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This paper introduces novel ‘doubly mean-reverting’ processes based on conditional modeling to model
spreads between pairs of stocks. Intraday trading strategies using high frequency data are proposed
based on the model. This model framework and the strategies are designed to capture ‘local’ market
inefficiencies that are elusive for traditional pairs trading strategies with daily data. Results from real
data back-testing for two periods show remarkable returns, even accounting for transaction costs, with
annualized Sharpe ratios of 3.9 and 7.2 over the periods June 2013–April 2015 and 2008 respectively.
By choosing the particular sector of oil companies, we also confirm the observation that the commodity
price is the main driver of the share prices of commodity-producing companies at times of spikes in the
related commodity market.
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1. Introduction

The idea of pairs trading is quite popular across various asset classes and based on the property
that, since companies within a sector are high correlated, some pairs of price returns exhibit strong
similarity. We can model the return differences of these pairs as mean-reverting processes. If they
deviate too far from the mean, we short/long the pair by simultaneously buying one and short
selling another. We keep the position until it reverts back to the mean level.
Let A and B be a pair of closely related stocks, SA(t) and SB(t) their prices at time t. The

cumulative log return difference—or spread—for this pair is

Y (t) = log

(
SA(t)

SA(0)

)
− log

(
SB(t)

SB(0)

)
(1)

In pairs trading literature, the spread Y (t) or its variation has been modeled as a mean-reverting
process, oscillating either around zero or around a linear function of time. For example, Avellaneda

and Lee (2010) define the spread as the difference between log
(

SA(t)
SA(0)

)
and β · log

(
SB(t)
SB(0)

)
, where
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β is calculated by regressing the cumulative log return of one stock on another in a certain period.
The best pairs are commonly identified as either the ones with smallest distance measures defined
as the sum of squared deviations (Gatev et al. 2006, Bowen et al. 2010) or using cointegration
relationships (Vidyamurthy 2004, Lin et al. 2006).
Both the distance method and the cointegration method have their limitations. Consider two

stocks A and B with cumulative log returns both being 0 at the beginning. Suppose log
(

SA(t)
SA(0)

)
goes to a large positive value α in a short amount of time then stays around that level while

log
(

SB(t)
SB(0)

)
remains around 0. Then no matter how synchronized they move afterwards, this pair

would not likely be identified by the simple distance measure as they have a large average distance of
α. Now, further assume A and B co-move only in a subperiod during the whole analysis period, then
the pair is not likely to be selected according to cointegration method. Yet there are clearly profits
to be made in this scenario. The problem is that both those methods imply a static relationship
between two stocks during the training period whereas the relationship may very well be changing
from one day to the next.
The strategy we propose in this paper is designed exactly to capture this kind of ‘local’ statistical

arbitrage opportunities, by searching for temporary market mispricing inefficiencies. The idea is
to seek the pairs of which Y (t) can be characterized by the following modeling procedure: model
the long term trend of Y (t), denoted as L(t), as a stochastic process, and then model Y (t) via a
mean-reverting process around this long term stochastic trend L(t) using the conditional modeling
technique. If the mean reversion speed of Y (t) is fast enough, we can make profit by making
intraday pairs trades.
The utilization of two mean-reverting stochastic processes on the same series is partly inspired

by Fourier series expansion. L(t) can be regarded as the first term of a Fourier series with the
largest period and lowest frequency; imagine that Y (t) is approximated by the Fourier series, with
higher-frequency local oscillation being added on top of the lower-frequency waves. To visualize
this, imagine a long rope lying on the ground straightened out. If we hold onto one end of the rope
and shake it horizontally, then it will display a wavy pattern. Now, pick two points on the rope
that are close to each other, pin their locations, then shake the segment between them. The shaken
part will likely become a more pronounced local wave. Repeat this to the whole rope segment-by-
segment. The resulting rope would look like the Y (t) process while all the pinned positions make
up L(t). The rational for this novel doubly mean-reverting model is that, if we can identify pairs
with relative stable L(t) and volatile Y (t), then intraday pairs trading should perform well a priori.
Y (t) in these cases would return at the end of a trading day—hopefully after wild swings—to more
or less the same level as daily open.
The key to add up local oscillation is through a framework of ‘conditional modeling and condi-

tional inference’ (see the overview in Chang 2010). This technique has been applied to analyze the
dynamics of financial time series (e.g. the waiting time invariance of return sequences in Chang et
al. 2013, aggregation theorem in Chang and Geman 2013) as well as to other research fields (e.g.
Amarasingham et al. 2012, Chang et al. 2015). Nevertheless, the technique has not been utilized
for designing trading strategies in the literature.
In this study, we focus on the oil sector and look at times when the underlying commodity price

is experiencing sharp moves, making it the major factor driving the share prices. Geman and Vergel
(2013) showed, in the case of the fertilizer commodity, that shares of fertilizer-mining companies are
very sensitive to the commodity price at times of high moves of this price. Geman (2015) extended
this property to other types of agriculture-related companies. The literature on the subject counts
as a founding paper Tufano (1998) who analyzes the price sensitivities of gold mining companies’
shares. Our results confirmed the observation that crude oil price is the main driver of oil company
stock prices during market turbulence.
In the literature, most pairs trading studies use daily data and a daily trading frequency (Gatev

et al. 2006, Lin et al. 2006, Avellaneda and Lee 2010, Cummins and Bucca 2012, Bogomolov 2013,
Zeng and Lee 2014). Bowen et al. (2010), which use 60 minute return series, is one of the very few
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that uses data with frequency higher than daily. With the availability of tick data, we are able to
use five-minute series for Y (t) in the case of some highly liquid oil company stocks. To our best
knowledge, we are the first academic study on pairs trading to use such high frequency data, and
the first one on intraday pairs trading strategies.
The rest of the paper is organized as follows. Section 2 details the model and its calibration.

Trading rules are discussed in section 3. We perform simulations in section 4 in order to validate
the model and the strategies. Results from real data back-testing over two periods are presented
and analyzed in section 5. Section 6 concludes the paper and provides directions for future research.

2. The model

2.1. Model specification

In order to exploit intraday pairs trading profits, we use high frequency data with interval length
of five minutes to model Y (t) defined in equation (1). There are 78 five-minute intervals every day
during trading hours from 9:30 AM to 4:00 PM, hence 79 Y (t)’s. We denote the 79 observed values
of Y (t) in day i as

Y79(i−1)+1, Y79(i−1)+2, . . . , Y79i i = 1, 2, . . . , N

where N is the number of days. The subscript in this paper refers to discretized observations of
stochastic processes. Moreover, we assume that the long term trend L(t) is identified by the daily
opening and closing values of the process Y (t), namely for day i,

L2i−1 = Y79(i−1)+1 and L2i = Y79i. (2)

The stochastic process L(t), with two observed data points per day, is preferred to have a small
variance. In this study, we model L(t) as an Ornstein–Uhlenbeck (OU) process, with mean 0

dL(t) = −θLL(t)dt+ σLdW
L
t . (3)

