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Conjugate Information Disclosure in an Auction with

Learning

Arina Nikandrova and Romans Pancs⇤

November 2015

Abstract

We consider a single-item, independent private value auction environment with two bid-

ders: a leader, who knows his valuation, and a follower, who privately chooses how much to

learn about his valuation. We provide sufficient conditions under which an ex-post efficient

revenue-maximizing auction, which solicits bids sequentially, partially discloses the leader’s

bid to the follower, to influence his learning. The disclosure rule that emerges is novel in that

it may reveal to the follower only a pair of bids to which the leader’s actual bid belongs. We

call this disclosure rule conjugate. The identified disclosure rule, relative to the first-best, in-

duces the follower to learn less when the leader’s valuation is low and more when the leader’s

valuation is high.

Keywords: Information Disclosure, Conjugate Disclosure, Bayesian Persuasion

JEL codes: D82, D83

1 Introduction

In early 2013, Universal Music Group was divesting Parlophone Label Group. This divestment

was a part of Universal’s commitment to the European Commission in exchange for clearing the

Universal’s merger with EMI. Among the potential buyers of Parlophone were other major music
⇤Nikandrova’s at Birkbeck, Pancs is at ITAM.
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recording companies, as well as various private equity firms. The music recording companies

were well informed of their valuations of Parlophone because they eyed Parlophone a year ago,

when it was on sale as a part of EMI. By contrast, most private equity firms were poorly informed

and had to perform due diligence to evaluate the purchase opportunity. The sale culminated in

an auction, which was preceded by protracted secretive negotiations. We will never know what

(if anything) Universal revealed about the intended bids of the well informed music recording

companies to the poorly informed private equity firms during these secretive negotiations. This

paper is a step towards understanding what Universal should have (and so, might have) revealed.

The paper’s focus is thus normative.

The paper captures the essential features of the Universal’s information-disclosure problem in

a model in which a seller (Universal) sells an item (Parlophone) by sequentially bargaining with

two bidders, one of whom knows his valuation (a major music recording company), while the

other (a private equity firm) must exert a costly learning effort to form a better estimate of its

valuation. Beyond the example of Universal, which is a divestment of an asset that has recently

been on sale, the model applies to the sale of an asset in the presence of an industry insider,1 to

the sale of a franchise when one of the buyers is an incumbent franchise operator,2 and to the

procurement of a contract when one of the suppliers is the current service provider.3 In practice,

in each of these cases, the sale is agreed upon either privately or through an auction. Irrespective

of the ultimate mode of sale, private pre-sale negotiations, which we model, are common.

In the model, the bidders’ valuations are independent and private. The seller maximizes rev-

enue by designing, announcing, and committing to a selling mechanism. He is restricted to choos-

ing a mechanism with an ex-post efficient allocation rule, which assigns the item to the bidder

with the highest expected valuation (given the information available to the bidders). The mech-

1For example, in 2012, RWE and E.ON, German utilities, were selling Horizon Nuclear Power, their British joint
venture, through private negotiations. The potential buyers included nuclear operators already present in the U.K., as
well as new investors from China and Japan.

2For example, in the U.K., rail passenger services are franchised for a limited period to train operating companies.
An auction determines the award of the franchise to run passenger services in a certain region. The incumbent franchise
operator, who knows his value for the franchise, is always allowed to bid alongside other, less informed, train operating
companies.

3Government agencies routinely procure consulting services from contractors. A procurement tender can attract
consultancies that have never worked with that particular agency, as well as consultancies that recently advised the
agency. The consultancies that recently advised on similar projects know well the bureaucratic procedures and the
private costs associated with entering the contract. By contrast, the consultancies that have not advised this government
agency, in addition to learning the particulars of the tender offer, also need to study the output of the government’s
past external consultants, to better gauge the government’s demands and expectations.
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anism must also satisfy interim participation constraints that, in particular, rule out the sale of

information. Admissible mechanisms are otherwise unrestricted and allow the seller to strategi-

cally disclose to either bidder the information learned from the other bidder.4

Because of the option value of influencing the uninformed bidder’s learning decision by dis-

closing to him something about the informed bidder’s bid, it is optimal for the seller to approach

the bidders sequentially. In particular, it is optimal to approach the informed bidder first, in order

to elicit his valuation. We call this informed bidder the leader. We call the uninformed bidder,

who is approached second and is recommended by the mechanism how much effort to exert, the

follower.

The analysis relies on the first-order approach. Using this approach, we reduce the seller’s

revenue-maximization problem to the problem of optimally disclosing the leader’s bid to the fol-

lower. The seller’s strategic disclosure distorts the follower’s effort schedule relative to the effort

schedule in the first-best mechanism, which maximizes the ex-ante expected surplus (the sum of

the seller’s and the bidders’ payoffs).

The distortion is necessary because the policy of full disclosure, which always discloses the

leader’s valuation and is called for by the first-best mechanism, is suboptimal for the seller. So is

the policy of non-disclosure, which always conceals the leader’s valuation. Instead, under some

conditions, the seller optimally partitions the leader’s types (i.e., valuations, reported as bids) into

pairs of conjugate types, and discloses to the follower the pair to which the leader’s type belongs,

while concealing the actual type, as is illustrated in Figure 1. An optimal partition is described

by a weakly decreasing matching function, which pools the leader’s valuations into pairs so that

lower types are matched with higher types. The seller may also choose to reveal some of the

leader’s types without pooling them.

Once identified, the optimal disclosure rule can be equivalently restated in terms of the shape

of the follower’s induced effort schedule. This schedule is hump shaped and “shifted to the right”

relative to the first-best schedule, also hump shaped. That is, when the leader’s valuation is low,

the follower acquires inefficiently little information, whereas when the leader’s valuation is high,

4The restriction to the ex-post efficient allocation rule is motivated by applications, such as government procure-
ment, in which the seller cannot commit to an allocation rule that is ex-post inefficient. The applications in which the
seller can freely choose both the allocation rule and information disclosure are at least as important. For reasons that
will be discussed, however, the techniques developed in this paper are not readily applicable to the joint determination
of an optimal allocation rule and information disclosure.
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leader's type

pairs of pooled types

0 10.8

disclosed types

0.3

Figure 1: An example of a conjugate disclosure rule. The seller reveals the leader’s type if it is less
than 0.3. The seller pools any leader’s type that exceeds 0.3 with a corresponding conjugate type
to form a pair that straddles 0.8.

the follower acquires inefficiently much information. To gain intuition for the effort distortion,

we consider two benchmarks: a first-best mechanism and a revenue-maximizing mechanism in

which the seller can directly control the follower’s effort.

In the first-best benchmark, the follower’s information acquisition helps allocate the item in

a surplus-maximizing manner. His information is most valuable when the leader’s valuation is

intermediate. When the leader’s valuation is low, the follower is the likely surplus-maximizing re-

cipient of the item. When the leader’s valuation is high, the leader is the likely surplus-maximizing

recipient. In each of these two extreme cases, little would be gained from additional information

about the follower’s valuation. As a result, the follower’s first-best effort schedule is hump-shaped

in the leader’s valuation.

In the revenue-maximizing benchmark, in which the seller controls the follower’s effort, the

seller sets the effort to zero when the leader’s valuation is below a certain threshold, and sets the

effort to be maximal otherwise. The intuition for this “bang-bang” property of the effort sched-

ule is the following. Given a leader’s valuation, denoted by q1, ex-post efficiency and incentive

considerations compel the seller to charge the follower amount q1 and charge the leader less than

q1. Indeed, by making the follower a take-it-or-leave-it offer at price q1, the seller ensures that

the follower buys if and only if the follower’s expected valuation, denoted by q2, exceeds q1, as

ex-post efficiency requires. In the complementary case, when q2  q1, the seller cannot possi-

bly hope to sell to the leader for q1. Indeed, if the leader knew that he would be charged q1,

he would profitably mimic a bidder with a lower valuation, thereby undermining the incentive

compatibility of the seller’s mechanism. As a result, for any q1, the seller would rather sell to the

follower. Therefore, the seller makes the follower acquire information in a manner that increases

4



leader's type

follower's effort

Figure 2: The follower’s optimal effort schedule (the solid hump-shaped curve) is a compromise
between his first-best effort schedule (the dashed hump-shaped curve) and the bang-bang ef-
fort schedule (the two dashed horizontal line segments), which corresponds to the benchmark
in which the seller controls the follower’s effort.

the probability of an ex-post efficient sale to the follower. Because information acquisition induces

a mean-preserving spread in the probability distribution of q2,5 the event {q2 � q1} (i.e., selling to

the follower is ex-post efficient) is more likely either when q1 is low and the follower’s information

acquisition is minimal, or when q1 is high and the follower’s information acquisition is maximal.

The economic forces present in both benchmarks meet in this paper’s central problem, in which

the seller maximizes his revenue and cannot control the follower’s effort. In this problem, the

seller can influence the follower’s effort only indirectly, by strategically revealing information

about the leader’s bid. Because the follower cannot be deceived systematically, the seller’s disclo-

sure distorts, but not beyond recognition, the first-best effort schedule. The rightward shift in the

follower’s optimal effort schedule relative to the first-best schedule is a compromise between the

first-best and the bang-bang schedules of the two benchmarks. This compromise is illustrated in

Figure 2.

Figure 2 suggests a correspondence between the structure of an optimal disclosure rule and

the shape of an optimal effort schedule. The Revelation Principle for games with private actions

5In the model, a higher information-acquisition effort by the follower implicitly delivers a more informative signal
about a his underlying valuation. This more informative signal induces a more dispersed posterior probability dis-
tribution of the follower’s expected valuation, q2. Because the follower is risk-neutral, the expected valuation is the
only aspect of his posterior probability distribution that he cares about. Identifying the informativeness of a signal
with the induced dispersion of the probability distribution of q2 is a standard modelling device (Johnson and Myatt,
2006, Ganuza and Penalva, 2010, Shi, 2012, and Roesler, 2014) and, in the presence of risk neutrality, entails no loss in
generality.
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(Myerson, 1982, 1986) implies that all the follower needs to be told about the leader’s type is

summarized in the effort that the seller would like him to exert. Then, given an optimal effort

schedule, the corresponding optimal disclosure rule can be read off this schedule. Thus, given

its hump shape, the optimal effort schedule prescribes the same effort for (at most) two leader’s

types. These types can be read off from Figure 2 by intersecting the optimal effort schedule with

the horizontal line corresponding to the recommended effort (not shown). In other words, the

optimal effort schedule can be implemented with the help of a conjugate-disclosure rule. Instead

of deriving the optimal effort schedule first, however, it turns out to be more convenient to derive

an optimal disclosure rule and only then to recover from it the implied effort schedule.

The revenue-maximizing outcome can be implemented in a sequential second-price auction

with a tax (or subsidy) for the leader.6 The role of the tax is to encourage the leader to bid truthfully.

He would do so without a tax in the standard auction model in which the follower exerts no effort.

Because in our model the follower does exert an effort, the leader realizes that by biasing his bid

toward intermediate values, he can encourage the follower to exert a greater effort. A greater effort

translates into a more dispersed probability distribution of the follower’s expected valuations,

thereby benefiting the leader, whose payoff is convex in the follower’s expected valuation.7 Hence,

a corrective tax for the leader is necessary.

Our analysis is subject to two caveats. The first caveat is that the first-order approach, on

which the paper relies, focuses on the seller’s relaxed problem that only imposes local truth-telling

constraints (captured by the Envelope Theorem) and neglects global truth-telling constraints (cap-

tured by monotonicity conditions on the probabilities of winning). Although common in mecha-

nism design, this approach is valid if and only if, at a solution to the relaxed problem, each bid-

der’s probability of winning is nondecreasing in his type. A limitation of our analysis is that we

do not provide sufficient conditions on the model’s primitives to guarantee that the monotonicity

condition holds for the leader. Instead, our approach is to verify the monotonicity condition di-

rectly, once the seller’s relaxed problem has been solved.8 The sufficient conditions prove elusive

because an optimal disclosure rule, an essential determinant of the follower’s effort schedule and

6Also the first-best outcome can be implemented in a sequential second-price auction, but with a different tax.
7The convexity follows because the leader benefits from the follower’s lower bid by winning more often and paying

less, and is insulated from the follower’s higher bids by paying nothing when losing.
8In numerical examples, once an optimal mechanism has been identified, the monotonicity is easy to verify, which

we do in the paper’s leading example.
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thus the leader’s probability of winning, is not a simple function of the primitives. Indeed, the

complexity of finding an optimal disclosure rule is comparable to the complexity of finding an op-

timal tax schedule in the dynamic public-finance literature (Farhi and Werning, 2013, Stantcheva,

2015, Golosov et al., 2015, and Kapicka, 2013), which also adopts the verification approach.

The second caveat is that our results rely on the assumption that—and the domain of our

applications is restricted to the situations in which—the seller must choose among mechanisms

with ex-post efficient allocation rules. In particular, the paper adapts and extends the results from

the sender-receiver game of Rayo and Segal (2010) (henceforth referred to as RS) to an auction

setting. This extension relies on rewriting the seller’s objective function in a product form, which

requires the uncoupling of the optimal disclosure and the optimal allocation problems. Only when

the allocation rule is fixed, this uncoupling is attainable. Fixed allocation rules other than ex-post

efficient can also be entertained; yet the ex-post efficient rule is the most natural in applications.

The analysis of the optimal interaction of disclosure and allocation rules is beyond the scope of

this paper.

The rest of the paper proceeds as follows. Section 2 discusses related literature. Section 3

describes the economic environment. Section 4 derives the first-best allocation and an auction

that implements it. Section 5 establishes the suboptimality of the policies of full disclosure, non-

disclosure, and interval pooling. Under additional conditions, the section partially characterizes

an optimal auction by establishing that an optimal disclosure rule is conjugate, and then formu-

lates an optimal-control problem whose solution (computed in an example) delivers the matching

function underlying the optimal conjugate disclosure rule. The section also explains the depar-

ture of the follower’s effort schedule from the first-best schedule. Section 6 provides additional

intuition for the optimal disclosure rule by comparing it to two benchmarks. Section 7 discusses

the limitations of the first-order approach and the challenges associated with departing from the

ex-post efficient allocation rule. Section 8 concludes. Some proofs are relegated to the Appendix.

Technical results comprise the Supplementary Appendix.
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2 Related Literature

Our paper contributes to the literature on auctions in which a monopolistic seller directly or in-

directly influences bidders’ information structure and, more broadly, to the literature on Bayesian

persuasion. The existing literature in which a seller, through his choice of a selling mechanism,

affects bidders’ information-acquisition effort (e.g., Bergemann and Välimäki, 2002, Persico, 2003,

Compte and Jehiel, 2007, Crémer et al., 2009, and Shi, 2012) mostly focuses on auctions that are

simultaneous. In these auctions, all bidders learn simultaneously, and so the issue of optimal bid-

disclosure does not arise. For instance, Persico (2003) compares the seller’s revenues in the first-

price and second-price auctions. Shi (2012) studies a revenue-maximizing simultaneous auction.

Bergemann and Välimäki (2002) study efficient simultaneous auctions. The optimally designed

auctions of the last two papers become suboptimal (in their respective senses) if the class of ad-

missible mechanisms is enriched to include sequential auctions, as corroborated by the present

paper’s results. The advantage of sequential auctions is established also by Compte and Jehiel

(2007), who find that the revenue in the sealed-bid second-price auction with simultaneous learn-

ing is lower than the revenue in the ascending-price auction in which bidders have multiple op-

portunities to learn.

Crémer et al. (2009) admit sequential auctions and design a revenue-maximizing one. Because

they assume that the seller can charge bidders for information, optimal information disclosure

turns out to be trivial (e.g., full disclosure) and is not their focus. Information disclosure is the fo-

cus of the model of Eso and Szentes (2007), in which the seller directly designs the signals observed

by the bidders, instead of motivating bidders to acquire signals themselves. Just like Crémer et al.

(2009), Eso and Szentes (2007) allow the seller to charge bidders for information and find that full

disclosure is optimal. The seller of Eso and Szentes (2007) reveals maximal information to maxi-

mize the total surplus, which he taxes away by cleverly charging for the signals that he reveals.9

In our paper, the critical assumption that rules out selling information and delivers the subopti-

mality of full disclosure is a particularly demanding interim participation constraint, according

to which, upon observing his type, the follower must expect his total payoff to be nonnegative.10

9The seller must charge cleverly because the bidders of Eso and Szentes (2007), by contrast to the bidders of Crémer
et al. (2009), already have some private information before accepting the seller’s mechanism. So the charges are not
simple participation fees.

10In other words, each bidder contracts with the seller only upon submitting his bid, not before.
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Without this demanding participation constraint, the logic of Eso and Szentes (2007) would have

implied the optimality of full disclosure also in our model (the various differences between the

models notwithstanding).11 Such stringent participation constraints are also imposed by Ganuza

(2004) in a second-price auction and by Bergemann and Pesendorfer (2007) in an optimally de-

signed auction as they model the seller’s design of the bidders’ information structure. As a result,

both Ganuza (2004) and Bergemann and Pesendorfer (2007) arrive at the suboptimality of full dis-

closure; the seller seeks to avoid conferring on the bidders excessive information rents that cannot

be taxed away.

Another strand of literature to which our paper contributes is the literature on Bayesian per-

suasion, or sender-receiver games with commitment. The two main papers in this literature are RS

and Kamenica and Gentzkow (2011). RS assume additional structure that makes their paper espe-

cially pertinent to our analysis. We establish the relevance of RS’s results in a novel environment,

an auction with costly information acquisition and, crucially, with a continuum of types.

In RS, Nature draws a “prospect” that enters the sender’s information-disclosure rule. By con-

trast, in our model a prospect is determined by the type the leader reports to the seller, who acts as

a sender with commitment. RS’s receiver takes a binary action. Our receiver, the follower, chooses

a divisible amount of information to acquire. Routine mechanism-design techniques reduce the

seller’s information-disclosure problem to the seemingly unrelated sender-receiver game of RS

and make their equilibrium characterization applicable, subject to one significant qualification.

RS assume a discrete prospect set, whereas in our model, the prospect set is a continuum. A limit

argument establishes a formal connection between RS’s model and ours, thereby paving the way

for the proof of the optimality of the conjugate disclosure. This sharp characterization of optimal

disclosure has no direct counterpart in the discrete model of RS.

