their delivery to the final resting site was 385 most likely achieved by transport within a pyroclastic density current travelling over the 386 ocean surface which, even in the case of those initiated by small/moderate explosive

387 volcanic events, have delivered relatively large tephra considerable distances from 388 source. A dual model, comprising block rotation and dispersal by ocean surface 389 pyroclastic density currents, can explain the anomalies described and accommodate a 390 large range of possible dispersal distances from a source of modest magnitude. The 391 dating of block formation and of subsequent movement is however problematic; ridge-392 normal faulting is only strongly expressed in displacement of the A-B isopach, 393 implying that it postdated late Late Miocene. Only detailed palaeomagnetic studies of 394 the host Middle Miocene volcaniclastics on 'Eua could increase precision in this regard; 395 the ubiquity of magnetite in thin hemipelagites which occur in these rocks would make 396 such studies worthwhile. 397 398 Acknowledgements 399 400 JKC acknowledges the many in Tonga and on 'Eua who assisted during 2 years spent there and during more recent visits. Funding from the UK Overseas Development 401 Agency and Birkbeck College supported the fieldwork. Shell International kindly 402 403 provided copies of data sheets and their final report. Discussion, help and 404 encouragement from Peter Ballance was crucial in framing the objectives of this paper. 405 Subsequent assistance from Rick Hoblitt, Sharon Allen, Ben Ellis and Alexa Van Eaton greatly improved the execution. The detailed review points of Martin Jutzeler and an 406 407 anonymous reviewer were crucial in achieving the final draft. The editors are thanked 408 for their support. 409 410 411 412 413 414 415 References 416 417 Alexander, C 1985. 2-D gravity and magnetic modelling of subsurface domical structure 11/14: Volcanic episodes in 'Eua, Tonga. In: Scholl DW, Vallier TL eds. 418 419 Geology and Offshore Resources of Pacific Island Arcs-Tonga Region. Earth Science 420 Series 2. Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources. 421 Pp. 197-202. 422 423 Allen SR, Cas RAF 2001. Transport of pyroclastic flows across the sea during the explosive rhyolitic eruption of the Kos Plateau Tuff, Greece. Bulletin of Volcanology 424 62(6-7): 441-456. 425 426 427 Austin J, Taylor FW, Cagle CD 1989. Seismic stratigraphy of the central Tonga Ridge. 428 Marine and Petroleum Geology 6: 71-92. 429 430 Ballance PF, Tappin DR, Wilkinson IP 2004. Volcaniclastic gravity flow sedimentation 431 on a frontal arc platform: the Miocene of Tonga. New Zealand Journal of Geology and 432 Geophysics 47: 567–587.

433	
434	Brazier S, Davis AN, Sigurdsson H, Sparks RSJ 1982. Fall-out and deposition of
435	volcanic ash during the 1979 explosive eruption of the Soufriere of St. Vincent. Journal
436	of Volcanology and Geothermal Research 14: 335–359.
437	
438	Brown RJ, Branney MJ, Maher C, Harris PD 2010, Origin of accretionary lapilli within
439	ground-hugging density currents; evidence from pyroclastic couplets on Tenerife.
440	Bulletin of the Geological Society of America 122: 305–320
441	Durioun of the Secregical Secrety of Finderica 122, 505-520.
442	Brown RI Bonadonna C. Durant AI 2012 A review of volcanic ash aggregation
443	Physics and Chemistry of the Earth 45–46: 65–78
444	Thysics and chemistry of the Earth 18 10. 65 76.
445	Burden RF, Phillins IC, Hincks TK 2011, Estimating volcanic plume heights from
775 116	denositional clast size Journal of Geonhysical Research 116: B11206
117	doi:10.1020/2011/IB008548
/ //8	doi.10.1029/20113D000348.
440	Caroy SN Sigurdsson H 1082 Influence of partials aggregation on deposition of
449	digtal tentre from the May 18, 1080, emertion of Maynet St. Halene valeene, Jaymed of
450	distal tephra from the May 18, 1980, eruption of Mount St. Helens voicano. Journal of
451	Geophysical Research 87: 7061–7072.
452	
453	Carey SN, Sparks RSJ 1986. Quantitative models of the fallout and dispersal of tephra
454	from volcanic eruption columns. Bulletin of Volcanology 48: 109–125.
455	
456	Carey SN, Sigurdsson H, Mandeville C, Bronto S 1996. Pyroclastic flows and surges
457	over water: an example from the 1883 Krakatau eruption. Bulletin of Volcanology 57:
458	493–511.
459	
460	Chaproniere GCH 1994. Middle and Late Eocene, Neogene, and Quaternary
461	foraminiferal faunas from 'Eua and Vava'u Islands, Tonga group, In: Stevenson AJ,
462	Herzer RH, Ballance PF eds. Geology and Submarine Resources of the Tonga-Lau-Fiji
463	Region. SOPAC Technical Bulletin 8. Suva, Fiji, South Pacific Applied Geoscience
464	Commission. Pp. 21–44.
465	
466	Chase TE 1985. Submarine topography of the Tonga-Fiji Region and the southern
467	Tonga platform area. In: Scholl DW, Vallier TL eds. Geology and Offshore Resources
468	of Pacific Island Arcs-Tonga Region. Earth Science Series 2. Houston, Texas, Circum-
469	Pacific Council for Energy and Mineral Resources. Pp. 21.
470	
471	Clift PD, Bednarz UB, Boe R, et al. 1994. Sedimentation on the Tonga forearc related
472	to arc rifting, subduction erosion, and ridge collision: a synthesis of results from sites
473	840 and 841. In: Hawkins JW, Parson LM, Allan JF eds. Proceedings of the Ocean
474	Drilling Program, Scientific Results, Vol. 135. College Station, Texas. Pp. 843–873.
475	
476	Clift PD and ODP Leg 135 Scientific Party 1995. Volcanism and sedimentation in a
477	rifting island arc terrain: an example from Tonga, SW Pacific, In: Smellie JL ed.
478	Volcanism associated with extension at consuming plate margins. Geological Society of
479	London, Special Publication 88, Pp. 29–52.
480	,,
481	Clift PD. McCleod CJ. Tappin DR. Wright DJ. Bloomer SH 1998 Tectonic controls on
482	sedimentation and diagenesis in the Tonga Trench and forearc southwest Pacific
483	Geological Society of America Bulletin 110. 483–496
105	Sectorization of the first of t

484 485 Cole JW, Gill JB, Woodhall D 1985. Petrological history of the Lau Ridge, Fiji. In: 486 Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Arcs-487 Tonga Region. Earth Science Series 2. Houston, Texas, Circum-Pacific Council for 488 Energy and Mineral Resources. Pp. 379–391. 489 490 Costa A, Folch A, Macedonio G, Durant A. 2010. Modelling transport and aggregation 491 of volcanic ash particles. EGU General Assembly 2-7 May 2010, Vienna, Austria. 492 8965. 493 494 Cunningham JK, Anscombe KJ 1985. Geology of 'Eua and other islands, Kingdom of 495 Tonga. In: Scholl DW, Vallier TL eds, Geology and Offshore Resources of Pacific 496 Island Arcs-Tonga Region. Earth Science Series 2. Houston, Texas, Circum-Pacific 497 Council for Energy and Mineral Resources. Pp. 221–257. 498 499 Cunningham JK, Beard AD 2014. An unusual occurrence of mafic accretionary lapilli 500 in deep-marine volcaniclastics on 'Eua, Tonga: palaeoenvironment and process. Journal 501 of Volcanology and Geothermal Research 274: 139–151. 502 503 Dellino P, Mele D, Bonasia R, Braia G, La Volpe L, Sulpizio R 2005. The analysis of the 504 influence of pumice shape on its terminal velocity. Geophysical Research Letters, 32: 505 506 L21306. doi:10.1029/2005GL023954. Dufek J, Bergantz GW 2007. Dynamics and deposits generated by the Kos Plateau Tuff 507 508 eruption: Controls of basal particle loss on pyroclastic flow transport. Geochemistry 509 Geophysics Geosystems 8, Q12. doi:10.1029/2007GC001741. 510 511 Dufek J, Manga M, Staedter M 2007. Littoral blasts: Pumice-water heat transfer and 512 the conditions for steam explosions when pyroclastic flows enter the ocean. Journal of 513 Geophysical Research 112, B11201. doi:10.1029/2006JB004910. 514 515 Dufek J, Wexler J, Manga M 2009. Transport capacity of pyroclastic density currents: 516 Experiments and models of substrate-flow interaction. Journal of Geophysical Research 114: B11203. doi:10.1029/2008JB006216. 517 518 519 Fisher RV, Glicken H, Hoblitt RP 1987. May 18, 1980, Mount St. Helens Deposits in 520 South Coldwater Creek, Washington. Journal of Geophysical Research - Solid Earth 92 521 (B10): 10267–10283. 522 523 Fisher RV, Schmincke H-U 1984. Pyroclastic rocks. Berlin, Springer-Verlag. 472 p. 524 525 Fiske RS, Cashman, KV, Shibata, A, Watanabe K 1998. Tephra dispersal from 526 Myojinsho, Japan, during its shallow submarine eruption of 1952–1953: Bulletin of 527 Volcanology 59: 262-275. 528 529 Folch A 2012. A review of tephra transport and dispersal models: Evolution, current 530 status, and future perspectives. Journal of Volcanology and Geothermal Research 235-236: 96-115. 531 532 533 Freundt A 2003. Entrance of hot pyroclastic flows into the sea: experimental 534 observations. Bulletin of Volcanology 65: 144-164. doi: 10.1007/s00445-002-0250-1. 535

536 Gatliff RW, Pflueger JC, Havard KR, Helu SP 1994. Structure, seismic stratigraphy and 537 petroleum potential of the Tongatapu -'Eua area of the Kingdom of Tonga. In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology and Submarine Resources of the 538 539 Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8. Suva, Fiji, South Pacific Applied 540 Geoscience Commission. Pp. 107–119. 541 542 Herzer RH, Exon NF 1985. Structure and basin analysis of the southern Tonga forearc. 543 In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Arcs-544 Tonga Region. Earth Science Series 2. Houston, Texas, Circum-Pacific Council for 545 Energy and Mineral Resources. Pp. 55-74. 546 547 IAGA Division 1 Study Group 1976. International geomagnetic reference field 1965. 548 Journal of Geophysical Research 74: 4407–4408. 549 550 Lamb S 2011. Cenozoic tectonic evolution of the New Zealand plate-boundary zone: A paleomagnetic perspective. Tectonophysics 509: 135–164. 551 552 553 Maeno F, Taniguchi H 2007. Spatiotemporal evolution of a marine caldera-forming 554 eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, 555 Japan: Implication from near-vent eruptive deposits. Journal of Volcanology and 556 Geothermal Research 167: 212–238. 557 558 McBirney AR 1963. Factors governing the nature of submarine volcanism. Bulletin of 559 Volcanology 26 (Pt. 2): 455-469. 560 561 Packham, G.H 1978. Evolution of a simple island arc: The Lau-Tonga Ridge. Bulletin of the Australian Society of Exploration Geophysicists 9: 133–140. 562 563 564 Parson LM, Rothwell RG, MacLeod CJ 1994. Tectonics and sedimentation in the Lau Basin (southwest Pacific. In: Hawkins JW, Parson LM, Allan JF eds. Proceedings of the 565 566 Ocean Drilling Program, Scientific Results, Vol. 135. College Station, Texas. Pp. 9–22. 567 568 Parson LM, Wright IC 1996. The Lau-Havre-Taupo back-arc basin: A 569 southward-propagating, multi-stage evolution from rifting to spreading. 570 Tectonophysics 263: 1–22. 571 572 Pfeiffer T, Costa A, Macedonio G 2005. A model for the numerical simulation of tephra deposits. Journal of Volcanology and Geothermal Research 140: 273–294. 573 574 575 Pflueger JC, Havard KR 1994. A re-examination of the line 11/14 anomaly on the Southern Tonga Platform. In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology and 576 577 Submarine Resources of the Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8. 578 Suva, Fiji, South Pacific Applied Geoscience Commission. Pp. 107–119. 579 580 Quinterno PJ 1985. Cenozoic planktonic foraminifers and coccoliths from 'Eua, 581 Tongatapu and Nomuka Islands, southwest Pacific Ocean. In: Scholl DW, Vallier TL 582 eds. Geology and Offshore Resources of Pacific Island Arcs-Tonga Region. Earth 583 Science Series 2. Houston, Texas, Circum-Pacific Council for Energy and Mineral 584 Resources. Pp. 259-267. 585

586 Sager WW, MacLeod CJ, Abrahamsen N 1994. Palaeomagnetic constraints on Tonga 587 Arc tectonic rotation from sediments drilled at Sites 840 and 841. In: Hawkins JW, 588 Parson LM, Allan JF eds. Proceedings of the Ocean Drilling Program, Scientific 589 Results, Vol. 135. College Station, Texas. Pp.763–783. 590 591 Schmid R 1981. Descriptive nomenclature and classification of pyroclastic deposits and 592 fragments: Recommendations of the International Union of Geological Sciences 593 Subcommission on the Systematics of Igneous Rocks. The Geological Society of 594 America, Boulder, Colorado. Volume 9. Pp. 41-43. 595 596 Scholl DW, Vallier TL eds. 1985. Geology and offshore resources of the Pacific island 597 arcs-Tonga region. Earth Science Series 2. Houston, Texas, Circum-Pacific Council for 598 Energy and Mineral Resources. 488 p. 599 600 Scholl DW, Herzer RH 1994. Geology and resource potential of the southern Tonga-Lau region. In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology and Submarine 601 602 Resources of the Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8. Suva, Fiji, 603 South Pacific Applied Geoscience Commission. Pp. 329–335. 604 605 Siebert L, Simkin T 2002–2014. Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism 606 607 Program Digital Information Series, GVP-3, 608 (http://www.volcano.si.edu/world/accessed 12th December 2014). 609 Sigurdsson H, Sparks RSJ, Carey SN, Huang TC 1980. Volcanogenic sedimentation in 610 611 the Lesser Antilles Arc. The Journal of Geology 88(5): 523-540. 612 Sparks RSJ, Bursik MI, Carey SN, Gilbert JE, Glaze L, Sigurdsson, H, Woods AW 613 614 1997. Particle aggregation in plumes, In: Volcanic Plumes. England, John Wiley & 615 Sons. Pp. 431–462. 616 617 Stevenson AJ, Childs JR 1985. Single channel seismic and geopotential data collection and processing. In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of 618 619 Pacific Island Arcs-Tonga Region. Earth Science Series 2. Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources. Pp. 27–29. 620 621 622 Stevenson AJ, Herzer RH, Ballance PF 1994. Geology and submarine resources of the Tonga-Lau-Fiji region. SOPAC Technical Bulletin 8. Suva, Fiji, South Pacific Applied 623 624 Geoscience Commission. 350 p. 625 626 Tappin DR 1993. The Tonga Frontal Arc Basin. In: Ballance PF, ed. South Pacific Sedimentary Basins. Sedimentary Basins of the World 2. Elsevier. Pp. 157–176. 627 628 629 Tappin DR, Ballance PF 1994. Contributions to the sedimentary geology of 'Eua Island, 630 Kingdom of Tonga: reworking in an oceanic forearc. In: Stevenson AJ, Herzer RH, 631 Ballance PF eds. Geology and Submarine Resources of the Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8. Suva, Fiji, South Pacific Applied Geoscience 632 633 Commission. Pp.1–20. 634 635 Tappin DR, Herzer RH, Stevenson AJ 1994. Structure and history of an oceanic forearc- The Tonga Ridge - 22⁰ to 26⁰ south. In: Stevenson AJ, Herzer RH, Ballance PF 636