Next by the definition of conditional distribution, the joint distribution of Y1, Y2, . . . , Y79N can be
written as the product of the distribution of Y79(i−1)+1’s and Y79i’s and the conditional distribution
of Yi’s given Y79(i−1)+1’s and Y79i’s

f(Y1, Y2, . . . , Y79N )

=f(Y79(i−1)+1, Y79i, i = 1, · · · , N)f(Y1, Y2, . . . , Y79N |Y79(i−1)+1, Y79i, i = 1, · · · , N)

=f(L1, L2, . . . , L2N )f(Y1, Y2, . . . , Y79N |L1, L2, . . . , L2N ) (4)

Note that due to equation (2), the last equality is valid, and the joint distribution of Li’s can be
obtained by discretizing the process (3).
Now to model the conditional distribution of Yi’s given Li’s, we use the conditional modeling

technique by introducing an auxiliary process Ỹ (t) that follows:

dỸ (t) = θ
(
L̃(t)− Ỹ (t)

)
dt+ σdW Ỹ

t (5)

where the mean process is L̃(t) = L2i−2+L2i−1

2 and i = i(t) refers to the day of time t (2i− 2 refers
to the closing of day i − 1 and 2i − 1 refers to the opening of day i). We assume the conditional
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distribution

f(Y1, Y2, . . . , Y79N |L1, L2, . . . , L2N )

is the same as the conditional distribution of Ỹi’s given Ỹ79(i−1)+1 = L2i−1 and Ỹ79i = L2i, i =

1, · · · , N , where Ỹi’s are the corresponding discretization of process (5). In other words, conditional
on given daily opening and closing values of the process, Y (t) is the same as Ỹ (t) in distribution.
Hence, to simplify the notation, we use Y (t) and Yi in place of Ỹ (t) and Ỹi in the rest of the paper.
By defining the mean process L̃(t) as the average of L2i−2 and L2i−1, we assume in any trading

day, the mean level that the spread process reverts to is the average of the opening value of the
current day and the closing value of the previous trading day.
To recap, the distribution of the Y (t) process is defined by first specifying the dynamics of L(t)

from equation (3), then the distributions of the in-between points are given indirectly by equation
(5), via the conditional relationship (4), hence the name conditional modeling.

For Y (t), there are 79 observations per day thus 79 time intervals, the lengths of which are not
equal: 78 short five minute periods and a long overnight period. The similar problem exists for
L(t): the time span between a day’s open and close is different from between the day’s close and
next day’s open.
The lengths in real time of the trading hours per day are 6.5 hours while the overnight periods

are at least 17.5 hours (from 4 pm market close to next day’s market open 9:30 am, or longer in
the case of weekends and holidays). However, the amount of information and market movements
during daytime trading hours are much richer than that during overnight periods. Therefore, we
estimate the lengths of both periods in effective time instead of real time in the following way:
since the relative (effective) lengths of the trading day and the overnight period are unknown and
unequal, we need two time steps. δ1 is the length of trading hours 9:30 AM and 4:00 PM; δ2 is the
length between market close and next day’s open. Hence,

δ1 + δ2 = 1 day =
1

250
(6)

and the algorithm to estimate δ1 and δ2 is based on the ratio of variances of intraday and overnight
changes as detailed in section 2.2.1.
All the model parameters θL, σL, θ, σ, δ1 and δ2 from equation (3)–(6) are calibrated daily using

maximum likelihood estimation (MLE).

2.2. Model calibration

For better parameter estimation, the calibration is updated every day using a moving window, also
called the pairs formation period (see Gatev et al. 2006), the length of which is chosen properly.
If the duration is too short, the calibration is unreliable due to the lack of training data; if the
duration is too long, estimated parameters do not accurately reflect the present situation because
of non-stationarity of market dynamics. In our model, the frequencies of L(t) and Y (t) are different,
thus requiring training periods of different lengths. We use the past 100 days’ daily open and close
prices to calibrate the process L(t) and use the past 30 days’ five-minute prices to calibrate the
process Y (t). Both lengths were decided at the beginning of the study and has not been tuned
based on data, to avoid data-snooping biases (Lo and MacKinlay 1990).

2.2.1. Calibration for L(t). For a general OU process with constant mean

dS(t) = θ (µ− S(t)) dt+ σdWt,
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the discretization {Si} satisfies

Si+1 = Sie
−θδ + µ(1− e−θδ) + σ

√
1− e−2θδ

2θ
Zi, (7)

for all i, where δ is the time step in discretization and Zi’s are i.i.d. N(0, 1).
For our L(t), the discretized series is the combined daily opening and closing cumulative return

differences. µ is assumed to be 0. Equation (7) leads to two equations.
The intraday changes

L2i = L2i−1e
−θLδ1 + σL

√
1− e−2θLδ1

2θL
Z2i i = 1, . . . , N ; (8)

and the overnight changes

L2i+1 = L2ie
−θLδ2 + σL

√
1− e−2θLδ2

2θL
Z2i+1, i = 1, . . . , N − 1 (9)

where Zi’s are i.i.d. N(0, 1).
To estimate δ1 and δ2, We use the following equation obtained from equations (8) and (9) with

the variances approximated by empirical variances :

Var(L2i − L2i−1e
−θLδ1)

Var(L2i+1 − L2ie−θLδ2)
=

1− e−2θLδ1

1− e−2θLδ2
(10)

Notice that solving this equation for δ1 and δ2 requires θL. Therefore, we develop the following
algorithm to iteratively calibrate δ1, δ2, θL and σL together:

1. Initialize δ1 and δ2.
2. Using δ1 and δ2 values, calibrate θL and σL using MLE.
3. Plug θL into equation (10). Then δ1 and δ2 can be solved together with equation (6).
4. Repeat steps 2 and 3 until δ1, δ2, θL and σL all converge.

Step 1:
Since both δ1 and δ2 are small, from equation (10),

Var(L2i − L2i−1)

Var(L2i+1 − L2i)
≈ 1− e−2θLδ1

1− e−2θLδ2
≈ δ1

δ2
(11)

where the variance of intraday return Var(L2i − L2i−1) and the variance of overnight return
Var(L2i+1 − L2i) are estimated empirically. Then initial δ1 and δ2

1 can be obtained by solving
equation (6) and (11).

Step 2:
The conditional densities of L(t) are

f(L2i|L2i−1; θL, σ̂1) =
1

σ̂1
√
2π

exp

(
−(L2i − L2i−1e

−θLδ1)2

2σ̂2
1

)

1This initial approximation turns out to be pretty close. On average, the approximates are only off by 0.3% from the final

converged values.
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f(L2i+1|L2i; θL, σ̂2) =
1

σ̂2
√
2π

exp

(
−(L2i+1 − L2ie

−θLδ2)2

2σ̂2
2

)
where

σ̂1 = σL

√
1− e−2θLδ1

2θL
, σ̂2 = σL

√
1− e−2θLδ2

2θL

The log-likelihood function of (L1, . . . , L2N ) is then

L(θL, σL) =L(θL, σ̂1, σ̂2) =
N∑
i=1

ln f(L2i|L2i−1; θL, σ̂1) +

N−1∑
i=1

ln f(L2i+1|L2i; θL, σ̂2)

=− N

2
ln(2π)−N ln(σ̂1)−

1

2σ̂2
1

N∑
i=1

(L2i − L2i−1e
−θLδ1)2

− N − 1

2
ln(2π)− (N − 1) ln(σ̂2)−

1

2σ̂2
2

N−1∑
i=1

(L2i+1 − L2ie
−θLδ2)2

The MLE for θL and σL are solved numerically from this equation using a quasi-Newton optimiza-
tion algorithm called limited memory BFGS (Byrd et al. 1995).