In the context of persuasion models with the sender commitment, our conjugate disclosure

is unusual in that it pools non-adjacent types. Without commitment, a sender-receiver game in

which non-adjacent types are pooled is due to Golosov et al. (2011). They consider a dynamic

11With more demanding participating constraints, the logic of Eso and Szentes (2007) need not apply in an otherwise
unchanged model of Eso and Szentes (2007). Indeed, Bergemann and Wambach (2015) strengthen the participation
constraints in the model of Eso and Szentes (2007) and find that, to implement the same allocation as in the auction of
Eso and Szentes (2007), full disclosure must be sacrificed.
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version of the model of Crawford and Sobel (1982).12 Each period, an expert that is privately

informed about a state sends a message to a decision maker. Golosov et al. (2011) construct an

equilibrium that eventually reveals that state. A critical ingredient in their construction is a dis-

closure rule that initially pools faraway types into pairs. These pairs are not, however, ordered in

a way that conforms with the conjugate disclosure rule that we derive. Moreover, their pairwise

disclosure serves a different purpose (the eventual disclosure of the state, not profit-maximization)

in a disclosure game that is substantively different from ours (their game has multiple stages of

communication, no commitment, and a different economic setting).13

Furthermore, any auction design or agency design in which information disclosure at an early

stage affects players’ unenforceable (by the seller or the principal) action at a later stage features

Bayesian persuasion. An example of such design is the application of the Kamenica and Gentzkow

(2011) techniques to a two-player contest, by Zhang and Zhou (2015). In their contest, bids model

unenforceable efforts (as opposed to enforceable payments, as in auctions). Another example

of design with Bayesian persuasion is an auction followed by resale. While early resale models

(Bikhchandani and Huang, 1989; Gale et al., 2000; Haile, 2003; Gupta and Lebrun, 1999) fix an auc-

tion format and study the informational linkage between the primary market and the resale mar-

ket, more recent work (Calzolari and Pavan, 2006a; Zheng, 2002) adopts the mechanism-design

approach. The work of Calzolari and Pavan (2006a) is especially closely related to ours.

Calzolari and Pavan (2006a) study a mechanism-design problem of a monopolistic seller who

sells to a potential buyer, a leader, in the primary market and anticipates the possibility that the

leader resells to another buyer, a follower, in the resale market. The seller’s mechanism comprises

a rule for allocating an item to the leader and a rule for disclosing information to follower. In the

resale market, either the leader or the follower is randomly chosen to make a take-it-or-leave-it

price offer to the other buyer. When the follower is chosen, he is the counterpart of the follower

in our model; his resale offer is a private action informed by the seller’s strategic disclosure of the

12Also Krishna and Morgan (2001, 2004), Chen (2009), and Ivanov (2011) analyze sender-receiver games without
commitment in which non-adjacent types can be pooled in (so-called non-monotone) equilibria.

13Introducing commitment into the sender-receiver model of Crawford and Sobel (1982) does not generate anything
resembling the conjugate disclosure that we find. Indeed, in the quadratic formulation of that model, if the sender
can commit to a disclosure rule, full disclosure is optimal. Intuitively, the sender cannot persuade the receiver to
systematically bias his action (to indulge the sender’s bias), but by committing to full disclosure, the sender can make
the receiver’s action match the state. Such matching maximizes the sender’s ex-ante expected utility because the sender
is risk-averse with respect to the discrepancy between the receiver’s action and the state.
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leader’s reported type.

In the model of Calzolari and Pavan (2006a), just as in ours, optimality proscribes full disclo-

sure because, just as we do, they assume a participation constraint that precludes the seller from

expropriating the traders’ rents in the resale market.14 The assumption of Calzolari and Pavan

(2006a) that the leader’s type is binary delivers tractability and allows them to characterize both

an optimal allocation rule and an optimal disclosure rule. By contrast, our assumption of the con-

tinuum of the leader’s types enables us to study richer disclosure rules, but at the cost of fixing

the allocation rule. In particular, we identify a natural economic setting in which a novel pattern

of information disclosure—conjugate disclosure—optimally arises. With the binary types of Cal-

zolari and Pavan (2006a), such a disclosure would be hard to detect because the message space

can be restricted to just three elements. More generally, with finite types, the message space is

finite without loss of generality. With a continuum of types, the optimal message space is either

finite (as in the models where monotone disclosure is optimal, such as Crawford and Sobel, 1982

or Ostrovsky and Schwartz, 2010) or infinite (as in our model), and thus the garbling invoked by

the disclosure rule can display richer patterns.

3 Model

Environment

The seller must allocate an item, which he values at zero, to one of two bidders. Bidder 1, the

leader, privately observes his valuation, or type, denoted by q1 and drawn according to a c.d.f. G

with the corresponding p.d.f. g and support Q1 ⌘ [0, 1]. The c.d.f. G is smooth on (0, 1), with

bounded derivatives. Bidder 2, the follower, is unsure of his valuation, and privately exerts an

effort a 2 A ⌘ [0, 1] to acquire information, which determines his expected valuation, or type,

denoted by q2 2 Q2 ⌘ [0, 1] (as will be explained shortly). The cost of effort a is the convex

function C (a) ⌘ ca2/2, c > 0.

For any i 2 {1, 2}, let xi 2 [0, 1] be the probability that bidder i gets the item, and let ti 2 R be

14In a similar spirit, in a sequential common agency model, Calzolari and Pavan (2006b) identify conditions un-
der which the upstream principal may find it strictly optimal to disclose a noisy signal about the agent’s type to the
downstream principal.
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his payment. The leader’s payoff is

q1x1 � t1,

and the follower’s payoff is

q2x2 � t2 � C (a) .

Both bidders are expected-utility maximizers.

Effort Technology

The follower’s type, q2, is interpreted as the expectation of his underlying valuation (not modelled)

conditional on the privately observed signal generated by his information-acquisition effort. The

underlying valuation is not modeled, because it affects the follower’s payoff only through the

expectation q2. The signal can be identified without the loss of generality with q2, as we shall

discuss.

For any a 2 A, q2 is drawn according to a c.d.f that is linear in a:15,16

F (q2 | a) ⌘ aFH (q2) + (1 � a) FL (q2) , q2 2 Q2 ⌘ [0, 1] . (1)

Whenever the p.d.f.s corresponding to the c.d.f.s F, FH, and FL exist, they are denoted by f , fH,

and fL. The c.d.f. F may have mass points at {0, 1}, but on (0, 1), F is assumed to be smooth, with

bounded derivatives. Conditional on a, q1 and q2 are independent.

For a to be interpreted as an information-acquisition effort, F is assumed to satisfy

Condition 1 (Information Acquisition). (i) (equality of means)
´ 1

0 FH (s)ds =
´ 1

0 FL (s)ds, and

(ii) (rotation) for some q⇤ 2 (0, 1), for all s 2 (0, q⇤)[ (q⇤, 1), it holds that (q⇤ � s) (FH (s)� FL (s)) >

0.

According to Condition 1, the follower who exerts effort a, with probability a, receives a more

informative signal about his underlying valuation, and with probability 1 � a, receives a less in-

15In principal-agent problems, the linearity condition (1) is known as the Linear Distribution Function Condition,
whose special case is the Spanning Condition of Grossman and Hart (1983, p. 25).

16The linearity condition (1) is essential in Section 5 for reducing the seller’s problem to the information-disclosure
problem of RS.
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formative signal.17 Part (i) requires the follower’s effort not to affect his expected type.18 In partic-

ular, part (i) rules out the situations in which the follower’s effort is a value enhancing investment,

which can be thought of as inducing a first-order stochastic-dominance shift in the distribution of

q2.19 Parts (i) and (ii) taken together imply that a higher effort induces a mean-preserving spread

of the distribution of the follower’s types.20

This mean-preserving spread captures a standard, but perhaps counter-intuitive, implication

of Blackwell’s informativeness criterion (Blackwell, 1951, 1953). According to this criterion, a more

informative signal about the follower’s (unmodelled) underlying valuation induces a greater dis-

persion of the probability distribution over the conditional expectation, q2.21,22 When a = 1, the

realized q2 can be equivalently interpreted either as an expectation of the underlying valuation or

as the underlying valuation itself. Because the implied signal may remain informative even when

a = 0 (if FL nondegenerate), Condition 1 generalizes the truth-or-noise information-acquisition

technology introduced by Lewis and Sappington (1994) and used by Bergemann and Välimäki

(2006, Section 2.2), Johnson and Myatt (2006, Section III.B), and Shi (2012, Example 2), among

others.

An example of the information-acquisition technology specified in Condition 1 is

Example 1 (Rotation Order). F (q2 | a) = a
� 1

2 1{q2<1} + 1{q2=1}
�

+ (1 � a) q2, where 1{·} is the indi-

cator function.

Example 1 can be interpreted to say that, with probability a, the follower observes a perfectly
17A signal structure that delivers the probability distribution of types in Condition 1 starting from some underlying

valuations is given in Supplementary Appendix B.1.
18For any c.d.f. H on [0, 1], its expectation is

´
xdH (x) =

´
(1 � H (x))dx.

19It can be shown that, under some conditions, the techniques developed in this paper apply also to environments
with value enhancing investments.

20To see the implication, let a0 > a. Part (ii) implies (q⇤ � s) (F (s | a0)� F (s | a)) � 0, which combined with part (i)
gives the second-order stochastic dominance inequality

´ x
0 F (s | a0)ds �

´ x
0 F (s | a)ds for all x 2 [0, 1].

21For example, suppose that the underlying valuation, denoted by v, is distributed uniformly on [0, 1]. Conditional
on the observation of a perfectly uninformative signal, the probability distribution of v is still uniform on [0, 1], and so
q2 = 1/2. By contrast, conditional on the observation of a perfectly informative signal, the probability distribution of v is
degenerate at the true underlying valuation, and so q2 = v. Consequently, anticipating a perfectly uninformative signal,
the follower assigns probability one to q2 = 1/2, whereas anticipating a perfectly informative signal, the follower views
q2 as distributed uniformly on [0, 1]. In the former case, the dispersion of the probability distribution of conditional
expectations is zero, while in the latter case, it equals the dispersion of the probability distribution of the underlying
valuation. In either case, because he is risk-neutral, the follower treats the realized q2 as if it were his underlying
valuation.

22Blackwell’s informativeness criterion implies Lehmann’s accuracy condition (Lehmann, 1988; Persico, 2003), which
implies the mean-preserving-spread order on the conditional expectations (Mizuno, 2006, Proposition 1). Directly
modelling a signal’s informativeness by the induced dispersion of the conditional expectation is common in economics;
see, for instance, Johnson and Myatt (2006), Ganuza and Penalva (2010), Shi (2012), and Roesler (2014).
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informative signal that reveals his underlying valuation, which is distributed uniformly on {0, 1},

and with probability 1� a, the follower observes a partially informative signal about the underly-

ing valuation.

The linear specification (1) rules out information-acquisition technologies that let the follower

choose among three or more signals, as Example 2 clarifies.

Example 2 (Nonexample). The follower chooses a tuple (a1, a2) in a two-dimensional probability

simplex D2, and then draws q2 from the probability distribution with the c.d.f. F (q2 | a1, a2) =

a2/2 + a1q2 + (1 � a1 � a2) 1{q2�1/2}.

In Example 2, in addition to allocating probabilities to a perfectly informative and a somewhat

informative signals about the underlying valuation in {0, 1}, as in Example 1, the follower can

also allocate some probability to a completely uninformative signal (with probability 1 � a1 �

a2). Ruling out Example 2 is economically restrictive. If the cost of information acquisition were

increasing in a1 and a2, one could imagine the follower prefer to set both a1 and a2 close to zero if

he faced the price close to 0 or 1, and optimally trade off the positive a1 and a2 otherwise.

Condition 1 remains restrictive even conditional on the linear specification (1), as Example 3

illustrates.

Example 3 (Another Nonexample). F (q2 | a) = a
� 1

4 1{q2<1/2} +
1
2 1{1/2q2<1} + 1{q2=1}

�

+(1 � a) q2.

Example 3 can be interpreted to say that, with probability a, the follower observes a signal

that, with probability 1/2, reveals his underlying valuation, which is distributed uniformly on

{0, 1}, and, with probability 1/2, reveals “nothing”; with probability 1 � a, the follower observes

the partially informative signal of Example 1. Even though F (· | 1) is a mean-preserving spread

of F (· | 0), and hence is more informative in some sense (viz. Blackwell’s order on the underlying

signals), F (· | 1) and F (· | 0) are not rotation ordered.

To simplify the exposition by avoiding the corner solution a = 1, we henceforth assume a

sufficiently large cost of effort:23

c >
ˆ 1

q⇤
(FL (s)� FH (s))ds. (2)

23This condition is derived by requiring that the first-best effort a (q1), given in (7), be less than 1 for every q1.
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The Seller’s Problem

The seller chooses, publicly announces, and commits to a mechanism. A mechanism comprises

an extensive game-form, a strategy to which the seller commits, and a communication device that

enables players to exchange messages. The communication device is chosen by the seller. The

game-form is given. Its timing is such that (i) each bidder may leave the mechanism without

payment, (ii) the follower exerts his effort and observe his realized type, (iii) each bidder may

once again leave the mechanism without payment, and (iv) the seller enforces a trade that is ex-

post efficient, meaning that, for any type profile (q1, q2), the probability that bidder i 2 {1, 2}

gets the item is xi(qi, q�i) = 1{qi>q�i}, where 1{·} is the indicator function. The communication de-

vice admits arbitrary communication protocols between the game-form’s stages as long as enough

information is elicited to implement the ex-post efficient allocation. The described class of mech-

anisms is rather rich; for instance, the seller can approach the follower first, tell him something,

then talk to the leader, come back to talk to the follower, wait for the follower to exert his effort,

ask him about his type, revisit the leader, then revisit the follower, and only then execute a trade.

In our environment, the logic of the Revelation Principle in environments with private infor-

mation and private actions (see, e.g., Myerson, 1982 and Myerson, 1986) applies. Without loss of

generality, the seller can restrict attention to direct mechanisms of the form:

1. Having observed q1, the leader confidentially reports q̂1 2 Q1 to the seller.

2. The seller confidentially sends a message m 2 M to the follower according to some disclo-

sure rule µ : Q1 ! D (M), which associates with each report of the leader a probability

distribution over messages.24

3. The follower exerts an effort a⇤ (m) 2 A, then observes q2, and confidentially reports q̂2 2

Q2.

4. Bidder i with q̂i > q̂�i gets the item. Payments (t1, t2) : Q1 ⇥ Q2 ! R2 (the functions of

bidders’ reports) are assessed.

The logic of the Revelation Principle maintains that the seller should minimize the information

revealed to bidders and maximize the information collected from them. By letting each bidder
24If the seller’s message is independent of the leader’s report, the described mechanism is strategically equivalent to

a mechanism in which the seller asks both bidders to submit their reports simultaneously.
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report his type as soon as he learns it—and, in particular, by letting the leader report first—the

seller maximizes the information collected from the bidders. Because the leader takes no action,

the seller minimizes the information revealed to the leader by not sending any message to him.

The seller minimizes the information revealed to the follower by sending a message to him only

once, right before the follower exerts his (one-off) information-acquisition effort.

Further, without loss of generality, the seller can focus on mechanisms whose (perfect Bayes-

Nash) equilibria that are truthful, meaning that
�

q̂1, q̂2
�

= (q1, q2). Nor does any loss of generality

occur if one sets M = A (although a different M will be sometimes convenient).

To respect each bidder’s right to exit without payment at stage (i) of the game-form, the direct

mechanism must satisfy the ex-ante participation constraint, meaning that each bidder must ex-

pect a nonnegative payoff from his participation in the mechanism. To respect each bidder’s right

to exit without payment at stage (iii), the direct mechanism must satisfy the interim participation

constraint, meaning that, having observed his type qi, each bidder i must expect a nonnegative

payoff from his participation in the mechanism.

As a result, the seller’s problem consists in choosing a disclosure rule µ and a payment rule

(t1, t2) that induce a mechanism that is ex-post efficient, truthful, and satisfies ex-ante and interim

participation constraints so as to maximize the expected revenue:

ˆ
Q1

ˆ
M

ˆ
Q2

(t1 (q1, q2) + t2 (q1, q2))dF (q2 | a⇤ (m))dµ (m | q1)dG (q1) . (3)

Two restrictions on admissible mechanisms are crucial for our results: ex-post efficiency and

interim participation constraints. These restrictions limit the class of the model’s applications to

situations in which the seller does not have full control over the allocation rule and cannot sell

to the follower any information about the leader’s valuation. Both restrictions can be motivated

by the seller’s inability to commit, respectively, to not attempting to reallocate an inefficiently

allocated item and to not fabricating and selling “information” about the leader’s type in the

absence of any intention of holding an auction.25

The restrictions are also motivated by our desire to focus on the question that is both eco-

nomically interesting and analytically tractable. When interim participation constraints are not
25For example, the government may face disgruntled voters if it allocates a procurement contract to a bidder whom

everyone knows not to be the best choice.
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imposed, optimal information disclosure is trivial. In particular, consistent with the logic of Eso

and Szentes (2007), it is optimal to reveal the leader’s information to the follower, as can be shown.

When ex-post efficiency of the allocation rule is not imposed, the revenue-maximization problem

is intractable (for us), as Section 7 explains.

4 A First-Best Auction

The first-best outcome obtains when an omniscient and omnipotent planner maximizes the ex-

pected total surplus (i.e., the sum of bidders’ payoffs) while observing the leader’s type, directly

controlling the follower’s effort, and observing the follower’s realized type. Corollary 1 to The-

orem 1 shows that the first-best outcome, which the theorem reports, can be implemented in an

auction even without the omniscient and omnipotent planner. Because the first-best outcome

is implementable, we shall use it as a benchmark, to gauge the “distortions” introduced by the

seller’s profit-maximizing motive.

The first-best outcome is characterized by the follower’s first-best effort. For every leader’s

type q1, the follower’s first-best effort, denoted by a (q1), maximizes the total surplus:

a (q1) 2 arg max
a2A

⇢ˆ
Q2

max {q1, q2}dF (q2 | a)� C (a)
�

. (4)

Integrating by parts gives:

a (q1) 2 arg max
a2A

(

1 �
ˆ 1

q1

F (q2 | a)dq2 � C (a)

)

.