637 eds. Geology and Submarine Resources of the Tonga-Lau-Fiji Region. SOPAC 638 Technical Bulletin 8. Suva, Fiji, South Pacific Applied Geoscience Commission. Pp. 639 81-99. 640 641 Taylor B, Zellmer K, Martinez F, Goodliffe A 1996. Sea-floor spreading in the Lau 642 back-arc basin. Earth and Planetary Science Letters 144: 35-40. 643 644 Trofimovs J, Amy L, Boudon G et al. 2006. Submarine pyroclastic deposits formed at 645 the Soufriere Hills Volcano, Montserrat (1995–2003): what happens when pyroclastic flows enter the ocean? Geology, 34: 549–552. 646 647 648 Trofimovs J, Sparks, RSJ, Talling, PJ 2008. Anatomy of a submarine pyroclastic flow 649 and associated turbidity current: July 2003 dome collapse, Soufriere Hills volcano, 650 Montserrat, West Indies. Sedimentology 55: 617-634 651 652 Twiss RJ, Moores EM 2007. Structural Geology. New York, Freeman. 736 p. 653 654 Ui, T 1973. Exceptionally far-reaching, thin pyroclastic flow in Southern Kyushu, Japan. Bulletin of the Volcanological Society of Japan. 2 (18): 153–168. 655 656 657 Van Eaton AR, Herzog M, Wilson CNJ, McGregor J 2012. Ascent dynamics of large 658 phreatomagmatic eruption clouds: The role of microphysics. Journal of Geophysical 659 Research - Solid Earth 117(B3). doi:10.1029/2011JB008892. 660 Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash 661 662 aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. 663 664 665 Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-666 667 383 668 669 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 670 223-240. 671 672 White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and 673 overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism. Pp.1-14. 674 675 676 Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 23: 885–888. 677 678 679 Woodhall D 1985. Geology of the Lau Ridge. In: Scholl DW, Vallier TL eds. Geology 680 and Offshore Resources of Pacific Island Arcs-Tonga Region. Earth Science Series 2. 681 Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources. Pp. 351-682 378. 683 684 Wright IC, Gamble JA 1999. Southern Kermadec submarine caldera arc volcanoes (SW 685 Pacific): caldera formation by effusion and pyroclastic eruption. Marine Geology 161: 686 207-227. 687 688

689	List of Tables
690	
691	Table 1Values for U_t , vertical terminal velocity at height, for particles of diameter
692	16 mm and density of 1500 kg m ⁻³ , after Pfeiffer et al. (2005).
693 694	
695	Table 2 Dispersal of larger tephra by pyroclastic density currents travelling over the
696	ocean surface (Carey et al. 1996, Allen & Cas 2001, Maeno & Taniguchi 2007, Ui
697	1973). DRE = dense rock equivalent.
698	

ι a μ c rock eq

699 700	List of Figures
701 702	Figure 1 Regional setting. A , The position of 'Eua and Nomuka on the Tonga Ridge, and Vatoa and Ono-i-Lau on the Lau Ridge. The Tonga frontal arc basin sediments
703	(shaded) are broadly coincident with the 2000 meter isobath, after Tappin (1993). B ,
704	The Tonga Ridge platform, highlighted by the 1000 meter isobath, with the currently
705	active back-arc Tofua volcanic chain, with block margins after Tappin et al. (1994),
706 707	Scholl & Vallier (1985), Austin et al. (1989).
708	Figure 2 Accretionary lapilli from 'Eua. A, Layered accretionary lapilli with coarse ash
709	infill. B, Layered accretionary lapilli, some cored, with coarse ash infill. C, Rimmed
710	accretionary lapillus. D, Rare cross-bed in host volcaniclastics.
711	
712	
713	Figure 3 Lau Basin tectonics. A , Synthesis of data centred on the Lau Basin, after
714	Taylor et al. (1996), with c. 20° easterly rotation of the Tonga Ridge (solid black lines)
715	after Sager et al. (1994). B , Outline reconstruction of the ancestral Lau/Ionga ridge,
/16	pre-Lau Basin formation, just after splitting commenced, with bathymetric contours. C,
/1/	Schematic section of the Lau Ridge, Lau Basin and Tonga Ridge with ODP sites, at c.
710	(1006)
720	(1990).
721	Figure 4 Discontinuity of trends across the boundary between tectonic Blocks A B
722	and T-E. Trend of gravity and arc basement highs on Blocks A and B is superimposed
723	on residual magnetic anomaly data from Stevenson & Childs (1985), determined by
724	subtracting the 1975 International Geomagnetic Reference Field (IAGA, 1976) from the
725	observed total field measurements. Trend of basement highs on Block T-E is
726	superimposed on total magnetic intensity data from Gatliff et al. (1994).
727	

321x413mm (300 x 300 DPI)

104x172mm (300 x 300 DPI)

98x61mm (300 x 300 DPI)

60x61mm (300 x 300 DPI)

61x59mm (300 x 300 DPI)

59x61mm (300 x 300 DPI)

241x229mm (300 x 300 DPI)

•

217x171mm (300 x 300 DPI)

147x25mm (300 x 300 DPI)

273x250mm (300 x 300 DPI)

Height (km)	Sea level	5	15	26
$U_t (m \text{ sec}^{-1})$	16	20	50	100

Event		DRE	Larger tephra	Distance from source
		(kg m⁻³)		(km)
Krakatoa		12	pumice stones several centimeters in diameter	65
Kos Plateau T	Гuff Unit E	30	vent and conduit derived lithic clasts not >200 mm	>60
Kikai	Unit D	50	accretionary/armoured lapilli typically 5-9 mm, up to 10 mm	60

1

1			
2	Sourcing of Middle Miocene accretionary lapilli on 'Eua, Tonga; atypical dispersal		
3	distances and their implications.		
4	Sourcing of Miocene accretionary lapilli on 'Eua, Tonga; atypical dispersal		
5	distances and tectonic implications for the central Tonga Ridge.		
6 7	IK Cunningham ¹ and AD Reard		
8	SK Cummignam and KD Beard		
9	Department of Earth and Planetary Sciences, Birkbeck College, University of		
10	London. Malet Street London WC1E 7HX		
11			
12	¹ Corresponding author, jcunni1248@aol.com, present address: 1 Loudens Close, St		
13	Andrews, Fife, Scotland, KY16 9EN, (44) 1344 479348		
14			
15			
16	Abstract		
17			
18	Volcaniclastics hosting accretionary lapilli on the Tonga Ridge were sourced from the		
19	remnant Lau Ridge, prior to Lau back-arc basin opening. For the 'Eua occurrences, an		
20	atypical dispersal distance of not less than 70 km is estimated, partly arising from the		
21	anomalous easterly position of 'Eua. Dispersal within ocean-surface pyroclastic density		
22	currents is supported but strike-slip movement in a fault zone south of 'Eua, post		
23	Middle Miocene but pre ridge-splitting, can account for part of the dispersal distance by		
24	Vertical axis block rotation, a tectonic process common on the southern I onga-		
23 26	was on a subjacent block, rather than the block which hosts 'Fua. After denosition but		
20	prior to the opening of the Lau Basin the accretionary lanilli on 'Eua became displaced		
28	by block rotation c 40 km towards the Tonga trench and away from source		
29			
30			
31	Keywords		
32			
33	Accretionary lapilli; Tonga Ridge; dispersal distance; block rotation; pyroclastic density		
34	currents.		
35			
30 27	Introduction		
38			
39	Accretionary lanilli are highly ordered types of ash aggregate typically associated with		
40	explosive eruptions, where they may form in the plume itself or in pyroclastic density		
41	currents as they interact with the co-ignimbrite ash plume. Dispersal may therefore		
42	occur subaerially by expansion of the plume, spreading of any atmospheric umbrella		
43	cloud, and/or by pyroclastic density currents. The 'Eua accretionary lapilli contain		
44	examples typically 10-15 mm in diameter and are accretionary lapilli sensu stricto		
45	(Brown et al. 2010, Van Eaton & Wilson 2013), as distinguished from less ordered ash		
46	pellets and fragile ash aggregates (Brazier et al. 1982; Carey & Sigurdsson 1982;		
47	Wiesner et al. 1995; Brown et al. 2012) which rarely survive in that form but are		
48	detected in sieve analysis of grain size.	(-	
49	i	F	ormat

Formatted: Line spacing: single, Tab stops: Not at 2.25"

50 Accretionary lapilli have been reported from Miocene volcaniclastics which are exposed 51 on the Nomuka group islands (Ballance et al. 2004) and on 'Eua on the Tonga Ridge 52 (Ballance et al. 2004; Cunningham & Beard 2014). The host volcaniclastics were 53 sourced from volcanoes on the Lau Ridge, prior to the splitting of the Lau-Tonga 54 ancestral arc in the latest Late Miocene to form the Lau back-arc basin (Clift et al. 55 1994, 1995, 1998; Cole et al. 1985; Parson & Wright 1996). Reconstruction of the 56 ancestral ridge places the Nomuka group islands, which are positioned on the west of 57 the Tonga Ridge, at modest dispersal distances from potential source. However, 'Eua is 58 the most easterly of the island exposures along the Tonga Ridge by some margin and 59 this contributes to a dispersal distance from source at the limit of most (but not all) 60 documented occurrences of accretionary lapilli. The resolution of the two problems 61 presented by the anomalous position of 'Eua and the exceptional distance from potential 62 source of the accretionary lapilli found on 'Eua is the focus of this paper. 63 While the Tonga Ridge has acted as one microplate during the Lau Basin opening 64 process (Sager et al. 1994), it comprises a number of fault bounded blocks. These 65 blocks have moved differently inter se during tectonic events, revealed by 66 seismostratigraphy (Scholl & Vallier 1985; Stevenson et al. 1994). Rotation of the block 67 hosting 'Eua provides a potential tectonic explanation for the anomalous position of 'Eua 68 and the unusual dispersal distance of the 'Eua accretionary lapilli from source. However 69 the Tonga-Kermadec Hikurangi trend further south provides evidence for both block 70 rotation and unusual dispersal distances for accretionary lapilli (Lamb 2011, Van Eaton 71 & Wilson 2013). 72 The approach taken in this paper to address the two problems is firstly firstly to use data 73 from the Tonga Ridge, the Lau Basin and the Lau Ridge to constrain possible locations 74 for the Middle Miocene source volcano which provided the accretionary lapilli on 'Eua, 75 to consider how the distance between source and destination may have been impacted 76 by post Middle Miocene tectonics, including block rotation, and to estimate the 77 minimum actual contemporary distance from source. Thereafter, the paper examines 78 constraints on possible maximum dispersal distances for the relatively large 79 accretionary lapilli from 'Eua. The evidence for block rotation on the central Tonga 80 Ridge is then presented, and the actual relative displacement of 'Eua arising from 81 tectonism alone deduced. Discussion is then enabled on whether the anomalous 82 position of 'Eua and the unusual dispersal distance of the 'Eua accretionary lapilli from 83 source can be explained by block rotation within the Tonga microplate and/or a

No

140°W

130°W

20°S

30°S

40°S

50°S

120°W

GeoMapApp, http://www.geomapapp.org. 107

150°E

2000

000

160°E

0 2000 4000 Colville Ridge

Continental

crust of the

Australian

170°E

plate

Fiii Isl

hopopolocio intropolocio 0 1,000 KM

160°W

The position of the Lau Basin on the north end of the Tonga Kermadec-

150°W

170°W

Ridge

Hikurangi

180°E

Formatted: Font color: Black Formatted: Font color: Black

109	A more sophisticated model for Lau Basin formation (Fig. 2-3) replaced a simple mid-
110	oceanic type spreading centre model with a two phase model (Parson et al. 1994;
111	Parson & Wright 1996; Taylor et al. 1996). The Lau basin floor geology is asymmetric;
112	patterns of strong positive magnetic intensity are exhibited east of a line running NNE
113	across the Lau Basin at roughly 317 degrees, reflecting the new oceanic crust being
114	ereated at the Central and Eastern Lau spreading centres
115	