Step 3 and 4 are straightforward, and from our experiments, the algorithm converges fast (gen-
erally only 2 to 4 iterations are needed to reach a tolerance of 10−6).

2.2.2. Calibration for Y (t). For Y (t), the constant mean µ in the OU process is replaced by

L̃t =
L2i−2+L2i−1

2 . Equation (7) becomes

Y79(i−1)+j = Y79(i−1)+j−1e
−θδ +

L2i−2 + L2i−1

2
(1− e−θδ) + σ

√
1− e−2θδ

2θ
Z79(i−1)+j , ∀i, j

where i = 1, 2, . . . , 30 denotes days; j = 2, . . . , 79 denotes 5-minute periods; δ = δ1
78 is the effective

length of a five-minute interval; Z79(i−1)+j ’s are i.i.d. N(0, 1). Let

a = e−θδ

bi =
L2i−2 + L2i−1

2
(1− e−θδ) =

L2i−2 + L2i−1

2
(1− a), i = 1, . . . , 30

σ̂ = σ

√
1− e−2θδ

2θ
= σ

√
1− a2

2θ

where L0 is defined to be 0.
Then

Y79(i−1)+j − aY79(i−1)+j−1 = bi + σ̂Z79(i−1)+j , ∀i = 1, . . . , 30, ∀j = 2, . . . , 79

Since {Li|i = 1, . . . , 2N} is a subsequence of {Yi|i = 1, . . . , 79N}, we have

f(Y⃗ ; θ, σ) = f(L⃗, Y⃗ ) = f(L⃗)f(Y⃗ |L⃗)
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Figure 1. Illustration of formation period and trading period

The log-likelihood for Y (t) is ln f(L⃗)+ ln f(Y⃗ |L⃗). The first term ln f(L⃗) does not depend on θ and
σ. We only focus on the second term

ln f(Y⃗ |L⃗)

= ln f(Y⃗ |Y79(i−1)+1 = L2i−1, Y79i = L2i, ∀i = 1, . . . , 30) (12)

= ln f(Y1, Y2, . . . , Y79|Y1 = L1, Y79 = L2)

+ ln f(Y80, Y81, . . . , Y79×2|Y79 = L2, Y80 = L3, Y79×2 = L4)

+ · · · · · ·

+ ln f(Y79×29+1, . . . , Y79×30|Y79×29 = L58, Y79×29+1 = L59, Y79×30 = L60)

The last equality is due to the definition of Y ′
i s. The remaining derivation of MLE formula is rather

cumbersome, thus given in appendix A.

3. Trading rules

As mentioned before, training periods of 100 days and 30 days are fixed for the calibration of L(t)
and Y (t) respectively. For an intraday trading strategy, the trading period is one day. The three
periods are illustrated in figure 1.
After getting the parameters and consequently the variance estimations of both L(t) and Y (t),

we select a set of ‘best’ pairs to be trading candidates for that day. Our ideal trading candidate
pair will have a large Y (t) variance and a small L(t) variance. A large Y (t) variance is preferred
because more volatile intraday movements lead to more trading opportunities. The preference of
small L(t) variances is to ensure that the long-term value of the spread is not volatile. The most
desirable situation would be L(t) remaining constant over time while Y (t) fluctuating a lot during
the day but always coming back to the constant level.
The procedure to select the ‘best’ pairs is: first remove all the pairs with negative θL, then rank

all remaining pairs by L(t)’s short term variance

σL
2θL

(
1− e−2θL(δ1+δ2)

)
in ascending order, record the ranking rL, then rank them again by Y (t)’s short term variance

σ

2θ

(
1− e−

2θδ1
78

)
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in descending order, record the ranking rY and finally select the top 25 or 50 or 100 pairs with
smallest rL + rY . In section 5, we test different pair selection criteria on real data by varying the
number of pairs selected.
During day i, for each candidate pair stock A and stock B, we make a trade immediately when

Y (t), the cumulative return difference between stock A and B, goes out of a ‘confidence band’.
More specifically, we

(i) short the pair (simultaneously short A and long B) if Y (t) exceeds L2i−2+L2i−1

2 + ϵ;

(ii) long the pair (simultaneously long A and short B) if Y (t) drops below L2i−2+L2i−1

2 − ϵ.

The value ϵ is the 98% percentile of the absolute daily change in L(t) values in the past 100
days. If ϵ is too large, we miss out trading opportunities by executing only few trades; if ϵ is too
small, excessive trading leads to the profits of many trades being dwarfed by transaction costs. In
simulations, we also used two other ϵ levels (95% and 90% percentiles) for comparison. In real data
back-testing, we stick with the 98% percentile for better performances1.
For each pair-trade, we buy $1 worth of one stock and short $1 worth of the other stock. For

example, when we long the pair, we buy $1
PA

shares of stock A and simultaneously short $1
PB

shares
of stock B, where PA and PB are their respective prices. Our net position at the outset of each
pair-trade is zero.
The open position is closed by making the opposite trades (selling the stock bought, buying back

and returning the stock shorted) when either (a) Y (t) reverts back to L2i−2+L2i−1

2 , or (b) the market
closes for the day at 4pm, whichever happens first.

4. Simulation

In this section, we demonstrate the validity of our doubly mean-reverting model and the proposed
trading strategy using simulation. The goal is to simulate Li’s and Yi’s for a whole year using a
set of parameters θL, σL, δ1, θ, σ, then apply the strategy on the simulated data. For simplicity,
we assume the parameters remain constant in the simulation, although we update them daily for
trading on real data. If the model and strategy are well designed, the profit should be robust for a
‘good’ set of parameters but not for a ‘bad’ one.

4.1. Simulating Li’s and Yi’s

First we simulate Lk, ∀k = 1, . . . , 2N by equation (8) and (9) in section 2.2.1.

For each day i, defineX78(i−1)+j = Y79(i−1)+j+1−aY79(i−1)+j for all j = 1, · · · , 78, where a = e−θδ.
Now given Lk’s, we first generateX78(i−1)+j , j = 1, · · · 78 using the conditional distribution [derived
in appendix equation (A1)–(A3)]:

f(X78(i−1)+1, . . . , Y78i|Y79(i−1) = L2(i−1), Y79(i−1)+1 = L2i−1, Y79i = L2i)

=

(
1

σ̂
√
2π

)77
exp

[
− 1

2σ̂2

(∑78
j=1(x79(i−1)+j − bi)

2 + (L2i − a78L2i−1 −
∑78

j=1 a
78−jx78(i−1)+j − bi)

2
)]

√
1−a2

1−a156 exp
[
− 1

2σ̂2
1−a2

1−a156

(
L2i − 1+a78

2 L2i−1 − 1−a78

2 L2i−2

)2]
where bi and σ̂ are given in section 2.2.2. In fact, the above conditional density is a multivariate

1It is possible that the optimal threshold is not 98%. We did not experiment on real data to find out the exact optimal value.
Zeng and Lee (2014) derived optimal thresholds for maximum profitability per unit of time in a single OU process model

framework.
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Figure 2. Simulated 30 days’ Yi’s and Li’s (circles) for the good pair.

normal density with mean

µ =


1 + a154 a153 . . . a78

a153 1 + a152 . . . a77

...
...