For a given q1, the planner’s marginal net benefit from an increase in the follower’s effort is the

derivative of the maximand in the display above and equals

B (q1, a) ⌘ R (q1, a)� C0 (a) , (5)

where

R (q1) ⌘ �
ˆ 1

q1

∂F (q2 | a)
∂a

dq2 (6)

is the return to information acquisition (independent of a because F is linear in a), and C0 (a) is the
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marginal cost of the follower’s information-acquisition effort. For any a, B (1, a) = �C0 (a) < 0

and, by part (i) of Condition 1, B (0, a) = �C0 (a) < 0. Hence, when q1 = 1 or q1 = 0, the follower

exerts no effort at the first-best. Indeed, in either of these extreme cases, no additional information

about the follower’s valuation would affect the item’s efficient allocation.

Part (ii) of Condition 1 implies that B (q1, a) is strictly increasing in q1 for q1 < q⇤ and is strictly

decreasing in q1 for q1 � q⇤. Hence, by the Monotone Selection Theorem (Milgrom and Shannon,

1994), the first-best effort, denoted by a (q1), is weakly increasing in q1 for q1 < q⇤ and is weakly

decreasing in q1 for q1 � q⇤, independently of the exact functional form of C. Moreover, the

dependence is strict when a (q1) 2 (0, 1) (Edlin and Shannon, 1998), which can be shown to be the

case for q1 2 (0, 1) as long as the convex C has C0 (0) = 0 and C0 (1) sufficiently large, as indeed is

implied by the quadratic C and condition (2). From the first-order condition R (q1) = C0 (a (q1)),

the quadratic C delivers an explicit expression for the first-best effort, leading to Theorem 1.

Theorem 1. The first-best effort

a (q1) =
1
c

ˆ 1

q1

(FL (s)� FH (s)) ds, q1 2 [0, 1] (7)

satisfies a (0) = a (1) = 0, is strictly increasing in q1 when q1 < q⇤, and is strictly decreasing in q1 when

q1 � q⇤.

Corollary 1 describes an auction that implements the first-best effort. In this auction, the leader

who bids b pays the (possibly negative) tax

T (b) ⌘
ˆ b

0
(F (s | a (b))� F (s | a (s)))ds. (8)

Corollary 1. In a mechanism that implements the first-best outcome, the seller

1. Asks the leader to submit a bid, denoted by b, and charges him the tax T (b).

2. Discloses b to the follower and invites him to bid in the second-price auction.

3. Allocates the item and assesses the payments according to the rules of the second-price auction.

In equilibrium, each bidder bids his type and enjoys a nonnegative expected payoff. The follower exerts the

first-best effort.

Proof. See Appendix 1.
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If not for the leader’s tax, the mechanism in Corollary 1 would have been the standard second-

price auction only executed sequentially, with the leader’s bid made public. In this sequential

second-price action, the leader would have had the incentive to manipulate the follower’s in-

formation acquisition by bidding untruthfully. To see the incentive for untruthful bidding, sup-

pose that type-q1 leader truthfully bids b = q1. Then, his payoff in the second-price auction is

Eq2 [max {0, q1 � q2}]. Because max {0, q1 � q2} is convex in q2, Jensen’s inequality implies that

the leader gains if the distribution of the follower’s valuation is more dispersed, which occurs

when the follower exerts a greater effort. The leader can induce this greater effort by nudging his

bid towards q⇤, thereby making the follower more uncertain about his payoff from participating in

the auction and hungry for more information. By the envelope argument, this untruthful bidding

would have had a second-order detrimental effect on the leader’s payoff if the follower’s effort

had been fixed. Because the follower’s effort responds to the leader’s bid, however, untruthful

bidding in addition has a first-order, beneficial effect on the leader’s payoff.

In the mechanism of Corollary 1, the tax discourages untruthful bidding by altering the leader’s

marginal payoff to raising his bid. The marginal payoff is altered by the amount

T0 (b) = a0 (b)
ˆ b

0

∂F (s | a (b))
∂a

ds,

where the integral is positive for all b 2 (0, 1) by Condition 1. Thus, the sign of T0 (b) is determined

by the sign of a0 (b); it is positive when b < q⇤ and negative when b > q⇤. As a result, any increase

in the leader’s bid below q⇤ and any decrease in his bid above q⇤ are taxed on the margin.

5 A Seller-Optimal Auction

Without information acquisition, the seller’s problem would have been trivial. By the Revenue

Equivalence theorem, the ex-post efficient allocation rule, participation constraints, and the op-

timality of truthful reporting would have tied down the seller’s expected payoff to the distribu-

tion of the bidders’ types, which would have been fixed. With information acquisition, however,

the revenue equivalence no longer applies because the distribution of the follower’s type is no

longer fixed but is affected by the seller’s disclosure policy, through the follower’s information-
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acquisition effort. The disclosure problem thus emerges as the central part of our analysis.

Section 5.1 uses the Envelope Theorem (the tool behind the Revenue Equivalence theorem)

to reduce the seller’s revenue maximization problem to an information disclosure problem. Sec-

tion 5.2 shows that the information disclosure problem is nontrivial; it is not solved by disclosing

everything, and it is not solved by disclosing nothing. Section 5.3 analyzes the seller’s disclosure

problem by developing a connection between the seller’s continuum-of-types disclosure problem

and the finite-types disclosure problem of RS. This connection brings out the qualitative features

of the optimal disclosure rule and the induced effort schedule of the follower. Section 5.4 for-

mulates the disclosure problem as an optimal-control problem, which can be used to explore the

quantitative features of optimal disclosure and verify the maintained monotonicity condition in

examples.

Two remarks clarifying our approach are in order. First, the optimality analysis focuses on the

seller’s relaxed problem. This relaxed problem neglects the monotonicity condition that requires

the leader’s probability of winning to be nondecreasing in his type. This condition is necessary

for truthful reporting and can be verified in applications (as we do in an example in Section 5.4).26

Relaxed problems, even though restrictive, are sufficiently rich to have become focal in much of

the mechanism-design literature.27

Second, by the Revelation Principle (for games with private actions), without loss of generality,

one can restrict attention to the disclosure rules that are (possibly stochastic) functions from the

leader’s types into the effort levels recommended to the follower. The thrust of our analysis lies

in showing that an optimal disclosure rule is a deterministic function that maps no more than two

types of the leader into the same recommended effort. As a result, one can equivalently identify

the seller’ message with (i) a recommended effort and (ii) one or two leader’s types each of which

induces the same effort. We use these two equivalent formulations interchangeably.

26The analogous monotonicity condition for the follower is guaranteed to hold, as will be shown. Furthermore, both
monotonicity conditions are guaranteed to hold in all the benchmarks that we consider: in the first-best mechanism of
Corollary 1 and in the two benchmarks of Theorem 4, reported in Section 6.

27There are exceptions. The relaxed problem is not typically unrestrictive in the weak-cartels model of McAfee and
McMillan (1992) and the queueing model of Hartline and Roughgarden (2008).
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5.1 Reduction of the Seller’s Auction-Design Problem to an Information-Disclosure

Problem

In this section, we use local truthful-reporting and participation constraints to substitute bidders’

payments out of the seller’s objective function. This step, a standard envelope argument, yields

the seller’s virtual surplus, thereby reducing the seller’s problem to a disclosure problem.28

The Follower’s Truth-Telling, Obedience, and Participation Constraints

The incentive constraints are best introduced by rolling the game-form backwards. First, suppose

that, having observed the seller’s message m, the follower has already exerted some effort and

observed his type q2. Now the follower chooses a report that maximizes his interim expected

payoff, thereby attaining the value

U2 (q2 | m) ⌘ max
q̂22Q2

Eq1|m

h

q21{q̂2>q1} � t2
�

q1, q̂2
�

i

, (9)

where the expectation is over the leader’s type q1 conditional on the seller’s message m and, im-

plicitly, on the disclosure rule. By inspection of (9), the follower’s effort does not enter his interim

expected payoff, and so he chooses his report independently of this effort. The follower’s truth-

telling constraint requires the local truth-telling constraint (implied by the Envelope Theorem

applied to (9)),

U0
2 (q2 | m) ⌘ dU2 (q2 | m)

dq2
= Eq1|m

⇥

1{q2>q1}
⇤

, (10)

and requires the monotonicity constraint according to which the follower’s probability of winning,

Eq1|m
⇥

1{q2>q1}
⇤

, is nondecreasing in his type, q2. The satisfaction of the monotonicity constraint is

immediate, by inspection.

The interim participation constraint holds if, even after observing q2, the follower is willing

to remain in the mechanism in the sense that his expected continuation payoff is nonnegative.

28The envelope argument is described by Fudenberg and Tirole (1991, pp. 284-8). It is also summarized in the
Constraint Simplification Theorem of Milgrom (2004), implied by the Envelope Theorem of Milgrom and Segal (2002).
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Formally, for all q2 2 Q2 and all m 2 M, it must be that U2 (q2 | m) � 0, or equivalently,

U2 (0 | m) +
ˆ q2

0
Eq1|m

⇥

1{s>q1}
⇤

ds � 0, (11)

where the equivalence holds by the Constraint Simplification Theorem of Milgrom (2004), which

justifies the application of the fundamental theorem of calculus and rewrites U2 in terms of its

derivative from (10). Because the right-hand side of (10) is nonnegative, U2 (q2 | m) is nondecreas-

ing. Thus, the follower’s interim participation constraint holds if and only if

U2 (0 | m) � 0 for all m 2 M. (12)

Remark 1. Supposing that U2 (0 | m) = 0 for all m 2 M (as will be the case in the optimal mecha-

nism), the interim participation constraint rules out mechanisms that ask the follower to commit

to a payment in exchange for the right to participate in the mechanism, as well as the mechanisms

that offer to sell information about the leader’s type before the follower decides which effort to

exert.29

One can now take a step back in the game-form and ask which effort is optimal for the follower

who observes message m and knows that he will optimally report truthfully in future. Because

the seller cannot directly control the follower’s effort, the seller resigns to letting the follower exert

the effort that the follower finds optimal. Equivalently, the seller is restricted to recommending

efforts according to a rule that makes it optimal for the follower to obey the seller’s recommenda-

tions. That is, the obedience constraint must hold. Formally, right after observing message m and

having decided to exert effort a0, the follower expects his payoff net of the cost of effort to be

ˆ
Q2

U2 (q2 | m)dF
�

q2 | a0
�

= U2 (0 | m) +
ˆ 1

0
Eq1|m

⇥

1{q2>q1}
⇤ �

1 � F
�

q2 | a0
��

dq2, (13)

where the equality uses (10) and integration by parts.30 Interchanging the order of integration and

expectation (by Fubini’s theorem) in the right-hand side of the above display yields the expression

29In practice, shareholders may forbid managers to commit to any payments until due diligence (information acqui-
sition) has been performed.

30Integration by parts is valid even if F is discontinuous (as in Example 1), because U2 (· | m) has a bounded deriva-
tive everywhere and hence is continuous.
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for the follower’s optimal effort a⇤ (m) as a function of the observed message m:

a⇤ (m) 2 arg max
a02A

 

U2 (0 | m) + Eq1|m

"ˆ 1

q1

�

1 � F
�

q2 | a0
��

dq2

#

� C
�

a0
�

!

. (14)

Under the maintained Condition 1, the maximization problem in (14) has the unique solution:

a⇤ (m) = Eq1|m [a (q1)] , (15)

where a (q1), defined in (7), is the first-best effort level when the leader’s type is q1. The obedience

constraint thus requires that, if the seller’s message space is the set of recommended efforts, then

each recommended effort m satisfies m = a⇤ (m).

With the knowledge that the follower will be truthful and obedient, one can take one more step

back and impose the ex-ante participation constraint, which requires that the follower expect

a nonnegative payoff from the mechanism right after he has observed the seller’s message but

before he has exerted any effort. Formally, for any m 2 M, the maximand in (14) evaluated at the

optimal effort a⇤ (m) must be nonnegative:

U2 (0 | m) + Eq1|m

"ˆ 1

q1

(1 � F (q2 | a⇤ (m)))dq2

#

� C (a⇤ (m)) � 0. (16)

Substituting the functional forms of F and C, and the expressions for a⇤ and a, from (15) and (7),

and rearranging gives

U2 (0 | m) + Eq1|m

"ˆ 1

q1

(1 � FL (q2))dq2

#

+ C (a⇤ (m)) � U2 (0 | m) ,

where the inequality follows by inspection. Moreover, the interim participation constraint (12)

requires U2 (0 | m) � 0, and hence, by the display above, the ex-ante participation constraint in

(16) is implied by (12). Hence, from now on, we focus on the follower’s interim participation

constraint and refer to it simply as his participation constraint.
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The Leader’s Truth-Telling and Participation Constraints

Having observed his type, the leader chooses a report that maximizes his expected payoff, thereby

attaining the value

U1 (q1) ⌘ max
q̂12Q1

Eq2|q1

h

q11{q̂1>q2} � t1 (q1, q2)
i

. (17)

As in the case of the follower, by the Constraint Simplification Theorem of Milgrom (2004), the

leader’s truth-telling constraint is equivalent to the integral condition

U1 (q1) = U1 (0) +
ˆ q1

0
Em|q1 [F (q1 | a⇤ (m))]ds (18)

and the monotonicity condition on the probability of winning:

Eq2|q1

⇥

1{q1>q2}
⇤

= Em|q1 [F (q1 | a⇤ (m))] is nondecreasing in q1. (19)

In contrast to the follower’s monotonicity condition, the leader’s monotonicity condition (19) can-

not be a priori argued to hold. Instead, we proceed with the analysis assuming that this condition

holds, and then verify it in examples.

The leader’s interim participation constraint, or simply participation constraint, ensures that

each type of the leader is at least as well off in the mechanism as he would be if he were to

refrain from participation and enjoy the payoff of zero: U1 (q1) � 0 for all q1. Differentiating (18)

gives U0
1 (q1) = Em|q1 [F (q1 | a⇤ (m))] � 0; that is, U1 is nondecreasing, and so the participation

constraint holds for all q1 as long as it holds for q1 = 0:

U1 (0) � 0. (20)

The Seller’s Virtual Surplus

We can now use (18) combined with (17) and (13) both evaluated at a⇤ (m) and combined with (9)

to substitute out the bidders’ transfers from the seller’s objective function (3). From the seller’s

perspective, it is optimal to set the transfers for the lowest-type leader and the lowest-type fol-

lower so that their expected payoffs are zero. Because U1 (0) = 0 and, for all m, U2 (0 | m) = 0,
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the seller’s virtual surplus is31, 32

Em,q1,q2

✓

q1 �
1 � G (q1)

g (q1)

◆

1{q1>q2} +

✓

q2 �
1 � F (q2 | a⇤ (m))

f (q2 | a⇤ (m))

◆

1{q2�q1}

�

. (21)

The displayed virtual surplus is the expected sum of each bidder’s virtual valuation times the

probability that he gets the item. The probability of getting the item is pinned down by the ex-

post efficient allocation rule. Except for the dependence of a⇤ on q1 (through m), the virtual surplus

is standard.

Integrating q2 out of (21) and simplifying yields a more compact expression for the virtual

surplus:33 ˆ
Q1

Em|q1



q1 �
1 � G (q1)

g (q1)
F (q1 | a⇤ (m))

�

dG (q1) . (22)

To see why (22) is equivalent to (21), suppose that the leader’s type is q1 and the seller sends a

message m. Ex-post efficiency requires that the leader get the item with probability F (q1 | a⇤ (m)),

which is the probability of the event {q2 < q1}. In this case, the seller’s gain is the leader’s vir-

tual valuation q1 � (1 � G (q1)) /g (q1), which is his true valuation q1 less the information rent

(1 � G (q1)) /g (q1). Analogous reasoning suggests that if the follower gets the item (which occurs

with probability 1 � F (q1 | a⇤ (m))), the seller’s gain is the follower’s expected virtual valuation

conditional on winning, which can be verified to be q1.34 Thus, the follower’s information rent is

implicit in (22). Expression (22) is asymmetric only because, asymmetrically, q2 has been desig-

nated to be integrated out. Expression (22) reflects the dynamic nature of the mechanism only in

that m may depend on q1.

The seller’s auction-design problem has been thus reduced to the optimal-disclosure problem,

31If F has no density f , skip to (22), which does not rely on the existence of f .
32The follower’s information acquisition cost does not enter the virtual surplus directly, because the follower’s in-

terim participation constraint implies the ex-ante participation constraint. That is, the seller does not have to (even
partially) compensate the follower for the cost of information acquisition to induce the follower to participate; the
follower’s expected “information rent” from trading suffices to cover his information acquisition cost.

33The virtual surplus in (22) is non-negative because it is bounded below by
´

Q1
[q1 � (1 � G (q1)) /g (q1)]dG (q1) =

0. Thus, also the seller’s payoff is nonnegative.
34Formally, the follower’s expected virtual valuation conditional on winning when the leader’s type is q1 is

ˆ 1

q1

✓

q2 �
1 � F (q2 | a⇤ (m))

f (q2 | a⇤ (m))

◆

f (q2 | a⇤ (m))
1 � F (q1 | a⇤ (m))

dq2 = q1.

Even though the integrand in the above display is written as if F had a positive density, f , the validity of (22) requires
no such assumption.
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in which the seller maximizes (22) over disclosure rules. By the Revelation Principle, the seller can

restrict attention to disclosure rules with the property that, for each m 2 M, m = a⇤ (m); that is,

the message is the recommended action. Nevertheless, because it is convenient to keep track of

which types of the leader induce which recommended actions, we instead adopt the equivalent

(as we show) formulation that has the property that each m 2 M is the set of the leader’s types

that induces effort a⇤ (m).

5.2 The Suboptimality of Full Disclosure and Non-Disclosure

We show, in Theorem 2, that the seller’s optimal-disclosure problem is nontrivial in that both full

disclosure and non-disclosure are suboptimal. Full disclosure is a disclosure rule that assigns a

distinct message to each type of the leader. Non-disclosure is a disclosure rule that pools all types

of the leader under the same message.

The proof of Theorem 2 uses the seller’s objective function (22) rewritten in “product form,”

which is also used in the proofs of subsequent results. To arrive at this form, neglect the additive

term in (22) that is independent of the disclosure rule and rewrite (22) as

ˆ
Q1

Em|q1 [p (q1) a⇤ (m)]dG (q1) , (23)

where

p (q1) ⌘
1 � G (q1)

g (q1)
(FL (q1)� FH (q1)) (24)

denotes the seller’s marginal benefit from an increase in a. This marginal benefit equals the

leader’s information rent times the marginal increase in the probability that the follower wins.