Finally interview of the line interview of the 2000 meter isolation of the remeat Law Ridge are reading on the specified are experimented in the next of the line is the expecting to form "extended are experimented in the interview of the line is the interview of the interview of the interview of the line is the interview of the line is the interview of the line is the interview of the li	125	1.2.2A Subdivisions of isochrons		
 CLSCFLSC	125	J. J. Jaramillo isochron		
128 FIZAWASLCART1 — Extensional Transform Zone' XWL-Law Spreading Centre Rhangatols Triple Austion 139 Dashed line — West of discline, is the "extended ancestral arc crust" 131 Dotted line — Tastern edge of 1 au Ridge/western edge of Tonga Ridge, an 132 Inverse: west of that line and east of the 2000 meter isolath on the Law Ridge, an 133 irregular terrain of north trending hors/ugrabens occur: where specific magnetization 134 events were not well delineated, attributed to diffuse spreading to form "extended arc 136 events were not well delineated, attributed to diffuse spreading to form "extended arc 137 Figure 3	127	CLSC/ELSC Central Lau Spreading Centre/East Lau Spreading Centre		
packed line	128	ETZ/NWSLC/MTJ Extensional Transform Zone/ NW Lau Spreading		
 Indended line	129	Centre/Mangatolo Triple Junction		
131 Dotted line Fastern edge of Law Ridge western edge of Tonga Ridge 133 However west of that line and east of the 2000 meter isobath on the Law Ridge, and irregular terrain of north treading hors/grabens occurs where specific magnetization events were not well delineated, attributed to diffuse spreading to form "extended are const" (Fig. 3). 134 WEST Image: Science (Fig. 3). 135 Figure 3	130	Dashed line west of this line, is the "extended ancestral arc crust-		
 However west of that line and east of the 2000 meter isobath on the Law Ridge, and irregular terrain of north trending host/grabens occurs where specific magnetization events were not well delineated, attributed to diffuse spreading to form "extended are event" (tig. 3). WST Furnet 3.— Schematic section of the Law Ridge, Taw Basin and Tanga Ridge with DDP sites, at c. 1.5 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). In bread terms, the moestral Law Tanga Ridge are event split and experienced extension to the eart of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcances on the remnant Law Ridge have activity which mark the least of the active are volcance on the remnant Law Ridge have activity which mark the least of the active are volcance on the remnant Law Ridge have activity which mark the least of the active activity which mark the least of the active activity active to fill active to	132	Dotted line Eastern edge of Lau Ridge/western edge of Tonga Ridge		
 However west of that line and east of the 2000 meter isobath on the Lau Ridge, an irregular termin of north trending hors/gradens occurs where specific magnetization erents were not well delineated, attributed to diffuse spreading to form "extended are erent" (Fig. 3). NST	133			
 irregular terrain of north-trending-host/grabens occurs where specific magnetization vents were not well delineated, attributed to diffuse spreading to form "extended are errart" (Fig. 3); Wist Figure 3. Schematic section of the Law Ridge, Eau Basin and Tonga Ridge with ODP since, at e. 1.5: 1.0 Mn, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). n bread terms, the ancestral Law Tonga Ridge are ensist ophit and experienced extension to the cast of the active are volcances on the romant Law Ridge by: egraben half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are enus"), before: eformation of new enust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Law Spreading Centre/Tast Law Spreading to four Are (Fig. 3.4). The net effect is that of an apparent rotation of the Tanga Ridge and entrus active Tonga Ridge, the current active are, some 20^o clockwise, away from the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceantil are: The Tonga Ridge and the remnant Law Ridge segment of the anceant	134	However west of that line and east of the 2000 meter isobath on the Lau Ridge, an		
 events were not well delineated, attributed to diffuse spreading to form "extended are erust" (Fig. 3). WST Figure 3. Schematic section of the Lau Ridge, Lau Rasin and Tonga Ridge with ODP sites, at c. 1.5 - 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). In bread terms, the ancestral Lau Tonga Ridge are crust optimand experimed extension to the cast of the active are volcanizes on the remnant Lau Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the terms", before: formatied: Eulets and Numbering formatied: Suites and Numbering centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually censed before restoration of back are volcanism on the currently active Tofua Are (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually are restored as 20° elockwise, away from the remnant Lau Ridge Segment of the active are volcanism of the Tonga Ridge segment of the active are volcanism of the remnant Lau Ridge Segment of the active are south of the Lau Ridge segment of the active are south of the current active are some 20° elockwise, away from the remnant Lau Ridge Segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge 	135	irregular terrain of north trending horst/grabens occurs where specific magnetization		
 renst" (Fig. 3). Figure 3. Schematic section of the Lau Ridge, Lau Basin and Tonga Ridge with ODP sites, at c. 1.5 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). In bread terms, the ancestral Lau Tonga Ridge are errort split and experienced extension to the cast of the active are volcances on the rennant Lau Ridge by: egraben half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are error"), before: formatted: During these processes, Lau Ridge and intra basin volcanism occurred and eventually censed, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20° clockwise, away from the remnant Lau Ridge segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge 	136	events were not well delineated, attributed to diffuse spreading to form "extended are		
 WST Figure 3. Schematic section of the Law Ridge. Law Dasin and Tonga Ridge with Obscience 1.1 Low Ander Clift et al. (1995), modified to reflect the work of Darson and Wright (1996). In bread terms, the ancestral LawTonga Ridge are error split and experienced extension to the cast of the active are volcanoes on the remnant Law Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are error"), before: formatted: Bulets and Numbering formatted: Bulets and Numbering propagated southwards. During these processes, Law Ridge and intra basin volcanism occurred and eventually ecased, before restoration of back are volcanism on the currently active Tofue Are (Fig. 2), which were initiated in the north of the Law Spreading centre active are, some 20⁶ clockwise, away from the remnant Law Ridge segment of the ancestral are. The Tonga Ridge and the remnant Law Ridge 	137	crust" (Fig. 3).		
 WET Figure 3. Schematic section of the Law Ridge. Law Basin and Tonga Ridge with ODP sites, at c. 15 - 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). Hebroad terms, the ancestral Law/Tonga Ridge are crust split and experienced extension to the east of the active are volcances on the remnant Law Ridge by: eraben/half graben faulting accompanied by intrusive activity which mark the erust"), before: erust"), before: erust"), before: formatted: Bullets and Numbering formatted: Bullets and Numbering postation of new crust occurred continuously at more typical mid occun tidge type spreading centres (the Central Law Spreading Centre/Tast Law Spreading Centre (Fig. 2), which were initiated in the north of the Law Basin and propagated southwards. During these processes, Law Ridge and intra basin volcanism occurred and eventually coexed, before restation of back are volcanism on the currently active Toftu Are (Fig. 2) which were initiated in the north of the Law Basin and propagated southwards. During these processes, away from the remnant Law Ridge segment of the ancessital are: some 20⁶ clockwise, away from the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are: The Tonga Ridge and the remnant Law Ridge segment of the ancessital are:				Formatted: Font color: Black
 Figure 3. Schematic section of the Law Ridge. Law Basin and Tonga Ridge with ODP sites, at c. 1.5 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Deriver and Wright (1996). In broad terms, the ancestral Law/Tonga Ridge are crust split and experienced extension to the east of the active are volcances on the remnant Law Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the deriver are volcances on the remnant Law Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the deriver are volcances on the remnant Law Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the deriver are volcances on the remnant Law Ridge by: enset(7), before: formation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Law Spreading Centre/Fast Law Spreading Centre (Fig. 2), which were initiated in the north of the Law Basin and propagetoresest, Law Ridge and intra basin volcanism occurred and eventually censed, before restoration of back are volcanism on the currently active Toftus Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁶ clockwise, away from the remnant Law Ridge segment of the ancestral are: The Tonga Ridge and the remnant Law Ridge 		WEST East		Formatted: Font color: Black
 Figure 3. Schematic section of the Law Ridge, Law Basin and Tonga Ridge with Opsiles, etc. 5-1 to Ma, after Clift et al. (1995), molified to reflect the work of Parson and Wright (1996). In broad terms, the ancestral Law/Tonga Ridge are crust split and experienced extension to the east of the active are volcanoes on the remnant Law Ridge by: graben half graben faulting accompanied by intrusive activity which mark the least of the active are volcanoes on the remnant Law Ridge by: graben half graben faulting accompanied by intrusive activity which mark the least of the active are volcanoes on the remnant Law Ridge by: graben half graben faulting accompanied by intrusive activity which mark the least of the active are volcanoes on the remnant Law Ridge by: graben half graben faulting accompanied by intrusive activity which mark the least of the active are volcanoes on the remnant Law Spreading centre (Fig. 2), which were initiated in the north of the Law Basin and propagited southwards. During these processes. Law Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20^a clockwise, away from the remnant Law Ridge segment of the ancestral are. The Tonga Ridge and the remnant Law Ridge segment of the ancestral are. 		Lau Ridge ru. Site Site Site Site Site Tonga Site	$-\frac{\eta}{\eta}$	
Image: Second		834 835 838-837 839 836 Spreading Platform 841		
138 Letadd accuat Numcus Accust 139 Figure 3. Schematic section of the Lau Ridge, Lau Basin and Tonga Ridge with ODP sites, at c. 1.5 - 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). Figure 3. Commatted: Line spacing: single, Pattern: 141 horoad terms, the ancestral Lau/Tonga Ridge are crust split and experienced extension to the cast of the active are volcanoes on the remnant Lau Ridge by: •••••• Formatted: Line spacing: single, Pattern: 144 to the cast of the active are volcanoes on the remnant Lau Ridge by: •••••• Formatted: Bullets and Numbering 145 •graben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (oreating the "extended are erust"), before: •••••• Formatted: Bullets and Numbering 146 location of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2.), which were initiated in the north of the Lau Basin and propagated southwards. •••••• Formatted: bullets and Numbering 151 purpagated southwards. ••••••• ••••••• Formatted: is that of an apparent rotation of the Tonga Ridge, the current active are, some 20 ⁶ clockwise, away from the remnant Lau Ridge segment of the ancestral are. •••••••• 152 a.0, The net effect is that of an apparent rotation of the Tonga Ridge, the curre			 	
 Figure 3. Schematic section of the Lau Ridge, Lau Basin and Tonga Ridge with ODP-sites, at c. 1.5 - 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). In broad terms, the ancestral Lau/Tonga Ridge are erust split and experienced extension to the east of the active are volcances on the remnant Lau Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are erust"), before: formation of new erust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually eased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁶ elockwise, away from the remnant Lau Ridge segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge 	138	Extended arc crust New crust Arc crust	ŕ	
 ODP-sites, at c. 1.5 - 1.0 Ma, after Clift et al. (1995), modified to reflect the work of Parson and Wright (1996). In broad terms, the ancestral Lau/Tonga Ridge are crust split and experienced extension to the east of the active are volcances on the remnant Lau Ridge by: egraben/half-graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are crust"), before: oformation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually eased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁰-elockwise, away from the remnant Lau Ridge segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge 	139	Figure 3. Schematic section of the Lau Ridge, Lau Basin and Tonga Ridge with		
 Parson and Wright (1996). In broad terms, the ancestral Lau/Tonga Ridge are crust split and experienced extension to the east of the active are volcanoes on the remnant Lau Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are crust"), before: formation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ecased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁶ clockwise, away from the remnant Lau Ridge segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge 	140	ODP sites, at c. 1.5 1.0 Ma, after Clift et al. (1995), modified to reflect the work of		
 In broad terms, the ancestral Lau/Tonga Ridge are crust split and experienced extension to the east of the active are volcances on the remnant Lau Ridge by: egraben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are errst"), before: eformation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20^a clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 	141	Parson and Wright (1996).		Formatted Line spacing, single Pattern.
 to the east of the active arc volcances on the remnant Lau Ridge by: •graben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc erust"), before: •formation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back arc volcanism on the currently active Tofua Arc (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active arc, some 20⁶ clockwise, away from the remnant Lau Ridge segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge 	142	In broad terms, the ancestral Lau/Tonga Ridge arc crust split and experienced extension		Clear
 egraben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended are crust"), before: eformation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁶-clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 	144	to the east of the active arc volcanoes on the remnant Lau Ridge by:		
 location of repeated "failed" spreading centres (creating the "extended are crust"), before: eformation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁶ clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 				Formatted: Bullets and Numbering
 enset²), before: eformation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ecased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20^o-clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 	145	•graben/half-graben faulting accompanied by intrusive activity which mark the		Tormatted. Builets and Numbering
 eformation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active arc, some 20⁰ clockwise, away from the remnant Lau Ridge segment of the ancestral arc. The Tonga Ridge and the remnant Lau Ridge 	145 146	•graben/half-graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc		Tomated. Builds and Numbering
 type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁶ clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 	145 146 147	•graben/half-graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before:		
 150 Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. 152 During these processes, Lau Ridge and intra basin volcanism occurred and eventually eeased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁰ - clockwise, away from the remnant Lau Ridge segment of the ancestral are. 157 The Tonga Ridge and the remnant Lau Ridge 	145 146 147 148	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge 		
 propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20^Φ-clockwise, away from the remnant Lau Ridge segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge 	145 146 147 148 149	 •graben/half-graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading 		Tomated. Bulets and Kumbering
 During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20⁰ clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 	145 146 147 148 149 150	 •graben/half-graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and 		
 153 ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 154 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active 155 are, some 20⁰ clockwise, away from the remnant Lau Ridge segment of the ancestral 156 are. 157 The Tonga Ridge and the remnant Lau Ridge 	145 146 147 148 149 150 151	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. 		Tomated. Bulets and Kumbering
 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20^o clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 	 145 146 147 148 149 150 151 152 	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually 		Tomated. Bullets and Kumbering
 are, some 20⁰ clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge (158) 	 145 146 147 148 149 150 151 152 153 	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Arc (Fig. 		
156 are. 157 The Tonga Ridge and the remnant Lau Ridge 158	 145 146 147 148 149 150 151 152 153 154 	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra-basin volcanism occurred and eventually ceased, before restoration of back arc volcanism on the currently active Tofua Arc (Fig. 3-4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active 		
 157 The Tonga Ridge and the remnant Lau Ridge 158 	 145 146 147 148 149 150 151 152 153 154 155 	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Arc (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active arc, some 20⁰-clockwise, away from the remnant Lau Ridge segment of the ancestral 		
	 145 146 147 148 149 150 151 152 153 154 155 156 	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Arc (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active arc, some 20⁰ clockwise, away from the remnant Lau Ridge segment of the ancestral arc.)	
	145 146 147 148 149 150 151 152 153 154 155 156 157	 •graben/half_graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Are (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active arc, some 20⁰ clockwise, away from the remnant Lau Ridge segment of the ancestral are. The Tonga Ridge and the remnant Lau Ridge 		Tomated. Bulets and Kumbering
	 145 146 147 148 149 150 151 152 153 154 155 156 157 158 	 •graben/half graben faulting accompanied by intrusive activity which mark the location of repeated "failed" spreading centres (creating the "extended arc crust"), before: •formation of new crust occurred continuously at more typical mid-ocean ridge type spreading centres (the Central Lau Spreading Centre/East Lau Spreading Centre (Fig. 2), which were initiated in the north of the Lau Basin and propagated southwards. During these processes, Lau Ridge and intra basin volcanism occurred and eventually ceased, before restoration of back are volcanism on the currently active Tofua Arc (Fig. 3 - 4). The net effect is that of an apparent rotation of the Tonga Ridge, the current active are, some 20^o clockwise, away from the remnant Lau Ridge segment of the ancestral are: The Tonga Ridge and the remnant Lau Ridge)	

URL: http://mc.manuscriptcentral.com/nzjg

220	(Fig. 1B)The 'Eua occurrences (Fig. 2A-C) range up to 20 mm in maximum
221	dimension and typically occur unsorted in grain to grain contact as thin beds up to 20
222	<u>cm in thickness. The matrix is coarse-grained (>500 μm) or absent.</u> The 'Eua
223	occurrences exhibit characteristics suggesting they settled to pelagic depths (Ballance et
224	al. 2004; Cunningham & Beard 2014) while some of the Nomuka occurrences may have
225	been reworked from the original settlement site (Ballance et al. 2004). The 'Eua host
226	volcaniclastics are typically granulestone/sandstone in grain size, with occasional larger
227	clast sizes, none in excess of 320 mm, and a pelagic planktonic foraminiferal fauna. The
228	fauna are dated at Middle Miocene, c. 14 Ma, with sparse re-worked slightly earlier
229	fauna (Quinterno 1985; Chaproniere 1994), indicating depths of deposition are not less
230	than 1600 meters. A range of sediment gravity flow types (Ballance et al. 2004) are
231	reflected in the host formation, with rare westwards-dippinghading cross-beds (Fig.
232	<u>2</u> 6D). Tappin & Ballance (1994) reported a WNW <u>vergingverging</u> flame structure. <u>In</u>
233	contrast, the 'Eua beds of accretionary lapilli exhibit a narrow size distribution in that
234	they are large, typically 10-15 mm in diameter, and the matrix is fines-depleted or
235	absent. These features are applied to terminal velocity calculations by Cunningham &
236	Beard (2014) to argue that these beds were the result of settling to pelagic depths and
237	were not delivered by sediment gravity flows or submarine pyroclastic flows. The upper
238	size constraint of volcanogenic clasts in the 'Eua volcaniclastics contrasts with the
239	Nomuka host rocks; on Mango in the Nomuka group of islands, Middle (?) Miocene
240	volcaniclastics contain indications of the proximity of volcanic edifices, such as
241	volcanic boulder-bearing debris flow deposits (Ballance et al. 2004). Dectecting the
242	Further south on the T-E block, the detection of volcanic sources is assisted by the
243	availability of close-spaced oil industry data (Gatliff et al. 1994). With the high rates of
244	sediment supply implicit in island arc environments, the problem of distinguishing reef
245	structures from buried volcanic edifices is important and has been reviewed (Alexander
246	1985; Herzer & Exon 1985; Pflueger & Havard 1994; Tappin et al. 1994). Only one
247	volcanic edifice was detected along the Tonga Ridge, in the B-C Late Oligocene to
248	Early Miocene interval and on Block D. No ambiguous structures at all were identified
249	on the T-E block within the interval which includes the Middle Miocene (Gatliff et al.
250	1994) and "No volcanic structures sourcing unit A-B have yet been identified on the
251	Tonga Ridge" (Tappin et al. 1994). In contrast, some of the host volcaniclastics in the
252	Nomuka group contain evidence of shallow water/proximal volcanic activity, including
253	boulder sized volcanic clasts. However tThus the seismostratigraphy reveals no obvious

Formatted: Font color: Black

254	local source on the Tonga Ridge for the accretionary lapilli, either for the Nomuka
255	group or the 'Eua occurrences.
256	The regional setting suggests that sources would be to the west and on the remnant Lau
257	Ridge, where long-lived volcanic islands exist. The present 1000 meter contour on the
258	Lau Ridge marks commencement of descent to the Lau Basin floor. On the Tonga
259	Ridge, the present 1000 meter contour on the western flank marks commencement of
260	the steep descent to the Tofua Basin floor and steep faults hading westwards appear on
261	most of the seismic lines which cross this contour.
262	Using these present sea bed depth contours at 1000 and 2000 meters to estimate the
263	width of the ancestral are elements, an outline reconstruction (Fig. 7) is achieved by
264	rotating the Tonga Ridge in the horizontal plane back to the west by the c. 20^9
265	estimated by Sager et al. (1994).
266	
267	

268 269 19

20

21

22

.

Tonga frontal

Tongatapu Lua

Lau back

Ono-i-Lau

100 km

275	a potential Lau Ridge source for the 'Eua Middle Miocene volcaniclastics, located in the
276	region of Ono i Lau, would be at a distance of perhaps a little over 90 km from 'Eua.
277	Even with the high margin of error implicit in the reconstruction, 'Eua appears to be at a
278	considerable distance from a Lau island source. This ignores crustal extension of the
279	ancestral arc elements since the Lau Basin opening, but the Tonga Ridge
280	seismostratigraphy suggests little post Miocene fault movement on ridge parallel faults.
281	In contrast, the Nomuka group islands, being on the western edge of the Tonga Ridge,
282	are much closer to the Lau Ridge islands. On Mango in the Nomuka group of islands,
283	Middle (?) Miocene volcaniclastics contain indications of the proximity of volcanic
284	edifices, such as volcanic boulder bearing debris flow deposits (Ballance et al. 2004).
285	The possibility of the 'Eua source being much nearer, in the western Lau Basin extended
286	arc crust (Fig. 2) or even on the Tonga Ridge itself must be considered. However,
287	evidence of a proximal source in the ancestral Lau Tonga Ridge segments of the
288	extended arc crust of the western Lau Basin is not available; the ODP sites in the
289	western Lau Basin encountered dates no earlier than Late Miocene at Site 834 and
290	hence possible volcanic edifices, even if identifiable, cannot be dated. In contrast, the
291	data along the Tonga Ridge is rich, and in particular on the T-E block where close-
292	spaced oil industry data is available (Gatliff et al. 1994). With the high rates of sediment
293	supply implicit in island arc environments, the problem of distinguishing reef structures
294	from buried volcanic edifices is important and has been reviewed (Alexander 1985;
295	Herzer & Exon 1985; Pflueger & Havard 1994; Tappin et al. 1994). Only one volcanic
296	edifice was detected along the Tonga Ridge, in the B-C Late Oligocene to Early
297	Miocene interval and on Block D. No ambiguous structures at all were identified on the
298	T E block within the interval which includes the Middle Miocene (Gatliff et al. 1994).
299	The seismostratigraphy provides sparse vestigial evidence for a Miocene source actually
300	on the Tonga Ridge segment of the ancestral are; the east-dipping elinoform reflectors
301	within the A-B-Middle to Late Miocene interval further south on Block D (see
302	Supplementary Information A) could be interpreted as a volcanic flank structure. But
303	earlier workers would disagree; "No volcanic structures sourcing unit A B have yet
304	been identified on the Tonga Ridge" (Tappin et al. 1994).
305	
306	Constraining distance from source for the 'Eua occurrences.
307	With no compelling evidence to support a source on the Tonga Ridge, 'Eua appears to
308	be at a considerable distance from a source which must have existed further to the west