. . .
...

a78 a77 . . . 1 + a2


−1

bi + a77(L2i − a78L2i−1 − bi)
bi + a76(L2i − a78L2i−1 − bi)

...
bi + a(L2i − a78L2i−1 − bi)


and variance

Σ = σ̂2 =


1 + a154 a153 . . . a78

a153 1 + a152 . . . a77

...
...

. . .
...

a78 a77 . . . 1 + a2


−1

Hence, we can generate multivariate normal random variables Xi’s, from which Yi’s can be com-
puted straightforwardly.
The simulated Li’s and Yi’s of one sample of 30 days are shown in figure 2 with Li’s indicated

by circles.

4.2. Choosing parameters

Choosing particular parameters to make the variances of L(t) and Y (t) small and large respectively
can easily results in astronomically high profits. However, the simulated spread process trajectory
may simply not be achievable by real stock pairs. Therefore, to be more realistic, we use calibrated
parameters θL, σL, δ1, θ, σ from real data for simulation.
The dataset is described in detail in section 5. We used the ranking method described in the

trading rules to select a ‘good pair’ and a ‘bad pair’ as the ones with best and worst parameters
respectively in the first trading day.
The good pair’s parameters are

θL = 1.626237, σL = 0.229202, δ1 = 0.0032902, θ = 123.22211, σ = 0.341101;

9
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Table 1. Simulation Trading Results (Top half: the good pair; bottom half: the bad pair)

ϵ level
avg num
of trades

in 250 days

avg num/
percentage of

profitable trades

avg num/
percentage of trades

that reverts
back to mean

avg
pnl

max pnl
in 400

simulations

min pnl
in 400

simulations

annual
Sharpe
ratio

annual
return

profit per
trade in bp
(breakeven

transac. cost)

98% 29.4 22.8 77.5% 1.4 4.8% 0.230 0.610 0.028 3.325 80.2% 78
95% 54.5 41.4 75.9% 4.6 8.4% 0.404 0.800 0.052 4.447 180.9% 74
90% 91.9 68.1 74.1% 13.1 14.3% 0.644 1.111 0.320 5.668 409.5% 70

98% 27.5 13.4 48.8% 0.1 0.5% -0.003 0.095 -0.063 -0.165 -0.7% -1.0
95% 48.2 23.7 49.3% 0.6 1.3% 0.000 0.107 -0.112 -0.039 0.0% 0.0
90% 77.7 38.6 49.7% 2.6 3.4% 0.005 0.134 -0.136 0.074 1.2% 0.6

and the bad pair’s parameters are

θL = 9.328820, σL = 0.198623, δ1 = 0.0014689, θ = 482.18402, σ = 0.205307.

We simulate separately using both sets of parameters and compare results.

4.3. Simulation trading results

Following the procedure described in section 4.1, we simulate the spread series of one year (250
days) for a large number of simulations. Each time, we apply the same strategy and calculate the
profit and loss (PNL). In table 1, the trading results are shown for both the good pair (top half)
and the bad pair (bottom half), each pair for three different threshold ϵ levels, each level for 400
simulations.
For the good pair, in every one of the 1200 simulations, the whole year’s profit is positive.

On average, there are 29/55/92 trades in the whole 250-day period, for the three ϵ levels re-
spectively; 23/41/68 of them being profitable. The annual Sharpe ratios and annual returns are
3.325/4.447/5.668 and 80.2%/180.9%/409.5%.
Meanwhile for the bad pair, although the number of trades triggered are comparable to the good

pair, the profitability is much worse. Slightly less than half the trades are winning ones compared
with well over 70% for the good pair. As a result, the Sharpe ratios and annual returns are close
to zero.
These simulation results validated our model by showing that a good pair identified by the model

can indeed provide stable profits while a bad pair cannot.
For the good pair, as the threshold ϵ is lowered from 98% to 90% percentile, the average number

of trades per simulation is more than tripled from 29 to 92. Annual Sharpe ratio and annual return
increased significantly due to the larger number of trades triggered. However, both the winning
percentage and the profit per trade dropped slightly, from 77.5% and 78 bps to 74.1% and 70
bps respectively. This is expected since lowering the threshold means lowering the ‘standard’ in
identifying trading opportunities.
The results in this section are presented without transaction costs. But as will be discussed

and analyzed in detail in section 5, the profits for the good pair are large enough to cover any
reasonable transaction costs estimation. Note that there is only one pair in the simulation trading
for simplicity, but in real data trading strategy we have at least 25 potential pairs every day.

5. Back-testing on real data

5.1. The data

The data for this study are from the NYSE Trade and Quote database on Wharton Research Data
Services (WRDS) platform. Tick data for 26 oil company stocks during trading hours 9:30 AM to

10



October 31, 2015 Quantitative Finance PairTrading˙1031

Table 2. Oil Company Stocks Descriptions and Statistics (as of December 2014)

NYSE
ticker

mkt cap
in Billion

annual
revenue

avg daily volume
from Google

Finance (in M)

avg daily #
of trades

from tick data

min daily #
of trades

from tick data

Exxon Mobil Corporation XOM 393.87 420,836 12.71 62977 30546
Royal Dutch Shell plc (ADR) RDSA 215.73 451,235 2.5 10478 4281
Chevron Corporation CVX 207.98 220,264 7.29 42279 20506
Total SA (ADR) TOT 132.18 227,969 1.4 5773 2749
BP plc (ADR) BP 119.95 379,136 6.78 22895 8966
ConocoPhillips COP 82.85 56,185 8.07 34616 15317
Occidental Petroleum Corporation OXY 61.82 24,561 6.6 28982 14690
Statoil ASA(ADR) STO 57.53 87,781 2.85 7061 3272
Petroleo Brasileiro Petrobras SA (ADR) PBR 57.49 141,462 48.82 65939 27431
EOG Resources Inc EOG 49.35 14,290 6.21 24409 11296
Suncor Energy Inc. (USA) SU 44.34 35,398 4.56 19876 10121
Anadarko Petroleum Corporation APC 39.74 14,581 6.05 30750 10493
Phillips 66 PSX 38.83 171,596 4.71 23828 10169
Canadian Natural Resource Ltd (USA) CNQ 35.85 14,182 4.73 16446 5345
Valero Energy Corporation VLO 25.47 138,074 7.05 46740 20537
Marathon Petroleum Corp MPC 25.19 100,248 3.62 26820 13113
Devon Energy Corp DVN 24.16 10,397 4.34 22804 8650
Apache Corporation APA 22.31 16,054 4.53 22623 7876
Hess Corp. HES 21.87 22,247 3.75 18808 7921
Pioneer Natural Resources PXD 20.69 3,506 2.63 14786 7100
Marathon Oil Corporation MRO 18.88 14,959 7.75 32701 16308
Plains All American Pipeline, L.P. PAA 18.27 42,249 1.66 6058 3627
Cenovus Energy Inc (USA) CVE 15.60 16,389 1.85 7051 3114
Continental Resources, Inc. CLR 13.18 3,455 3.72 10450 4899
EQT Corporation EQT 12.91 1,862 1.82 12835 5003
Cabot Oil & Gas Corporation COG 12.83 1,746 6.11 35182 16146