Equation (23) is further transformed using the Law of Iterated Expectations and the expression

for a⇤ (m) in (15) to yield the product form

E
⇥

Eq1|m [p (q1)]Eq1|m [a (q1)]
⇤

. (25)

The transformed objective function has the same form as the sender’s objective function (equa-

tion [2]) in the model of RS.35 The product structure of (25) hinges on two assumptions: the ex-post

35In what follows, bracketed indices refer to equations and lemmas in RS’s paper.
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efficient allocation rule36 and the linearity of the c.d.f. F (q2 | a) in the follower’s effort a. Both of

these assumptions are crucial for adapting RS’s techniques to our setting.

To state our results, we borrow vocabulary from RS. A tuple (p (q1) , a (q1)) is called a prospect.

The prospect set is the graph G ⌘ {(p (q1) , a (q1)) : q1 2 Q1}.37

Showing that neither full disclosure, nor non-disclosure is optimal requires two lemmas, which

are of independent interest. For Lemma 1, call functions a and p ordered if (a (s0)� a (s)) (p (s0)� p (s)) �

0 for almost all s, s0 2 Q1.

Lemma 1. Full disclosure is optimal if and only if a and p are ordered.

Proof. Necessity: Suppose that a and p are not ordered. Then, an interval I ⇢ Q1 exists on which

a is strictly increasing and p is strictly decreasing, or the other way around. In this case,

ˆ
I

ˆ
I

�

a
�

s0
�

� a (s)
� �

p
�

s0
�

� p (s)
�

dsds0 < 0.

In the display above, multiplying the parentheses, defining |I| ⌘
´

I ds, and rearranging yields38

ˆ
I

a (s)p (s)ds <
1
|I|

ˆ
I

a (s)ds
ˆ

I
p (s)ds,

where the left-hand side is the seller’s expected payoff from fully disclosing the types in I, and the

right-hand side is the seller’s expected payoff from pooling all types in I under the same message.

Thus, full disclosure is suboptimal.

Sufficiency:39 Suppose that a and p are ordered. By contradiction, suppose that, with probability-

density p, prospect (p (s) , a (s)) occurs and induces a message m. Suppose also that, with probability-

density p0, prospect (p (s0) , a (s0)) with s0 6= s occurs and induces the same message m.40 The

seller’s gain from pooling the two prospects under message m relative to revealing each of them

36Section 7 shows that, as long as an allocation rule is fixed, it can depart from ex-post efficiency without compro-
mising the product structure of the seller’s objective function. If the seller were also to maximize over allocation rules,
however, the product structure would be lost.

37The set {(p (q1) , a (q1)) : q1 2 Q1} differs from a RS prospect set only in that RS require their prospect sets to be
finite, for tractability.

38The obtained inequality is a continuous version of Chebyshev’s sum inequality.
39The sufficiency argument is Lemma [1] of RS and is included for completeness.
40The message m may also be induced by some other prospect. Either prospect may also induce some other message.
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is

pa (s) + p0a (s0)
p + p0

pp (s) + p0p (s0)
p + p0

�

p + p0
�

� pa (s)p (s)� p0a
�

s0
�

p
�

s0
�

= � pp0 (a (s0)� a (s)) (p (s0)� p (s))
p + p0

 0,

where the inequality follows because a and p are ordered. Thus, a weak improvement can be

attained by revealing any two prospects that are sometimes pooled under the same message; full

disclosure is optimal.

For Lemma 2, define a nonincreasing line as a straight line that is either vertical or has a

nonpositive slope.

Lemma 2. It is optimal to pool a subset S of the prospect set G under the same message if and only if S lies

on a nonincreasing line.

Proof. For sufficiency, suppose first that S lies on a vertical line. Then, the seller’s payoff from S,

E
⇥

E|m [a]E|m [p]
⇤

= pE [a], is independent of the disclosure rule. Any disclosure of the elements

of S is optimal, including pooling them under the same message.

If G is a nonincreasing line that is not vertical, then for some k0 2 R and k1 2 R+, every

prospect (a (q1) , p (q1)) in S can be written as a (q1) = k0 � k1p (q1). The seller’s payoff from S,

E
⇥

E|m [a]E|m [p]
⇤

= k0E [p]� k1E
h

�

E|m [p]
�2
i

,

is maximized when E
h

�

E|m [p]
�2
i

is minimized, which, by Jensen’s inequality, occurs when the

signal structure is least informative in Blackwell’s sense, when the random variable E|m [p] is least

dispersed. The least dispersion is achieved by pooling all prospects in S under the same message.

To summarize, pooling all prospects on a line segment is optimal, and strictly so when k1 > 0.

Necessity follows from RS’s Lemma [3].

Taking S = G in Lemma 2 immediately yields

Corollary 2. Non-disclosure is optimal if and only if the prospect set G lies on a nonincreasing line.

One can now state and prove Theorem 2.
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Theorem 2. Under Condition 1, the policies of full disclosure and non-disclosure are suboptimal. If, in

addition, c.d.f.s G, FL, and FH are analytic functions, it is never optimal to pool an open interval of the

leader’s types under the same message.41

Proof. Recall that

p (q1) =
1 � G (q1)

g (q1)
(FL (q1)� FH (q1))

a (q1) =
1
c

ˆ 1

q1

(FL (s)� FH (s))ds.

By Theorem 1, a is uniquely maximized at q1 = q⇤ 2 (0, 1). By part (ii) of Condition 1 and by

the above display, q1 < q⇤ =) p (q1) < 0 and q1 > q⇤ =) p (q1) > 0. Thus, a and p are not

ordered, and Lemma 1 implies that full disclosure is suboptimal.

The prospect set G does not lie on a nonincreasing line. Indeed, G is not on a vertical line

because the sign of p (q1) depends on q1, as argued above. Nor is G on a decreasing line, because

for each q1 < q⇤, there exists an e > 0 such that a (q1) < a (q⇤ + e) and p (q1) < 0 < p (q⇤ + e) .

Hence, Corollary 2 implies that non-disclosure is suboptimal.

The remainder of the proof establishes the suboptimality of pooling an open interval of types

and relies on two standard observations about analytic functions and analytic curves.42

Observation 1. Sums, products, reciprocals (if well-defined), derivatives, and integrals of ana-

lytic functions are analytic.

Observation 2. If two analytic curves coincide on any open interval, these curves are identical

everywhere.

By Observation 1, p and a are analytic. Hence, the prospect set G is analytic.

By Lemma 2, all types in an open interval in Q1 can be optimally pooled under the same

message only if a nonincreasing line coincides with the prospect set G on that interval. If so,

Observation 2 implies that G must be a nonincreasing line, which has been shown to be false.

Hence, no interval of types is optimally pooled.
41A function is analytic if it can be locally represented by a convergent Taylor series. Many common functions are

analytic, and by the Stone–Weierstrass Theorem, any continuous function can be approximated arbitrarily well by an
analytic function.

42A curve is analytic if it has an analytic parametrization.
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5.3 The Optimality of Conjugate Disclosure

Under an additional, convexity, assumption, this section derives the structure of an optimal information-

disclosure rule, summarized in Theorem 3. Roughly speaking, this rule partitions Q1 into pairs

and singletons and reveals to the follower only the element of the partition to which the leader’s

type belongs. The partition has a special structure, pooling “extreme” leader types into pairs. The

two types that are pooled in a pair are called “conjugate,” and so the optimal disclosure rule is

called “conjugate disclosure rule.” The optimal effort schedule recovered from the optimal disclo-

sure rule is also described in Theorem 3.

The remainder of this section is concerned with stating and proving Theorem 3. Doing so calls

for new definitions and intermediate results. This section is more technical than others due to the

subtleties stemming from the assumption that the leader’s type space is continuous.43

Restriction to Convex Prospect Sets

This paper’s techniques for finding an optimal disclosure rule rely on the prospect set G being

convex in the sense of

Definition 1. A prospect set G is convex if it is a strictly convex curve.44

Convex prospect sets are illustrated in Figure 3. Because Condition 1 does not imply (nor is

implied by) the convexity of G, the subsequent analysis will maintain an additional assumption:

Condition 2. The prospect set G is convex.

One can verify that Conditions 1 and 2 imply the existence of q 2 [0, q⇤) and q̄ 2 (q⇤, 1)

(illustrated in Figure 3) such that:

• On (0, q), G is downward-sloping (a is strictly increasing; p is strictly decreasing).

• On (q, q⇤), G is upward-sloping (both a and p are strictly increasing).

43Assuming instead that Q1 is finite would have simplified some arguments, complicated others, and, crucially,
weakened the conclusions. With a finite but large Q1, each optimal disclosure rule (in case there are multiple) may fail
to be conjugate, but this failure is economically insignificant. This insignificance can be ascertained by studying the
limit of an increasingly finer sequence of type sets (which we do in this section). With the continuous Q1, the emergent
conjugate disclosure rule is easy to interpret economically and can be recovered from an optimal-control problem.

44A strictly convex curve is a curve that intersects any line at most twice.
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"

("(θ*), α(θ*))

("(θ), α(θ))

("(0), α(0))

("(θ), α(θ))

("(1), α(1))
(a) A “typical” convex prospect set that sat-
isfies Condition 1.

!

"

("(#*), !(#*))

("(#), !(#))

("(#), !(#))

("(0), !(0))
(b) G is uniform, and FL and FH are Beta-distribution
c.d.f.s that satisfy Condition 1.

!

"

("(#), !(#))

("(1), !(1))("(0), !(0))

("(#*), !(#*))

(c) G is uniform, and FL and FH are as specified in Ex-
ample 1 (and hence satisfy Condition 1).

!

"

("(#), !(#))

("(1), !(1))

("(0), !(0))

(d) A convex prospect set that violates Condition 1.

Figure 3: Convex prospect sets. Certain “critical” points have been marked on each prospect set
and are referenced in the subsequent analysis. An increase in q1 corresponds to the clockwise
movement along the prospect set.
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• On
�

q⇤, q̄
�

, G is downward-sloping (a is strictly decreasing; p is strictly increasing).

• On
�

q̄, 1
�

, G is upward-sloping (both a and p are strictly decreasing).

The feasibility of partitioning G into the described segments relies on a being single-peaked (im-

plied by Condition 1; see Theorem 1) and on p being decreasing (possibly on a degenerate in-

terval), then increasing, and then decreasing again. This restriction on p is an additional joint

restriction on G and F, embedded into Condition 2.

In applications, Condition 2 can be checked analytically. To do so, let

r (q1) ⌘
1 � G (q1)

g (q1)
, q1 2 Q1,

denote the inverse hazard rate of the leader’s c.d.f. As is standard, r (q1) is interpreted as the profit

that the seller forgoes—equivalently, the information rent the leader reaps—when the seller com-

mits to sell to type-q1 leader.45 In addition, recall that R (q1), defined in (6), denotes the planner’s

return to the follower’s information acquisition in the first-best benchmark when the leader’s type

is q1. This return is closely related to the follower’s information-acquisition technology (in par-

ticular, R0 (q1) = FH (q1) � FL (q1) and R00 (q1) = fH (q1) � fL (q1)) and so can be treated as a

primitive.

Lemma 3. Suppose that Condition 1 holds and fL (q⇤) 6= fH (q⇤).46 Then, a prospect set is convex if and

only if

r00 (q1) +

✓

r (q1)
R00 (q1)
R0 (q1)

◆0
< 0 for all q1 2 (0, q⇤) [ (q⇤, 1) . (26)

Proof. See Appendix B.

Inequality (26) in Lemma 3 is essentially equivalent to saying that the prospect set’s curvature

does not change the sign as one varies q1. This curvature condition is local and hence does not

quite suffice to conclude that the prospect set is convex (in the sense of Definition 1); a spiral is a

counterexample. Coupled with Condition 1, however, which ensures a (0) = a (1) = 0 (and so in

45When the seller commits to sell to type q1 at some price, all types higher than q1 may be tempted to imitate type q1
and buy at the same price, thereby constraining the seller in how much he can charge these higher types.

46Condition fL (q
⇤) 6= fH (q⇤), which can be interpreted to hold “generically,” simplifies the analytical characteriza-

tion in the lemma but is not required for the convexity of the prospect set.
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particular rules out the possibility that G is a spiral), the curvature condition in (26) is equivalent

to the convexity of G.

The value of the calculus characterization in Lemma 3 is in providing an analytical condition to

check in applications, as an alternative to plotting and eyeballing the prospect set. The character-

izing inequality (26) does not have a natural economic interpretation, though. Nor does convexity

itself. Instead, our two justifications for imposing the convexity assumption are that (i) it is satis-

fied in various “natural” examples (such as those generating Figures 3b and 3c), and (ii) it renders

the seller’s optimal-disclosure problem tractable.

A Discretized Prospect Set

The analysis draws on RS’s optimal-disclosure results, which have been developed for discrete

prospect sets, and which we extend to the continuous set G by taking an appropriate limit. For an

arbitrary n � 1, we let Gn denote a discrete prospect set induced by an n-th finite approximation

of the leader’s type space Q1. In particular, for an integer n � 1, let the discretized type space be

Qn
1 ⌘ {yi}2n

i=1, where yi = i/2n, i 2 {0, 1, 2, 3, .., 2n}. The probability of any yi 2 Qn
1 is set equal to

G (yi)� G (yi�1), which is the probability of interval (yi�1yi] ⇢ Q1. The approximation Qn
1 is finer

for larger values of n (i.e., Qn
1 ⇢ Qn+1

1 ) and satisfies [•
n=1Qn

1 = Q1. The induced discrete prospect

set is denoted by Gn ⌘ {(p (y) , a (y)) : y 2 Qn
1}. Prospect (p (yi) , a (yi)) will be referred to as

prospect i and denoted by (pi, ai) .

Optimal Disclosure with the Discrete Prospect Set

For a discrete prospect set Gn, the seller’s disclosure problem, denoted by Pn, is a special case of

the problem studied by RS, whose results we shall use to narrow down the search for an optimal

disclosure rule. The results use the following jargon. A prospect is revealed if it induces a message

that causes the follower to assign probability one to this prospect. Two prospects are pooled if

they sometimes induce the seller to send the same message. Graphically, in the (p, a)-space of

prospects, this shared message is represented by a pooling link, a line segment that connects two

pooled prospects on the graph Gn. If Gn is derived from G that satisfies Condition 2, then RS’s

results imply the following facts about every Pn-optimal disclosure rule.
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Fact 1. By RS’s Lemma [1], no two prospects are pooled if (i) both lie in Gn \ {(p (q1) , a (q1)) : q1 2 [q, q⇤]}

or (ii) both lie in Gn \
�

(p (q1) , a (q1)) : q1 2
⇥

q̄, 1
⇤ 

.

Fact 2. By RS’s Lemma [3] (also by this paper’s Lemma 2), only the prospects that lie on a nonincreasing

line can be pooled under the same message.

Fact 3. By RS’s Lemma [3], at most two prospects can be pooled under the same message, because no more

than two prospects lie on the same nonincreasing line, by Condition 2.47

Fact 4. By RS’s Lemma [4], no two pooling links intersect.

Fact 5. By RS’s Proposition [1], a prospect either is always revealed or is pooled with some other prospects

with probability one.

This partial characterization of a Pn-optimal disclosure rule in Facts 1–5 is refined in Lemma 4,

which further exploits the special structure of the seller’s problem.

Lemma 4. Suppose that Condition 2 holds. Then, any discrete disclosure problem Pn has an optimal

disclosure rule that is partially characterized by an s⇤ 2 [0, q] and an s⇤ 2
⇥

q⇤, q̄
⇤

such that

(i) Any type in [s⇤, s⇤]\Qn
1 either is always revealed or is pooled with some types in ([0, s⇤] [ [s⇤, 1])\

Qn
1 . Symmetrically, any type in ([0, s⇤] [ [s⇤, 1])\Qn

1 either is always revealed or is pooled with some types

in [s⇤, s⇤] \ Qn
1 . The types are pooled so that, in the prospect space, the pooling links never intersect.

(ii) The optimal effort is single-peaked and, if s⇤ 2 Qn
1 , is maximal at type s⇤. (If s⇤ /2 Qn

1 , the optimal

effort is maximal “close” to s⇤, either at type max {[0, s⇤] \ Qn
1} or at type min {[s⇤, 1] \ Qn

1}.)

Proof. See Appendix A.3.

Part (i) of Lemma 4 defines types s⇤ and s⇤, both in Q1 (not necessarily in Qn), such that each

pooling link intersects the line that passes through prospects (p (s⇤) , a (s⇤)) and (p (s⇤) , a (s⇤)),

as shown in Figure 4. Part (ii) of the lemma shows that the optimal effort schedule is single-peaked

in q1, with the peak, at s⇤, to the right of the peak of the first-best effort schedule, at q⇤.

47Fact 3 does not rule out the situation in which a prospect probabilistically invokes one of multiple messages.
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Figure 4: A discretized prospect set Gn is the union of solid dots. Without loss of generality, the
seller can restrict attention to disclosure rules such as the one illustrated here. Each dashed link
denotes a message that pools two prospects. These links never intersect and are oriented so that
one can draw an upward-sloping line (passing through points (p (s⇤) , a (s⇤)) and (p (s⇤, s⇤)) ,
both marked by empty dots) that intersects each of the pooling links. The isolated prospect is
revealed.

Optimal Disclosure with the Continuous Prospect Set: The Main Result

The Pn-optimal disclosure rule of Lemma 4 either reveals a prospect or pools it under the same

message with another prospect. Lemma 4 does not rule out situations in which a prospect prob-

abilistically invokes multiple messages (i.e., several pooling links could emanate from a single

prospect). Theorem 3 shows, however, that, in the continuous problem, denoted by P , there is

no loss of generality in focusing on disclosure rules that deterministically associate each prospect

with a unique message.

The formal argument proceeds in two steps. Lemma 5 shows that, starting from a Pn-optimal

disclosure rule, one can construct a disclosure rule for P that pools prospects deterministically

and delivers a payoff close to the optimal payoff in Pn. Roughly, when optimality in Pn calls for

probabilistically pooling a prospect under multiple messages, the disclosure rule in P splits the

corresponding “prospect” into nearby prospects each of which is pooled deterministically. This

splitting exploits the continuity of the type space. Thus constructed disclosure rule is then verified

to be optimal in P by using a limit argument of Lemma 6. The results of Lemma 5 and Lemma 6

combine in Theorem 3, which describes P-optimal disclosure and the associated effort schedule.

To state and prove Theorem 3, we need two more definitions (Definitions 2 and 3). Definition 2
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describes a function that partitions the prospect set into revealed singletons and pooled pairs.