309 on the ancestral Lau Tonga ridge. The geological record often preserves only vestigial remnants of any source volcanic edifice. The difficulties of locating the source of 310 311 tephra for non-historic volcanic events are increased by the high impact of tectonism in this area of the Pacific. However, by using the seismostratigraphic record, we can at 312 313 least constrain the minimum distance from source of the 'Eua tephra by summing the 314 ancestral arc segments. 315 **The Tonga segment** 316 On Block T - E, the distance between the western edge of the Tonga Ridge and 'Eua, 317 where it thins against the proto 'Eua submergent high is c. 61 km (Fig. 2), before 318 correction for extension due to post Middle Miocene faulting. Post Middle Miocene 319 sub-vertical fault patterns on the Tonga Ridge segment do not suggest this will be 320 material, when compared with pre-Middle Miocene graben/half graben faulting which 321 may be listric at depth. However the threat of underestimation of extension due to 322 unidentified small faults (Twiss & Moores 2007), supports the application of a non-323 trivial provision, say $\beta = 1.1$, which would bring the 61 km estimate down to c. 55 km 324 pre-fault extension. The Tonga frontal arc basin segment terminates abruptly on the 325 west with down-to-Tofua faulting (Supplementary Information A). The footprint of any 326 volcanic source on the remnant Lau Ridge segment requires estimation. The profile of 327 the currently active Tofua arc volcanoes provide possible analogues of Lau Ridge 328 volcanic sources. At base, these range up to c. 30 km in width, excluding composite 329 structures which are wider (Chase 1985, Fig. 1). On this basis, 55 plus 15 km = 70 km is 330 indicative of the minimum distance from a source on the eastern edge of the remnant 331 Lau Ridge segment. 332 333 The remnant Lau segment 334 If the source volcano was originally in what is now the extended are crust of the western 335 Lau Basin and not in the position of Ono i Lau on the Lau Ridge (Fig 2), this 336 component could be as low as the 15 km estimate for the source edifice already made 337 above. A much higher figure is required however if a structure in the position of Ono i-338 Lau is considered. In the Lau Basin at the longitude under study c.105 km of extended arc crust exists and the distance from Ono i Lau to the eastern edge of the Lau Ridge is 339 340 75 km (Fig. 2). However a significant number of detectable faults exist on the Lau Ridge (Woodhall 1985) and in the Lau Basin extended arc crust. Adjustment for crustal 341 342 extension is therefore again required. Faults may be listric at depth and Parson and

343	Wright (1996) consider arguments for a β = 3. Applying β = 3 to the total extended are
344	and Lau Ridge crust, 60 km remains as the minimal distance from source of the remnant
345	Lau segment.
346	Combining the two ancestral components on a Ono i Lau source scenario provides a
347	minimum 60 km for the Lau Ridge and the extended arc "slivers" in the Lau Basin, plus
348	a post Middle Miocene extension adjusted 55 km for the Tonga Ridge segment to give
349	a total of 115 km, which is in range of the estimate of 90 km made on the basis of the
350	outline reconstruction (Fig.7). A minimum of 70 km in total is provided by the scenario
351	where the edifice was close to the eastern edge of the Lau Ridge segment.
352	Tectonics
353	The study area of the SW Pacific is a tectonic province with a relatively well-
354	documented geological history, particularly with respect to back-arc extension/basin
355	formation processes (Packham 1978; Tappin 1993; Sager et al. 1994; Tappin et al.
356	1994; Parson and Wright 1996; Taylor et al. 1996). In the south of the region, on the
357	Tonga-Kermadec-Hikurangi trend, subducting oceanic plate encounters continental
358	crust on South Island, New Zealand (Lamb 2011). Further north, the environment is
359	oceanic. A more sophisticated model for Lau Basin formation (Figs. 3A, 3C) replaced a
360	simple mid-oceanic type spreading centre model with a two-phase model (Parson et al.
361	1994; Parson & Wright 1996; Taylor et al. 1996). The Lau basin floor geology is
362	asymmetric; patterns of strong positive magnetic intensity are exhibited east of a line
363	running NNW across the Lau Basin at roughly 317 ⁰ , reflecting the new oceanic crust
364	being created at the Central and Eastern Lau spreading centres. However, west of that
365	line and east of the 2000 meter isobath on the Lau Ridge, an irregular terrain of north-
366	trending horst/grabens occurs where specific magnetization events were not well
367	delineated, attributed to diffuse spreading to form "extended arc crust". In broad terms,
368	the ancestral Lau/Tonga Ridge arc crust split and experienced extension to the east of
369	the active arc volcanoes on the remnant Lau Ridge by:
370	• graben/half-graben faulting accompanied by intrusive activity which mark the 🖛 (Formatted: Bullets and Numbering
371	location of repeated "failed" spreading centres (creating the "extended arc
372	crust"), before:
373	• formation of new crust occurred continuously at more typical mid-ocean ridge
374	type spreading centres (the Central Lau Spreading Centre/East Lau Spreading
375	Centre, which were initiated in the north of the Lau Basin and propagated
376	southwards.

377	During these processes, Lau Ridge and intra-basin volcanism occurred and eventually
378	ceased, before restoration of back-arc volcanism on the currently active Tofua Arc. The
379	net effect is that of an apparent rotation of the Tonga Ridge, the current active arc, some
380	20 [°] clockwise, away from the remnant Lau Ridge segment of the ancestral arc. With no
381	compelling evidence to support a source on the Tonga Ridge, 'Eua appears to be at a
382	considerable distance from a source which must have existed further to the west on the
383	ancestral Lau-Tonga ridge. Using present sea-bed depth contours at 1000 and 2000
384	meters to estimate the width of the ancestral arc elements, an outline reconstruction
385	(Fig. 3B) is achieved by rotating the Tonga Ridge in the horizontal plane back to the
386	west by the c. 20 ⁰ estimated by Sager et al. (1994). On Block T-E, the distance
387	between the western edge of the Tonga Ridge and 'Eua, where it thins against the proto-
388	'Eua submergent high is c. 61 km (Fig. 3A), before correction for extension due to
389	post-Middle Miocene faulting. Post-Middle Miocene sub-vertical fault patterns on the
390	Tonga Ridge segment do not suggest this will be material, when compared with pre-
391	Middle Miocene graben/half graben faulting which may be listric at depth. However,
392	the threat of underestimation of extension due to unidentified small faults (Twiss &
393	Moores 2007), supports the application of a non-trivial provision, say 10%, which
394	would bring the 61 km estimate down to c. 55 km pre-fault extension. The Tonga
395	frontal arc basin segment terminates abruptly on the west with down-to-Tofua faulting
396	(Herzer & Exon 1985). The footprint of any volcanic source on the remnant Lau Ridge
397	segment requires estimation. The profile of the currently active Tofua arc volcanoes
398	provide possible analogues of Lau Ridge volcanic sources. At base, these range up to c.
399	30 km in width, excluding composite structures which are wider (Chase 1985, Fig. 1).
400	On this basis, 55 plus 15 km = 70 km is indicative of the minimum distance from a
401	source on the eastern edge of the remnant Lau Ridge segment. If the source volcano
402	was originally in what is now the extended arc crust of the western Lau Basin, this
403	figure is increased, but no data is available from the ODP sites in the Lau Basin to
404	constrain this possibility, as none of these reached the Middle Miocene (Fig. 3A). A
405	much higher figure is required if a structure in the position of Ono-i-Lau is considered.
406	In the Lau Basin at the longitude under study, c.105 km of extended arc crust exists and
407	the distance from Ono-i-Lau to the eastern edge of the Lau Ridge is 75 km.
408	The more local effects of individual block rotation are now considered. During re-
409	processing of oil industry data on the T-E Block, it was noted that a number of
410	physiographic features of the block would be explained if it had rotated 30^{0}

411	anticlockwise (Gatliff et al. 1994). One feature is the atypical triangular shape of the
412	Tongatapu-'Eua block as a whole (Fig. 1B), as reflected at the 1000 m isobath. 'Eua is
413	closer to the eastern margin of the frontal arc basin than any other basement high, and as
414	an emergent island with an elevation of 912 meters, is much higher. To further explore
415	whether there is seismostratigraphic/geophysical support for the rotation proposition, a
416	number of sources of data were superimposed on Blocks A, B and T-E (Fig. 4). There
417	are clearly a number of departures from the Tonga Ridge NNE-SSW ridge-parallel
418	structural trend, localised to the southern margin of Block T-E. On Block T-E, a trend
419	in total magnetic intensity highs, broadly coincident with basement highs (Gatliff et al.
420	1994) departs from trend and is deflected east of 'Eua. Further south, on Blocks A and
421	B, a trend of magnetic intensity anomalies (Stevenson & Childs 1985), coincident with
422	ridge-parallel gravity/basement highs, is abruptly curtailed as the southern margin of the
423	T-E block is encountered. The 'Eua Channel Fault, a major structural feature on the
424	southern Tonga Ridge, disappears north of the Block T-E southern margin, where the
425	Tongatapu/'Eua Channel depocentre was identified (Herzer and Exon 1985, Gatliff et
426	<u>al. 1994).</u>
427	The three total magnetic intensity highs immediately east of 'Eua on the Tongatapu-
428	'Eua block appear to be displaced by a strike-slip fault c. 40 km to the east of the trend
429	of the magnetic intensity anomalies on Blocks A and B. This would have the effect of
430	anticlockwise rotation sensu Gatliff et al. (1994). Further south on the Tonga-
431	Kermadec-Hikurangi trend, Lamb (2011) reviews the tectonics and kinetics of faulting
432	in the leading Australian plate continental crust, which accommodates the effects of
433	non-orthogonal subduction. The distinctive faulting styles described include those
434	which could explain features on the T-E block (Cunningham & Anscombe 1985, Fig. 2)
435	by inverting the rotation effect of strike slip faulting on arcuate faults (Lamb 2011, Fig.
436	18 a), combined with dextral strike slip faulting on a curved strike slip fault "hinge"
437	(Lamb 2011, Fig. 18 f). Block rotation may be contemporaneous with or post-date
438	block formation. Block formation by ridge-traverse faults may have begun "long before
439	the block geometry became so prominent after Late Miocene time" (Scholl & Herzer
440	1994). Since the western margin of the T-E block has a down-to-Tofua NNE-SSW fault
441	pattern consistent with the other blocks, any rotation, as noted by Gatliff et al. (1994),
442	must have occurred before the ancestral Lau Tonga arc splitting commenced in the late
443	Late Miocene (5.3 Ma). An event at c. 10 Ma was detected by sediment backstripping
444	analysis on the Tonga Ridge at ODP 841 (Clift et al. 1994) and hence in the early Late

445	Miocene. We now propose a model by which block rotation may have contributed
446	towards the dispersal distance anomaly. The model crucially suggests that, pre-ancestral
447	Lau-Tonga Ridge splitting, a Middle Miocene volcano on what would become
448	subjacent Block A sourced the 'Eua accretionary lapilli found on what would become
449	Block T-E. Anticlockwise block rotation after deposition, but before Lau Basin opening
450	commenced in the late Late Miocene, affects Block T-E, but not A or N. After rotation
451	of this block, the Nomuka Group islands maintain their distance from source volcano,
452	but 'Eua has been displaced tectonically 40 km eastwards from the tephra source. The
453	distance between source and resting place for the accretionary lapilli has been increased
454	by 40 km even before ridge splitting in the latest Late Miocene carries 'Eua further east.
455	
456	Constraining dispersal distances for accretionary lapilli
457	The evidence for final deposition of the 'Eua accretionary lapilli by settling through a
458	marine column of not less than 1600 meters, as presented in Cunningham & Beard
459	(2014), has been summarised earlier. The processes by which they could have reached
460	the point of settlement will now be reviewed. The present Tofua active volcanic arc
461	(Fig. 1B) is composed of emergent, barely emergent and submarine volcanic edifices at
462	modest depths and may be a good proxy for the Middle Miocene ancestral active
463	volcanic arc, given the dominantly volcanic insular geology as described earlier for the
464	remnant Lau Ridge. The ash clouds within which ash aggregates form (Brown et al.
465	2012) are typically associated with subaerial explosive volcanic eruptions, although
466	shallow marine eruptions can also be contenders if they breach water depths (McBirney
467	1963; Wright & Gamble 1999; White et al. 2003) with the creation of an atmospheric
468	ash cloud. The 'Eua accretionary lapilli may therefore have formed during an
469	explosive volcanic eruption initiated subaerially from an emergent volcanic edifice or at
470	shallow depths. In addition, proximity of the ocean surface permits the possibility of
471	formation of accretionary lapilli in secondary ash-rich steam clouds as pyroclastic
472	density currents enter the sea (Dufek et al. 2007). Dispersal may take place subaerially
473	within the eruption plume/umbrella cloud or as pyroclastic density currents travel across
474	the sea surface (Allen & Cas 2001; Carey et al. 1996; Maeno & Taniguchi 2007).
475	The 'Eua accretionary lapilli contain examples typically 10–15 mm in diameter and are +
476	accretionary lapilli sensu stricto (Brown et al. 2010, Van Eaton & Wilson 2013), as
477	distinguished from less ordered ash pellets and fragile ash aggregates (Brazier et
478	al.1982; Carey & Sigurdsson 1982; Wiesner et al.1995; Brown et al. 2012) which rarely

Formatted: Pattern: Clear (White), Tab stops: 2", Left

479	survive in that form but are detected in sieve analysis of grain size. The substantial	
480	distances by which -less-ordered ash aggregates can be dispersed from source	
481	subaerially are well established; ash aggregates dispersed in the eruption plume at Mt St	
482	Helens were detected at 200 km from source (Carey & Sigurdsson 1982). In contrast,	
483	the dispersal of relatively large and dense accretionary lapilli within the eruption plume	
484	must be restricted by their significant mass to more modest dispersal distances from the	
485	source volcano, -distances for accretionary lapilli sensu stricto of "a few to a few tens	
486	of km" of Smellie (1984) accord with the intuition that dispersal of relatively large	
487	spheroidal accretionary lapilli through the atmosphere must be restricted by their	
488	significant mass to modest dispersal distances from the source volcano. as constrained	
489	in tephra dispersal models (Walker et al. 1971; Walker 1981; Carey & Sparks 1986;	
490	Pfeiffer et al. 2005; Folch 2012). Accretionary lapilli are technically lapilli, falling	
491	within the 2-64 mm range, (Schmid Accretionary lapilli are technically lapilli, falling	
492	within the 2-64 mm range of Schmid (1981: Fisher & Schmincke 1984) and "larger	
493	centrimetric and millimetric fragments typically settle in minutes to a few hours at	
494	distances of the order of tens of km from the volcano" (Folch 2012) Lapilli-sized	
495	tephra can be dense juvenile/country rock clasts, mafic scoria or vesicular silicic pumice	
496	clasts. Reported specific gravities of accretionary lapilli, which are dominantly silicic,	
497	are in the range of 1200–1500 kg m ⁻³ (Sparks et al. 1997). The 'Eua examples are mafic	
498	in composition and should therefore be at the upper end of this spectrum or slightly	
499	exceed it. Isopleths for 16 mm-sized lapilli for known eruptions show maximum	
500	dispersal distance in the range of 20-30 km (Carey & Sparks 1986), for tephra at	
501	density of 2500 kg m ⁻³ and "larger centrimetric and millimetric fragments typically	Formatted: Not Superscript/ Subscript
502	settle in minutes to few hours at distances of the order of tens of km from the volcano"	
503	(Folch 2012). Grain size directly influences terminal velocity of descent of a particle.	
504	This varies significantly with height in the atmosphere and departure from sphericity	
505	(Dellino et al. 2005). These parameters are accommodated in most tephra transport and	
506	dispersal models. Table 1 provides indicative terminal velocities over a range of heights	
507	(Pfeiffer et al. 2005) for particles of Φ = -4 (=16 mm), density of 1500 kg m ⁻³ , and	
508	departure from sphericity. These particles are close to the typical size of the 'Eua	
509	accretionary lapilli. The density of 1500 kg m ⁻³ is appropriate, as discussed earlier	
510	(advanced palagonitisation obscures the original density of the constituent glass	
511	particles). These figures would underestimate terminal velocity for the notably	
512	spheroidal 'Eua accretionary lapilli. The range of contemporary prevailing wind speeds	