4:00 PM are downloaded, then processed to be 5-minutes time series by extracting the first tick
price right after each 5-minute mark (i.e., 9:30:00, 9:35:00 etc.).
Initially, 31 stocks with the largest market capital in the Oil Refining & Marketing industry group

traded on NYSE and/or NASDAQ were downloaded. After processing tick prices, we removed five
stocks with too many missing data1, all of them non-US companies. The information of the 26
stocks are shown in table 2. Notice that our trading universe comprises stocks with extremely
large market caps and liquidity, compared with most studies in the pairs trading literature. All the
companies have market caps over $12 billion. On average, there are 68.0 tick prices per minute for
each stock. The availability of such a high frequency database is critical for this study.
We first did the back-testing on the period of January 2, 2013 to April 29, 2015 (579 business

days). Then, in order to examine the performance of the strategy during market turmoil, we back-
tested on an earlier period of July 2, 2007 to December 31, 2008 (374 business days). It is worth
pointing out that although the data periods in this study may seem short compared with prior
literature, the high-frequency nature of the data set makes it actually larger, in terms of numbers
of data points per stock. 579 days with 79 data points per day are equivalent to 579×79/252 = 181
years of daily data.
For the more recent 2013–15 period, we used the 26 stocks described before. For the earlier period

however, five stocks (CLR, CVE, MPC, PAA, PSX) either had not started trading or did not have
enough liquidity. We used the other 21 stocks for the 2007–08 period.

5.2. Transaction costs and return calculation

Pairs trading strategies aim to capture stable and modest profits from market mispricing. As a
result, transaction costs can have a major impact on the profitability. Bowen et al. (2010) found

1A missing data refers to the situation where there is no trade in a five-minute interval. There are only 11 total missing data

points among the remaining 26 stocks in the whole analysis period. We interpolate these 11 missing points.
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that a moderate level of 15 basis points (bps) transaction costs2 would reduce the excess returns
by more than 50% on one year’s data of 100 UK stocks. Testing on the US equity market in the
period 1963–2009, Do and Faff (2012) found that profitability of the simple algorithm from the
original Gatev et al. (2006) paper was largely diminished after various transaction costs.
The magnitude of transaction costs depends on many factors such as the type and size of the

investor (institutional vs. retail), liquidity of the particular security and the size and timing of the
order. Gatev et al. (2006) estimated a large transaction cost of 162 bps per pair per round-trip for
the period 1962–2002. However, the figure has been vastly reduced in recent years due to technology
advances. Avellaneda and Lee (2010) chose a transaction cost of 10 bps per round-trip pair-trade.
Bogomolov (2013) used a more conservative estimation of 40 bps per round-trip pair-trade.
Transaction costs mainly consist of commissions, bid–ask spreads, and short selling costs (Do

and Faff 2012). In this paper where we consider trading a pool of highly liquid large cap US stocks
from the perspective of hedge funds, commissions and short selling costs are negligible. The bid
ask spread—also known as bid ask bounce, slippage, or market impact—can be estimated both
directly and indirectly. Since all stocks in our investment universe are highly liquid, we used one
of the lower estimates in literature as our baseline number, 10 bps per round-trip per pair-trade
as in Avellaneda and Lee (2010). An alternative way to estimate bid–ask spreads is to use delayed
trading as a proxy. As argued by Gatev et al. (2006), if a trade is made one period (one day
in their case) after the divergence signal is identified, instead of immediately, the drop in return
would be a rough estimate of half the round-trip transaction cost. As will be seen in detail in the
next subsection, the proxy result is consistent with our selection of 10 bps.

Another tricky issue in comparing pairs trading studies is the return calculation, which warrants
two considerations. The first is the leverage ratio. Pair trading, as a market neutral strategy, has
a zero net initial investment (long $1 and short $1 for example) in theory. But it is not zero in
practice. In order to short stocks, we need to put margin deposits in the brokerage account. The
number of dollars of market exposure allowed for every dollar in the margin account is called the
margin leverage ratio. We compute our returns as profit or loss divided by the margin, as does the
literature.
Avellaneda and Lee (2010) used a 4:1 leverage, which means $2 long and $2 short is permitted

for every dollar deposited. Gatev et al. (2006) defined excess return as the profit/loss for each $1
long–$1 short pair trade. This implied a 2:1 leverage. Large institutional investors can generally get
large leverages. In this paper, we assumed a 5:1 leverage. Note that although return numbers largely
depend on the leverage selection, Sharpe ratios do not, hence are more suited to be compared across
studies. Annualized Sharpe ratio is calculated as

Annualized Sharpe ratio =
Annualized return

Annualized volatility
=

E(daily return)× 252

sd(daily return)×
√
252

The second consideration in return calculation is return on committed capital versus return on
actual employed capital (see Gatev et al. 2006). The former uses capital related to all the selected
pairs for a day; the latter only uses capital related to those pairs that are traded in the day. Gatev
et al. argue that ‘... to the extent that hedge funds are flexible in their sources and uses of funds,
computing excess return relative to the actual capital employed may give a more realistic measure
of the trading profits.’ When discussing results in the next subsection, we refer to the return on
actual employed capital (but we displayed both types of returns and corresponding Sharpe ratios
in tables 3–6).
To illustrate all the above points, consider an example where we selected 20 pairs each trading

2It was unclear to us whether these transaction costs were per round trip or per trade.
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Table 3. Jun’13–Apr’15 Trading Results for Different Pair Selections and Transaction Costs

Pair
selection
criteria

Trans-
action
cost

# of
total
trades

avg # of
trades
per day

% of
winning
trades

Total
PNL($)
after TC

Ann. Sharpe
based on
employed
capital

Ann.
return on
employed
capital

Ann. Sharpe
based on
committed
capital

Ann.
return on
commited
capital

PNL per
trade in bp
(breakeven

TC)

top 25 10 bp 1050 2.20 53.9% 1.946 3.353 148.1% 1.256 10.4% 17.6
top 50 10 bp 1897 3.97 54.2% 3.710 3.885 187.8% 1.738 10.1% 19.6
top 75 10 bp 2694 5.64 53.2% 4.371 4.138 192.7% 1.694 7.9% 16.2
top 100 10 bp 3507 7.34 52.9% 4.879 4.078 190.8% 1.592 6.6% 13.9

top 50 0 bp 1897 3.97 59.7% 5.607 5.386 346.8% 2.609 15.7% 29.6
top 50 10 bp 1897 3.97 54.2% 3.710 3.885 187.8% 1.738 10.1% 19.6
top 50 20 bp 1897 3.97 49.0% 1.813 2.338 85.2% 0.850 4.7% 9.6

top 50
wait one
period

10 bp 1897 3.97 53.1% 2.481 3.129 125.3% 1.244 6.6% 13.1

day based on calibration results. The margin deposit required for each $1 long–$1 short trade is