Definition 2. A matching function t takes one of two forms: (i) t : [0, s⇤] ! [s⇤, 1] is weakly

decreasing, with t (0) = 1 and t (s⇤) = s⇤, 0 < s⇤ < 1, or (ii) t : [s⇤, s⇤] ! (0, s⇤] [ [s⇤, 1] is weakly

decreasing on [s⇤, s0) and on [s0, s⇤], with t (s⇤) = s⇤, lims"s0 t (s) = 0, t (s0) = 1, and t (s⇤) = s⇤,

0 < s⇤  s0 < s⇤ < 1.

In Definition 2, case (i) is equivalent to case (ii) with s0 = s⇤. Case (i) prevails in examples

in which the distribution of the follower’s underlying valuations is binary, and the information-

acquisition technology grants probabilistic access to a perfectly informative signal, as in Exam-

ple 1. In this case, the follower’s c.d.f. F has mass points at 0 and 1. Example 1, coupled with the

assumption of the monotone increasing hazard rate for the leader’s c.d.f. G, yields the prospect

set in Figure 3c. This prospect set’s critical feature is that it slopes upwards near q1 = 0 (that is,

both a and p are increasing in q1 near 0) and so q = 0. That a is increasing near 0 follows from

Theorem 1. That p is increasing near 0 follows by taking an arbitrarily small # > 0 and evaluating

p0 (#) = �r0 (#) (FH (#)� FL (#)) + r (#) ( fL (#)� fH (#)) > 0,

where the inequality follows because r0 (#) < 0 (the hazard-rate condition on G), r (#) > 0, FH (#) =

1/2 > FL (#) = # (the mass point that corresponds to probabilistically learning that the underlying

valuation is 0), and fL (#) = 1 > fH (#) = 0 (made possible by FH’s mass point at 0).

Figure 5 illustrates how a downward-sloping segment for G near q1 = 0 is necessary for case (ii)

not to collapse into case (i). The figure also illustrates the role played by s0. In particular, the

matching function takes values in (0, s⇤] when s 2 [s⇤, s0) and in [s⇤, 1] when s 2 [s0, s⇤]. Point

s0 is the point of discontinuity where the matching function jumps upward from 0 to 1, thereby

switching from taking values in one to taking values in the other interval of its codomain.48 An

example of case (ii) is illustrated in Figure 3b; c.d.f.s FH and FL are Beta distributions chosen to

satisfy Condition 1. Then, FH (0) = FL (0) = 0. Furthermore, one can (merely to simplify the

argument) choose FH and FL so that fH (0) > fL (0). As a result, p0 (0) = r (0) ( fL (0)� fH (0)) <

0; p is decreasing near 0. Because a is increasing near 0, the prospect set is downward-sloping

48Mathematically, case (ii) can be viewed as isomorphic to case (i) if the matching function’s domain is “offset” by s⇤,
so that s⇤ is the “new zero,” and every point in (0, s⇤) is “greater than” every point in (s⇤, 1).
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Figure 5: The convex curve is the prospect set G. The circles mark the prospects induced by the
leader’s types in 0, s⇤, s0 , q, q⇤, s⇤, q̄, and 1. The dashed links comprise a subset of the links that pool
prospects into messages. Type s0 demarcates the leader’s types that are pooled with types in [0, s⇤)
and those that are pooled with types in (s⇤, 1].

near 0.

A disclosure rule that reveals an element of the partition described by a matching function is

called conjugate:

Definition 3. Under the conjugate disclosure rule induced by a matching function t, the seller

who receives leader’s report q1 sends message s to the follower if q1 2 {s, t (s)} for some s; other-

wise, the seller sends message s = q1.

According to Definition 3, a conjugate disclosure rule either fully discloses the leader’s type

or pools it with one other type. When t is differentiable at s, the seller’s announcement {s, t (s)}

induces the follower to assign probability g (s) / (g (s) + |t0 (s)| g (t (s))) to the event q1 = s and

the complementary probability to the event q1 = t (s), by Bayes’s rule. When t0 (s) = 0, the

seller’s announcement {s, t (s)} induces the follower to assign probability one to q1 = s.49 Finally,

when the range of t omits some type, the seller reveals this type.
49Informally, when t0 (s) = 0, the seller effectively pools a “small positive-measure interval” of types near s with the

infinitesimal-measure type t (s). The infinitesimal measure of t (s) is further spread thinly over the positive measure
of types near s, thereby endowing each message {s, t (s)} with the infinitesimal odds of t (s) relative to s.
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Lemma 5 shows that, for P , one can construct a conjugate disclosure rule that delivers to

the seller a payoff approximately equal to the seller’s optimal payoff in Pn when n is large.

The lemma’s statement uses the big-O notation, in which O stands for a function that satisfies

lim supn!• |O (2�n) /2�n| < •.

Lemma 5. Suppose that Vn is the seller’s optimal payoff in the discrete disclosure problem Pn. A conjugate

disclosure rule exists that delivers to the seller payoff Vn + O (2�n) in the continuous disclosure problem

P .

Proof. See Appendix A.4.

Lemma 5 does not rule out a discontinuity: the possibility that, in P , the seller can improve

upon the conjugate disclosure rule that is the limit of Pn-optimal disclosure rules as n goes to

infinity. Lemma 6 rules out this discontinuity by showing that the value in P is no greater than

the limit of the values in Pn as n increases.

Lemma 6. The continuous disclosure problem P has a solution, which induces the value denoted by V⇤.

The discrete disclosure problems in the sequence {Pn : n � 1} have solutions, which induce the correspond-

ing sequence of values denoted by {Vn}. Furthermore, V⇤  lim infn!• Vn.

Proof. See Appendix A.5.

Theorem 3 collects Lemmas 5 and 6, as well as earlier observations, to deliver our main result:

a characterization of an optimal information-disclosure rule.

Theorem 3. Under Conditions 1 and 2, the seller’s disclosure problem P has a solution that

(i) is a conjugate disclosure rule;

(ii) induces the follower’s effort schedule a⇤ that is maximized at an s⇤ with s⇤ � q⇤ and a⇤ (s⇤)  a (q⇤)

(where a is the first-best effort schedule, and q⇤ is its maximizer) and whose expectation is the same as that

of the first-best effort: E [a⇤ (m)] = E [a (q1)].

Proof. Lemmas 5 and 6 imply the optimality of the conjugate disclosure rule and, with it, part (i)

of the theorem.

For part (ii) of the theorem, note that Lemma 4’s part (ii) and Lemma 6 imply that the induced

effort schedule a⇤ is maximized at s⇤, which satisfies s⇤ � q⇤.
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Because, a⇤ (m) = Eq1|m [a (q1)] for any message m (by (15)), a⇤ (s⇤)  maxq1 a (q1) = a (q⇤),

where the equality is by Theorem 1. Hence, a⇤ (s⇤)  a (q⇤).

Furthermore, a⇤ (m) = Eq1|m [a (q1)] implies E [a⇤ (m)] = E
⇥

Eq1|m [a (q1)]
⇤

= E [a (q1)], where

the last equality is by the Law of Iterated Expectations.

According to part (i) of Theorem 3, the optimality of the conjugate disclosure rule defies the

pooling pattern common in many models of strategic disclosure, in which all types in a certain

interval are pooled (e.g., Crawford and Sobel, 1982). In their footnote [11], RS conjecture that,

with a continuum of prospects, one would be unable to dismiss interval pooling as nongeneric.

By contrast, our model dismisses interval pooling for the prospect set that, while “nongeneric,”

emerges in an economically interesting setting.50

According to part (ii) of Theorem 3, the seller’s strategic information disclosure distorts the fol-

lower’s effort schedule by shifting its peak to the right of the peak of the first-best effort schedule.

The overall, expected, payoff is the same as in the first best.

Corollary 3 shows that the allocation induced by the optimal disclosure rule can be imple-

mented in a second-price auction with a tax. To define the tax schedule, let m (q1) denote the

message optimally induced by type q1. This message motivates the follower to take his uniquely

optimal action, denoted by a⇤ (m (q1)). The leader who bids b is taxed in the amount

T⇤ (b) ⌘
ˆ b

0
(F (s | a⇤ (m (b)))� F (s | a⇤ (m (s))))ds. (27)

Corollary 3. In an optimal mechanism, the seller

1. Asks the leader to submit a bid, denoted by b, and charges him tax T⇤ (b), defined in (27).

2. Discloses to the follower the message prescribed by the optimal conjugate disclosure rule of Theorem 3

and asks him to submit a bid.

3. Allocates the item and assesses the payments (in addition to the tax T⇤ (b)) according to the rules of the

second-price auction.

In equilibrium, each bidder bids his type, the follower exerts the optimal effort, and the seller collects the

optimal revenue.
50Our prospect set is nongeneric if only because it is a one-dimensional curve in a two-dimensional space. On top of

that, this curve is also convex, by Condition 2.
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Proof. See Appendix A.2.

Remark 2. To modify the auction so that the leader pays the tax if and only if he wins, replace

T⇤ (b) with T⇤ (b) /F (b | a⇤ (m (b))).

By contrast to the first-best mechanism of Corollary 1, the optimal mechanism of Corollary 3

fails to fully disclose the leader’s bid and specifies a different tax schedule. As in the first-best

case, the leader’s tax is increasing in his bid if the follower’s effort is increasing in the leader’s

bid, and is decreasing otherwise. Thus, as in the first-best case, the leader’s tax countervails the

leader’s motive to manipulate his bid so as to induce the follower to acquire more information.

5.4 The Seller’s Optimal-Control Problem

By Theorem 3, the seller can restrict attention to disclosure rules induced by matching functions.

As a result, the seller’s problem can be represented as an optimal-control problem. This represen-

tation is useful for the numerical analysis of optimal disclosure.

The Optimal-Control Formulation

For the parsimony of exposition, we illustrate the optimal-control representation when the optimal

matching function takes the form in case (i) of Definition 2. In this case, s⇤ = 0, and the seller’s

objective function (23) can be shown to be

ˆ s⇤

0
p (s) a⇤ (s) g (s)ds +

ˆ s⇤

0
p (t (s)) a⇤ (s) g (t (s)) b (s)ds +

ˆ
[s⇤,1]\range(t)

a (s)p (s)ds, (28)

where b ⌘ �t0 denotes the derivative of a matching function t, and a⇤ (s) denotes the follower’s

optimal action when the leader’s type is s 2 [0, s⇤].51 The first integral in (28) is the seller’s payoff

from the prospects induced by the leader’s types in [0, s⇤]. The second integral is the seller’s payoff

from the types in [s⇤, 1] that the matching function pools with the types in [0, s⇤]. The third integral

is the seller’s payoff from the types in [s⇤, 1] that are fully revealed.

51Equation (28) implicitly normalizes the set of messages to [0, s⇤] [ ([s⇤, 1] \range (t)), with any type q1 2 [0, s⇤]
generating message m (q1) = q1, any fully revealed type q1 2 (s⇤, 1] (i.e., in (s⇤, 1] but not in the range of t) generating
message m (q1) = q1, and any pooled type q1 2 (s⇤, 1] generating message m (q1) 2 t�1 (q1) ⇢ [0, s⇤].
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The first and last integrals in (28) copy the corresponding terms from the seller’s objective

function (23). The second integral is derived using the change-of-variables formula, according to

which, for any type s 2 (0, s⇤) and a “small” ds > 0, the interval (s, s + ds), whose probability

is approximately g (s)ds, is pooled with interval (t (s + ds) , t (s)), whose probability is approxi-

mately g (t (s)) b (s)ds.52 The follower’s equilibrium effort that enters (28) is computed from (15)

by appealing to Bayes’s rule and the change-of-variables argument:

a⇤ (s) =
g (s) a (s) + g (t (s)) b (s) a (t (s))

g (s) + g (t (s)) b (s)
, s 2 [0, s⇤] . (29)

One can now formulate the seller’s optimal-control problem.

Definition 4. When s⇤ = 0, the seller’s optimal-control problem consists of maximizing (28) over

s⇤, a piecewise-continuous function b : [0, s⇤] ! R+, and the implied piecewise-differentiable

function t : [0, s⇤] ! [s⇤, 1] , which together induce a⇤ from (29), subject to t (0) = 1, t (s⇤) = s⇤,

and, for almost all s 2 (0, s⇤), t0 (s) = �b (s).

A Numerical Example

Here, we report an outcome of a search for a numerical solution to the seller’s problem in Exam-

ple 1. To arrive at a solution, we apply Hamiltonian techniques to the optimal-control problem of

Definition 4. Because the Hamiltonian analysis imposes the additional assumption of piecewise

continuous differentiability of the matching function, and because we have been unable to show

that the problem in Definition 4 is convex, the numerical “solution” we report is an informed

guess,53 which has been verified to improve upon full disclosure and non-disclosure.54 The solu-

tion also satisfies the leader’s monotonicity condition; that is, F (q1 | a⇤ (q1)) is nondecreasing in

q1.

Figure 6 plots selected pooling links in an optimal mechanism. These links are derived from

the optimal matching function that solves the problem in Definition 4. Each pooling link, for some

q1 < s⇤, connects the prospects induced by q1 and by t (q1), and induces the follower’s effort

52Indeed, the Taylor expansion implies G (t (s) + ds) ⇡ G (t (s)) + G0 (t (s)) t0 (s)ds.
53An analogous caveat applies to this section’s references to “optimality.” In the remainder, the quotation marks are

suppressed.
54So we have not identified a minimum. Indeed, we conjecture we have identified the maximum.
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s̀
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Figure 6: An optimal disclosure rule in Example 1. The solid blue arc is the prospect set, with
selected prospects labelled by the leader’s types that induce them (0, ŝ = 0.054, s⇤ = 0.61, and 1).
Each point on the solid black curve (the optimal-prospect path) is a tuple containing the follower’s
optimal action and the seller’s associated expected marginal benefit from that action. Each tuple
is induced by pooling the prospects at the endpoints of the dashed link that passes through that
tuple. The leader’s types that are revealed are in [0, ŝ] and lie at the intersection of the solid black
curve and the prospect set.

a⇤ (q1), which is the ordinate of the intersection point of the solid black curve and the pooling link.

The corresponding abscissa is the seller’s expected marginal benefit from the follower’s action

when the message corresponding to that pooling link has been sent. The collection of the induced

efforts and the corresponding expected benefits (i.e., the solid black curve) is an optimal-prospect

path.

Any optimal-prospect path is nondecreasing, which is a necessary condition for optimality. If

the path had a strictly decreasing segment, then by Lemma [1] in RS, it would be optimal to pool

under a single message all messages that induced that segment. Whenever a prospect is revealed,

this prospect belongs both to the optimal-prospect path and the prospect set.

Figure 7 plots the follower’s effort schedule. Constrained by the Bayes plausibility, the seller

designs the disclosure rule so as to better align the follower’s effort, a⇤, with the marginal benefit

from effort, p. Consistent with Theorem 3, doing so involves inducing a “rightward shift” in the

follower’s effort schedule relative to the first-best effort schedule.
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s*s̀ 1
q1
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Figure 7: The solid curve is the optimal effort, a⇤, in Example 1. The thick dashed curve is the
first-best effort, a. The thin dashed curve is the seller’s marginal benefit from the follower’s effort,
p. The seller uses strategic disclosure to better (i.e., assortatively) align a⇤ with p. The areas under
the solid thick and the dashed thick curves coincide; that is, E [a⇤ (m)] = E [a (q1)].

6 Two More Benchmarks for the Seller’s Disclosure Problem

To gain additional intuition for the seller’s choice of the optimal disclosure rule (derived in Theo-

rem 3), it is instructive to consider two more benchmarks, in addition to the first-best benchmark.

These two benchmarks are summarized in Theorem 4.

Theorem 4. (i) If the seller observed the leader’s valuation, any disclosure rule would be optimal. In

particular, fully disclosing the leader’s valuation would be optimal, in which case the first-best outcome

would be achieved.

(ii) If the seller could choose for the follower any effort from an interval [0, ā] with some ā < 1,55 any

disclosure rule would be optimal, and the seller would choose the bang-bang effort schedule ā1{q1�q⇤}, for

all q1 2 Q1.

Proof. For part (i), if the seller observes the leader’s valuations, he can extract the leader’s entire

information rent by charging him q1 if the follower refuses to buy at q1. The leader’s virtual

valuation is replaced by his valuation, q1, and the implied virtual surplus (22),

ˆ
Q1

Em|q1 [q1]dG (q1) ,

is independent of the follower’s effort.
55The requirement ā < 1 ensures that the distribution of the follower’s type has the full support [0, 1], thereby

justifying the envelope argument on which the analysis relies.

43



For part (ii), if the seller can directly and costlessly choose the follower’s effort a 2 [0, ā], he

will choose it so as to minimize pointwise the probability that the leader is the ex-post efficient

recipient of the item, by inspection of (22). Formally, for q1 < q⇤, the seller sets a = 0, and for

q1 � q⇤, the seller sets a = ā.56 (The argument relies on the allocation rule being ex-post efficient,

just as (22) does.) When the follower has no control over his action, any disclosure rule is optimal

because truthful reporting can be made a dominant strategy for the follower (at no additional cost

to the seller) by making a take-it-or-leave-it offer to the follower at price q1.

Part (i) of Theorem 4 indicates that minimizing the information rent left to the leader is the

sole rationale for the seller’s strategic disclosure. Part (ii) shows that the follower’s information-

acquisition effort is an effective instrument for doing so—at least as long as this effort can be con-

trolled directly. Figure 2 juxtaposes the seller-controlled effort schedule of part (ii) of Theorem 4

with the first-best effort schedule of Theorem 1.

Part (ii) of Theorem 4 exposes the force that, in a subdued form, influences the design of an

optimal disclosure rule. By inspection of (22), the seller seeks to minimize the expected weighted

probability with which the leader buys (where the weights are the leader’s information rents).

To minimize the leader’s expected weighted probability of winning, the seller encourages the

follower to become “stronger,” thereby intensifying the competition that the leader faces. This en-

couragement is accomplished directly in part (ii) of Theorem 4 and indirectly, through the strategic

choice of a disclosure rule, in an optimal mechanism. Whether a better or a worse informed fol-

lower is “stronger” depends on the leader’s valuation. When the leader’s valuation is high, a

better informed follower has a more dispersed distribution of his types and thus stands a better

chance of outbidding the leader. The opposite is true when the leader’s valuation is low.