513	in the Lesser Antilles range from 5.55 m sec ⁻¹ in the stratosphere and up to 25 m sec ⁻¹ in
514	the upper troposphere (Sigurdsson et al. 1980). Based on input of the 16 mm clast
515	isopleth for Cotopaxi layer 3, Burden et al. (2011) estimate plume height between 26
516	km and 32.5 km with a wind speed of 35 m sec ⁻¹ . If these wind speeds were applicable
517	to the SW Pacific in the Middle Miocene, the effects of wind advection should be
518	modest for tephra the size of the 'Eua accretionary lapilli. Complexity is introduced by
519	the formation of aggregates during plume development, whether in the form of
520	accretionary lapilli or less-ordered ash aggregates, as this is complex to model (Costa et
521	al. 2010); accretionary lapilli often occur in phreatomagmatic eruptions, where phase
522	changes involving latent heat release might increment the upwards convection vector
523	and counter the dominant role, in most models, of the downward terminal ("settling")
524	velocity of descent. Modelling of the phreatomagmatic 25.4 ka Oruanui event (Van
525	Eaton et al. 2012), an ultra-Plinian event, instead of a simple plume/high level umbrella
526	cloud with lower level co-ignimbrite ash clouds, produced "hybrid" ash clouds
527	generated both from the plume and from buoyant co-ignimbrite ash clouds which rise to
528	plume heights. Concentrically layered accretionary lapilli similar to those in 'Eua were
529	dispersed at distances of 120 km from source (Van Eaton & Wilson 2013) in this event.
530	The 25.4 ka Oruanui event is statistically unusual; only 156 (2.3 %) such events are
531	reported from a total of 6736 in the Smithsonian Institute database (Siebert and Simkin
532	2002-2014). Occurrences from more modest events are reported from dispersal within
533	the Soufriere St Vincent plume at 36 km from source (Brazier et al. 1982) and dispersed
534	within pyroclastic density currents at Mt St Helens at c. 25 km (Fisher et al. 1987), and
535	these are closer to ash pellets as defined (Brown et al 2010; Van Eaton & Wilson 2013),
536	rather than accretionary lapilli. The occurrence of layered accretionary lapilli at 'Eua
537	type are the same type as those dispersed at distances of 120 km from the 26.5 ka ultra-
538	Plinian Oruanui event (Van Eaton & Wilson 2013), are atypical under this view. In
539	contrast, occurrences associated with Soufriere St Vincent at 36 km from source
540	(Brazier et al. 1982) and with Mt St Helens at c. 25 km (Fisher et al. 1987) are potential
541	members of the typical "a few to a few tens of km" class, but these are closer to ash
542	pellets as defined, rather than accretionary lapilli.
543	The present Tofua active volcanic are (Fig. 4) is composed of emergent, barely
544	emergent and submarine volcanic edifices at modest depths and may be a good proxy
545	for the Middle Miocene ancestral active volcanic are, given the dominantly volcanic
546	insular geology as described earlier for the remnant Lau Ridge. Accretionary lapilli

547	normally form within atmospheric ash clouds associated with subaerial explosive
548	volcanic eruptions (Brown et al. 2012), although shallow marine eruptions can also be
549	contenders if they breach water depths (McBirney 1963; Wright & Gamble 1999; White
550	et al. 2003) with the creation of an atmospheric ash cloud. The 'Eua accretionary lapilli
551	may therefore have formed during an explosive volcanic eruption initiated subaerially
552	from an emergent volcanic edifice or at shallow depths. In addition, proximity of the
553	ocean surface permits the possibility of formation of accretionary lapilli in secondary
554	ash rich steam clouds as pyroclastic density currents enter the sea (Dufek et al. 2007).
555	Dispersal may therefore occur subaerially by expansion of the eruption plume,
556	spreading of any associated atmospheric umbrella cloud, and/or by associated
557	pyroclastic density currents, but these would rapidly encounter the sea. There is no
558	evidence for dispersal within submarine sediment gravity flows within the 'Eua
559	accretionary lapilli occurrences (Cunningham & Beard 2014); they appear to have
560	settled vertically under gravity. However, for accretionary lapilli dispersed within
561	pyroclastic density currents, sSurface dispersal over the ocean surface is now must be
562	considered. Pyroclastic density currents can partition into a coarse, dense-clast rich
563	submarine flow and a dilute pyroclastic surface flow -running at the surface on entering
564	the sea, as seen with experiments and simulations referred to observed/inferred events
565	and their deposits (Freundt 2003; Trofimovs et al. 2006; -Dufek & Bergantz 2007;-
566	Trofimovs et al. 2006, Trofimovs et al. 2008; Dufek et al. 2009). Such surface flows
567	have travelled for considerable distances (Allen & Cas 2001, Carey et al. 1996, Maeno
568	& Tanaguchi 2007) and carrying bombs and lapilli sized clasts, in addition to ash and
569	hot gas. Observations of the deposits of the Kos Plateau Tuff (Allen & Cas 2001)
570	supported this model, with the loss of the coarsest vent and conduit-derived lithic clasts
571	over the sea due to sinking, while over land, saltation was considered to have preserved
572	the coarser element in the resulting ignimbrites. Saltation may also occur over water and
573	be accentuated by the occurrence of pumice rafts (Fiske et al. 2001) while, conversely,
574	transport capacity will be influenced by areal dilution, as momentum transfer between
575	large and small particles is diminished (Dufek & Bergantz 2007; Dufek et al. 2009).
576	Such surface flows have travelled for considerable distances (Table 2), carrying bomb
577	and lapilli-sized clasts, in addition to ash and hot gas. Pyroclastic flows are more
578	common in silicic eruptions where juvenile volatiles are present, while those associated
579	with basaltic eruptions chiefly arise from phreatomagmatic activity (Yamamoto et al.

580	2005). The 'Eua tephra is heavily palagonitised, and surviving crystal mineralogy
581	suggests a basaltic andesite composition for the source (Cunningham and Beard 2014).
582	
583	Insights from tephra dispersal models for explosive volcanic eruptions
584	Lapilli-sized tephra can be dense juvenile/country rock clasts, mafic scoria or vesicular
585	silicic pumice clasts. Reported specific gravities of accretionary lapilli, which are
586	dominantly silicic, are in the range of 1200–1500 kg m ⁻³ (Sparks et al. 1997). The 'Eua
587	examples are mafic in composition and should therefore be at the upper end of this
588	spectrum or slightly exceed it. Tephra dispersal models could provide some insights for
589	dispersal of equivalently sized/dense accretionary lapilli. Isopleths for 16 mm sized
590	lapilli for known eruptions show maximum dispersal distance in the range of 20-30 km
591	(Carey & Sparks 1986), for tephra at density of 2500 kg m ⁻³ . Such work constrained
592	dispersal within the plume (where the buoyant upwards vector and a downward terminal
593	velocity vector act on ash/tephra to form clast support envelopes, outside of which
594	particles descend vertically), and a lateral vector within the spreading umbrella cloud in
595	a wind-free environment, with any wind advection force further modifying dispersal
596	patterns. A full range of tephra dispersal models is now available (Folch 2012).
597	However not only must the source be modelled and the atmosphere into which the
598	sourced particles are introduced but also, critically for this paper, a transport model
599	incorporated which can accommodate transformations during transport. Costa et al.
600	(2010) noted that "a complete description of ash aggregation in volcanic clouds is a very
601	arduous task and the full coupling of ash transport (our italics) and ash aggregation
602	models (our italics) is still computationally prohibitive". Accretionary lapilli and lapilli
603	fundamentally differ in locus of formation; lapilli sensu stricto exist at eruption
604	inception, while the transformation represented by the formation of aggregates, whether
605	in the form of accretionary lapilli or the less-ordered ash aggregates referred to earlier,
606	takes place as the eruption cloud develops. Furthermore, early convection advection
607	models viewed the tephra being dispersed as passive in a dispersal process driven by
608	decompression of magmatic gases. Experimental work has established the key role of
609	vapour, liquid and solid phases of H2O in the process of formation of accretionary lapilli
610	(Gilbert and Lane 1994, Schumacher and Schmincke 1995, Van Eaton et al. 2012 b).
611	Accretionary lapilli typically occur in phreatomagmatic eruptions, where phase changes
612	involving latent heat release might increment the upwards convection vector and
613	counter the dominant role, in most models, of the downward terminal ("settling")

614	velocity of descent (Pfeiffer et al. 2005, Folch 2012). Hence the initial caution advised
615	in applying such models where wet eruptions are involved (Carey & Sparks 1986). This
616	caution is justified; the ATHAM model, forced with data from the phreatomagmatic
617	26.5 ka Oruanui event, and run with >= 24% H ₂ O relative to a MER of 1.1 10^9 kg (Van
618	Eaton et al. 2012 a), instead of a simple plume/high level umbrella cloud with lower
619	level co-ignimbrite ash clouds, produced "hybrid" ash clouds generated both from the
620	plume and by buoyant co-ignimbrite ash clouds which rise to plume heights. This
621	challenges simple distinctions between the plume/umbrella cloud and ash clouds related
622	to pyroclastic density currents, both of which have a potential role in the formation and
623	dispersal of accretionary lapilli.
624	The 26.5 ka Oruanui event, an ultra Plinian event, is statistically unusual; only 156 (2.3
625	%) such events are reported from a total of 6736 in the Smithsonian Institute database
626	(Siebert and Simkin 2002–2014).
627	Dispersal by pyroclastic density currents travelling over the ocean surface
628	An experimental approach (Freundt 2003) suggested that, on entering the sea,
629	coarser/denser particles would continue flowing under water, while a dilute ash cloud
630	would flow over the sea surface. Observations of the deposits of the Kos Plateau Tuff
631	(Allen & Cas 2001) supported this model, with the loss of the coarsest vent and conduit-
632	derived lithic clasts over the sea due to sinking, while over land, saltation over the water
633	surface was considered to have preserved the coarser element in the resulting
634	ignimbrites. Saltation may also occur over water and be accentuated by the occurrence
635	of pumice rafts (Fiske et al. 2001) while, conversely, transport capacity will be
636	influenced by dilution, as momentum transfer between large and small particles is
637	diminished (Dufek & Bergantz 2007, Dufek et al. 2009). The actual extent of the
638	contemporary sea surface has been challenged (Pe Piper et al. 2005) but in the area
639	south of Kos, where dispersal of 39 km and possibly 60 km was reported (Table 1),
640	there is support for the existence of a shallow sea surface (Dufek et al. 2009).
641	
	Event DRE Largest Distance Maximum

Even	ŧ	DRE	Largest	Distance from	Maximum
		- (km³)	Tephra (mm)	source (km)	distance (km)
Kraka	atoa	12	"small stone"	65	80
Kos I	⊇lateau				
- an	Unit D	10	50	35	>39

	Unit E	30	200	35	>60		
	Kova Tuff	4			>40		
642	In conclusion,						
643	Table 1 I)ispersal o	f larger teph	ra by pyr	oelastie den	ity currents travelling over	
644	the ocean surfac	e, from Al	len & Cas (2	2001), Ca	rey et al. (1 9	96). DRE = dense rock	
645	equivalent. Max	timum dist	ance – maxi	mum dis j	ersal distan	e estimated for the event.	
646							
647	Accretionary lap	oilli only f	orm when co	onditions	within an as	n cloud (whether Plinian or	F
648	those co-eval w	ith pyrocla	stic density	currents)	are favoural	le and many explosive	
649	eruptions do not	: produce t	hem. No acc	retionary	lapilli have	been reported from the	
650	Krakatoa 1883 (eruption, d	espite their i	noted abu	ndance in py	roclastic flow deposits	
651	associated with	silicic phro	atomagmat	ie activity	' (Carey et a	. 1996). Caution is	
652	therefore require	ed; the inst	ances in Tal	ble 1 have	e reported th	e dispersal of lapilli by	
653	pyroclastic dens	wity current	s over the o	cean surfa	ice, but not a	eccretionary lapilli.	
654	The major Krak	atoan ever	t delivered	lapilli ("sı	nall stones"	at 65 km and later mud	
655	rain over a large	e area, asso	ciated with	a climact	i c increase i i	magma discharge rate	
656	leading to an inc	erease of fo	ormation/del	livery of p	yroclastic f	ows into and over the sea,	
657	rather than a ph	reatomagn	atie phase c	of eruption	n initiated at	the vent. Instead of magma-	}-
658	water interaction	n at the ver	nt, a comple	ex, large,	co ignimbrit	e plume with strong	
659	temperature and	H ₂ O grad	ients is infei	red to ha	ve been gen	rated during dispersal over	F
660	land and sea. Ir	creasing d	istance fron	i source i	ncreased the	H ₂ O content but buoyant	
661	uplift of the hot	core led to	cooling and	l condens	ation, result	ng in distal mud rain.	
662	However little e	vidence w	as found to :	support t h	e uptake of	seawater in distal flows for	
663	the Kos Plateau	Tuff (Alle	n & Cas 200)1). Var	iation in the	degree of magma water	
664	interaction at the	e vent or u	ptake of H₂() during (lispersal ma	y contribute significantly to	÷
665	dispersal distant	ees; the ma	ximum disp	ersal dist	ance for the	Koya Tuff suggests there is	5
666	no simple relation	on to the so	cale of the se	ource eru j	otion, certain	ly as measured by dense	
667	rock equivalent	(DRE).					
668							
669	Scaling possibl	e dispersa	l-distances				
670	Other than the s	ize of the a	accretionary	lapilli an	d knowledge	of current wind	
671	directions/speed	ls at elevat	ion, there is	; no data (e.g. isopleth	s from which the DRE may	¥
672	be calculated) o	n the Midd	lle Miocene	eruption-	which supp	ied the 'Eua accretionary	
673	lapilli. Hence no) plume m	odelling of	height att	ained and la	eral dispersal within the	
674	plume/spreading	g umbrella	cloud is pos	sible, eve	en if the othe	r difficulties discussed	

708	distance from the contemporary jetstream path at 30-60 ⁶ S, where wind speeds are
709	much higher (Bursik et al. 2009).
710	F for plume/umbrella cloud dispersal within the atmosphere, $\frac{1}{1}$
711	should be modest for these particles of significant mass; the "few to a few tens of km"
712	metric is supported. intuition seems to have some scientific basis. For pyroclastic
713	density current-enabled dispersal over land, only a statistically unlikely ultraPlinian
714	event is capable of providing dispersal via the atmosphere for the minimum -70 km
715	dispersal scenario, (considering the source was close to the eastern edge of the remnant
716	Lau Ridge segment). In contrast, for pyroclastic density current-enabled dispersal
717	across the ocean surface, there is some evidence that relatively modest magnitude
718	events could provide dispersal distances which contribute significantly to the
719	scenario.this figure.
720	
721	
722	Block rotation; the Tongatapu 'Eua block
723	During re-processing of oil industry data on the T-E Block, it was noted that a number
724	of physiographic features of the block would be explained if it had rotated 30^9
725	anticlockwise (Gatliff et al. 1994). One characteristic is the atypical triangular shape of
726	the Tongatapu 'Eua block as a whole (Fig. 4), as reflected at the 1000 m isobath. 'Eua
727	is closer to the eastern margin of the frontal arc basin than any other basement high and
728	as an emergent island with an elevation of 912 meters, is much higher. To further
729	explore whether there is seismostratigraphic/geophysical support for the rotation
730	proposition, a number of sources of data were superimposed on Blocks A, B and T E
731	(Fig. 8).
732	
733	
734	

755	The three positive magnetic intensity highs immediately east of 'Eua on the Tongatapu-
756	'Eua block appear to be displaced by a strike slip fault c. 40 km to the east of the trend
757	of the magnetic intensity highs on Blocks A and B. This would have the effect of
758	anticlockwise rotation sensu Gatliff et al. (1994). The southern margin of Block T E is
759	perhaps better considered as a fault zone than localised on one fault. On the T-E block a
760	horst runs NW-SE into Tongatapu (Fig. 9) and this trend is seen onshore on 'Eua, where
761	faults dominantly trending NW-SE cut the Middle Miocene volcaniclastics and show
762	evidence of lateral movement (Lowe 1987). North of 'Eua, these trends are restored to
763	ridge parallel orientation.
764	

