
Min-Sum 2-Paths Problems

Trevor Fenner∗ Oded Lachish† Alexandru Popa‡

Abstract

An orientation of an undirected graph G is a directed graph obtained by replacing each
edge {u, v} of G by exactly one of the arcs (u, v) or (v, u). In the min-sum k-paths orientation
problem, the input is an undirected graph G and ordered pairs (si, ti), where i ∈ {1, 2, . . . , k}.
The goal is to find an orientation of G that minimizes the sum over every i ∈ {1, 2, . . . , k} of
the distance from si to ti.

In the min-sum k edge-disjoint paths problem the input is the same, however the goal is to
find for every i ∈ {1, 2, . . . , k} a path between si and ti so that these paths are edge-disjoint
and the sum of their lengths is minimum. Note that, for every fixed k ≥ 2, the question of
NP-hardness for the min-sum k-paths orientation problem and the min-sum k edge-disjoint
paths problem have been open for more than three decades. We study the complexity of these
problems when k = 2.

We exhibit a PTAS for the min-sum 2-paths orientation problem. A by-product of this
PTAS is a reduction from the min-sum 2-paths orientation problem to the min-sum 2 edge-
disjoint paths problem. The implications of this reduction are: (i) an NP-hardness proof for
the min-sum 2-paths orientation problem yields an NP-hardness proof for the min-sum 2 edge-
disjoint paths problem, and (ii) any approximation algorithm for the min-sum 2 edge-disjoint
paths problem can be used to construct an approximation algorithm for the min-sum 2-paths
orientation problem with the same approximation guarantee and only an additive polynomial
increase in the running time.

1 Introduction

In communications, Multihoming is the process of communicating through more than one connec-
tion. The goal is to increase communication reliability. Now imagine that each connection must
be made between two distinct entities, for example, if a customer has numerous internet providers,
each with a distinct entry point that requires a connection to a distinct end-point, see [1, 8]. This
is the case we deal with here.

In order to optimize reliability when using multiple connections a natural goal is that the
channels are disjoint. We model the problem of determining whether such channels exist with the
k edge-disjoint paths problem, where the input is an instance consisting of a graph and pairs of
∗Birkbeck, University of London, London, UK. Email: trevor@dcs.bbk.ac.uk
†Birkbeck, University of London, London, UK. Email: oded@dcs.bbk.ac.uk
‡Department of Communications and Networking Aalto University School of Electrical Engineering P.O. Box

13000, 00076 Aalto, FINLAND. Email: alexandru.popa@aalto.fi

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42135895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vertices {si, ti}, where i ∈ {1, 2, . . . , k}, and the goal is to find k edge-disjoint paths between the k
pairs {si, ti}. Robertson and Seymour proved in [7] that, for fixed k, this problem is in P.

However, just having k edge-disjoint paths is often not sufficient. A natural requisite is that the
paths found are optimized according to some condition. Such conditions can be minimum maximal
length or minimum sum of lengths. These conditions lead to two optimization problems: the first is
known as the min-max k edge-disjoint paths problem; and the latter as the min-sum k edge-disjoint
paths problem. In [6] Li et al. show that the min-max k edge-disjoint paths problem is NP-hard,
even when k = 2 and {s1, t1} = {s2, t2}. In contrast, the question of NP-hardness of the min-sum
k edge-disjoint paths problem for fixed k ≥ 2 has been open for more than twenty years.

An orientation of an undirected graph G is a directed graph obtained by replacing each edge
{u, v} of G by exactly one of the arcs (u, v) or (v, u). In the min-sum k-paths orientation problem,
the input instance is an undirected graph G and ordered pairs (si, ti), where i ∈ {1, 2, . . . , k}. The
goal is to find an orientation of G in which the sum over all i ∈ {1, 2, . . . , k} of the distance from
si to ti is minimized. The min-sum k-paths orientation problem is a relaxation of the min-sum k

edge-disjoint paths problem in the following sense: if the requirement for a path between si and ti
for each i ∈ {1, 2, . . . , k} is replaced by the requirement for an unsplittable flow of size 1 from si
to ti for each i ∈ {1, 2, . . . , k} and these flows may share edges if they are in the same direction,
then we get the min-sum k-paths orientation problem. We note that the question of NP-hardness
for the min-sum k-paths orientation problem, for fixed k ≥ 2, has also been open for more than
twenty years. In this paper we focus on the min-sum 2-paths orientation problem and its relation
with the min-sum 2 edge-disjoint paths problem.

There have been a number of results for the min-sum k edge-disjoint paths problem. Zhang and
Zhao [10] have shown that in general graphs for general k the min-sum k edge-disjoint paths problem
is FPNP -complete. They gave a bicriteria approximation algorithm for the problem. There have
also been a number of results for the min-sum 2 edge-disjoint paths problem. Zhang and Zhao have
shown that this problem has a constant factor approximation. Kobayashi and Sommer [5] showed
that the problem is in P if G is planar and s1, t1, s2 and t2 are on at most two faces of the graph.
Kammer et al. [4] showed that it is in P if G is a chordal graph. For a comprehensive discussion of
results, see Kobayashi and Sommer [5].

Finally, the min-sum k-paths orientation problem has been studied by Hassin and Megiddo [2].
There they showed that this problem is NP-hard for general k. They also studied the min-max k
paths-orientation problem. They proved that this problem is NP-hard even for k = 2. In [3], Ito
et al. also studied these two problems. They showed that, for unrestricted k, the min-sum k-paths
orientation problem does not have a polynomial time algorithm with an approximation factor of 2
or less, unless P = NP. They presented approximation algorithms for restricted variations of this
problem, for example, for certain classes of graphs, such as cacti.

In this paper, we exhibit a PTAS for the min-sum 2-paths orientation problem. A by-product
of this PTAS is a reduction from the min-sum 2-paths orientation problem to the min-sum 2
edge-disjoint paths problem. The implications of this reduction are: (i) that an NP-hardness
proof for the min-sum 2-paths orientation problem yields an NP-hardness proof for the min-
sum 2 edge-disjoint paths problem, and (ii) that any approximation algorithm for the min-sum
2 edge-disjoint paths problem can be used to construct an approximation algorithm for the min-

2

sum 2-paths orientation problem with the same approximation guarantee and only an additive
polynomial increase in the running time. Our results suggest that if indeed the min-sum 2-paths
orientation problem is NP-hard, then proving this may be more difficult than it seems because
of the implication for the min-sum 2 edge-disjoint paths problem. The reduction also implies,
according to results by Kobayashi and Sommer [5] and Kammer et al. [4] for the min-sum 2 edge-
disjoint paths problem, that the orientation problem is in P if G is chordal or if it is planar and
s1, t1, s2 and t2 are on at most two faces of the graph.