7 Discussion of Two Critical Assumptions

Two assumptions are at the heart of our analysis. First, we assume that the identified solution

to the relaxed problem, which ignores the leader’s monotonicity constraint, also solves the full

problem, which retains this constraint. Second, we fix the allocation rule to be ex-post efficient,

56The leader’s monotonicity constraint holds; F
⇣

q1 | 1{q1�q⇤}
⌘

is weakly increasing in q1. Indeed, F (q1 | 0) and
F (q1 | 1) are both weakly increasing in q1, and limq1"q⇤ F (q1 | 0)  limq1"q⇤ F (q1 | 1)  F (q⇤ | 1).
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instead of maximizing also with respect to the allocation rule.

The Monotonicity Assumption

The analysis has been performed under the hypothesis that the first-order approach characterizes

the solution to the seller’s problem. The second-order conditions that verify this hypothesis are

two monotonicity conditions, each of which asserts that the corresponding bidder’s interim prob-

ability of winning is nondecreasing in his type. We do not provide sufficient conditions on the

model’s primitives to guarantee that the leader’s monotonicity constraint holds.57 The source of

our difficulties is that the optimal disclosure rule is not a simple function of the model’s primitives.

The disclosure rule, in turn, affects the follower’s effort schedule a⇤ and thus affects the leader’s

probability of winning.

A type-q1 leader wins if his type exceeds the follower’s type, which occurs with probability

F (q1 | a⇤ (q1)) = a⇤ (q1) FH (q1) + (1 � a⇤ (q1)) FL (q1) ,

which depends on the leader’s type q1 both directly and indirectly, through the follower’s action.

The leader’s monotonicity condition requires F (q1 | a⇤ (q1)) to be weakly increasing in q1. If a⇤ and

thus the probability distribution of q2 had been fixed, the leader’s monotonicity condition would

have been satisfied automatically because FH and FL are c.d.f.s and hence weakly increasing. The

distribution of q2 is not fixed, however. Instead, it depends on q1 through a⇤. This dependence

threatens monotonicity (albeit need not overturn it, as one can ascertain in examples).

To see the threat to monotonicity, suppose that q1 > q⇤, so that FH (q1) < FL (q1). In addition,

suppose that q1 < s⇤, so that, in the neighborhood of q1, a⇤ is increasing in the leader’s type. In

this case, a small increase in q1, while (weakly) increasing the values of both FH and FL, shifts

the weight in F towards FH, the smaller of the two constituent c.d.f.s. So the overall direction of

change in F (q1 | a⇤ (q1)) is ambiguous unless a⇤ is known and F (q1 | a⇤ (q1)) can be evaluated

precisely.58

Intuitively, when q1 2 (q⇤, s⇤), the seller attempts to take advantage of the leader’s relatively

high valuation by increasing competition, which is accomplished by asking the follower to ac-

57The analogous monotonicity condition for the follower is guaranteed to hold.
58In principle, it would suffice to bound the steepness of a⇤, but doing so seems as hard as solving for a⇤.
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quire more information. Even though a more informed follower is not stronger in the first-order

stochastic-dominance sense, he is stronger in the sense of having a higher chance of an extremely

high type realization, which is what is needed to outbid a high-type leader. Thus, a stronger leader

with a type in (q⇤, s⇤) has a stronger follower and so a priori need not be more likely to win.

In absence of sufficient conditions for monotonicity, our approach is to recommend ex-post

verification of monotonicity in examples.59 Ex-post verification of monotonicity is a common

practice in the dynamic public finance literature, in which optimal contracts are notoriously hard

to characterize explicitly.60

Towards More General Allocation Rules

The paper focuses on the problem in which the allocation rule is ex-post efficient. This focus is

justified by the features of natural economic applications (e.g., government divestment), by the

interest in isolating the distortions due to the disclosure rule, and by tractability. Our approach

to characterizing an optimal disclosure rule can be extended to any allocation rule that is fixed.

However, the joint determination of an optimal allocation rule and an optimal disclosure rule is a

major challenge. Below, we describe how to generalize our approach to the fixed allocation rules

that are not ex-post efficient and then explain why this generalization does not deliver a recipe

for solving the more general problem in which both the disclosure rule and the allocation rule are

optimally chosen by the seller.

Suppose the seller would like to find an optimal disclosure rule when the allocation rule is

fixed at

xi (q1, q2) = 1{qi>fi(q�i)}, i = 1, 2, (30)

for some weakly increasing fi : Q�i ! [0, 1], i = 1, 2, such that x1 (q1, q2)+ x2 (q1, q2)  1. The rule

in (30) reduces to the ex-post efficient allocation rule when f1 and f2 are identity functions. For an-

other example, the rule in (30) is ex-post efficient save for reserve prices if fi (q�i) = max {ri, q�i},

i = 1, 2, where r1 and r2 are some positive reserve types.

59In the numerical examples that we have explored, monotonicity holds.
60Among the papers advocating ex-post verification of monotonicity are Farhi and Werning (2013), Stantcheva (2015),

Golosov et al. (2015), and Kapicka (2013).
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Because f1 is increasing only weakly, it need not be invertible in the usual sense. Define the

generalized inverse of f1 to be

f�1
1 (z) ⌘ sup {q2 2 Q2 | f1 (q2) = z} , z 2 [0, 1] .

The seller’s virtual surplus is

Em,q1,q2

✓

q1 �
1 � G (q1)

g (q1)

◆

1{q1>f1(q2)} +

✓

q2 �
1 � F (q2 | a⇤ (m | f2))

f (q2 | a⇤ (m | f2))

◆

1{q2�f2(q1)}

�

, (31)

where a⇤ (m | f2) = Eq1|m [a (f2 (q1))] generalizes the follower’s optimal action in (15).61 The

virtual surplus in (31) differs from the virtual surplus in (21) only in the indicator functions, which

reflect the more general allocation rule.

Integrating q2 out of the display above gives

Em,q1

✓

q1 �
1 � G (q1)

g (q1)

◆

F
⇣

f�1
1 (q1) | a⇤ (m)

⌘

+ f2 (q1) (1 � F (f2 (q1) | a⇤ (m)))

�

,

a counterpart of (22). Substituting the functional form for F, and ignoring the terms that are

independent of the seller’s choice of the disclosure rule gives the seller’s objective function

Em,q1 [p̃ (q1 | f1, f2) a⇤ (m | f2)] ,

where

p̃ (q1 | f1, f2) ⌘
✓

q1 �
1 � G (q1)

g (q1)

◆

⇣

FH

⇣

f�1
1 (q1)

⌘

� FL

⇣

f�1
1 (q1)

⌘⌘

(32)

�f2 (q1) (FH (f2 (q1))� FL (f2 (q1)))

generalizes the seller’s marginal benefit in (24). The seller’s objective function is further trans-

formed using the Law of Iterated Expectations and the expression for a⇤ (m | f2) to yield the

product form

Eq1

⇥

Eq1|m [p̃ (q1 | f1, f2)]Eq1|m [a (f2 (q1))]
⇤

, (33)

61Fixing the allocation rule, when the leader’s type is q1, the follower’s first-best effort is a (f2 (q1)).
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which generalizes (25). One can now seek an optimal disclosure rule following the techniques

developed in this paper.62

As soon as one attempts to optimize over both the allocation rule (as parametrized by f1 and

f2) and the disclosure rule, the analytical convenience of the product structure of (33) vanishes; the

techniques developed in this paper become inapplicable. Naively, one might have been tempted

to address this more general problem in two steps: (i) for each disclosure rule, pointwise maxi-

mize the virtual surplus (31) over f1 and f2 so as to allocate the item to the bidder with the highest

nonnegative virtual valuation, (ii) pick that disclosure rule which gives the highest value of the

virtual surplus in step (i). The problem with this naive approach is that the virtual valuations in

step (i) depend on the allocation rule itself, through f1 and f2. The allocation rule that insists on

selecting the highest nonnegative virtual valuation may be an allocation rule that induces particu-

larly low virtual valuations, thereby casting doubt on the optimality of the naive approach. In this

case, the allocation rule cannot be pointwise maximized out, as is common in mechanism design,

and the seller’s problem cannot be reduced to the problem studied in this paper. Instead, for a

given disclosure policy, the optimal f1 and f2 would solve an appropriately formulated optimal

control problem. This problem’s analysis is beyond the scope of this paper.

8 Concluding Remarks

This paper’s primary purpose is to reinterpret and extend the techniques of the Bayesian persua-

sion model of RS to study, in a simple auction model with information acquisition, the distortions

that the seller’s strategic bid-disclosure introduces into an otherwise efficient auction. The map-

ping of the seller’s optimal-auction problem into the optimal-disclosure problem of RS relies on

three assumptions: (i) the seller must choose an ex-post efficient allocation rule, (ii) the follower’s

information-acquisition effort is the probability with which he gains access to a more precise sig-

nal about his underlying valuation, and (iii) the probability with which the leader wins is weakly

increasing in his type even if the seller does not explicitly heed this monotonicity constraint when

designing the auction. With these assumptions, the agents truth-telling, obedience, and partic-

ipation constraints enable the seller to rewrite his objective function in a product form, as the
62These techniques apply provided the prospect set {(p̃ (q1 | f1, f2) , a (f2 (q1))) | q1 2 Q1} is convex and the requi-

site monotonicity condition can be verified to hold.
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"
(a) The prospect set is “thick.” It has been obtained by
augmenting the prospect set in Figure 3b by assuming
that the seller’s private benefit from awarding the item
to the leader varies within some range independently of
the leader’s type.

α

"
(b) The prospect set is not a convex curve. It has been
obtained by assuming the uniform G, and FL and FH as
specified in Example 3 (in violation of Condition 1).

Figure 8: More than two prospects may lie on the same line. The results of RS cannot be applied.

expectation of the follower’s expected effort conditional on the seller’s message times the seller’s

conditional expected marginal benefit from the follower’s effort. The three listed assumptions en-

sure that the seller’s marginal benefit is independent of—and thus his expected revenue is linear

in—the follower’s effort. The seller’s marginal benefit in our model corresponds to the search

engine’s benefit (in revenues from advertisers) from a consumer’s click on an online advertise-

ment link in the model of RS. The follower’s information-acquisition effort corresponds to the

probability with which the consumer clicks.

RS’s results can be mapped back into our setting because, in spite of our assumption of the

continuum of prospects (which are the marginal revenue and effort pairs), we preserve RS’s crit-

ical feature: no three prospects lie on the same line. This feature is preserved because (i) the

seller’s private information, the leader’s elicited type, is “one-dimensional,” and (ii) the follower’s

information-acquisition technology satisfies the rotation order (Condition 1). To see the role of (i),

consider a minimal departure from the one-dimensionality: the seller is privately informed about

his private benefit from allocating the item to the leader.63 This private benefit affects the seller’s

marginal benefit without affecting the follower’s effort (we still require that the highest-type bid-

der win). As a result, the prospect set is “thick,” as in Figure 3b; uncountably many prospects

63In the case of government procurement, this private benefit could reflect the administrative cost of switching the
contractor or a kickback from the incumbent, none of which is allowed to be reflected in the choice of the allocation
rule, which is still required to allocate the contract to the highest-type bidder.
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may lie on the same line. To see the role of (ii), consider Example 3, which violates the rotation

order. The implied prospect set, in Figure 8b, fails to be a convex curve because the follower’s first

best-effort is not single-peaked in the leader’s type.

The paper finds that the profit-maximizing seller induces the follower to acquire inefficiently

little information when the leader’s valuation is low, and to acquire inefficiently much information

otherwise. Carefully pooling the pairs of the leader’s extreme bids under the same messages

accomplishes this distortion. In practice, information disclosure typically occurs in private pre-

sale negotiations and hence is largely unobservable by outsiders. This lack of observability limits

the scope for testing the model’s predictions and makes the paper’s focus normative.

Nevertheless, one can tentatively ask the positive question of whether anything resembling

the derived disclosure pattern is ever observed in practice. The auctions of rail passenger service

franchises in the U.K. fit the model’s assumptions and may be interpreted to feature the disclosure

similar to the optimal disclosure derived in the paper. In particular, in the U.K., the rail passenger

services are franchised for a limited time to train operating companies. An auction determines the

award of the franchise. An incumbent and a potential entrant bid for the right to run passenger

services in a certain region. The incumbent (the leader) is likely to know his valuation for run-

ning the services, whereas the entrant (the follower) can choose how much information to acquire

about his valuation. In practice (and also in the model), the incumbent’s bid is distinct from his

payment because the incumbent may request an operating subsidy from the government. Any de-

tails about this request that leak to the entrant are a noisy signal about the incumbent’s valuation;

this signal guides the entrant’s information acquisition. For instance, the entrant can interpret the

incumbent’s request for a large subsidy in two ways: (i) the incumbent is weak and needs help to

continue operating, or (ii) the incumbent is strong and plans to invest in new trains and services.

An incumbent who does not request a subsidy can be interpreted as mediocre. This interpretation,

which pools the extremes, resembles the conjugate disclosure rule prescribed by the model.

A Appendix: Omitted Proofs

A.1 Proof of Corollary 1

For the follower, it is a weakly dominant strategy to bid his type in the second-price auction.
If he bids his type, he also finds it optimal to exert the first-best effort; his expected payoff in
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the mechanism described in the corollary has been constructed to coincide with the planner’s
maximand in the surplus-maximization problem (4). The follower’s payoff is nonnegative because
he can obtain a nonnegative payoff by bidding in the second-price auction without having exerted
any effort.

The leader chooses his bid, b, to maximize
ˆ

Q2

1{b>q2} (q1 � q2)dF (q2 | a (b))� T (b) .

Integration by parts and the substitution of T from (8) transforms the display above into

ˆ q1

0
F (s | a (s))ds +

ˆ b

q1

(F (s | a (s))� F (b | a (b)))ds,

which is maximized at b = q1 because F (s | a (s)) is increasing in s, as we now show.
That F (s | a (s)) is increasing in s can be seen by letting s0 > s and writing

F
�

s0 | a
�

s0
��

� F (s | a (s)) =
⇥

F
�

s0 | a
�

s0
��

� F
�

s | a
�

s0
��⇤

+
ˆ a(s0)

a(s)

∂F (s | a)
∂a

da.

In the display above, the bracketed term is nonnegative because F is a c.d.f. and s0 > s. To see
that the integral in the display above is positive, we consider three cases: (i) if s < s0  q⇤, then
a (s) < a (s0) (Theorem 1) and ∂F (s | a) /∂a > 0 (Condition 1), and so the integral is positive,
(ii) if q⇤  s < s0, then a (s) > a (s0) (Theorem 1) and ∂F (s | a) /∂a < 0 (Condition 1), and so the
integral is positive, and (iii) if s < q⇤ < s0, then considering the change in the leader’s type from s
to q⇤ and applying case (i) and then considering the change in the leader’s type from q⇤ to s0 and
applying case (ii) delivers the positivity of the integral.

When b = q1, the leader’s expected payoff is
´ q1

0 F (s | a (s))ds and hence nonnegative.

A.2 Proof of Corollary 3

For the follower, it is a weakly dominant strategy to bid his valuation in the second-price auction.
The follower participates because he can obtain a nonnegative payoff by exerting no effort and
then bidding in the second-price auction.

The leader chooses his bid by solving

max
b

ˆ
Q2

1{b>q2} (q1 � q2)dF (q2 | a⇤ (m (b)))� T⇤ (b)
�

,

where a⇤ (m (b)) is the follower’s optimal action conditional on the message m (b), which the seller
sends when the leader bids b. Integration by parts and the substitution of T⇤ from (27) transforms
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Figure 9: Contradiction hypotheses for Step 1 in the proof of Lemma 4. Each dashed link denotes
a pair of prospects that are pooled under the same message. In neither panel can the two links be
crossed by an upward-sloping line.

the maximand above into
ˆ q1

0
F (s | a⇤ (m (s)))ds +

ˆ b

q1

(F (s | a⇤ (m (s)))� F (b | a⇤ (m (b))))ds,

which is maximized at b = q1 because F (s | a⇤ (m (s))) is weakly increasing in s, which is the
monotonicity condition required by the incentive compatibility of truthful reporting and implied
by the hypothesis that the mechanism is optimal.

A.3 Proof of Lemma 4

The proof is constructive and proceeds in three steps. Step 1 rules out the pooling patterns de-
picted in both panels of Figure 9. Step 2 combines Facts 1–5 with Step 1 to construct an s⇤ 2 [0, q]

and an s⇤ 2
⇥

q⇤, q̄
⇤

satisfying part (i) of the lemma. Step 3 establishes part (ii).
Step 1: Take any pooling link that has a northwest prospect, denoted by (p3, a3).64 Then, optimality

rules out the existence of a link that pools two prospects, say (p1, a1) and (p2, a2), such that each of these
prospects lies to the northwest of (p3, a3). (See both panels of Figure 9.)

Prospects are optimally pooled so that the pooling links are nonincreasing (Fact 2) and never
intersect (Fact 4). Hence, to prove the claim in Step 1, it suffices to show that the pooling patterns
depicted in Figure 9 are never optimal. A single argument rules out both patterns.

By contradiction, suppose that one can pick four prospects {(pi, ai)}i=1,2,3,4 such that prospects
(p1, a1) and (p2, a2) are optimally pooled under some message, say, m; prospects (p3, a3) and

64We define the cardinal directions in the (p, a)-space in the obvious manner. For instance, a point (p3, a3) is north-
west of point (p4, a4) if p3 < p4 and a3 > a4.
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(p4, a4) are optimally pooled under another message, say m0; and either (a) p4 � p3 � p2 > p1

and a1 � a2 � a3 > a4 or (b) p4 > p3 � p2 � p1 and a1 > a2 � a3 � a4 holds.65 For each
i = 1, 2, 3, 4, let pi denote the joint probability that (i) type xi—which is assumed to invoke prospect
(pi, ai)—is realized, and (ii) type xi induces either message m or m0 (whichever is appropriate).