765 766

767 768 769 769Figure 9. Left: basement trends and faults on Blocks A, T E and N, after Cunningham & Anseombe (1985). Right: rotation effect of strike slip faulting on arcuate faults, accommodated by strike slip faulting on a curved fault "hinge", after Lamb (2011)771Further south on the Tonga Kermadec Hikurangi trend, Lamb (2011) reviews the tectonics and kinetics of block faulting in the leading Australian plate continental crust, which accommodates the effects of non orthogonal subduction. A number of distinctive block faulting styles are detected, one of which appears to be expressed on the T E block (Fig. 9) where the anticlockwise rotation effect of sinistral strike slip faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved strike slip fault "hinge".Formatted: Pattern: Clear (White Formatted: Pattern: Clear	100					
 Further south on the Tonga-Kermadee Hikurangi trend, Lamb (2011) reviews the tectonics and kinetics of block faulting in the leading Australian plate continental crust, which accommodates the effects of non-orthogonal subduction. A number of distinctive block faulting styles are detected, one of which appears to be expressed on the T E block (Fig. 9) where the anticlockwise rotation effect of sinistral strike slip faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved strike slip fault "hinge". Timing of block formation and rotation Block rotation may be contemporaneous with or post date block formation formation. Block formation by ridge traverse faults may have begun "long before the block 	767 768 769 770 771	Figure 9. Left: basement trends and faults on Blocks A, T E and N, after Cunningham & Anscombe (1985). Right: rotation effect of strike slip faulting on arcuate faults, accommodated by strike slip faulting on a curved fault "hinge", after Lamb (2011).				
 tectonics and kinetics of block faulting in the leading Australian plate continental crust, which accommodates the effects of non-orthogonal subduction. A number of distinctive block faulting styles are detected, one of which appears to be expressed on the T - E block (Fig. 9) where the anticlockwise rotation effect of sinistral strike slip faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved strike slip fault "hinge". Timing of block formation and rotation Block rotation may be contemporaneous with or post date block formation formation. Block formation by ridge traverse faults may have begun "long before the block 	772	Further south on the Tonga Kermadec Hikurangi trend, Lamb (2011) reviews the				
 which accommodates the effects of non-orthogonal subduction. A number of distinctive block faulting styles are detected, one of which appears to be expressed on the T - E block (Fig. 9) where the anticlockwise rotation effect of sinistral strike slip faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved strike slip fault "hinge". Timing of block formation and rotation Block rotation may be contemporaneous with or post date block formation formation. Block formation by ridge traverse faults may have begun "long before the block 	773	tectonics and kinetics of block faulting in the leading Australian plate continental crust,				
 distinctive block faulting styles are detected, one of which appears to be expressed on the T E block (Fig. 9) where the anticlockwise rotation effect of sinistral strike slip faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved strike slip fault "hinge". Timing of block formation and rotation Block rotation may be contemporaneous with or post date block formation formation. Block formation by ridge traverse faults may have begun "long before the block 	774	which accommodates the effects of non-orthogonal subduction. A number of				
 the T E block (Fig. 9) where the anticlockwise rotation effect of sinistral strike slip faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved strike slip fault "hinge". Timing of block formation and rotation Block rotation may be contemporaneous with or post date block formation formation. Block formation by ridge traverse faults may have begun "long before the block 	775	distinctive block faulting styles are detected, one of which appears to be expressed on				
 faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved strike slip fault "hinge". Timing of block formation and rotation Block rotation may be contemporaneous with or post date block formation formation. Block formation by ridge traverse faults may have begun "long before the block 	776	the T-E block (Fig. 9) where the anticlockwise rotation effect of sinistral strike slip				
 5 strike slip fault "hinge". 5 strike slip fault "hi	777	faulting on arcuate faults is accommodated by dextral strike slip faulting on a curved				
 779 779 780 Timing of block formation and rotation 781 Block rotation may be contemporaneous with or post date block formation formation. 782 Block formation by ridge traverse faults may have begun "long before the block 	778	strike slip fault "hinge".				
 780 Timing of block formation and rotation 781 Block rotation may be contemporaneous with or post date block formation formation. 782 Block formation by ridge traverse faults may have begun "long before the block 	779	•	 Formatt	ed: Pattern	: Clear (Wh	ite)
 781 Block rotation may be contemporaneous with or post date block formation formation. 782 Block formation by ridge traverse faults may have begun "long before the block 	780	Timing of block formation and rotation				
782 Block formation by ridge traverse faults may have begun "long before the block	781	Block rotation may be contemporaneous with or post date block formation formation.				
	782	Block formation by ridge-traverse faults may have begun "long before the block				

783	geometry became so prominent after Late Miocene time" (Scholl & Herzer 1994 and	
784	Supplementary File A). Since the western margin of the T-E block has a down to Tofua	
785	NNE SSW fault pattern consistent with the other blocks, any rotation, as noted by	
786	Gatliff et al. (1994), must have occurred before the ancestral Lau Tonga are splitting	
787	commenced in the late Late Miocene (5.25 Ma).	
788	The Tonga Ridge strikes c. N 20^{9} E. The mean azimuth of slip vectors along the Tonga	Formatted: Tab stops: 5.25", Left
789	trench from 35–19 ⁶ S ranges from N280 ⁶ E' to N285 ⁶ E' (Pelletier & Louat 1989). If this	
790	applied in the Middle Miocene, prior to the ancestral c. north trending Lau/Tonga	
791	Ridge splitting, non-orthogonal subduction would then have imparted a lateral vector to	
792	regional stress patterns, thus providing a similar environment to that associated with	
793	block rotation in leading edge continental crust further south on the Tonga-Kermadec-	
794	Hikurangi trend. An event at c. 10 Ma was detected by sediment backstripping analysis	
795	on the Tonga Ridge at ODP 841 (Clift et al. 1994) and hence in the early Late Miocene.	
796	In conclusion, the data provides some support for the provision by block rotation of a	
797	right-lateral strike-slip movement of c. 40 km in a fault zone centred on the south of	
798	Block T E and the north of Block A area, after 14 Ma and before splitting of the	
799	ancestral Lau/Tonga Ridge commenced in latest Late Miocene. A model is now	
800	proposed by which block rotation may have contributed towards the dispersal distance	
801	anomaly. The model crucially suggests that , pre-ancestral Lau-Tonga Ridge splitting, a	
802	Middle Miocene volcano on what would become subjacent Block A sourced the 'Eua	
803	accretionary lapilli found on what would become Block T-E. Anticlockwise block	
804	rotation after deposition, but before Lau Basin opening commenced in the late Late	
805	Miocene (5.25 Ma), affects Block T E, but not A or N. After rotation of this block, the	
806	Nomuka Group islands maintain their distance from source volcano, but 'Eua has been	
807	displaced tectonically 40 km eastwards from the tephra source. The distance between	
808	source and resting place for the accretionary lapilli has been increased by 40 km even	
809	before ridge splitting in the latest Late Miocene carries 'Eua further east.	
810		
811	Discussion and conclusions	
812	The accretionary lapilli on 'Eua, Tonga, occur in Middle Miocene pelagic volcaniclastic	
813	sediments with no compelling evidence for a proximal al-volcanic source. A	
814	contemporary distance which is unlikely to be less than 70 km, and <u>m</u> ay be much more,	
815	from a source on the Lau segment of the ancestral Lau-Tonga Ridge, is estimated from	
816	seismostratigraphic and other data. This $\frac{distance}{distance}$ is much fauther than would be	

817	expected for dispersal of these spheroids of significant mass, unless an exceptional	
818	ultra-Plinian source is invoked. 'Eua is positioned much further from the western edge	
819	of the Tonga Ridge than any other island and hence much further from a western Lau-	
820	Tonga ancestral arc volcanic source Tephra fall associated with Aan ultra-Plinian	
821	event on the scale of the Oruanui at 2 <u>5.4</u> 6.5 ka (Van Eaton & Wilson 2013) could,	
822	prima facie, resolve the dispersal distance problem, since the dispersal distances of	Formatted: Font: Italic
823	accretionary lapilli in the atmosphere by the eruption plume and pyroclastic density	
824	currents in that event were substantial.; layered accretionary lapilli, the type reported	
825	from 'Eua (Cunningham & Beard 2014), with diameters sometimes in excess of 10 mm	
826	occur up to 120 km from the virtual source at Lake Taupo. However, there is no field	
827	evidence in the area under study for an ultra-Plinian event in the Middle Miocene. At	
828	530 km ³ DRE, the Oruanui event is exceptional and unit 8, which contains the highly	
829	dispersed occurrences, exhibits characteristics which suggest that the eruption produced	
830	an extremely high mass eruption rate ($\geq 10^9$ kg s ⁻¹), with numerical simulations (Van	Formatted: Superscript
831	Eaton et al. 2012a) implying the potential for transportation of tephra to stratospheric	
832	heights. Explosive volcanic events of a much more modest magnitudeDRE, but driving	
833	pyroclastic density currents over the ocean surface, have dispersed tephra to	
834	considerable distances (Table 24), with "small stones" larger tephra-being carried as far	
835	as 65 km. The The transportation of large vent and conduit derived clasts (with	
836	densities as high as 2500 kg m ⁻³) during transport of the Kos Plateau Tuff across the	
837	ocean for considerable distances supports the credibility of dispersal by this process.	
838	The restriction of upper size carried, depending on mass flux during the individual	
839	event, -units, also has localhas significance for the Tongan insular Miocene, on 'Eua,	
840	where the $absect{sscence}$ of clasts exceeding $\frac{320}{2}$ mm has been attributed to some trapping	
841	mechanism elsewhere (Ballance et al. 2004) for clasts of greater size. Delivery by	
842	sediment gravity flows is probable for most of the volcaniclastics on the 'Eua high	
843	(Tappin & Ballance 1994; Ballance et al. 2004). However, for any component of the	
844	'Eua volcaniclastics delivered by ocean surface pyroclastic density currents, -rather than	
845	by sediment gravity flows, an <u>alternative alternative</u> process by which upper grain size	
846	is restricted is suggested by the Kos Plateau Tuff event. Furthermore, the rare	
847	westwards- <u>dippinghading</u> cross-beds in the 'Eua volcaniclastics (Fig. <u>2</u> 6D) may be	
848	attributable to sediment overloading on the 'Eua high by periodic ocean surface	
849	pyroclastic density currents and consequential westwards backflow.	
850	While delivery by pyroclastic density current over the ocean surface may explain all or	

851	part of the dispersal distance issue, it does not explain the anomalous position of the
852	'Eua high; 'Eua is positioned much further from the western edge of the Tonga Ridge
853	than any other island. The discontinuities in trends at the southern Block T-E margin,
854	interpreted as block rotation of a particular type, provides a tectonic explanation for this
855	anomaly. The relative thickness of sediment in the Tongatapu/22Eua Channel depocentre
856	(Fig. 48) fits well within this model: ;- with block rotation occurring in the Late
857	Miocene, but pre-splitting, the Tongatapu 'Eua Channel basin would have been 40
858	km closer to the source volcanoes to the west for part of the interval $14 - 5.253$ Ma ₂
859	thus only 30 km from source on the minimum 70 km scenario.
860	For <u>Ft</u> he rotation event may also to have contributed 40 km to the 'Eua accretionary
861	lapilli dispersal distance, subject a number of conditions must apply. Firstly it must pre-
862	date splitting of the ancestral Lau/Tonga Ridge which commenced in latest Late
863	Miocene (5.325) Ma), secondly post-date the deposition of the accretionary lapilli on
864	proto-'Eua at 14 Ma, and thirdly, the accretionary lapilli must have been sourced from a
865	volcano on the ancestral Lau-Tonga Ridge segment which became Block A.
866	We favour a model where F the accretionary lapilli on 'Eua finally settled through a
867	marine column of not less than 1600 meters. Their delivery to the final resting
868	settlement site was most likely achieved by transport within a pyroclastic density
869	current travelling over the ocean surface which, even in the case of those initiated by
870	small/moderate explosive volcanic events, have delivered relatively large tephra
871	considerable distances from sourceA dual model, comprising block rotation and
872	dispersal by ocean surface pyroclastic density currents, can explain the anomalies
873	described and accommodate a large range of possible dispersal distances from a source
874	of modest DREmagnitude. The possibility of dispersal within the hybrid ash cloud of an
875	ultra Plinian event of the Oruanui type is not excluded, but is not supported by any data.
876	<u>+</u> <u>T</u> he dating of block formation and of subsequent movement is however problematic;
877	ridge-normal faulting is only strongly expressed in displacement of the A-B isopach,
878	implying that it occurred mostly ppostdated late Late Miocene. Only detailed
879	palaeomagnetic studies of the host Middle Miocene volcaniclastics on 'Eua could
880	increase precision in this regard; the ubiquity of magnetite in thin hemipelagites which
881	occur in these rocks would make such studies worthwhile.
882 883 884	Acknowledgements

885 JKC acknowledges the many in Tonga and on 'Eua who assisted during 2 years spent 886 there and during more recent visits. Funding from the UK Overseas Development

887	Agency and Birkbeck College supported the fieldwork Shell International kindly	
888	provided conject of data sheets and their final report. Discussion, help and	
880	anouragement from Dater Dallance was grucial in framing the objectives of this paper	
809	Subacquart aggistance from Diale Hoblitt, Sharon Allan, Dan Ellis and Alava Van Estan	
890 801	Subsequent assistance from Kick Hobilit, Sharon Anen, Ben Eins and Alexa van Eaton	
891	greatly improved the execution. The detailed review points of Martin Jutzeler and an	
892	anonymous reviewer were crucial in achieving the final draft. The editors are thanked	
893	tor their support.	
894 905		
895	Supplementary information published online	
890		
897	Supplementary File 1: A more detailed summary of Longa Kidge issues relevant to the	
898	paper, supported by / figures and additional references.	
899		
900	Supplementary File 2: A more detailed summary on Lau Kidge issues relevant to the	
901	paper, supported by a summary figure.	
902		
903		
904		
905		
906		
907	References	
908		
909	Alexander, C 1985. 2-D gravity and magnetic modelling of subsurface domical	
910	structure 11/14: voicanic episodes in Eua, Ionga. In: Scholl Dw, valuer 1L eds.	
911	Geology and Offshore Resources of Pacific Island Arcs—Ionga Region. <u>Earth Science</u>	
912	Series 2. Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources	
913	Earth Science Series 2., Pp. 197–202.	
914		
915	Allen SK, Cas KAF 2001. Transport of pyroclastic flows across the sea during the	
916	explosive rhyolitic eruption of the Kos Plateau Tuff, Greece. Bulletin of Volcanology	
91/	62(6-7): 441-456.	
918		
919	Austin J, Taylor F W, Cagle CD 1989. Seismic stratigraphy of the central Tonga Ridge.	
920	Marine and Petroleum Geology 6:,-/1–92.	
921		
922	Ballance PF, Tappin DR, Wilkinson IP 2004. Volcaniclastic gravity flow sedimentation	
923	on a frontal arc platform: the Milocene of Tonga. New Zealand Journal of Geology and	
924	Geophysics 4/: -56/-58/.	Formatted: Font color: Black
925	Provide S. David AN. Signada II. Specks DSI 1092 Fall out and demosition of	
920	Biazier S, Davis AN, Sigurdsson H, Sparks KSJ 1982. Fail-out and deposition of	
927	volcanic ash during the 1979 explosive eruption of the Southere of St. Vincent. Journal	
928	of voicanology and Geomermai Research 14. 333–339.	
929	Prown DI Pronnow MI Mahor C. Harris DD 2010 Onisin of acceptionary 1- 111 - 111	
930	around hunging density autrents: avidence from pyreolectic couplets on Tenerife	
931	Bullatin of the Goological Society of America 122: 205–220	
932 022	buildin of the Ocological Society of America 122, 505–520.	
933	Brown RI Bonadonna C. Durant AI 2012 A ravious of valuania ash approaction	
934 035	Diversion and Chemistry of the Earth 45, 46: 65, 79	
935	1 mysros and Chemistry of the Lattil $4J = 40$. $0J = 70$.	
950		