One of the central ingredients we use is a structural lemma that states that for any given input
instance (G, s1, t1, s2, t2), if there exists an orientation in which the distances from s1 to t1 and from
s2 to t2 are both finite there exists an optimal orientation with two min-sum directed paths, one
from s1 to t1 and the other from s2 to t2, such that either (i) these directed paths are arc-disjoint,
or (ii) the directed paths are not arc-disjoint and their common edges form a directed-path. We
obtain the reduction to the min-sum 2 edge-disjoint paths problem by showing that if, on the same
input instance, we execute an algorithm for min-sum 2 edge-disjoint problem and an algorithm that
works if (ii) holds, then the best result is optimal. We obtain the PTAS in a similar manner, by
showing that a PTAS exists for instances on which (i) holds.

2 Preliminaries

We use [k] to denote the set {1, 2, . . . , k}. An undirected graph is an ordered pair G = (V,E),
where V is a set of vertices and E is a set of edges, each edge being a subset of V of size two. A
directed graph is an ordered pair ~G = (V, ~E), where V is a set of vertices and ~E is a set of ordered
pairs of vertices of V called arcs. We use the notation V (G) for the set of vertices of G or ~G and
E(G) for the set of edges of G, and E(~G) for the set of arcs of ~G. When clear from the context we
use n instead of |V (G)|.

Definition 1 [Orientation] An orientation of an undirected graph G = (V,E) is a directed
graph ~H = (V, ~E) such that, for every {u, v} ∈ E, either (u, v) ∈ ~E or (v, u) ∈ ~E, but not both. We
use the notation ~HG to denote that ~H is an orientation of G.

A path P or a dipath ~P in G or ~G, respectively, is a tuple (u1, u2, . . . , uk) ∈ V k such that for
every i ∈ [k−1] we have that {ui, ui+1} ∈ E(G) or (ui, ui+1) ∈ E(~G), respectively, and u1, u2, . . . , uk
are all distinct. The path (u, . . . , v) in G is a path between u and v. The dipath (u, . . . , v) in
~G is a dipath from u to v. We use the notation Pu,v to indicate that the path is between u

and v, and the notation ~Pu,v to indicate that the dipath is from u to v. A cycle in G is a tuple
C = (u1, u2, . . . , uk, u1) ∈ V k+1 such that (u1, u2, . . . , uk) is a path and {uk, u1} ∈ E(G). Note that
we often consider a path to be a subgraph.

A path P ′ = (u1, . . . , u`) in a graph is a subpath of the path P = (v1, . . . , vk) if there exists
i ∈ [k− `+ 1] such that (u1, u2, . . . , u`) = (vi, vi+1, . . . , vi+`−1). A graph (V ′, E′) is a subgraph of a
graph (V,E) if V ′ ⊆ V and E′ ⊆ E.

The length of P or ~P , denoted by len(P) or len(~P), respectively, is k−1. The distance between
u and v in V (G), denoted by distG(u, v), is the length of a shortest path between u and v if such a

3

path exists, and distG(u, v) =∞ otherwise. The distance between a pair of paths P and P ′ in G,
denoted by distG(P, P ′), is the minimal distance between a vertex in V (P) and a vertex in V (P ′).

The distance from u ∈ V (G) to v ∈ V (G) in a directed graph ~G, denoted by dist ~G(u, v), is
the length of a shortest dipath from u to v if such a dipath exists, and dist ~G(u, v) =∞ otherwise.
When the graph under consideration is clear from context, we simply write dist(u, v).

Definition 2 [BG(v, x)] Let G be a graph, v ∈ V (G) and x > 0. Then BG(v, x) is the subset of
E(G) containing all the edges {u,w} ∈ E(G) such that distG(v, u) < x and distG(v, w) < x.

Definition 3 [Instance] An instance is an ordered tuple (G, s1, t1, s2, t2) such that G is an undi-
rected graph and s1, t1, s2 and t2 are vertices in V (G).

Problem 4 (Min-Sum 2 Edge-Disjoint Paths) Given an instance (G, s1, t1, s2, t2), find edge
disjoint paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) + len(Ps2,t2) is minimum.

2.1 The Min-Sum 2 Paths Orientation Problem

Problem 5 (Min-Sum 2 Paths Orientation) Given an instance (G, s1, t1, s2, t2), find an ori-
entation ~HG of G that minimizes dist ~HG

(s1, t1) + dist ~HG
(s2, t2). We call such an orientation an

optimal orientation.

Definition 6 [OPT] Let (G, s1, t1, s2, t2) be an instance. We define OPT (G, s1, t1, s2, t2) =
dist ~HG

(s1, t1) + dist ~HG
(s2, t2) for any optimal orientation ~HG. We write OPT when the instance

under consideration is clear from the context.

We make the following definition in order to recast the problem in terms of undirected graphs.

Definition 7 [Non-conflicting paths and optimal paths] Let G be an undirected graph and
x1, y1, x2, y2 ∈ V (G). Paths Px1,y1 and Px2,y2 in G are non-conflicting if there exists an orienta-
tion ~HG in which ~Px1,y1 = Px1,y1 and ~Px2,y2 = Px2,y2 and are optimal if they are non-conflicting
and len(Px1,y1) + len(Px2,y2) = OPT (G, x1, y1, x2, y2) for the instance (G, x1, y1, x2, y2).

Observe that for any optimal orientation ~HG for an instance (G, s1, t1, s2, t2) any two shortest
dipaths (s1, . . . , t1) and (s2, . . . , t2) in ~HG are an optimal pair of paths and in particular a non-
conflicting pair of paths. We note that checking whether two paths are non-conflicting can easily
be done in polynomial time. By the following observation, we see that, in order to show that
OPT (G, s1, t1, s2, t2) ≤ k, it is sufficient to find non-conflicting paths Ps1,t1 and Ps2,t2 such that
len(Ps1,t1) + len(Ps2,t2) ≤ k.

Observation 8 Let (G, s1, t1, s2, t2) be an instance. If Ps1,t1 and Ps2,t2 are non-conflicting, then
OPT (G, s1, t1, s2, t2) ≤ len(Ps1,t1) + len(Ps2,t2).

Without loss of generality, we always make the following assumption:

Assumption 9 For every given instance (G, s1, t1, s2, t2), we assume that OPT < ∞, G is con-
nected and that s1, t1, s2, t2 are distinct.