Gross market exposure

leverage
=

$2

5
= $0.4

Assuming a 10 bp transaction cost per round trip pair trade, then

(a) daily return on committed capital

=
daily net PNL

margin position
=

(daily PNL)− $0.001× (# of trades)

$0.4× (# of pairs)

(b) daily return on actual employed capital

=
daily net PNL

margin position
=

(daily PNL)− $0.001× (# of trades)

$0.4× (# of trades)

Consider the following three scenarios:

(i) If in one day the daily profit is $0.3 with 2 trades, return (a) is 0.3−0.002
0.4×20 = 3.725%; return

(b) is 0.3−0.002
0.4×2 = 37.25%

(ii) If the daily loss is -$1.2 with 5 trades, return (a) is −1.2−0.005
0.4×20 = −15.06%; return (b) is

−1.2−.005
0.4×5 = −60.25%

(iii) If no trade in one day, the daily return is 0 for both returns (a) and (b).

5.3. Empirical results

5.3.1. June 2013–April 2015. As described in section 3, for each day, we use the previous
100 days’ data to select best pairs (i.e. the formation period is 100 days, trading period is one day).
Therefore the first five months (January to May 2013) in the data is left out for calibration and
the trading starts from June 2013. We report the trading results for different pair selection criteria
and transaction cost levels in table 3. As in the simulation, among three threshold ϵ levels (98%,
95% and 90% percentiles), the 98% threshold yields the highest profit per trade. Thus, the results
reported in this section are based on threshold ϵ = 98%.
The top part of table 3 shows the results for four different pair selection criteria. As discussed,

for each trading day we skipped the pairs with negative estimated θL and then selected top
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Figure 3. Back-testing performance for period Jun’13–Apr’15 (top 50 pairs, threshold=98%,
transaction costs=10 bps)

25/50/75/100 pairs as trading candidates according to their rankings.
As expected, the average number of trades per day depends on the number of pairs selected:

the more pairs we select, the higher number of trades per day. The profit per trade ranges from
14 to 20 bps after deducting the 10 bps transaction costs. We selected the ‘top 50’ as our baseline
strategy since it has the best overall performance metrics.
The middle part of table 3 shows the impact of transaction costs for the baseline ‘top 50’ selection

method. Without transaction costs, the profit per trade is 30 bps. In other words, the break-
even transaction cost is 30 bps on this dataset period. Even if we relax the estimate to a more
conservative 20 bps per trade, we still have a 10 bps per trade profit and a 2.338 annualized Sharpe
ratio, compared with the Sharpe ratio of 1.51 from 2003 to 2007 by Avellaneda and Lee (2010).
Finally, we rerun the baseline strategy but with the wait-one-period constraint mentioned before.

Gatev et al. (2006) argued that when a spread is identified, it is more likely that the winner stock
price is an ask price and the loser stock price is a bid price. After waiting a period, five minutes in
our strategies, the prices are presumably equally likely to be bid or ask prices. Therefore the drop
in PNL after waiting for five minutes as opposed to making the trade at the moment of divergence
signal, would be a proxy of half the bid ask bounce—the other half happening at convergence, in
the same vein. Of course, part of this drop could also be attributed to the natural mean-reversion
in prices. Comparing the second and the bottom lines in table 3, the drop in profit per trade is 6.5
bps. If the drop was exclusively due to the bid–ask bounce, the proxy would be 6.5× 2 = 13 bps1,
which is consistent with our direct estimation of 10 bps.

1Out of the 3.97 average trades per day, only 0.21 or about 5% trades converged, i.e., reverting back to
L2i−2+L2i−1

2
level

before day’s close. Most other spreads were on their way toward
L2i−2+L2i−1

2
when market closed. As stated in the trading

rules, we close all pairs at market’s close. Hence, the waiting-one-period proxy apply to most pairs for only the opening half of

the trade.
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Table 4. Jun’13-Apr’15 Trading Results by Quarter (Top 50 pairs, transaction costs = 10 bps)

Quarter
# of
total
trades

% of
winning
trades

Total
PNL
($)

Annl Sharpe
based on
employed
capital

Annl
return on
employed
capital

Annl Sharpe
based on
committed
capital

Annl
return on
commited
capital

PNL per
trade in bp

2013 Q3 209 53.1% 0.070 1.96 52.4% 0.39 1.3% 3
2013 Q4 277 49.5% 0.661 4.48 475.6% 2.82 14.3% 24
2014 Q1 212 55.2% 0.304 0.96 27.1% 3.06 6.5% 14
2014 Q2 188 54.8% 0.690 5.56 222.8% 2.50 14.6% 37
2014 Q3 230 53.0% 0.174 4.43 132.8% 1.34 3.5% 8
2014 Q4 500 56.8% 1.489 5.41 459.9% 2.43 34.3% 30
2015 Q1 204 50.0% -0.007 3.91 172.0% -0.06 -0.2% 0
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Figure 4. WTI Spot Price 2007–2015

To see the stability of the strategies over time, we plotted the PNL and returns over the trading
period of almost two years, and reported the results by quarter. As seen from figure 3, both the
PNL and returns increase quite stably over the period.
In table 4, quarterly results are reported for the baseline ‘top 50’ strategy with 10 bps transaction

costs. Out of the seven quarters in the period, six are winning quarters and one breaks even.

5.3.2. The year 2008. As a contrarian strategy, pairs trading tends to perform better during
markets downturns (Do and Faff 2010). The results during the months of recent oil market crash
(Jul’14–Jan’15) show a promising performance: the average monthly PNL without transaction costs
during this seven-month span is 43% higher than the whole period. To further test this hypothesis
and verify our strategies, we repeated the analysis on the whole year 2008, during which the oil
market spiked to an all-time high of $145 per barrel in July then crashed to $30 in December amid
global financial crisis, as shown in the US crude oil benchmark index West Texas Intermediate
(WTI) history price chart (figure 4).
The original 26 stocks we selected were not all available for the period July 2007–Dec 2008 (the

last five months of 2007 were needed for calibration). Three (CVE, MPC, PSX) had not started
trading; two (CLR, PAA) had too many missing data due to low liquidity. Therefore we used 21
stocks and

(
21
2

)
= 210 total pairs for this period.