937	Burden RE, Phillips JC, Hincks TK 2011. Estimating volcanic plume heights from
938	depositional clast size. Journal of Geophysical Research – Solid Earth, 116, No. B11,
939	$\frac{B_{11200,2011110}}{B_{11200}} = 1 - T K 2011 = k^2 - k^2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - $
940	Burden KE, Phillips JC, Hincks TK 2011, Estimating volcanic plume neights from
941	depositional clast size. Journal of Geophysical Research 116: B11206.
942	<u>aoi:10.1029/2011JB008548.</u>
943	Dursil MI Kaha SE Durna A Draitagua OA at al. 2000 Valaania riburaa and wind.
944	Bursik Wil, Koos SE, Burlis A, Branseva OA et al. 2009. Voicanic prumes and wind.
943	and Coothermal Research 196: 60, 67
940	
94/	Carry SN Signadasan II 1092 Influence of norticle accretion on densition of
948	distal tanking from the May 18, 1080, amintion of Maynt St. Holong valuence Journal of
949	Comparing Descende 97, 70(1, 7072)
950	Geophysical Research 87. 7061–7072.
931	Carrow SN. Sports DSI 1086 Operation models of the followt and dispersed of tembre
932	from valaania amutian aalumna. Dullatin of Valaanalagu 49, 100, 125
933	from voicanic eruption columns. Bulletin of voicanology 48. 109–125.
934	Caray SN Sigurdsson H. Mandavilla C. Pronto S 1006 Dursalastic flaves and surges
955	Carey Siv, Sigurdsson H, Mandevine C, Bronito S 1990. Pyroclastic nows and surges
930	402 511
937	495–511.
938	Chapropiara CCH 1004 Middle and Late Ecoana Neegana and Quaternery
959	foraminiferal faunas from 'Eus and Vaya'u Islands. Tonga group. In: Stevenson A.I.
900	Horzer DH Ballance DE ads. Coology and Submarine Descurses of the Tonge Lay Fiji
962	Region SOPAC Technical Bulletin & Suva Fiji South Pacific Annlied Geoscience
962	Commission Ppp 21 44
967	<u>Commission, 1-</u> pp. 21-44.
965	Chase TE 1985 Submarine tonography of the Tonga-Fiji Region and the southern
966	Tonga platform area. In: Scholl DW, Vallier TL eds. Geology and Offshore Resources
967	of Pacific Island Ares. Tonga Region Circum Pacific Council for Energy and Mineral
968	Resources Farth Science Series 2. In: Scholl DW Vallier TL eds. Geology and
969	Offshore Resources of Pacific Island Arcs-Tonga Region Farth Science Series 2
970	Houston Texas Circum-Pacific Council for Energy and Mineral Resources. Pn. 21
971	Houston, Texus, Chount Fuence Councer for Energy and Hindrat Resources. 1 p. 21.
972	Clift PD. Bednarz UB. Boe R. Bednarz UB et al. 1994. Sedimentation on the Tonga
973	forearc related to arc rifting, subduction erosion, and ridge collision; a synthesis of
974	results from sites 840 and 841. In: Hawkins JW, Parson LM, Allan JF eds, Proceedings
975	of the Ocean Drilling Program, Scientific Results, Vol. –135 Scientific Results, 135 .–
976	College Station, Texas, Pp. 843–873.
977	
978	Clift PD and ODP Leg 135 Scientific Party 1995. Volcanism and sedimentation in a
979	rifting island arc terrain: an example from Tonga, SW Pacific. In: Smellie JL ed.
980	Volcanism associated with extension at consuming plate margins. Geological Society of
981	London, Special Publication 88.7 Pp. 29–52.
982	
983	Clift PD, McCleod CJ, Tappin DR, Wright DJ, Bloomer SH 1998. Tectonic controls on
984	sedimentation and diagenesis in the Tonga Trench and forearc, southwest Pacific.
985	Geological Society of America Bulletin 110: 483–496.
986	

Formatted: Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Pattern: Clear						
Formatted: Font: Times New Roman, 12 pt						
Formatted: Font: Times New Roman, 12 pt						
Formatted: Font: Times New Roman, 12 pt						
Formatted: Font: Times New Roman, 12 pt						
Formatted: Font: Times New Roman, 12 pt						
Formatted: Font: Times New Roman, 12 pt						
Formatted: Font: Times New Roman, 12 pt						

987 988 989 990 991 992 993	Cole JW, Gill JB, Woodhall D 1985. Petrological history of the Lau Ridge, Fiji, In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Ares- Tonga Region. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series 2, In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Arcs-Tonga Region. Earth Science Series 2. Houston, Texas, Circum- Pacific Council for Energy and Mineral Resources. Pp. 379–391.		
994 995	Costa A, Folch A, Macedonio G, Durant A. 2010. Modelling transport and aggregation of volcanic ash particles EGU General Assembly 2–7 May 2010 Vienna Austria		
996	8965.		
997 008	Consistent W. Devel AD 2014. As successful a successful of the first second in the illi		
998 999	in deep-marine volcaniclastics on 'Eua, Tonga: palaeoenvironment and process. Journal		
1000	of Volcanology and Geothermal Research 274: 139–151.		
1001			
1002	Cunningham JK, Anscombe KJ 1985. Geology of 'Eua and other islands, Kingdom of		
1003	Island Arcs Tonga Region. Circum Pacific Council for Energy and Mineral Resources		
1005	Earth Science Series 2 In: Scholl DW, Vallier TL eds. Geology and Offshore Resources		Formatted: Don't adjust space between Latin and Asian text. Don't adjust space between
1006	of Pacific Island Arcs-Tonga Region. Earth Science Series 2. Houston, Texas, Circum-		Asian text and numbers
1007	Pacific Council for Energy and Mineral Resources., Pp. 221–257.	1	Formatted: Font: Times New Roman, 12 pt, Font color: Black, Spanish (International Sort)
1000	Cunningham JK, Beard AD 2014. An unusual occurrence of mafic accretionary lapilli	11	Formatted: Font: Times New Roman, 12 pt,
1010	in deep-marine volcaniclastics on 'Eua, Tonga: palaeoenvironment and process. Journal	14	Font color: Black
1011	of Volcanology and Geothermal Research 274: 139–151.		Formatted: Font: Times New Roman, 12 pt, Font color: Black, Spanish (International Sort)
1012	Dellino P. Mele D. Bonasia R. Braia G. La Volpe L. Sulpizio R 2005. The analysis of the		Formatted: Font: Times New Roman, 12 pt,
1014	influence of pumice shape on its terminal velocity. Geophysical Research Letters, 32:	N	Formatted: Font: Times New Roman, 12 pt,
$1015 \\ 1016$	L21306. doi:10.1029/2005GL023954.		Font color: Black, Spanish (International Sort)
1017	Dufek J, Bergantz GW 2007. Dynamics and deposits generated by the Kos Plateau Tuff		Formatted: Font: Times New Roman, 12 pt, Font color: Black
1018	eruption: Controls of basal particle loss on pyroclastic flow transport. Geochemistry	驗的	Formatted: Font: Times New Roman, 12 pt,
1019	deophysics deosystems 8, Q12. doi:10.1029/200700001741.	聽的	Formatted: Font: Times New Roman, 12 pt
1021	Dufek J, Manga M, Staedter M 2007. Littoral blasts: Pumice-water heat transfer and	嚻	Font color: Black
1022	the conditions for steam explosions when pyroclastic flows enter the ocean. Journal of	嚻	Formatted: Font: Times New Roman, 12 pt,
1023	Geophysical Research 112, B11201; doi:10.1029/2006JB004910.	酈	Formatted: Font: Times New Roman, 12 pt,
1025	Dufek J, Wexler J, Manga M 2009. Transport capacity of pyroclastic density currents:	麗	Font color: Black
1026	Experiments and models of substrate-flow interaction. Journal of Geophysical Research	麗	Formatted: Font: Times New Roman, 12 pt, Font color: Black, Spanish (International Sort)
1027	114: B11203 <u>-</u> doi:10.1029/2008JB006216.	麗	Formatted: Font: Times New Roman, 12 pt,
1029	Fisher RV, Glicken H, Hoblitt RP 1987. May 18, 1980, Mount St. Helens Deposits in 🍆	一說	Formatted: Font: Times New Roman, 12 pt,
1030	South Coldwater Creek, Washington. Journal of Geophysical Research - Solid Earth 92-	一览	Font color: Black, Spanish (International Sort)
1031 1032	<u>(B10)</u> : 10267–10283.		Formatted: Font: Times New Roman, 12 pt, Font color: Black
1032	Fisher RV, Schmincke H-U 1984. Pyroclastic rocks. Berlin, Springer-Verlag. 472 p.		Formatted: Font: Times New Roman, 12 pt,
1034			Formatted: Font: Times New Roman, 12 pt
1035	<u>Fiske RS, Cashman, KV, Shibata, A, Watanabe K 1998. Tephra dispersal from</u> Myojinsho, Japan, during its shallow submaring eruption of 1952, 1953. Bullotin of	1	Font color: Black
1030	Volcanology 59: 262–275.		Formatted: Font: Times New Roman, 12 pt, Font color: Black, English (U.K.)
1038			Formatted: English (U.K.)

1039 1040 1041 1042	Folch A 2012. A review of tephra transport and dispersal models: Evolution, current status, and future perspectives. Journal of Volcanology and Geothermal Research 235–236: 96–115.	
1043 1044 1045 1046	Freundt A 2003. Entrance of hot pyroclastic flows into the sea: experimental observations. Bulletin of Volcanology 65: 144–164 <u>doi:</u> DOI 10.1007/s00445–002–0250–1.	
1047 1048 1049	Gatliff RW, Pflueger JC, Havard KR, Helu SP 1994. Structure, seismic stratigraphy and petroleum potential of the Tongatapu -'Eua area of the Kingdom of Tonga . In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology and Submarine Resources of the	
1050 1051 1052 1053	Tonga Lau Fiji Region. SOPAC Technical Bulletin 8, In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology and Submarine Resources of the Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8. Suva, Fiji, South Pacific Applied Geoscience Commission Pn 107–119	
1055	<u>commission,</u> i.p. 107–119.	Formatted: Font color: Black
1055 1056 1057 1058	Gilbert JS, Lane SJ 1994. The origin of accretionary lapilli. Bulletin of Volcanology 56: 398–411.	(Tormatted. Fort Cool. Diack
1050 1059 1060 1061	Herzer RH, Exon NF 1985. Structure and basin analysis of the southern Tonga forearc. In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Arcs Tonga Region Circum Pacific Council for Energy and Mineral Resources Farth	
1062 1063 1064	Science Series 2, In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Arcs–Tonga Region. Earth Science Series 2. Houston, Texas, Circum- Pacific Council for Energy and Mineral Resources. Pn 55–74	
1064 1065 1066 1067	<u>IAGA Division 1 Study Group 1976. International geomagnetic reference field 1965.</u> Journal of Geophysical Research 74: 4407–4408.	
1068 1069 1070	Lamb S 2011. Cenozoic tectonic evolution of the New Zealand plate-boundary zone: A paleomagnetic perspective. Tectonophysics 509: 135–164.	
1071 1072 1073	Lehner P, Doust H, Bakker G, Allenbach P, Guennoc J 1983. Active margins, Part 2 Tonga trench, profiles P-1200 and G-150. In: Bally AW-ed. Seismie expression of	
1074 1075 1076	structural styles. American Association of Petroleum Geologists. Studies in Geology Series 15, Pp. 3. 3.4.2-19 – 3.4.2-44.	
1077 1078 1079	Lowe, D.J., 1987. 'Eua Island, Tonga, 1987 Expedition Report. Maeno F, Taniguchi H 2007. Spatiotemporal evolution of a marine caldera-forming eruption generating a low-aspect ratio pyroclastic flow. 7.3 ka. Kikai caldera.	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black
1080 1081 1082	Japan: Implication from near-vent eruptive deposits. Journal of Volcanology and Geothermal Research 167: 212–238.	Pormatted. Fold Color. Black
1082 1083 1084	McBirney AR 1963. Factors governing the nature of submarine volcanism. Bulletin of Volcanology 26 (Pt. 2): 455–469.	
1085 1086 1087 1088	Packham, G.H., 1978. Evolution of a simple island arc: The Lau-Tonga Ridge. Bulletin of the Australian Society of Exploration Geophysicists 9: 133–140.	

1089	Parson LM, Rothwell RG, MacLeod CJ 1994. Tectonics and sedimentation in the Lau
1090	Basin (southwest Pacific). In: Hawkins JW, Parson LM, Allan JF eds. Proceedings of
1091	the Ocean Drilling Program, Scientific Results, 135, In: Hawkins JW, Parson LM,
1092	Allan JF eds. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 135.
1093	College Station, Texas, Pp. 9–22.
1094	I
1095	Parson LM Wright IC 1996 The Lau-Havre-Tauno back-arc basin: A
1096	southward-propagating multi-stage evolution from rifting to spreading
1097	Tectononhysics 263: 1–22
1098	
1090	Pollotion P. Louat P. 1080 Saismotostonias and present day relative plate motions in
1100	the Tonga Lau and Kermadec Havre region. Tectononbysics, 165, 237, 250
1100	the Polige Eau and Remadee Playle region. Peetonophysics, 105, 257-250.
1101	De Diner C. Diner DIW, Derisseration C 2005, Nectorian and the Veg Distant Tuff
1102	aruntian of 161 ka. South Access are Journal of Valanalagu and Coathermal
1105	Descende 120, 215, 229, doi:10.1016/j.jvoleccerce.2004.09.014
1104	Research 139, 515-556, doi:10.1010/j.jvoigeores.2004.06.014.
1105	
1106	Preinter I, Costa A, Macedonio G 2005. A model for the numerical simulation of
110/	tephra deposits. Journal of Volcanology and Geothermal Research 140: 2/3–294.
1108	
1109	Pflueger JC, Havard KR 1994. A re-examination of the line 11/14 anomaly on the
1110	Southern Tonga Platform. In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology and
1111	Submarine Resources of the Tonga Lau Fiji Region. SOPAC Technical Bulletin 8, In:
1112	Stevenson AJ, Herzer RH, Ballance PF eds. Geology and Submarine Resources of the
1113	Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8. Suva, Fiji, South Pacific Applied
1114	Geoscience Commission. Pp. 107–119.
1115	
1116	Quinterno PJ 1985. Cenozoic planktonic foraminifers and coccoliths from 'Eua,
1117	Tongatapu and Nomuka Islands, southwest Pacific Ocean. In: Scholl DW, Vallier TL
1118	eds. Geology and Offshore Resources of Pacific Island Arcs Tonga Region. Circum-
1119	Pacific Council for Energy and Mineral Resources Earth Science Series 2, In: Scholl
1120	DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Arcs-Tonga
1121	Region. Earth Science Series 2. Houston, Texas, Circum-Pacific Council for Energy
1122	and Mineral Resources. Pp. 259–267.
1123	1
1124	Sager WW, MacLeod CJ, Abrahamsen N 1994. Palaeomagnetic constraints on Tonga
1125	Arc tectonic rotation from sediments drilled at Sites 840 and 841. In: Hawkins JW,
1126	Parson LM. Allan JF eds. Proceedings of the Ocean Drilling Program. Scientific
1127	Results 135 In Hawkins JW Parson LM Allan JF eds. Proceedings of the Ocean
1128	Drilling Program Scientific Results Vol 135 College Station Texas Pp 763–783
1129	<u>Principal Program, Commenter Rounds, Contrage Counter, Prince</u> , prince (Co.
1130	Schmid R 1981 Descriptive nomenclature and classification of pyroclastic deposits and
1131	fragments: Recommendations of the International Union of Geological Sciences
1132	Subcommission on the Systematics of Igneous Rocks. The Geological Society of
1132	America Boulder Colorado Volume 9 - Pp 41-43
1134	$\frac{1}{2}$
1125	Scholl DW Vallier TL eds 1985 Geology and offshore resources of the Pacific island
1126	arcs_Tonga region Farth Science Series 2 Houston Taxas Circum Dacific Council
1127	for Energy and Mineral Resources Earth Science Series Volume 2 Houston Toyog
1120	Age n
1120	<u>400 µ.</u>
1139	