We may make this assumption since it is easy to decide whether OPT = ∞ and the problem on
an instance (G, s1, t1, s2, t2) such that s1, t1, s2 and t2 are not distinct can be easily reduced to the
problem on an instance (G′, s′1, t′1, s′2, t′2) where s′1, t′1, s′2 and t′2 are distinct.

4

3 Algorithm Overview and Definitions

We start by giving an algorithm that finds an optimal pair of paths for a restricted set of instances.
Afterwards we explain how to obtain our claimed results by extending this algorithm.

Let (G, s1, t1, s2, t2) be an instance that has an optimal pair of edge-disjoint paths Ps1,t1 and
Ps2,t2 such that dist(Ps1,t1 , Ps2,t2) > dist(s1, t1)/2. Consequently, any shortest path between s1 and
t1 does not intersect Ps2,t2 . For such an instance finding an optimal pair of paths can be done as
follows: (i) find a shortest path P ′s1,t1 (ii) let G′ be the graph resulting from removing the edges of
P ′s1,t1 from G, and (iii) find a shortest path P ′s2,t2 in G′. We refer to this as the simple algorithm.

Observe that G′ contains all the edges of Ps2,t2 , since P ′s1,t1 and Ps2,t2 are edge disjoint. Hence,
len(P ′s2,t2) ≤ len(Ps2,t2). Since P ′s1,t1 is also a shortest path len(P ′s1,t1) ≤ len(Ps1,t1). Consequently,
P ′s1,t1 and P ′s2,t2 are an optimal pair of paths.

We have demonstrated that, if an instance has optimal pair that are sufficiently far from each
other, then the problem of finding an optimal pair of paths requires only polynomial time. The
distance between the paths of an optimal pair is crucial for our results. Hence, we make the
following definition.

Definition 10 [∆(G, s1, t1, s2, t2) and δ(G, s1, t1, s2, t2)] Let (G, s1, t1, s2, t2) be an instance. We
define ∆(G, s1, t1, s2, t2) and δ(G, s1, t1, s2, t2) to be the maximum and minimum, respectively, of
distG(Ps1,t1 , Ps2,t2)/OPT over all optimal pairs of paths Ps1,t1 and Ps2,t2. We write just ∆ and δ

when the instance under consideration is clear from the context.

Obviously, δ ≤ ∆. Note that if ∆(G, s1, t1, s2, t2) > 1/2, then we can use the simple algorithm
to find an optimal pair of paths. For our results we need something stronger. We next describe
an algorithm, similar in essence to the simple algorithm, which for input ε > 0 and instance
(G, s1, t1, s2, t2) finds an optimal pair of paths in time nO(1/ε) if ε < ∆. Our final algorithm is a
slight variation of this.

Let ε > 0 such that ε < ∆ and suppose that Ps1,t1 and Ps2,t2 are an optimal pair of paths
∆ · OPT apart. Suppose also that we have a set of h = O(1/ε) vertices u1, u2, . . . , uh ∈ V (Ps1,t1),
where u1 = s1, uh = t1 and distPs1,t1

(ui, ui+1) < ε · OPT for each i ∈ [h − 1]. Now apply the
following algorithm, which we call the basic algorithm: (i) find a shortest path P ′s1,t1 in the graph(
V (G),

⋃
i∈[h]BG(ui, ε ·OPT)

)
, (ii) find a shortest path P ′s2,t2 in the graph

(
V (G), E(G) \ E(P ′s1,t1)

)
.

We show that P ′s1,t1 and P ′s2,t2 are an optimal pair of paths.
First observe that all the edges of Ps1,t1 are contained in

⋃
i∈[h]BG(ui, ε ·OPT) and hence

len(P ′s1,t1) ≤ len(Ps1,t1). Since ε < ∆, by Definition 10, Ps2,t2 and BG(ui, ε ·OPT) are edge-
disjoint for each i ∈ [h]. Thus, P ′s1,t1 and Ps2,t2 are also edge-disjoint. It follows, from the simple
algorithm, that P ′s1,t1 and P ′s2,t2 are an optimal pair of paths.

Therefore for the rest of this section we assume that ε ≥ ∆. In order to deal with this case,
we now prove a structural result that states that any non-trivial instance is of at least one of the
following two types.

Definition 11 [Disjoint Instance and Intersecting Instance] An instance (G, s1, t1, s2, t2)
is disjoint if it has an optimal pair of paths Ps1,t1 and Ps2,t2 that are edge-disjoint. An instance

5

(G, s1, t1, s2, t2) is intersecting if it has an optimal pair of paths Ps1,t1 and Ps2,t2 that are not
edge-disjoint and whose common edges form a subpath of both Ps1,t1 and Ps2,t2.

We prove the following lemma in Appendix 6.

Lemma 12 Let (G, s1, t1, s2, t2) be an instance for which OPT < ∞, then (G, s1, t1, s2, t2) is
disjoint or intersecting (or both).

Suppose that Ps1,t1 and Ps2,t2 are an optimal pair of paths that either: (i) are edge-disjoint and
dist(Ps1,t1 , Ps2,t2) = ∆ ·OPT , or (ii) all their common edges form a path Pm0,m1 . In case (i) let m0
and m1 be such that dist(m0,m1) = δ ·OPT where m0 is on one of the paths Ps1,t1 and Ps2,t2 and
m1 is on the other. We note that m0 = m1 if δ = 0. Since there are less than n2 potential pairs,
we can assume we have one since we can try each pair in turn. The advantage of knowing such a
pair {m0,m1} is that every shortest path between m0 and m1 is edge disjoint from both Ps1,t1 and
Ps2,t2 . We call such a pair a pivot. More formally:

Definition 13 [Pivot] Let (G, s1, t1, s2, t2) be an instance. A pivot is a pair {m0,m1} such that
one of the following holds:

1. (G, s1, t1, s2, t2) is disjoint and distG(m0,m1) = δ ·OPT for some optimal pair of edge-disjoint
paths Ps1,t1 and Ps2,t2, where m0 is in one of these paths and m1 is in the other, or

2. (G, s1, t1, s2, t2) is intersecting with optimal paths whose common edges form a path Pm0,m1.

If Case 1 holds, then {m0,m1} is a disjoint-pivot, and if Case 2 holds, then {m0,m1} is an
intersecting-pivot. In both cases Pm0,m1 is necessarily a shortest path.