The seller’s expected gain from using the distinct messages m and m0 (as in Figure 9) relative
to pooling all four prospects under a single message is

D ⌘ (p1p1 + p2p2) (p1a1 + p2a2)
p1 + p2

+
(p3p3 + p4p4) (p3a3 + p4a4)

p3 + p4

� (p1p1 + p2p2 + p3p3 + p4p4) (p1a1 + p2a2 + p3a3 + p4a4)
p1 + p2 + p3 + p4

,

which can be rearranged to give

D =
(p1 + p2) (p3 + p4)
p1 + p2 + p3 + p4

✓

p3p3 + p4p4

p3 + p4
� p1p1 + p2p2

p1 + p2

◆✓

p3a3 + p4a4

p3 + p4
� p1a1 + p2a2

p1 + p2

◆

< 0,

(A.1)
where the inequality follows either from p4 � p3 � p2 > p1 and a1 � a2 � a3 > a4 or from
p4 > p3 � p2 � p1 and a1 > a2 � a3 � a4. Because D < 0, the pooling patterns in the both
panels of Figure 9 are suboptimal, and the claim in Step 1 follows.

Step 2: There exist an s⇤ 2 [0, q] and an s⇤ 2
⇥

q⇤, q̄
⇤

that satisfy part (i) of the lemma.
Here we describe a procedure for constructing the sought s⇤ and s⇤. This procedure uses a

strict, complete, and transitive “smaller-than” order on optimal pooling links. We denote this
order by �. To define �, take an arbitrary pooling link and call it X. The unique line passing
through X is X’s hyperplane that splits the (p, a)-space in two half-spaces. The upper half-space of
X is the closed half-space comprising the points each of which is weakly greater in the (Cartesian)
product order than some point on the X’s hyperplane. X is said to be smaller than some other
pooling link Y (and Y is greater than X)—denoted by X�Y—if Y lies in the upper half-space of
X. Thus defined � is complete because, by Facts 1–5, optimal pooling links never intersect. The
order is strict because two distinct links cannot share a hyperplane. Finally, it is immediate that
the order is transitive.

Because Gn is finite, the number of pooling links is finite, and so there exists the unique �-
maximal pooling link, which we denote by Y⇤. Because the pooling links are nonincreasing, the
arc of G that lies in the upper half-space of Y⇤ contains at least one prospect induced by a type in
⇥

q⇤, q̄
⇤

. Define s⇤ to be an arbitrary such type.
We now turn to the construction of s⇤. Draw a sequence of pairs of secants of G. Each secant

in the pair passes through the prospect (p (s⇤) , a (s⇤)) and either endpoint of a pooling link. Each
secant pair delimits a cone in the (p, a)-space as depicted in Figure 10a. By Step 1, and because
G is a convex curve, � induces an inclusion order on the cones generated by the pooling links.

65Cases (a) and (b) differ in the placement of the strict and weak inequalities. Case (a) prevails if the leader’s types
x1, x2, x3, and x4 in Qn

1 satisfy 0 < x1 < x2  x3 < x4 < 1, x2 > q⇤, and x3 < q̄. Case (b) prevails if the leader’s types
satisfy either q⇤ > x1 > x2 � x3 > x4 > 0 or x4 > q⇤ > x1 > x2 � x3 > 0 and x2 < q.
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is chosen to induce a prospect,
(p (s⇤) , a (s⇤)) 2 G, in the upper half-space of the �-
maximal pooling link, Y⇤. The outer shaded cone orig-
inates at prospect (p (s⇤) , a (s⇤)) and straddles some
pooling link X. The inner shaded cone originates at
prospect (p (s⇤) , a (s⇤)) and straddles the �-minimal
pooling link, Y⇤.
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(b) Type s⇤ 2 [0, q] is chosen to induce a prospect,
(p (s⇤) , a (s⇤)), in the lower half-space of the �-
minimal pooling link (not shown). The shaded cone
straddles the �-minimal pooling link and is also the
(nonempty) intersection of all cones that straddle pool-
ing links. This intersection property ensures that the
secant that passes through prospects (p (s⇤) , p (s⇤))
and (p (s⇤) , p (s⇤)) traverses every pooling link (not
shown).

Figure 10: The construction of s⇤ and s⇤ in Step 2 of the proof of Lemma 4. The solid dots mark
prospects in the discretized prospect set Gn; the empty dots mark “critical” prospects in the con-
tinuous prospect set G.

In particular, the cones associated with �-smaller pooling links are smaller in the inclusion sense.
As a result, the intersection of all the cones (depicted in Figure 10b) is nonempty and is the cone
induced by the �-minimal pooling link, denoted by Y⇤.66 Consequently, the intersection of all
cones contains the arc of G that lies in the lower half-space of Y⇤. Because Y⇤ is nonincreasing, this
arc contains at least one prospect induced by some type in [0, q]. Define s⇤ to be an arbitrary such
type.

The line that passes through the prospects induced by s⇤ and s⇤ constructed above (Figure 10b)
is nondecreasing and traverses all pooling links. This line partitions the prospects in those induced
by types in [s⇤, s⇤] \ Qn

1 and those induced by types in ([0, s⇤] [ [s⇤, 1]) \ Qn
1 . By construction of s⇤

and s⇤, every prospect in Gn is either pooled with a prospect in the other element of this partition
or is fully revealed. Hence, part (i) of the lemma follows.

Step 3: The optimal effort is single-peaked and, if s⇤ 2 Qn
1 , is maximal at type s⇤. (If s⇤ /2 Qn

1 , the
optimal effort is maximal “close” to s⇤, either at type max {[0, s⇤] \ Qn

1} or at type min {[s⇤, 1] \ Qn
1}).

Take any four leader’s types x1, x2, x3, and x4 in Qn
1 such that {x1, x2} are pooled under some

message, {x3, x4} are pooled under some other message, and either x1 6= x2 or x3 6= x4, or both.
Relabel the pairs of types so that the link connecting the prospects induced by points {x1, x2} is

66Just as Y⇤, Y⇤ exists because Gn, and thus the number of pooling links, is finite.
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�-smaller than the link connecting the prospects induced by {x3, x4}.67 For the described pooling
to be optimal, it must be, in particular, that the seller does not gain from pooling {x1, x2, x3, x4} all
under the same message. That is, the inequality in (A.1) must be reversed to yield D � 0. The only
way to satisfy D � 0 is to have68

p3a3 + p4a4

p3 + p4
� p1a1 + p2a2

p1 + p2
and

p3p3 + p4p4

p3 + p4
� p1p1 + p2p2

p1 + p2
.

The first inequality in the above display implies in particular that the message corresponding to
a �-larger pooling link (or a fully revealed prospect) induces a weakly larger equilibrium effort.
Equivalently, because of the orientation of pooling links relative to s⇤ and s⇤ reported in part (i),
the induced effort increases as the leader’s type increases away from s⇤ and towards s⇤—as long
as either x1 6= x2 or x3 6= x4—corroborating part (ii) of the lemma.

It remains to show that, also when two fully revealed prospects are compared (instead of two
links or a link and a fully revealed prospect), the larger of the two leader’s types in [s⇤, s⇤] induces
the higher effort. Once again appealing to D � 0, now with x1 = x2 and x3 = x4, conclude that,
for any two arbitrary fully revealed prospects (p1, a1) and (p3, a3),

(p3 � p1) (a3 � a1) � 0.

That is, because fully revealed, the two prospects lie on the upward-sloping segments of the arc
{(p (s) , a (s)) 2 G | s 2 [s⇤, s⇤]}. On this segment, it is indeed the case that a higher type of the
leader induces a higher effort of the follower. The proof of part (ii) of the lemma is thus complete.

A.4 Proof of Lemma 5

Let P denote the seller’s disclosure problem when the type space is Q1. Let Pn denote the seller’s
disclosure problem when the type space is the discrete Qn

1 . By Lemma 4 and Facts 1–5, a Pn-
optimal disclosure rule can be represented by a matrix pn ⌘

⇥

pij
⇤

i,j2{1,..,2n}, whose typical ele-
ment pij is the joint probability that prospect i arises and that it induces the message that pools
prospects i and j. The probability that prospect i arises and is fully revealed is denoted by pii.
The probability that prospect i arises is denoted by pi and equals Âj2{1,..,2n} pij, which is the joint
probability that prospect i arises and either is pooled with any other prospect or is fully revealed.
Because, by Fact 5, a prospect cannot be fully revealed sometimes and pooled at other times,

67If x3 = x4, extend � (to compare a link and a fully revealed prospect) so that the {x1, x2}-pooling link is �-smaller
than the {x3, x4}-prospect if x3 is in the upper half-space of the {x1, x2}-pooling link. Similarly, if x1 = x2, extend �
so that the {x1, x2}-prospect is �-smaller than the {x3, x4}-pooling link if x1 is in the lower half-space of the {x3, x4}-
pooling link.

68Indeed,
⇣

pipi+pi+1pi+1
pi+pi+1

, piai+pi+1ai+1
pi+pi+1

⌘

is an average point on the link connecting prospects (pi, ai) and (pi+1, ai+1),
i = 1, 3. By D � 0, the two averages must be product-ordered. Because, by normalization, the link connecting (p1, a1)
and (p2, a2) is �-smaller than the link connecting (p3, a3) and (p4, a4), the only way the averages can be ordered (and
a picture makes this clear) is if the average for i = 1 is weakly smaller than the average for i = 3, which is what the
displayed pair of inequalities advocates.
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pii > 0 implies pii = pi (i.e., pij = 0 for every j 6= i). A prospect can be pooled with more than one
other prospect (depending on the realized message); that is, pij > 0 does not imply pij = pi.

The value of problem Pn is denoted by Vn. To define this value, first define n⇤ and n⇤, the
prospect indices that correspond to the threshold types s⇤ and s⇤ defined in Lemma 4:

n⇤ ⌘ min {i : yi � s⇤} (A.2)

and
n⇤ ⌘ max {i : yi  s⇤} . (A.3)

With this notation,

Vn ⌘ max
pn

(

2n

Â
i=1

piip (yi) a (yi) +
n⇤

Â
i=n⇤

Â
j2{1,..,n⇤�1}[{n⇤+1,..,2n}

�

pij + pji
� pijp (yi) + pjip

�

yj
�

pij + pji

pija (yi) + pjia
�

yj
�

pij + pji

)

,

(A.4)
where the first term is the payoff from revealed prospects, and the second term is the payoff from
pooled prospects. The maximization is over disclosure rules.

Henceforth, let pn be the Pn-optimal disclosure rule, which attains the maximum in (A.4). This
rule will be used to construct an approximately P-optimal disclosure rule. Roughly, if in Pn, pn

pools prospects i and j only with each other (i.e., Sk pik = pij and Sk pjk = pji), then in P , the
intervals (yi�1, yi] and

�

yj�1, yj
⇤

will be “linked” pointwise, by pooling every element in (yi�1, yi]

with a corresponding element in
�

yj�1, yj
⇤

according to some matching function.69 If in Pn, pn

only sometimes pools prospects i and j with each other (i.e., Sk
�

pik + pjk
�

> pij + pji), then in
P , the intervals (yi�1, yi] and

�

yj�1, yj
⇤

are divided into subintervals and only one subinterval in
(yi�1, yi] is linked pointwise with a subinterval in

�

yj�1, yj
⇤

.
To make the linking procedure precise, define Pi ⌘

�

j : pij > 0
 

to be the set of prospects that
pn pools with prospect i, i 2 {1, .., 2n}. If Pi = {i}, prospect i is revealed in Pn. Partition interval
(yi�1, yi] into a collection of |Pi| subintervals70

Ci ⌘
n⇣

bij, b̄ij

i

: j 2 Pi

o

(A.5)

so that G
�

b̄ij
�

� G
⇣

bij

⌘

= pij, and so that whenever pn pools prospects i and j, one can draw a

link between element
⇣

bij, b̄ij

i

in Ci and element
⇣

bji, b̄ji

i

in Cj in such a manner that no two links
intersect. If |Pi| = 1, the only subinterval is the interval (yi�1, yi] itself, which either is linked to
some (sub)interval or remains unlinked. The construction of the links between (sub)intervals is
illustrated in Figure 11.

The rule that pools prospects in P is described by a matching function t. This matching func-
tion is constructed according to the following algorithm, which is initialized by setting i = n⇤

69Recall that type space Qn
1 that induces disclosure problem Pn partitions Q1 into 2n subintervals {(yi�1, yi]}2n

i=1 so
that prospect i in Pn “corresponds” to the interval of types (yi�1, yi] in Q1.

70Here, |Pi| denotes the number of elements in the set Pi.
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"
(a) A Pn-optimal disclosure rule pn. The solid dots are
prospects. The dashed links pool these prospects. The
prospect that is not pooled is revealed.

α

"
(b) Disclosure in P derived from disclosure in Pn.
Arrow-headed dashed segments indicate subintervals
whose prospects are pooled pointwise. Each prospect
in the interval that is not linked with any other interval
is revealed.

Figure 11: An optimal disclosure rule in the discrete problem Pn is used to construct a disclosure
rule in the continuous problem P .

(where n⇤ is defined in (A.2)):
1. If no subinterval in Ci is linked to any other subinterval, set t (q1) = t (yi�1) for all q1 2

(yi�1, yi], with the convention that t (yn⇤�1) = 1 if s⇤ = 0 and t (yn⇤�1) = yn⇤�1 if s⇤ > 0.
2. If a subinterval

⇣

bij, b̄ij

i

in Ci is linked to some subinterval
⇣

bji, b̄ji

i

in Cj, define a strictly de-

creasing t and the corresponding derivative b ⌘ �t0 so that for all s 2
h

bij, b̄ij

i

, g (s) / (b (s) g (t (s))) =

pij/pji, and t
⇣

bij

⌘

= b̄ji and t
�

b̄ij
�

= bji.71 Otherwise, go to Step 3.
3. If i < n⇤ (where n⇤ is defined in (A.3)), increment i by 1 and go to Step 1; otherwise, termi-

71When the c.d.f. G is uniform, the sought t is linear: t (s) = b̄ji �
⇣

s � bij

⌘

pji/pij, where pij = b̄ij � bij and pji =

b̄ji � bji. For a general G, set up the initial-value problem t0 = �pjig (s) /
⇣

pijg (t)
⌘

on
h

bij, b̄ij

i

subject to t
⇣

bij

⌘

= b̄ji.
Because the right-hand side of the problem’s ordinary differential equation (ODE) is continuous in (s, t), the Peano
existence theorem implies the existence of a solution. The solution is strictly decreasing because the right-hand side of
the ODE is negative. To see that the solution satisfies t

⇣

b̄ij

⌘

= bji, rewrite the ODE as �g (t (s)) t0 (s) = g (s) pji/pij

and integrate to obtain

�
ˆ b̄ij

bij

g (t (s)) t0 (s)ds = pji.

The displayed integral can be rewritten equivalently by changing the variable of integration from s to z ⌘ t (s):

ˆ b̄ji

t(b̄ij)
g (z)dz = pji.

Integrating gives G
⇣

b̄ji

⌘

� G
⇣

t
⇣

b̄ij

⌘⌘

= pji, which implies t
⇣

b̄ij

⌘

= bji, as desired.
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nate.72

Any interval (yi�1, yi] whose elements are revealed contributes to the seller’s payoff (25) amount

ˆ yi

yi�1

p (s) a (s) g (s)ds ⌘ piip (zi) a (zi) , (A.6)

where the identity uses pii = G (yi)� G (yi�1) and implicitly (and not necessarily uniquely) de-
fines zi 2 (yi�1, yi) by appealing to the First Mean Value Theorem for Integration.73

Any pair of linked intervals
⇣

bij, b̄ij

i

and
⇣

bji, b̄ji

i

contributes to the seller’s payoff amount

ˆ b̄ij

bij

g (s)p (s) + b (s) g (t (s))p (t (s))
g (s) + b (s) g (t (s))

g (s) a (s) + b (s) a (t (s))
g (s) + b (s) g (t (s))

(g (s) + b (s) g (t (s)))ds

⌘
�

pij + pji
� g

�

zij
�

p
�

zij
�

+ b
�

zij
�

g
�

zji
�

p
�

zji
�

g
�

zij
�

+ b
�

zij
�

g
�

zji
�

g
�

zij
�

a
�

zij
�

+ b
�

zij
�

a
�

zji
�

g
�

zij
�

+ b
�

zij
�

g
�

zji
�

=
�

pij + pji
� pijp

�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
, (A.7)

where the identity uses pij = G
�

b̄ij
�

� G
⇣

bij

⌘

and pji = G
�

b̄ji
�

� G
⇣

bji

⌘

, and implicitly (and

not necessarily uniquely) defines zij 2
⇣

bij, b̄ij

⌘

by appealing to the First Mean Value Theorem for
Integration; furthermore, zji ⌘ t

�

zij
�

. The equality in the last line of the above display follows by

construction of t. Because t is strictly decreasing, zji 2
⇣

bji, b̄ji

⌘

.
Assembling the contributions (A.6) and (A.7) gives the value of the seller’s objective function

(25), for problem P , under the disclosure rule induced by t, constructed form pn:

V̂n ⌘
2n

Â
i=1

piip (zi) a (zi)+
n⇤

Â
i=n⇤

Â
j2{1,..,n⇤�1}[{n⇤+1,..,2n}

�

pij + pji
� pijp

�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
.

(A.8)
By construction of {zi} and

�

zij
 

, |zi � yi|  yi � yi�1 and
�

�zij � yi
�

�  yi � yi�1. Because a and
p are twice continuously differentiable on (0, 1) with bounded derivatives (which occurs because
g, FL, and FH are twice continuously differentiable with bounded derivatives), the Taylor theorem
implies the following for z 2 (0, 1):

p (z) = p (y) + p0 (y) (z � y) + O
⇣

(z � y)2
⌘

a (z) = a (y) + a0 (y) (z � y) + O
⇣

(z � y)2
⌘

.

By construction, yi � yi�1 = 1/2n. Hence, yi � yi�1 = O (2�n), and so zi � yi = O (2�n) and

72The non-linked intervals indexed by i > n⇤ or i < n⇤ do not affect the matching function; they automatically
translate into discontinuities. The linked intervals indexed by i > n⇤ or i < n⇤ are accounted for when the intervals
indexed by i 2 {n⇤, n⇤ + 1, .., n⇤} are considered.

73See http://en.wikipedia.org/wiki/Mean_value_theorem#First_mean_value_theorem_for_integration
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zij � yi = O (2�n). Using the standard properties of O, one can write:

p (zi) a (zi) = p (yi) a (yi) + O
�

2�n�

pijp
�

zij
�

+ pjip
�

zji
�

pij + pji

pija
�

zij
�

+ pjia
�

zji
�

pij + pji
=

pijp (yi) + pjip
�

yj
�

pij + pji

pija (yi) + pjia
�

yj
�

pij + pji
+ O

�

2�n� ,

which are substituted into (A.8) to obtain

V̂n = Vn + O
�

2�n�

as desired.