The results for 2008 are presented in table 5. The average number of trades per day for the
baseline ‘top 50’ strategy remarkably increases to 6.26, from 3.97 in the 2013–15 period. The
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Table 5. 2008 Trading Results for Different Pair Selections and Transaction Costs

Pair
selection
criteria

Trans-
action
cost

# of
total
trades

avg # of
trades
per day

% of
winning
trades

Total
PNL($)
after TC

Ann. Sharpe
based on
employed
capital

Ann.
return on
employed
capital

Ann. Sharpe
based on
committed
capital

Ann.
return on
commited
capital

PNL per
trade in bp
(breakeven

TC)

top 25 10 bp 794 3.18 60.2% 6.260 6.103 1571.5% 4.370 85.9% 78.8
top 50 10 bp 1566 6.26 60.2% 12.133 7.169 1787.6% 4.333 82.4% 77.5
top 75 10 bp 2279 9.12 60.0% 17.406 7.679 1922.5% 4.164 77.7% 76.4
top 100 10 bp 2980 11.92 60.1% 23.405 7.311 1975.3% 4.005 78.4% 78.5

top 50 0 bp 1566 6.26 62.7% 13.699 8.223 2938.9% 4.763 97.3% 87.5
top 50 10 bp 1566 6.26 60.2% 12.133 7.169 1787.6% 4.333 82.4% 77.5
top 50 20 bp 1566 6.26 57.0% 10.567 6.084 1071.2% 3.874 68.7% 67.5
top 50 40 bp 1566 6.26 51.6% 7.435 3.834 349.2% 2.867 44.2% 47.5

top 50
wait one
period

10 bp 1566 6.26 58.0% 8.415 6.476 754.6% 4.002 51.9% 53.7

Table 6. 2008 Trading Results by Quarter (Top 50 pairs, transaction costs = 10 bps)

Quarter
# of
total
trades

% of
winning
trades

Total
PNL
($)

Annl Sharpe
based on
employed
capital

Annl
return on
employed
capital

Annl Sharpe
based on
committed
capital

Annl
return on
commited
capital

PNL per
trade
in bp

WTI
quarterly
return

2008 Q1 302 62.3% 1.021 8.05 1380.8% 4.43 23.3% 34 5.2%
2008 Q2 193 51.8% 0.179 3.17 100.9% 1.56 3.6% 9 35.6%
2008 Q3 511 61.1% 4.286 8.36 3541.4% 5.25 132.3% 84 -29.5%
2008 Q4 560 61.3% 6.648 8.83 12314.0% 6.23 276.3% 119 -62.2%

higher numbers of trading opportunities were driven by higher volatilities in stock prices1. The
annual volatilities of all stocks in the 2013–15 period range from 11.1% to 37.7% with mean 23.1%.
In 2008, they range from 31.2% to 63.0% with mean 50.3%. The higher volatilities in stock prices
were driven by crude oil’s volatile movements (see Geman 2015). WTI’s volatilities were 27% in
Jun’13–Apr’15 and 55% in 2008.
Furthermore, the strategies’ returns are much larger in 2008. For the baseline ‘top 50’ strategy

with a 10 bps transaction cost, the annualized return is 187.8% for the recent period and 1787.6%
for 2008. The 7.17 Sharpe ratio of 2008 also dominates the 3.89 in 2013–15. The breakeven trans-
action cost is 88 bps for 2008 compared with 30 bps for 2013–15. More impressively, the quality
performance in 2008 is consistent throughout the year as shown in the quarterly breakdown in
table 6. In fact, the returns before transaction costs are positive in every month.
Lastly in table 5, the drop in profit per trade when we apply the wait-one-period constraint is

78−54 = 24 bps. As in section 5.3.1, less than 13 bps of the drop is likely due to the bid–ask bounce,
while the rest is presumably caused by the convergence of the spread, which is more prominent in
the more volatile 2008. The fact that our strategy is still profitable in both periods after posing the
wait-one-period constraint shows its robustness to the speed of execution (see Bowen et al. 2010).
Within 2008, the trading strategy performed extremely well in the second half of year (figure

5), coinciding with the nosedive of WTI price. This is clear from table 6: the order of the strat-
egy performance of the four quarters is the exact reverse order of WTI’s quarterly performance.
The monthly returns of the baseline trading strategy (not reported) and WTI index are strongly
negatively correlated, with a correlation coefficient -0.78. This figure is only -0.04 in the 2013–15
period. We identified two reasons for this significant difference. The first is again volatility: higher
WTI and stock volatilities can much better translate the plummeting prices into trading profits

1We recorded the number of times each stock is selected and traded over the whole period, to see if there are any discrepancies.
Not surprisingly, they have a strong relationship with stocks volatility. The correlation between a stock’s volatility and number

of times it being selected and traded are 88.2% and 86.6% respectively.
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Figure 5. Back-testing performance for period 2008 (top 50 pairs, threshold=98%, transaction
costs=10 bps)

through more trading opportunities. After all, pairs trading fundamentally relies on temporary
relative mispricing of two stocks. The second reason is that the oil market crash in 2008 was more
dramatic and more impactful. In 2008, the WTI index plunged almost 80% in less than six months,
compared with a drop of almost 60% in seven months from mid-2014 to early 2015. The stocks in
our trading universe lost 49% on average during the 2008 crash and only 29% in the recent market
turmoil.

6. Conclusion

This paper introduces a doubly mean-reverting process to model stock price spreads. We developed
intraday pairs trading strategies using high frequency data with five-minute intervals on oil company
stocks. Results from both simulations and real data back-testing display significant realized profits.
In particular, we are able to achieve a 3.9 annualized Sharpe ratio and a 188% annualized return
after transaction costs for the period June 2013 to April 2015. We also tested the hypothesis
that pairs trading strategies perform better in market turmoil by back-testing on 2008 data. The
impressive Sharpe ratio and annualized return of 7.2 and 1788% respectively in that year underpin
this theory as well as the fundamental relationship that oil company stocks are driven by crude
oil price. We also showed that the strategy is robust to both speed of execution and reasonable
transaction costs.
There are several possible directions for future research. First, the frequencies of the two processes

may be changed. To utilize stock price data with high liquidity, intervals smaller than five minutes
could be used as the frequency for Y (t). On the other hand, we can increase the interval length of
L(t), to make the holding period longer, enabling overnight positions. Second, some details in the
strategy implementation may be refined to achieve higher returns, such as the optimal thresholds
to enter and exit a trade, and the training windows of 100 and 30 days. This has to be done in a
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careful manner to avoid over-fitting and data-snooping biases. Third, other types of data available
on the NYSE Trade and Quote database can be included in the model. In particular, volume data
may be used to adjust for different trading intensities throughout the day. Lastly, the model can be
extended (a) from pairs trading to groups trading (also known as generalized pairs trading) with
the simultaneous buying and selling of more than two stocks which co-move in some pattern and
(b) from stock pairs within the Oil Refining industry group to cross-industry pairs, e.g., those in
the highly related Oil Services & Equipment industry group.
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Appendix A: Derivation of likelihood function for Y (t) and the maximum likelihood
estimation

The 30 summands in equation (12) are similar. Define Y0 = L0 = 0 so that all 30 terms have
the form ln f(Y79(i−1)+1, Y79(i−1)+2, . . . , Y79i|Y79(i−1) = L2(i−1), Y79(i−1)+1 = L2i−1, Y79i = L2i). We
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work on the first term for now. Since (Y1, Y2, . . . , Y79) are not jointly normal, we perform change
of variables. Let

X1 = Y2 − aY1

X2 = Y3 − aY2

· · ·

X77 = Y78 − aY77

X78 = Y79 − aY78

Then X1, . . . , X78 are i.i.d. N(b1, σ̂
2), where

a = e−θδ

bi =
L2i−2 + L2i−1

2
(1− e−θδ) =

L2i−2 + L2i−1

2
(1− a), i = 1, . . . , 30

σ̂ = σ

√
1− e−2θδ

2θ
= σ

√
1− a2

2θ

Use these 78 equations to recursively cancel out Y2 to Y78, and express Y79 using X’s

L2 = Y79 = X78 + aX77 + a2X76 + · · ·+ a77X1 + a78Y1

= X78 + aX77 + a2X76 + · · ·+ a77X1 + a78L1

Then, the conditional likelihood

ln f(X1, X2, . . . , X78|Y0 = L0, Y1 = L1, Y79 = L2)

= ln
f(x1) · · · f(x77)f(L2 − a78L1 − a77x1 − · · · − ax77)

fU (L2 − a78L1)

= ln(∗) (A1)

where

U = X78 + aX77 + a2X76 + · · ·+ a77X1

∼ N
(
b1(1 + a+ · · ·+ a77), σ̂2(1 + a2 + · · ·+ a154)

)
= N

(
b1
1− a78

1− a
, σ̂2 1− a156

1− a2

)

The f without subscript is the density for N(b1, σ̂
2).