Let {m0,m1} be a pivot and Pm0,m1 be a shortest path. The naive way of proceeding is to use a
min-cost single source flow algorithm for a flow of size 4 as follows: (i) let G′ be obtained from G

by adding a vertex a and four edges: two between a and m0 and two between a and m1; (ii) solve
the min-cost single source flow with a being the source, s1, t1, s2 and t2 being the targets, and all
edges of G′ having capacity and cost 1. This will result in four min-sum edge-disjoint paths Px1,m0 ,
Px2,m0 , Px3,m1 , Px4,m1 , where {x1, x2, x3, x4} = {s1, t1, s2, t2}. Now the natural conjecture is that
a non-conflicting pair of paths as required can be found in the graph consisting of all vertices and
edges of these four paths and of Pm0,m1 . However, this idea does not work if the configuration
obtained is like that in Figure 1. Thus, a different strategy is required. The strategy we use in

m1 s1

m0 s2 t1

t2

Figure 1: [Naive Attempt]

6

Section 4 is to first find a min-sum edge-disjoint pair Ps1,mi , Pt2,m1−i , where i ∈ {0, 1} and then
a min-sum edge-disjoint pair Ps2,mj , Pt1,mj−i , where j ∈ {0, 1}. We shall show that the graph
consisting of the vertices and edges of these four paths and of Pm0,m1 is sufficient for finding the
required non-conflicting pair of paths.

In Section 5, we introduce the algorithm that works when ε < ∆ and in Section 6 we prove the
main results.

4 Algorithm 1

We introduce here the algorithm for the case that ∆ is small (∆ ≤ ε) and hence δ is even smaller.

Algorithm 1
Input: instance (G, s1, t1, s2, t2)

• Iterate over all pairs of vertices {m0,m1} ⊆ V

1. Pm0,m1 ←− an arbitrary shortest path between m0 and m1

2. G′ ←− (V (G), E(G) \ E(Pm0,m1))

3. In G′, find min-sum edge-disjoint paths P ′s1,mi
and P ′t2,m1−i

, where i ∈ {0, 1}

4. In G′, find min-sum edge-disjoint paths P ′s2,mj
and P ′t1,m1−j

, where j ∈ {0, 1}

5. Define Q to be the undirected graph such that

(a) V (Q) = V (P ′s1,mi
) ∪ V (P ′t2,m1−i

) ∪ V (P ′s2,mj
) ∪ V (P ′t1,m1−j

) ∪ V (Pm0,m1)
(b) E(Q) = E(P ′s1,mi

) ∪ E(P ′t2,m1−i
) ∪ E(P ′s2,mj

) ∪ E(P ′t1,m1−j
) ∪ E(Pm0,m1)

6. Using the method explained in Lemma 15, find non-conflicting paths Pm0,m1
s1,t1 and Pm0,m1

s2,t2

in Q such that

len(Pm0,m1
s1,t1) + len(Pm0,m1

s2,t2) ≤
len(P ′s1,mi

) + len(P ′t2,m1−i
) + len(P ′s2,mj

) + len(P ′t1,m1−j
) + 2 · len(Pm0,m1)

Output: The paths Pm0,m1
s1,t1 and Pm0,m1

s2,t2 that minimize len(Pm0,m1
s1,t1) + len(Pm0,m1

s2,t2)

Theorem 14 Let P ∗s1,t1 and P ∗s2,t2 be the paths returned by Algorithm 1 on instance
(G, s1, t1, s2, t2). Then P ∗s1,t1 and P ∗s2,t2 are non-conflicting and len(P ∗s1,t1) + len(P ∗s2,t2) ≤ (1 +
2δ) ·OPT . The running time of Algorithm 1 is bounded by a polynomial function of n.

[Note that if the input instance is intersecting, then δ = 0 and hence Algorithm 1 returns an optimal
pair of paths.]
Proof. Finding the paths in Steps 3 and 4 can be done by reducing the problem to finding
edge-disjoint paths from a single vertex as follows. Add to the graph G′, computed in Step 2, a
vertex a and edges {a,m0} and {a,m1}. Then find a pair of min-sum edge-disjoint paths each from
a to s1 and t2 in Step 3 and s2 and t1 in Step 4. According to Yang et al. [9] this requires a running
time of O(n2). By Lemma 15 below, Step 6 requires a running time that is polynomial in n. Since

7

all other steps also require at most a polynomial in n running time and there are fewer than n2

iteration of Steps 1 to 6, the overall running time is polynomial in n.
Suppose that {m0,m1} is a pivot with associated optimal pair of paths Ps1,t1 and Ps2,t2 and

that Pm0,m1 is the shortest path found in Step 1. Let ξ = len(P ′s1,mi
)+ len(P ′t2,m1−i

)+ len(P ′s2,mj
)+

len(P ′t1,m1−j
) + 2 · len(P ′m0,m1).

As noted earlier, when {m0,m1} is a disjoint-pivot, then Pm0,m1 does not share any edges with
Ps1,t1 and Ps2,t2 . Consequently, the paths found Step 3 and 4 have overall at most OPT edges.
Hence, ξ ≤ OPT · (1 + 2δ). By Lemma 15, the paths Pm0,m1

s1,t1 and Pm0,m1
s2,t2 found in Step 6 are

non-conflicting and len(Pm0,m1
s1,t1) + len(Pm0,m1

s2,t2) ≤ ξ ≤ (1 + 2δ) ·OPT .
If {m0,m1} is an intersecting-pivot, then by definition, all the edges that Pm0,m1 shares with

Ps1,t1 or Ps2,t2 are edges common to both. Consequently, the paths found in Step 3 and 4 have
overall at most OPT − 2 · len(Pm0,m1) edges. Hence, ξ ≤ OPT . In this case, by Lemma 15,the
paths Pm0,m1

s1,t1 and Pm0,m1
s2,t2 found in Step 6 are non-conflicting and len(Pm0,m1

s1,t1) + len(Pm0,m1
s2,t2) ≤ ξ.

Consequently, since ξ ≤ OPT , these paths are an optimal pair of paths. We prove the following
lemma in Appendix 6.

Lemma 15 Let (G, s1, t1, s2, t2) be the input to Algorithm 1. Assume that Q, P ′t1,mi
, P ′t2,m1−i

,
P ′s2,mj

, P ′t1,m1−j
and Pm0,m1 are as computed by Algorithm 1 in an iteration using {m0,m1}. Let

ξ = len(P ′s1,mi
) + len(P ′t2,m1−i

) + len(P ′s2,mj
) + len(P ′t1,m1−j

) + 2 · len(Pm0,m1). Then there exists a
procedure that runs in time polynomial in n that finds non-conflicting paths Pm0,m1

s1,t1 and Pm0,m1
s2,t2 in

Q with len(Pm0,m1
s1,t1) + len(Pm0,m1

s2,t2) ≤ ξ.