1140	Scholl DW, Herzer RH 1994. Geology and resource potential of the southern Tonga-	
1141	Lau region. In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology and Submarine	
1142	Resources of the Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8, In: Stevenson	
1143	AJ, Herzer RH, Ballance PF eds. Geology and Submarine Resources of the Tonga-Lau-	
1144	Fiji Region. SOPAC Technical Bulletin 8. Suva, Fiji, South Pacific Applied Geoscience	
1145	<u>Commission.</u> Pp. 329–335.	
1146		
1147	Schumacher R & Schmincke H-U-1995. Models for the origin of accretionary lapilli.	
1148	Bulletin of Volcanology 56: 626–639.	
1149		
1150	Siebert L, Simkin T 2002–2014. Volcanoes of the World: an Illustrated Catalog of	
1151	Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism	
1152	Program Digital Information Series, GVP–3,	
1153	(http://www.volcano.si.edu/world/accessed 12th December 2014).	
1154		
1155	Sigurdsson H, Sparks RSJ, Carey SN, Huang TC 1980. Volcanogenic sedimentation in	
1156	the Lesser Antilles Arc. The Journal of Geology 88(5): 523–540	Formatted: Font color: Rec
1157		
1158	Smellie JL 1984. Accretionary lapilli and vesiculated pumice in the Ballantrae ophiolite	
1159	complex: ash fall products of subaerial eruptions. Report of the British Geological	
1160	Survey 84(1), Pp.36–40.	
1161		
1162	Sparks RSJ, Bursik MI, Carey SN, Gilbert JE, Glaze L, Sigurdsson, H, Woods AW	
1103	1997. Particle aggregation in plumes, in: volcanic Plumes. England, John wiley &	
1164	Sons <u>., England,</u> Pp. 431–462.	
1103	Stavancen AI, Childs ID 1095 Single showed asignic and acceptantial data collection	
1167	stevenson AJ, Childs JR 1985. Single channel seismic and geopotential data conection	
1167	Pacific Island Ares, Tonga Pagion, Circum Pacific Council for Energy and Mineral	
1160	Resources Earth Science Series 2. In: Scholl DW, Vallier TL ade Geology and	
1170	Offshore Resources of Pacific Island Arcs_Tonga Region Earth Science Series 2	
1170	Houston Texas Circum-Pacific Council for Energy and Mineral Resources Pn 27–29	
1172	Houston, Texas, Chediner denne Council for Energy and Minerar Resources. 1 p. 27-25.	
1173	Stevenson AJ Herzer RH Ballance PF 1994 Contributions to the marine and onland	
1174	ecology and resource assessment Geology and submarine resources of the Tonga-Lau-	
1175	Fiji region, SOPAC Technical Bulletin 8, Suva, Fiji, South Pacific Applied Geoscience	
1176	Commission. Springer Verlag, Berlin. 350 p.	
1177		
1178	Tappin DR 1993. The Tonga Frontal Arc Basin. In: Ballance PF, ed. South Pacific	
1179	Sedimentary Basins. Sedimentary Basins of the World -2. Elsevier. Pp. 157–176.	
1180		
1181	Tappin DR, Ballance PF 1994. Contributions to the sedimentary geology of 'Eua Island,	
1182	Kingdom of Tonga: reworking in an oceanic forearc. In: Stevenson AJ, Herzer RH,	
1183	Ballance PF eds. Geology and Submarine Resources of the Tonga Lau-Fiji Region.	
1184	SOPAC Technical Bulletin 8, In: Stevenson AJ, Herzer RH, Ballance PF eds. Geology	
1185	and Submarine Resources of the Tonga-Lau-Fiji Region. SOPAC Technical Bulletin 8.	
1186	Suva, Fiji, South Pacific Applied Geoscience Commission. Pp.1-20.	
1187		
1188	Tappin DR, Herzer RH, Stevenson AJ 1994. Structure and history of an oceanic	
1189	forearc- The Tonga Ridge - 22" to 26" south. In: Stevenson AJ, Herzer RH, Ballance PF	
1190	eds. Geology and Submarine Resources of the Tonga-Lau-Fiji Region. SOPAC	

1191	Technical Bulletin & In: Stevenson & L Herzer RH, Ballance PF eds, Geology and	
1192	Submarine Resources of the Tonga-Lau-Fiji Region SOPAC Technical Bulletin 8	
1193	Suva Fiji South Pacific Applied Geoscience Commission Pn 81–991–20	
1194	$\underline{5}$	
1195	Taylor B. Zellmer K. Martinez F. Goodliffe A 1996 Sea-floor spreading in the Lau	
1196	hack-arc basin Earth and Planetary Science Letters 144: 35–40	
1197	back-are basin. Latin and Franciary Science Letters 144. 55-40.	
1198	Trofimovs I. Amy I. Boudon G et al. 2006. Submarine pyroclastic deposits formed at	Formatted: Font color: Black
1100	the Soufriere Hills Volcano, Montserrat (1995–2003): what happens when pyroclastic	Formatted: Font color: black
1200	flows enter the ocean? Geology 34: 549–552	
1200	nows enter the occan: Geology, 54. <u>547–552.</u>	Formatted: Font color: Black
1201	Trofimovs I Sparks RSI Talling PL2008 Anatomy of a submarine pyroclastic flow	
1202	and associated turbidity current: July 2003 dome collanse. Soufriere Hills volcano	
1203	Montserrat West Indies Sedimentology 55: 617–634	
1204	Moniscriat, west mates. Sedificitiology 55: 017–054	
1205	Twiss RI Moores EM 2007 Structural Geology New York Freeman 736 p	
1200	Twiss Ks, Moores EWI 2007. Structural Geology. New Tork, Treeman. 750 p.	
1207	Ui T 1073 Exceptionally far reaching thin pyroclastic flow in Southern Kyushu	
1208	Japan Bulletin of the Volcanological Society of Japan 2 (18): 153–168	Formattade Chanich (International Cort)
120)	Japan. Bunchin of the Volcanologicar Society of Japan. 2(16), 155–166.	Formatted: Spanish (International Soit)
1210	Van Eaton AR Herzog M Wilson CNI McGregor I 2012 a) Ascent dynamics of large	Formatted: Spanish (International Sort)
1211	nhreatomagmatic eruntion clouds: The role of microphysics. Journal of Geophysical	Formatted: Spanish (International Sort)
1212	Research - Solid Earth 117(B3) doi:10.1020/20111B008892	
1213	$\frac{11}{1000000000000000000000000000000000$	
1/14		
1214	Van Eaton A.P. Muirhead ID. Wilson CNL Cimaralli C 2012 b). Growth of ash	Formatted: Font color: Red
1214 1215 1216	Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash	Formatted: Font color: Red
1214 1215 1216 1217	Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984	Formatted: Font color: Red
1214 1215 1216 1217 1218	Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984.	Formatted: Font color: Red
1214 1215 1216 1217 1218 1219	Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the presence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR Wilson CNJ 2013 The nature origins and distribution of ash	Formatted: Font color: Red
1214 1215 1216 1217 1218 1219 1220	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the presence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruganii New Zealand, Journal of 	Formatted: Font color: Red
1214 1215 1216 1217 1218 1219 1220 1221	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. 	Formatted: Font color: Red
1214 1215 1216 1217 1218 1219 1220 1221 1222	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the presence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. 	Formatted: Font color: Red
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the presence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate. 	Formatted: Font color: Red
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society. 22: 377- 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226	Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984.Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154.Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377- 383	Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377–383 Walker GPL, (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 	Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377–383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL. Wilson L. Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240. 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. <u>Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383</u> <u>Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240.</u> White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. <u>Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383</u> <u>Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240.</u> White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series. Volume 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. <u>Walker GPL. Wilson L. Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383</u> <u>Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240.</u> White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism - Pp. 1–14. 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. <u>Walker GPL. Wilson L. Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383</u> <u>Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240.</u> White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism.₂₇ Pp.1–14. 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377–383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240. White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism.₂₇ Pp.1–14. Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions 1: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240. White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism.₃₅ Pp.1–14. Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 23: 885–888. 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the pressence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions 1: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240. White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism._{x5} Pp.1–14. Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 23: 885–888. 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the presence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. <u>Walker GPL. Wilson L. Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383</u> <u>Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240.</u> White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism.₅₇ Pp.1–14. Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 23: 885–888. Woodhall D 1985. Geology of the Lau Ridge-<u>In: Scholl DW. Vallier TL-eds Geology</u> 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Voleanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377-383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240. White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism. Geology 23: 885–888. Woodhall D 1985. Geology of the Lau Ridge. In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Ares Tonea Region Circum Pacific Council 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239	 Van Eaton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the presence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Roval Astronomical Society 22: 377- 383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240. White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism. J. Phys. P.1–14. Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 23: 885–888. Woodhall D 1985. Geology of the Lau Ridge. In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Ares Tonga Region. Circum Pacific Council for Energy and Mineral Resources Farth Science Series 2- In: Scholl DW, Vallier TL. 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240	 Van Faton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions I: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377– 383 Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240. White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism₂, Pp.1–14. Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 23: 885–888. Woodhall D 1985. Geology of the Lau Ridge- In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Arcs-Tonga Region. Circum Pacific Council for Energy and Mineral Resources of Pacific Island Arcs-Tonga Region. Earth 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240	 Van Faton AR, Muirhead JD, Wilson CNJ, Cimarelli C 2012 b). Growth of ash aggregates in the prescence of liquid water and ice: an experimental approach. Bulletin of Volcanology 74(9): 1963–1984. Van Eaton AR, Wilson CNJ 2013. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. Journal of Volcanology and Geothermal Research 250: 129–154. <u>Walker GPL, Wilson L, Bowell ELG 1971. Explosive Volcanic Eruptions 1: The Rate of Fall of Pyroclasts. Geophysical Journal of the Royal Astronomical Society 22: 377- 383</u> <u>Walker GPL (1981) Plinian eruptions and their products. Bulletin of Volcanology 144: 223-240.</u> White JDL, Smellie JL, Clague DA 2003. Introduction: A deductive outline and overview of subaqueous explosive volcanism. Geophysical Monograph Series, Volume 140 - Explosive Subaqueous Volcanism₂₇ Pp.1–14. Wiesner MG, Wang Y, Zheng L 1995. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 23: 885–888. Woodhall D 1985. Geology of the Lau Ridge- In: Scholl DW, Vallier TL eds. Geology and Offshore Resources of Pacific Island Ares-Tonga Region. Circum Pacific Council for Energy and Mineral Resources of Pacific Island Ares-Tonga Region. Earth 	Formatted: Font color: Red Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black

1241	Science Series 2. Houston, Texas, Circum-Pacific Council for Energy and Mineral	
1242	<u>Resources.</u> Pp. 351–378.	
1243		
1244	wright it. 1996. Voicuniciastic processes on modern submarine arc stratovoicunoes.	
1245	Sidescan and photographic evidence from the Rumple IV and V voicances, southern	
1240	Kerniadee Arc (5 w Fachic). Marine Geology 130. 21–39.	
1247	Wright IC Gamble IA 1999 Southern Kermadec submarine caldera arc volcanoes (SW	
1240	Pacific): caldera formation by effusion and pyroclastic eruption. Marine Geology 161:	
12.50	207–227	
1251		
1252	Yamamoto T. Takada A. Ishizuka Y. Miyaji N. Tajima Y. 2005 Basaltic pyroclastic	
1253	flows of Fuji volcano, Japan: characteristics of the deposits and their origin. Bulletin of .	
1254	Volcanology 67, 622-633.	
1255		

Height (km)	Sea level	10	15	20	26	
U _t _(m see ⁻¹)	17	27	4 8	50	100	
		- 4			I	
	List o	f Figure	<u>s</u>			
Fable 2 Values	s for U_t , ve l	rtical terr	ninal velo	city at hei ş	sht, for particles o	f diameter
6 mm, density o	of 1500 kg r	n and F	(sphericit	(y) = 0.43,	from Pfeiffer et al	. (2005).

URL: http://mc.manuscriptcentral.com/nzjg

1275 1276 1277		List of Figures	
1278	Figure 1. The posit	ion of the Lau Basin on the north end of the Tonga-Kermadee-	
1279	Hikurangi trend and the	study area. The Tonga frontal are basin sediments (shaded) are	
1280	oroadiy coincident with	the 2000 meter isobath, after Tappin (1995). Figure 1 Regional	Formatted: Font: Not Bold
1281	Setting. A, The po	<u>Ssition of Eua and Nomuka on the Longa Ridge, and Vatoa and</u>	Formatted: Font: Bold
1202	broadly agingidant with	the 2000 motor isobath after Tannin (1002) P . The Tanga	Formattade Fonte Pold
1283	Ridge platform highligh	the 2000 meter isobatily with the currently active back	Formatted: Folit: Bold
1285	arc Tofua volcanic chair	with block margins after Tannin et al. (1994). Scholl &	
1285	Vallier (1985) Austin et	(1989)	
1287	<u>vunier (1905), rustin et</u>	<u>. u. (1909).</u>	
1288	Figure 2 Accretionary la	apilli from 'Eua. A. Lavered accretionary lapilli with coarse ash	
1289	infill. B. Layered accreti	onary lapilli, some cored, with coarse ash infill, C, Rimmed	Formatted: Font: Not Bold
1290	accretionary lapillus. D,	Rare cross-bed in host volcaniclastics.	
1291	Base map from GeoMa	pApp, <u>http://www.geomapapp.org</u> .	
1292	-		
1293	Figure 2. Synthesis	of data centred on the Lau Basin, after Taylor et al. (1996),	
1294	with c. 20 ⁰ easterly rotat	ion of the Ton <mark>ga Ridge (solid black lines) after Sager et al.</mark>	
1295	(1994), Figure 3 Lau Ba	sin tectonics. A, Synthesis of data centred on the Lau	
1296	Basin, after Taylor et al.	(1996), with c. 20 ^o easterly rotation of the Tonga Ridge (solid	
1297	black lines) after Sager e	et al. (1994). B , Outline reconstruction of the ancestral	
1298	Lau/Tonga ridge, pre-La	u Basin formation, just after splitting commenced, with	
1299	bathymetric contours. C	, Schematic section of the Lau Ridge, Lau Basin and Tonga	
1300	Kluge with ODP sites, and	t c. 1.5-1.0 Ma, after Chit et al. (1995), modified to reflect the	
1301	work of Farson & wrigh	<u>II (1990).</u>	
1302	hase man from GeoMan	App_http://www.geomanapp.org_Extended legend as follows:	
1304	ouse mup from Geomap	• pp, <u>mps////www.geomapupp.org</u> . Extended regend us fonows.	Formatted: Widow/Orphan control, Adjust
1305	834 Late Miocene	ODP site and age at base of well	space between Latin and Asian text, Adjust
1306	Lighter areas (2A)	Areas where palacomagnetic data correlates with known	space between Asian text and numbers
1307	c ()	age ranges, none older than the Gauss isochron (<3.3 Ma)	
1308	1, 2, 2A	Subdivisions of isochrons	
1309]	Jaramillo isochron	
1310	CLSC/ELSC	Central Lau Spreading Centre/East Lau Spreading Centre	
1311	ETZ/NWSLC/MTJ	Extensional Transform Zone/ NW Lau Spreading	
1312	N 1 10	Centre/Mangatolo Triple Junction	
1313	Dashed line	West of this line, is the "extended ancestral arc crust"	
1314	D 4 11		
1315	Dotted line	Eastern edge of Lau Ridge/western edge of Tonga Ridge	
1316			
131/	Figure 3 Schamati	e section of the Lau Ridge Lau Pasin and Tongo Didge with	
1310	<u>ODP sites at a 1.5.101</u>	Use after Clift at al. (1005) modified to reflect the work of	
1319	Parson and Wright (100)	and, after entrer al. (1999), mounted to reflect the work of	
1320	i urson und wright (1993	<i>sj</i> .	
1322	Figure 4. The Tone	a Ridge platform, highlighted by the 1000 meter isobath, with	
1323	the currently active back	are Tofua volcanic chain, with block margins and selected	
1324	track lines, after Tappin	et al. (1994), Scholl and Vallier (1985), Austin et al. (1989).	
1325	Lehner et al. (1983).		

1326	
1327	Figure 5. Fiji and the Lau islands, after Cole et al. (1985), bathymetric contour
1328	interval 2000 meters. The inset box outlines the Lau Islands whose geology was
1329	reported by Woodhall (1985), the most southerly of which is Ono i Lau.
1330	+
1331	Figure 6. A, 'Eua: Mn coated accretionary lapillus. B, 'Eua: rare large lithic clast
1332	(14 mm) in host volcaniclastics. C, 'Eua: rimmed accretionary lapillus. D, 'Eua, rare
1333	cross bed in host volcaniclastics. Ruler scale is cm/mm.
1334	
1335	Figure 7. Outline reconstruction of the ancestral Lau/Tonga ridge, pre Lau Basin
1336	formation, just after splitting commenced.
1337	
1338	Figure 8. Discontinuity of trends across the boundary between Blocks A, B and T-E.
1339	Figure 4. Discontinuity of trends across the boundary between tectonic Blocks A, B
1340	and T-E. Trend of gravity and arc basement highs on Blocks A and B is superimposed
1341	on residual magnetic anomaly data from Stevenson & Childs (1985), determined by
1342	subtracting the 1975 International Geomagnetic Reference Field (IAGA, 1976) from the
1343	observed total field measurements. Trend of basement highs on Block T-E is
1344	superimposed on total magnetic intensity data from Gatliff et al. (1994).
1345	
1346	Figure 9. Left: basement trends and faults on Blocks A, T-E and N, after
1347	Cunningham & Anscombe (1985). Right: rotation effect of strike slip faulting on
1348	arcuate faults, accommodated by strike slip faulting on a curved fault "hinge", after
1349	Lamb (2011).

Formatted: Pattern: Clear (White)

URL: http://mc.manuscriptcentral.com/nzjg