The numerator in (∗) is

(
1

σ̂
√
2π

)78

exp

[
− 1

2σ̂2

(
(x1 − b1)

2 + · · ·+ (x77 − b1)
2 + (L2 − a78L1 − a77x1 − · · · − ax77 − b1)

2
)]

(A2)
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The denominator in (∗) is

1

σ̂
√
2π

√
1− a2

1− a156
exp

[
− 1

2σ̂2

1− a2

1− a156

(
L2 − a78L1 − b1

1− a78

1− a

)2
]

=
1

σ̂
√
2π

√
1− a2

1− a156
exp

[
− 1

2σ̂2

1− a2

1− a156

(
L2 −

1 + a78

2
L1 −

1− a78

2
L0

)2
]

(A3)

Plug equation (A2) and (A3) into (A1). Then plug (A1) and 29 other similar terms into equation
(12),

L = ln f(Y⃗ |L⃗) =
30∑
i=1

ln f(Y79(i−1)+1, . . . , Y79i|Y79(i−1) = L2(i−1), Y79(i−1)+1 = L2i−1, Y79i = L2i)

=

30∑
i=1


−77 ln(σ̂)− 77

2 ln(2π)− 1
2σ̂2

[
(x78(i−1)+1 − bi)

2 + · · ·

+(x78i−1 − bi)
2 + (L2i − a78L2i−1 − a77x79(i−1)+1 − · · · − ax79i−1 − bi)

2
]

+1
2 ln

(
1−a156

1−a2

)
+ 1

2σ̂2
1−a2

1−a156

(
L2i − 1+a78

2 L2i−1 − 1−a78

2 L2i−2

)2


(plug in σ̂)

=

30∑
i=1


−77 ln(σ)− 77

2 ln
(
1−a2

θ

)
− 77

2 ln(π)− θ
σ2(1−a2)

 78∑
j=1

(x78(i−1)+j − bi)
2


+1

2 ln
(
1−a156

1−a2

)
+ θ

σ2(1−a156)

(
L2i − 1+a78

2 L2i−1 − 1−a78

2 L2i−2

)2


(plug in bi−1 and x)

=

30∑
i=1

 −77 ln(σ)− 77
2 ln

(
1−a2

θ

)
− 77

2 ln(π)− θ
σ2(1−a2)(∗∗)

+1
2 ln

(
1−a156

1−a2

)
+ θ

σ2(1−a156)

(
L2i − 1+a78

2 L2i−1 − 1−a78

2 L2i−2

)2

 (A4)

where

(∗∗) =
78∑
j=1

(
Y79(i−1)+j+1 − aY79(i−1)+j + (a− 1)

L2i−2 + L2i−1

2

)2

=

78∑
j=1

Y 2
79(i−1)+j+1 + a2

78∑
j=1

Y 2
79(i−1)+j + 78(a− 1)2

(L2i−2 + L2i−1)
2

4

+ (a− 1)(L2i−2 + L2i−1)
78∑
j=1

Y79(i−1)+j+1 − a(a− 1)(L2i−2 + L2i−1)
78∑
j=1

Y79(i−1)+j

− 2a

78∑
j=1

Y79(i−1)+j+1Y79(i−1)+j (A5)
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Plug (A5) into (A4) and expand the summations,

L(θ, σ) =− 77× 30 ln(σ)− 77× 30

2
ln

(
1− a2

θ

)
− 77× 30

2
ln(π) +

30

2
ln

(
1− a156

1− a2

)
− θ

σ2(1− a2)
(Aa2 +Ba+ C) +

θ

σ2(1− a156)
(Da156 + Ea78 + F ) (A6)

where

A =
30∑
i=1

 78∑
j=1

Y 2
79(i−1)+j + 78

(L2i−2 + L2i−1)
2

4
− (L2i−2 + L2i−1)

78∑
j=1

Y79(i−1)+j


B =

30∑
i=1

−156
(L2i−2 + L2i−1)

2

4
+ (L2i−2 + L2i−1)

78∑
j=1

Y79(i−1)+j+1

+(L2i−2 + L2i−1)

78∑
j=1

Y79(i−1)+j − 2

78∑
j=1

Y79(i−1)+j+1Y79(i−1)+j


C =

30∑
i=1

 78∑
j=1

Y 2
79(i−1)+j+1 + 78

(L2i−2 + L2i−1)
2

4
− (L2i−2 + L2i−1)

78∑
j=1

Y79(i−1)+j+1


D =

30∑
i=1

[
1

4
L2
2i−1 +

1

4
L2
2i−2 −

1

2
L2i−1L2i−2

]

E =

30∑
i=1

[
1

2
L2
2i−1 −

1

2
L2
2i−2 − L2iL2i−1 + L2iL2i−2

]

F =

30∑
i=1

[
L2
2i +

1

4
L2
2i−1 +

1

4
L2
2i−2 − L2iL2i−1 − L2iL2i−2 +

1

2
L2i−1L2i−2

]

In the expression of L in (A6), the two parameters are θ and σ. A,B,C,D,E and F are functions
of Li and Yi; a = e−θδ contains parameter θ; δ = δ1

78 is the discretization step size.
Setting first order derivatives of L with respect to σ to zero

∂L
∂σ

= −77× 30
1

σ
− 2

σ3

[
θ

1− a156
(Da156 + Ea78 + F )− θ

1− a2
(Aa2 +Ba+ C)

]
= 0 (A7)

The optimal pair (θ, σ) that maximizes L satisfies ∂L
∂σ = 0. From (A7), we can express σ using θ

σ(θ) =

√
2

77× 30

[
θ

1− a2
(Aa2 +Ba+ C)− θ

1− a156
(Da156 + Ea78 + F )

]
(A8)

Plug (A8) into (A6), L(θ, σ) becomes L∗(θ):

L∗(θ) = −77× 30 ln
(
σ(θ)

)
− 77× 30

2
ln

(
1− a2

θ

)
− 77× 30

2
ln(π) +

30

2
ln

(
1− a156

1− a2

)
− 77× 30

2

The maximal solution for L(θ, σ) is the maximal solution for L∗(θ), which is solved numerically.
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