5 Algorithm 2

The input to Algorithm 2 consists of an instance (G, s1, t1, s2, t2), γ > 0 and d ∈ [n]. The ad-
ditional parameter d is required for using this algorithm in both the additive and multiplicative
approximation modes. We prove here that, if γ ·OPT ≤ γd ≤ ∆ ·OPT , then Algorithm 2 returns
an optimal pair of paths in time (n/(γd))O(1/γ) · poly(n).

Algorithm 2 is a variation of the basic algorithm described in Section 3, which works when the
input instance has an optimal pair of paths that are far from each other. It is used because it has
a better running time when OPT is large, which is essential for the additive approximation. We
next explain how it differs from the basic algorithm.

Suppose that the input (G, s1, t1, s2, t2) satisfies γ · OPT ≤ γd ≤ ∆ · OPT and that Ps1,t1 and
Ps2,t2 are an optimal pair of paths that are ∆ ·OPT apart. Recall that the basic algorithm, required
finding specific vertices u1, u2, . . . , uh in Ps1,t1 . These vertices can be found via exhaustive search
over all relevant subsets of V (G). Algorithm 2 is almost the same as the basic algorithm except
that the vertices u1, u2, . . . , uh are selected from a subset of V (G), which we call representatives,
and this subset may be significantly smaller than V (G). The relevant parameters for choosing this
set are γ and d.

A set of representatives S has the property that every vertex in V (G) is very close to a vertex in
S. Consequently, the approach used in the basic algorithm will work when we use representatives.
We now formally define the set of representatives and prove that such a set always exists. We then
present the algorithm and prove its correctness.

8

Definition 16 [RepG(`)] Given G and ` > 0, let RepG(`) be an arbitrary subset of V (G) such that:
(i) for every u ∈ V (G), there exists v ∈ RepG(`) such that dist(u, v) < `; and (ii) |RepG(`)| ≤ 2n/`.

Lemma 17 For every connected graph G and ` > 0, there exists a set RepG(`) satisfying Defini-
tion 16.

Proof. Initially set RepG(`) = {u}, where u is an arbitrary vertex from V (G). Afterwards add
vertices to RepG(`) in the following manner. If there is a vertex in V (G) \RepG(`) whose distance
from every other vertex in RepG(`) is greater than `, then add it to RepG(`), otherwise stop. This
process eventually ends since V (G) is finite. Every vertex in V (G) has distance not exceeding `

to some vertex in RepG(`) because either it is in the set or it was not added. Thus, the minimum
distance between any pair of distinct vertices in RepG(`) is `. Therefore, since G is connected, if
|RepG(`)| > 1, then for all v ∈ RepG(`) there are at least d`/2e distinct vertices (including v itself)
whose distance from v is less than their distance to any other vertex in RepG(`). Consequently,
|RepG(`)| ≤ 2n/`.

Algorithm 2
Input: an instance (G, s1, t1, s2, t2), γ > 0 and d ∈ [n]

1. P ∗s1,t1 ←− ∅, P
∗
s2,t2 ←− ∅

2. Iterate over all S∗ ⊆ RepG(γd/4) such that |S∗| ≤ d8/γe

(a) P ′s1,t1 ←− an arbitrary shortest path in
(
V (G),

⋃
v∈S∗∪{s1,t1}BG(v, γd/2)

)
between s1

and t1, if one exists, and ∅ otherwise

(b) P ′s2,t2 ←− an arbitrary shortest path in (V,E(G) \ E(P ′s1,t1)) path between s2 and t2, if
one exists, and ∅ otherwise

(c) If P ∗s1,t1 and P ∗s2,t2 are empty, then P ∗s1,t1 ←− P
′
s1,t1 , P ∗s2,t2 ←− P

′
s2,t2

(d) If P ′s1,t1 and P ′s2,t2 are both non-empty and len(P ′s1,t1) + len(P ′s2,t2) < len(P ∗s1,t1) +
len(P ∗s2,t2), then P ∗s1,t1 ←− P

′
s1,t1 , P ∗s2,t2 ←− P

′
s2,t2

Output: P ∗s1,t1 , P
∗
s2,t2

Theorem 18 Let γ > 0 and d ∈ [n]. Assume that Algorithm 2 is executed with parameters
(G, s1, t1, s2, t2), γ and d. If (G, s1, t1, s2, t2) is disjoint and γ · OPT ≤ γd ≤ ∆ · OPT , then
Algorithm 2 will return an optimal pair of paths. The running time of Algorithm 2 is (n/(γd))O(1/γ) ·
poly(n).

Proof. The running time follows, since the iteration in Step 2 is executed O(n/(γd)) choose
O(1/γ) times. The other steps in the algorithm only increase the running time by a multiplicative
factor that is polynomial in n.

Let Ps1,t1 , Ps2,t2 be an optimal pair such that dist(Ps1,t1 , Ps2,t2) ≥ ∆ · OPT ≥ γd. Since
|V (Ps1,t1)| ≤ OPT ≤ d, by Lemma 17, there exists U = RepPs1,t1

(γd/4), where |U | ≤ d8/γe.
Consider RepG(γd/4) as selected in the execution of Algorithm 2. For each u ∈ U , by Definition 16,

9

we can choose qu ∈ RepG(γd/4) such that distG(qu, u) < γd/4. Let Q = {qu | u ∈ U}, then clearly
|Q| ≤ |U |. Step 2 of Algorithm 2 checks every subset of RepG(γd/4) of size at most d8/γe. Hence
S∗ = Q for some iteration of Step 2. Immediately after executing the iteration of Step 2 where
S∗ = Q, let P ′s2,t2 and P ′s1,t1 be the paths found in Steps 2a and 2b, respectively.

We observe that, by the definition of U , for every vertex v ∈ V (Ps1,t1) there exists a vertex
u ∈ U such that dist(v, u) ≤ γd/4. By the choice of Q, for every u ∈ U there exists q ∈ Q such
that dist(qu, u) ≤ γd/4. Consequently, by the triangle inequality, for every vertex v ∈ V (Ps1,t1)
there exists a vertex qu ∈ Q such that dist(v, qu) < γd/2. Hence, since Q = S∗, E(Ps1,t1) ⊆⋃
v∈S∗∪{s1,t1}BG(v, γd/2) and therefore len(P ′s1,t1) ≤ len(Ps1,t1).

We also observe that by triangle inequality, Ps2,t2 and
⋃
v∈S∗∪{s1,t1}BG(v, γd/2) are edge-disjoint

since γd ≤ ∆ ·OPT and dist(qu, Ps1,t1) ≤ γd/4, for every qu ∈ Q. Thus, P ′s1,t1 and Ps2,t2 are edge-
disjoint. It follows as in the proof for the basic algorithm, in Section 3 following Definition 10, that
P ′s1,t1 and P ′s2,t2 are an optimal pair of paths.

6 Main Results

We start this section by proving the reduction from the min-sum 2-paths orientation problem to
the min-sum 2 edge-disjoint paths problem. Afterwards we prove the additive approximation result
and we conclude the section by proving the multiplicative approximation result.

Theorem 19 If there exists an approximation algorithm for the min-sum 2 edge-disjoint paths
problem with time complexity T (n), then there exists an algorithm for the min-sum 2-paths orien-
tation problem with time complexity T (n) + poly(n) and the same quality of approximation.

Proof. Given an instance (G, s1, t1, s2, t2), we solve the min-sum 2-paths orientation problem
as follows: (i) execute Algorithm 1 with input (G, s1, t1, s2, t2); (ii) execute the approximation
algorithm for the min-sum 2 edge-disjoint paths problem with input (G, s1, t1, s2, t2); and then (iii)
return an arbitrary best solution.

If the input instance is intersecting then, by Theorem 14, Algorithm 1 returns an optimal pair
of paths. If the input instance is not intersecting then, by Lemma 12, it is disjoint. So G has
an optimal pair of edge-disjoint paths. Thus, the approximation algorithm for the min-sum 2
edge-disjoint paths returns the required pair of paths.

Theorem 20 There exists an algorithm that given an instance (G, s1, t1, s2, t2) and α > 0, returns
non-conflicting paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) + len(Ps2,t2) ≤ OPT + 2αn, in time
(1/α)Õ(1/α) · poly(n).

Proof. To obtain the required paths we perform the following steps: (i) execute Algorithm 1
with input (G, s1, t1, s2, t2); (ii) execute Algorithm 2 with input (G, s1, t1, s2, t2), α and n; and then
(iii) return an arbitrary best solution.

The bound on the running time is immediate from Theorem 14 and Theorem 18. By Theorem 14,
Algorithm 1 returns a pair of non-conflicting paths P ∗s1,t1 and P ∗s2,t2 whose sum of lengths does not
exceed (1 + 2δ) · OPT . Note that if δ > 0, then OPT ≤ n. Thus, if δ · OPT ≤ αn, then

10

(1 + 2δ) · OPT ≤ OPT + 2αn and hence the theorem holds when δ · OPT ≤ αn. Suppose that
δ · OPT > αn and therefore, α · OPT ≤ αn ≤ δ · OPT ≤ ∆ · OPT and hence by Theorem 18,
Algorithm 2 will return an optimal pair of paths. Consequently, the theorem holds in general.
We prove the following theorem in Appendix 6.

Theorem 21 There exists an algorithm that, given an instance (G, s1, t1, s2, t2) and γ > 0, returns
non-conflicting paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) + len(Ps2,t2) ≤ (1 + 2γ) ·OPT , in time
(n/(γ ·OPT))O(1/γ) · poly(n).

References

[1] J. Han and F. Jahanian. Impact of path diversity on multi-homed and overlay networks. In
DSN, page 29, 2004.

[2] R. Hassin and N. Megiddo. On orientations and shortest paths. In Linear Algebra Appl., 1989.

[3] T. Ito, Y. Miyamoto, H. Ono, H. Tamaki, and R. Uehara. Route-enabling graph orientation
problems. In ISAAC, pages 403–412, 2009.

[4] F. Kammer and T. Tholey. The k-disjoint paths problem on chordal graphs. In WG, pages
190–201, 2009.

[5] Y. Kobayashi and Ch. Sommer. On shortest disjoint paths in planar graphs. In ISAAC, pages
293–302, 2009.

[6] C. Li, T. S. McCormick, and D. Simich-Levi. The complexity of finding two disjoint paths
with min-max objective function. Discrete Appl. Math., 26(1):105–115, 1989.

[7] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Comb.
Theory Ser. B, 63(1):65–110, January 1995.

[8] V. Vasudevan, D.G. Andersen, and H. Zhang. Understanding the AS-level path disjointness
provided by multi-homing. Technical report, 2007.

[9] B. Yang and S. Q. Zheng. Finding min-sum disjoint shortest paths from a single source to all
pairs of destinations. In TAMC, pages 206–216, 2006.

[10] P. Zhang and W. Zhao. On the complexity and approximation of the min-sum and min-max
disjoint paths problems. In ESCAPE, pages 70–81, 2007.

11

Appendix: Proof of Lemma 12

Lemma 12 Let (G, s1, t1, s2, t2) be an instance for which OPT < ∞, then (G, s1, t1, s2, t2) is
disjoint or intersecting (or both).

Proof. If G is disjoint, then the lemma trivially holds and hence, we may assume that it is not.
Let P ∗s1,t1 and P ∗s2,t2 be an optimal pair of paths in G. Obviously, these paths are not edge-disjoint.
Let Q = (V (P ∗s1,t1) ∪ V (P ∗s2,t2), E(P ∗s1,t1) ∪ E(P ∗s2,t2)) be an undirected graph. We note that

|E(Q)| ≤ OPT − |E(P ∗s1,t1) ∩ E(P ∗s2,t2)|. (1)

Let {a1, `1} and {a2, `2} be edges in E(P ∗s1,t1) ∩ E(P ∗s2,t2) such that distP ∗s1,t1
(s1, a1) and

distP ∗s2,t2
(s2, a2), are minimum over all vertices a1 and a2 in V (P ∗s1,t1) ∩ V (P ∗s2,t2). Let Ps1,a1 be a

subpath of P ∗s1,t1 and Ps2,a2 be a subpath of P ∗s2,t2 . For an illustration see Figure 2. We divide the
proof into 4 cases.

(a) Suppose that a1 = a2 = a. Let Ps1,s2 be the concatenation of Ps1,a1 and Ps2,a2 . Observe
that there exists a path Pt1,t2 in Q that is edge-disjoint from Ps1,s2 . Let Px,y be a path in Q such
that len(Px,y) = distQ(Ps1,s2 , Pt1,t2), x is in one of the paths Ps1,s2 and Pt1,t2 and y is in the other.
We note that, Px,y does not share edges either with Ps1,s2 or with Pt1,t2 , since otherwise we get a
contradiction to len(Px,y) = distQ(Ps1,s2 , Pt1,t2).

Let Ps1,t1 be the concatenation of the subpath of Ps1,s2 between s1 and x, Px,y and the subpath
of Pt1,t2 between y and t1. In the same manner let Ps2,t2 be the concatenation of the subpath of
Ps1,s2 between s2 and x, Px,y and the subpath of Pt1,t2 between y and t2. We note that both P ∗s1,t1

and P ∗s2,t2 have a subpath between a vertex in Ps1,s2 and a vertex Pt1,t2 and that both of these
subpaths are not shorter than Px,y. Hence that sum of length of Ps1,t1 and Ps2,t2 does not exceed
that of P ∗s1,t1 and P ∗s2,t2 . Consequently, (G, s1, t1, s2, t2) is intersecting.

(b) Assume for the sake of contradiction that a1 6= a2 and either `1 = a2 or `2 = a1. Since
distP ∗s1,t1

(s1, a1) < distP ∗s1,t1
(s1, a2), if P ∗s1,t1 is treated as a directed path the arc replacing {a1, a2} is

(a1, a2). By similar reasoning with P ∗s2,t2 , the arc replacing {a1, a2} is (a2, a1). Thus, a contradiction
to P ∗s1,t1 and P ∗s2,t2 being non-conflicting.

Note that the this analysis also works when s1 = `2 or s2 = `1. Hence from here on we also
assume that s1 6= `2 and s2 6= `1.

(c) Assume for the sake of contradiction that a1 6= a2 and `1 = `2 = `. Since distP ∗s1,t1
(s1, `) <

distP ∗s1,t1
(s1, a2), if Ps1,t1 is treated as a directed path, then the arc replacing {`, a2} is (`, a2). By

similar reasoning, if P ∗s2,t2 is treated as a directed path, then the arc replacing {`, a2} is (a2, `).
Thus, a contradiction to P ∗s1,t1 and P ∗s2,t2 being non-conflicting.

(d) Assume for the sake of contradiction that a1 6= a2 and `1 6= `2. By similar reasoning to the
above, if P ∗s1,t1 is treated as a directed path, then the arc replacing {a1, `} is (a1, `) and, if P ∗s2,t2

is treated as a directed path, then the arc replacing {a2, `2} is (a2, `2). Hence, according to the
definition of a1, the path P ∗s1,t1 has a subpath P`1,a2 which does not contain `2 and, when treated
as a directed path its edges are directed towards a2. In the same manner, there exists a subpath

12

P`2,a1 of P ∗s2,t2 which does not contain `1 and when treated as a directed path its edges are directed
towards a1. For an illustration see Figure 2.

Finally, let P`2,t1 be a subpath of P ∗s1,t1 and P`1,t2 a subpath of P ∗s2,t2 . Note that by construction
Ps1,a1 , P`1,a2 and P`2,t1 are pairwise-edge-disjoint, as are Ps2,a2 , P`2,a1 and P`1,t2 .

Assume that P`2,t1 and P`2,a1 are edge-disjoint, and so are P`1,t2 and P`1,a2 .
Let Ps1,t1 be the concatenation of Ps1,a1 , and Pa1,`2 and P`2,t1 . Observe that Ps1,t1 is a path

since Ps1,a1 and Pa1,`2 are edge-disjoint by the definition of a1. In the same manner, let Ps2,t2 be
the concatenation of Ps2,a2 , and Pa2,`1 and P`1,t2 . By the same reasoning as for Ps1,t1 , we may
conclude that Ps2,t2 is also a path.

As the edges {a1, `1} and {a2, `2} are not in E(Ps1,t1) or E(Ps2,t2), we have len(Ps1,t1) +
len(Ps2,t2) < len(P ∗s1,t1) + len(P ∗s2,t2) = OPT . Note that Ps1,t1 and Ps2,t2 are non-conflicting
since the only problem that may arise is between P`2,t1 and P`2,a1 , and P`1,t2 and P`1,a2 . Yet, by
assumption, these pairs of paths do not intersect. Thus, Ps1,t1 and Ps2,t2 are non-conflicting and
len(Ps1,t1) + len(Ps2,t2) < OPT , in contradiction to Observation 8.

Now assume that P`2,t1 and P`2,a1 are not edge-disjoint. The only problem this may cause
is that Ps1,t1 as defined for the edge-disjoint case is not a path. This can be resolved by simply
removing any cycles from Ps1,t1 . The same holds if instead or in addition P`1,t2 and P`1,a2 are not
edge-disjoint. Now the proof proceeds in the same manner as the previous case.

s1

t1t2

s2

l1

a1
a2

l2

Ps1, a1

Pl1, t2

Pa2, l1

Ps2, a2
Pa1, l2

Pl2, t1

Figure 2: a1 6= a2, and `1 6= `2, and P`2,t1 and P`2,a1 are edge-disjoint and so are P`1,t2 and P`1,a2 .

13

Appendix: Proof of Lemma 15

Lemma 15 Let (G, s1, t1, s2, t2) be the input to Algorithm 1. Assume that Q, P ′t1,mi
, P ′t2,m1−i

,
P ′s2,mj

, P ′t1,m1−j
and Pm0,m1 are as computed by Algorithm 1 in an iteration using {m0,m1}. Let

ξ = len(P ′s1,mi
) + len(P ′t2,m1−i

) + len(P ′s2,mj
) + len(P ′t1,m1−j

) + 2 · len(Pm0,m1). Then there exists a
procedure that runs in time polynomial in n that finds non-conflicting paths Pm0,m1

s1,t1 and Pm0,m1
s2,t2 in

Q with len(Pm0,m1
s1,t1) + len(Pm0,m1

s2,t2) ≤ ξ.
Proof. Without loss of generality we may assume that i = 1.

We use Figures 3, 4 and 5 to illustrate various cases in the proof. The solid lines in these figures
correspond to edge-disjoint paths. The paths P ′s1,m1 , P ′t2,m0 are shown in all of the figures, but in
general only parts of P ′s2,mj

and P ′t1,m1−j
are shown. For example, in Figure 3b, the path between

f2 and m1 is a subpath of P ′s1,m1 , but it is not necessarily a subpath of P ′s2,mj
. The arrowed dotted

lines in the figures represent the non-conflicting paths we find. These paths are not fully shown
in Figures 4 and 5, instead in all these figures there is a cycle represented by thick lines. The
non-conflicting paths go through the cycle in the same direction which may be either clockwise
or counter-clockwise. Part of our proof is to show that at least one of the these options gives the
required non-conflicting paths.

Let Ps1,t2 be the concatenation of the paths P ′s1,m1 , Pm0,m1 and P ′t2,m0 . A path Pu,v in Q is a
hop if it is between a vertex in P ′s1,m1 and a vertex in P ′t2,m2 and is edge-disjoint with both of these
paths. We note that Pm0,m1 is a hop.

Let f1 be the first vertex on P ′t1,m1−j
that is also on Ps1,t2 . In the same manner, let f2 be the

first vertex on P ′s2,mj
that is also on Ps1,t2 . For an illustration see Figure 3a. Let l1 be the first

vertex on P ′t1,m1−j
that is on a hop Pl1,a1 and let l2 be the first vertex on P ′s2,mj

that is on a hop
Pl2,a2 . We note that the hop Pl1,a1 is a subpath of P ′t1,m1−j

and the hop Pl2,a2 is a subpath of P ′s2,mj
.

An explicit depiction of these paths can be found in Figure 4. We note that both Pl2,a2 are
Pl1,a1 are not shown in all figures and that, in Figure 3b, Pl2,a2 = Pl1,a1 = Pm1,m0 .

Observation 22 distPs1,t2
(f1, l1) ≤ distP ′t1,m1−j

(f1, l1) and distPs1,t2
(f2, l2) ≤ distP ′s2,mj

(f2, l2).

Proof. Assume for the sake of contradiction that distP ′t1,m1−j
(f1, l1) < distPs1,t2

(f1, l1), then
either P ′s1,m1 or P ′t2,m0 can be replaced by a shorter path by using a shorter path between f1 and
l1 which contradicts the choice of P ′s1,m1 and P ′t2,m0 . The second inequality follows similarly.

We now analyze the different cases. If distPs1,t2
(s1, f1) ≤ distPs1,t2

(s1, f2), then we can take
the pair of paths depicted in Figure 3a. Clearly this pair of paths satisfies the requirement of the
lemma. So, from here on we assume that distPs1,t2

(s1, f1) > distPs1,t2
(s1, f2).

Suppose that Pm1,m2 is the only hop. Then using the previous inequality and the fact that
P ′s2,mj

and P ′t1,m1−j
are both edge disjoint from Pm1,m2 , it follows that f1 is on P ′t2,m0 and f2 is

on P ′s1,m1 . This case is shown in Figure 3b. We note that in this case l1 = m0 and l2 = m1. By
Observation 22, the pair of paths depicted in Figure 3b satisfies the requirement of the lemma. The
same reasoning holds for the case depicted in Figure 4a.

In the cases shown in Figures 4b and 5, as mentioned before, we give two options for filling in
the missing parts of the paths, viz. clockwise and counter-clockwise. By Observation 22, if we sum

14

up the length of the paths in the two options we get at most 2ξ and hence at least one of these
options satisfies the requirements of the lemma.

We note that the same analysis as for the cases with the cycle also holds when s1, t1, s2 and t2
are connected to a cycle via edge-disjoint paths. Finally, all other cases are similar to one of the
cases depicted in Figures 4 and 5. That is, to get one of the covered cases, exchange the roles of s1
and t1 and the roles of s2 and t2. Notice that when f1 is on a cycle represented by thick lines, as
in Figure 5b, the analysis is independent of its exact location. This also holds for f2.

m1s1

m0t2

s2t1

f1 f2

(a) distPs1,t2 (s1, f1) ≤ distPs1,t2 (s1, f2)

m1 s1

m0 t2

t1

s2

f2

f1

(b) Single hop

Figure 3:

m1s1

m0t2

s2

t1

f1f2 l2

(a) Cycle 1

m1
s1

m0 t2

s2 t1

f1 f2 l2

(b) Cycle 2

Figure 4:

15

m1
s1

m0 t2

s2

t1

f1

f2 l2

l1

a1

a2

(a) Cycle 3

m1
s1

m0
t2

s2

t1

f1

f2 l2

l1

a1

a2

(b) Cycle 4

Figure 5:

Appendix: Proof of Theorem 21

Theorem 21 There exists an algorithm that, given an instance (G, s1, t1, s2, t2) and γ > 0, returns
non-conflicting paths Ps1,t1 and Ps2,t2 such that len(Ps1,t1) + len(Ps2,t2) ≤ (1 + 2γ) ·OPT , in time
(n/(γ ·OPT))O(1/γ) · poly(n).
Proof. To obtain the required paths we perform the following steps.

1. Compute shortest paths P ′s1,t1 between s1 and t1, and P ′s2,t2 between s2 and t2. If they are
non-conflicting, then return these and stop.

2. Execute Algorithm 1 with input G, s1, t1, s2 and t2, and let x be the sum of lengths of the
paths returned.

3. For each d ∈ {bx2 c, . . . , x} execute Algorithm 2 with input (G, s1, t1, s2, t2), d and γ.

4. Return an arbitrary best solution.

The bound on the running time is immediate from Theorem 14 and Theorem 18.
If we stopped at Step 1, then P ′s1,t1 and P ′s2,t2 are an optimal pair of paths. Hence, we may

assume that we did not stop at Step 1. Consequently, P ′s1,t1 and P ′s2,t2 are not edge-disjoint. There-
fore, at least one of distG(s1, s2), distG(s1, t2), distG(s2, t1) and distG(t1, t2) is less than OPT/2.
Thus, by the definition of δ, we may assume that δ ≤ 1/2.

By Theorem 14, Algorithm 1 returns a pair of non-conflicting paths P ∗s1,t1 and P ∗s2,t2 whose sum
of lengths does not exceed (1 + 2δ) ·OPT . Thus, if δ ≤ γ, then this does not exceed (1 + 2γ) ·OPT
and hence the theorem holds when δ ≤ γ. Suppose that γ < δ. Since δ ≤ 1/2, by the above,
OPT ≤ x ≤ 2 · OPT . Thus OPT ∈ {bx/2c, . . . , x} and hence, at some stage in the execution of
Step 3, Algorithm 2 was called with parameter d = OPT . In this case we have γ · OPT = γ · d <
δ ·OPT < ∆ ·OPT . Consequently, by Theorem 18, Algorithm 2 returned an optimal pair of paths.
Thus, the theorem holds in general.

16