A.5 Proof of Lemma 6

Preliminary Definitions
Normalize the set of the seller’s messages by setting it equal to the set of the follower’s poste-

rior probability distributions: M ⌘ DQ1, where DQ1 denotes the set of Borel probabilities on the
space of leader’s types Q1 = [0, 1]. The space DQ1 is a compact metric space when endowed with
the topology of weak convergence.74 Let D (DQ1) denote the space of probability measures on the
subsets of DQ1. Like DQ1, the space D (DQ1) is also a compact metric space when endowed with
the topology of weak convergence.

In the disclosure problem with a continuum of prospects, the seller can induce any probability
distribution n̂ 2 D (DQ1) over posterior probability distributions as long as n̂ is Bayes plausi-
ble, that is, as long as the expected posterior probability distribution equals the prior probability
distribution: ˆ

DQ1

Pdn̂ = P0,

where P0 is the prior probability measure over the leader’s types. The prior P0 is derived from the
c.d.f. G: P0 {q1 : q1  s} = G (s), s 2 Q1. The necessity of Bayes plausibility follows from Bayes’s
rule, and the sufficiency has been shown by Kamenica and Gentzkow (2011).

Formally, when the prospect set is G, the seller’s disclosure problem is:

V⇤ ⌘ max
n̂2D(DQ1)

ˆ
DQ1

p̄ (P) a⇤ (P)dn̂ s.t.
ˆ

DQ1

Pdn̂ = P0, (A.9)

where
p̄ (P) =

ˆ
Q1

p (q1)dP and a⇤ (P) =
ˆ

Q1

a (q1)dP.

Note that both p̄ (P) and a⇤ (P) are continuous in P. To see this, take an arbitrary sequence {Pk}
of probability measures on Q1 that converge weakly to P. Because Lebesgue measurable func-
tions p and a can have at most a countable number of discontinuity points, the set of disconti-

74The topology of weak convergence is metrizable under the Prohorov metric.
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nuities is of measure zero, and thus by the Mapping Theorem (Billingsley, 1968, Theorem 5.1, p.
30), limk p̄ (Pk) = p̄ (P) and limk a⇤ (Pk) = a⇤ (P) . The continuity of the integrand together with
Proposition 3 on p. 10 of the Online Appendix to Kamenica and Gentzkow (2011) imply that the
solution to problem (A.9) exists. Let n⇤ denote this solution.

Similarly, when the prospect set is Gn, the seller solves

Vn ⌘ max
n̂n2D(DQn

1)

ˆ
DQn

1

p̄ (Pn) a⇤ (Pn)dn̂n s.t.
ˆ

DQn
1

Pndn̂n = P0
n , (A.10)

where Pn is a probability measure on Qn
1 , n̂n is a probability measure on DQn

1 , and P0
n is the prior

probability measure over the leader’s types given the discretization Qn
1 :

P0
n ⌘ P (Bn

1 ) dy1 + P (Bn
2 ) dy2 + ... + P (Bn

2n) d1,

where Bn
i ⌘ (yi�1, yi] and dyi denotes the Dirac measure at yi 2 [0, 1] (i.e., dyi (B) = 1{yi2B}, B ⇢

Q1). Let nn denote a solution to the discrete problem (A.10). The solution exists by Proposition 1
and Corollary 1 of Kamenica and Gentzkow (2011).

Consider a sequence of solutions {nn} and note that {nn} is a sequence of measures over be-
cause for each n, Pn 2 DQn

1 ✓ DQ1 and nn 2 D (DQn
1) ✓ D (DQ1) .

The Proof of the Lemma
Because the space of D (DQ1) is a compact metric space, it is sequentially compact under the

topology of weak convergence, and thus the sequence of {nn} has a subsequence {nn0} such that as
n0 ! •, nn0 converges weakly to some limit n. Because p̄ (P) and a⇤ (P) are continuous, bounded,
and real-valued functions defined on DQ1, by definition of weak convergence,

ˆ
DQ1

p̄ (P) a⇤ (P)dnn0 !
ˆ

DQ1

p̄ (P) a⇤ (P)dn. (A.11)

By contradiction, suppose that n, the limit of {nn0} , does not solve the continuous problem
(A.9) and that:

e ⌘
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn > 0. (A.12)

Let N ⌘ {n0
1, n0

2, ...} be the set indexing the convergent sequence {nn0} . Because of convergence
(A.11), one can choose an N 2 N such that for all n0 � N, n0 2 N :

�

�

�

�

ˆ
DQ1

p̄ (P) a⇤ (P)dnn0 �
ˆ

DQ1

p̄ (P) a⇤ (P)dn

�

�

�

�

<
e

2
. (A.13)

Because space D (DQ1) is separable and because n⇤ solves the seller’s maximization problem
(A.9) with the leader’s type space Q1, one can choose an N̂ 2 N such that for any n0 � N̂, n0 2 N ,
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there exists an approximation n⇤n0 to n⇤ with a support on Qn0
1 :

0 
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤n0 <
e

2
. (A.14)

Proof that such an approximation exists is in the Supplementary Appendix B.
Take N̄ = max

�

N, N̂
 

. Then,

ˆ
DQ1

p̄ (P) a⇤ (P)dnN̄ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤N̄

=

✓ˆ
DQ1

p̄ (P) a⇤ (P)dnN̄ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn

◆

�
✓ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn

◆

+

✓ˆ
DQ1

p̄ (P) a⇤ (P)dn⇤ �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤N̄

◆

<
e

2
� e +

e

2
= 0,

where the term in the first parenthesis is less than e/2 by (A.13), the term in the second parenthesis
equals e by the contradiction hypothesis (A.12), and the term in the third parenthesis is less than
e/2 by (A.14). The inequality is a contradiction, however, because nN̄ solves the seller’s discrete
maximization problem with the leader’s type space QN̄

1 . Hence,

ˆ
DQ1

p̄ (P) a⇤ (P)dn �
ˆ

DQ1

p̄ (P) a⇤ (P)dn⇤ ⌘ V⇤.

The argument above shows that every convergent subsequence {nn0} converges weakly to a
limit that delivers a payoff at least as high as V⇤. Consequently, it must be the case that lim infn!• Vn �
V⇤. If not, there exists an e > 0 such that infinitely many nn deliver payoff Vn < V⇤ � e. Then it is
possible to pick a subsequence {nnk} for which no term delivers payoff Vnk � V⇤ � e. By sequential
compactness, {nnk} has a convergent subsequence, which is a subsequence of the original {nn} ,
and by construction, the limit of this subsequence delivers a payoff strictly below V⇤. This payoff
contradicts the earlier established fact that every convergent subsequence of {nn} must converge
weakly to a limit that delivers at least V⇤.
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B Supplementary Appendix: Omitted Technical Details

B.1 A Signal Structure Rationalizing the Information-Acquisition Technology of Sec-
tion 3

The model’s description, in Section 3, could have been specified as follows. The follower exerts
an effort a. This effort affects the precision of a signal z. This signal’s realization induces a con-
ditional probability distribution µz of the underlying valuation v. This conditional probability
distribution implies the expected conditional valuation q2 ⌘ Eµz [v]. Before the realization of z has
been observed, µz and q2 are random variables.

The alternative (but equivalent) approach taken in Section 3 makes direct assumptions on how
a affects the probability distribution of q2. It would have been a mere normalization to identify
the set of signal realizations with the set of conditional (on this signal) probability distributions
by setting z = µz (Kamenica and Gentzkow, 2011). Because each player is an expected-utility
maximizer, however, each cares only about q2, and so it is appropriate to identify the set of signal
realizations with the set of conditional expectations by setting z = q2. The underlying signal
structure that induces the probability distribution of q2 has been left implicit in the paper’s main
body, but can be recovered.

For concreteness, this appendix shows how the dependence of q2 on a assumed in Condition 1
can be (non-uniquely) rationalized with an appropriate joint probability distribution for v and z.
Assume that each c.d.f. Fj in Condition 1 has a p.d.f. f j, j = L, H. Let the follower’s underlying
valuation be v 2 {0, 1} with Pr {v = 1} = p, where p ⌘

´ 1
0 sdFH (s) =

´ 1
0 sdFL (s). Then, by

construction, Pr {v = 1} = E [q2 | a] for all a 2 A, meaning that the probability that the follower
assigns to v = 1 before observing z equals his expectation of the conditional (on z) probability that
v = 1, which is also his conditional expectation of v, denoted by q2. This Bayesian consistency
condition is necessary and sufficient for q2 to represent the follower’s conditional expectation of
his underlying valuation (Kamenica and Gentzkow, 2011).

Assume that the signal z can be either more precise, with probability a, or less precise, with
probability 1 � a. The realizations of the more and the less precise signals are governed by the
conditional p.d.f.s sH (z | v) and sL (z | v), where

sj (z | v) ⌘ zv (1 � z)1�v

pv (1 � p)1�v fj (z) , j 2 {H, L} , v 2 {0, 1} , z 2 [0, 1] . (B.1)

The Law of Total Probability applied to (B.1) implies that, conditional on signal technology j, z is
distributed according to the c.d.f. Fj; that is, the probability that the signal realization does not
exceed z is ˆ

sz

⇥

psj (s | 1) + (1 � p) sj (s | 0)
⇤

ds = Fj (z) ,

which immediately implies that unconditionally, for some effort a, z is distributed with the c.d.f.
F (· | a).

1



Bayes’s rule implies that z is also the expectation of v conditional on z and on signal technol-
ogy j:

E [v | z, j] = Pr {v = 1 | z, j} =
sj (z | 1) p

sj (z | 1) p + sj (z | 0) (1 � p)
= z,

which immediately implies the expectation that is conditional only on z:

q2 ⌘ E [v | z] = aE [v | z, j = H] + (1 � a)E [v | z, j = L] = z.

Hence, because z is distributed according to the c.d.f. F (· | a), so is q2, as desired.

B.2 Justifying Equation (A.14) in the Proof of Lemma 6

To justify equation (A.14), Lemma 7 demonstrates that one can approximate any n 2 D (DQ1) by a
probability measure that puts some mass only on discrete measures in a countable set. The proof
proceeds in two steps. First, it shows that by choosing n sufficiently large, any probability measure
in DQ1 can be approximated by a probability measure that puts some mass on a countable set
� 1

2n , 2
2n , ..., 1

 

in Q1. Then, a similar argument is repeated to show that if one chooses n sufficiently
large, any measure in D (DQ1) can be approximated by a measure that puts positive mass only
on discrete measures with support

� 1
2n , 2

2n , ..., 1
 

. This second half is slightly trickier because it
requires finding a countable set of non-overlapping neighborhoods in DQ1 which almost cover
space DQ1.

Lemma 7. Fix an arbitrary measure n 2 D (DQ1). For every e > 0, there exists N such that for n � N,
�

�

�

�

ˆ
DQ1

f (P) dn �
ˆ

DQ1

f (P) dnn

�

�

�

�

< e,

where f (P) is an arbitrary real-valued uniformly continuous, bounded function, and nn is a probability
measure that puts some mass only on discrete measures in the countable set

Dn ⌘
(

a1d1/2n + a2d2/2n + ... + a2n d1 : a1, ..., a2n 2 Q \ [0, 1] ,
2n

Â
j=1

aj = 1

)

⇢ DQ1,

where Q denotes the set of rational numbers and dk/2n denotes the Dirac measure at k/2n 2 [0, 1] (i.e.,
dk/2n (B) = 1{k/2n2B}, B ⇢ Q1). Set Dn contains probability measures that put some (rational) mass on a
countable set

� 1
2n , 2

2n , ..., 1
 

in Q1.

Proof. The proof proceeds in two steps.
Step 1: It is possible to approximate any measure µ in DQ1 with a measure in Dn by choosing

n sufficiently high.
Let Bn

j ⌘
h

j�1
2n , j

2n

⌘

for j = 1, 2, ..., 2n, so that the family of disjoint sets {Bn
1 , ..., Bn

2n} completely

2



covers Q1. Note that it is possible to approximate a discrete measure

µ (Bn
1 ) d1/2n + ... + µ (Bn

2n) d1

by
µn ⌘ an

1 d1/2n + ... + an
2n d1,

where an
j 2 [0, 1] \ Q such that Â2n

j=1 an
j = 1 and

2n

Â
j=1

�

�

�

µ
⇣

Bn
j

⌘

� an
j

�

�

�

<
1
2n .

Such choice of
n

an
j

o

is possible because rationals are dense in reals. Then for each n, µn 2 Dn.
Moreover, as n ! •, µn ) µ, where “)” denotes weak convergence and µ 2 DQ1.

To show that µn ) µ, take a uniformly continuous bounded function g on Q1 = [0, 1] .1 Let
kgk• ⌘ supx2Q1

g (x) denote the supremum norm. Then

�

�

�

�

ˆ
gdµn �

ˆ
gdµ

�

�

�

�

=
�

�

�Â2n

j=1 an
j g
⇣

j
2n

⌘

�
´

gdµ
�

�

�

<
�

�

�Â2n

j=1 µ
⇣

Bn
j

⌘

g
⇣

j
2n

⌘

�
´

gdµ
�

�

�

+
1
2n sup

j

�

�

�

�

g
✓

j
2n

◆

�

�

�

�


�

�

�

�

´
Â2n

j=1 g
⇣

j
2n

⌘

1n
Bn

j

odµ �
´

gdµ

�

�

�

�

+
1
2n kgk•


�

�

�

�

Â2n

j=1
´ ⇣

g
⇣

j
2n

⌘

� g
⌘

1n
Bn

j

odµ

�

�

�

�

+
1
2n kgk•


�

�

�Â2n

j=1 supx2Bn
j

�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

µ
⇣

Bn
j

⌘

�

�

�

+
1
2n kgk• .

Note that
�

�

�

j
2n � x

�

�

�

< 1
2n for each x 2 Bn

j . Because g is uniformly continuous, for every e > 0, there
exists a d > 0 such that whenever |x � y| < d, |g (x)� g (y)| < e. Take some e > 0, then for n
such that 1

2n  d,
�

�

�

g
⇣

j
2n

⌘

� g (x)
�

�

�

< e for all x 2 Bn
j and all j. Then, from previous calculations, it

follows that
�

�

�

�

ˆ
gdµn �

ˆ
gdµ

�

�

�

�

 e +
1
2n kgk• .

Because g is bounded, the second term on the right-hand side can be made arbitrarily small by

1Statements that µn ) µ and that lim
´

gdµm =
´

gdµ for all uniformly continuous, bounded functions are equiva-
lent because

1. The set of bounded Lipschitz functions on a metric space is dense in the set of continuous bounded functions
on that space (Dudley, R. M., Real Analysis and Probability 2002, Theorem 11.2.4), which implies that instead
of a wider class of bounded continuous function in the definition of the weak convergence, one may actually
consider a smaller class of bounded Lipschitz functions (this fact is sometimes stated as a part of Portmanteau
theorem).

2. Every Lipschitz function between two metric spaces is uniformly continuous.
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choosing n sufficiently large, whereas e is arbitrary. Hence,
´

gdµn !
´

gdµ as n ! •, which
implies that µn ) µ.

Step 2: It is possible to approximate any measure n in D (DQ1) with a measure that puts some
mass only on measures in Dn.

Let

V ⌘
(

k

Â
n=0

•

Â
j=1

bnjµ
j
n : µ

j
n 2 Dn, b0j, ..., bkj 2 Q \ [0, 1] ,

k

Â
n=0

•

Â
j=1

bnj = 1, k = 0, 1, 2, ...

)

be a countable subset of probability measures in D (DQ1) . It contains measures that put positive
mass only on measures in a countable set D ⌘ [•

n=0Dn. It will be demonstrated that V is dense in
D (DQ1), and thus an arbitrary measure in D (DQ1) can be approximated by some measure in V .

Let n 2 D (DQ1) and

B
⇣

µ
j
n, 1/m

⌘

⌘
n

µ 2 DQ1 : dp

⇣

µ
j
n, µ

⌘

< 1/m
o

be an open ball in D (DQ1) with radius 1/m centered around measure µ
j
n 2 Dn, where dp

⇣

µ
j
n, µ

⌘

denotes Prohorov distance between measures µ
j
n and µ. For each m � 1,

[•
j=1B

✓

µ
j
0,

1
m

◆

⇢ [•
j=1B

✓

µ
j
1,

1
m

◆

⇢ ... and lim
n!•

[•
j=1B

✓

µ
j
n,

1
m

◆

= D (DQ1) .

Take N and J such that

n

✓

[J
j=1B

✓

µ
j
N ,

1
m

◆◆

� 1 � 1/m.

Modify the balls B
⇣

µ
j
N , 1

m

⌘

into disjoint sets by taking

Bm
1 ⌘ B

✓

µ1
N ,

1
m

◆

, Bm
k ⌘ B

✓

µk
N ,

1
m

◆

�


[k�1
j=1 B

✓

µ
j
N ,

1
m

◆�

, k = 2, ..., J.

Then Bm
1 , ..., Bm

J are disjoint and [j
k=1Bm

k = [j
k=1B

�

µk
N , 1

m
�

for all j. Consequently,

n
⇣

[J
k=1Bm

k

⌘

= n

✓

[J
k=1B

✓

µk
N ,

1
m

◆◆

� 1 � 1/m. (B.2)

It is possible to approximate
n (Bm

1 ) dµ1
N
+ ... + n

�

Bm
J
�

d
µJ

N

by
nm ⌘ bm

1 dµ1
N
+ ... + bm

J d
µJ

N
,

4



where bm
j 2 [0, 1] \ Q is such that ÂJ

j=1 bm
j = 1 and

J

Â
j=1

�

�

�

n
⇣

Bm
j

⌘

� bm
j

�

�

�

<
2
m

.

Since rationals are dense in reals, such choice of
n

bm
j

o

is always possible through an appropriate
rescaling. Then for each m, nm 2 D.

To show that nm ) n, take a uniformly continuous bounded function f on DQ1. Then,
�

�

�

�

ˆ
f dnm �

ˆ
f dn

�

�

�

�

=
�

�

�ÂJ
j=1 bm

j f
⇣

µ
j
N

⌘

�
´

f dn
�

�

�


�

�

�ÂJ
j=1 n

⇣

Bm
j

⌘

f
⇣

µ
j
N

⌘

�
´

f dn
�

�

�

+
2
m

sup
j

�

�

�

f
⇣

µ
j
N

⌘

�

�

�


�

�

�

�

´
ÂJ

j=1 f
⇣

µ
j
N

⌘

1n
Bm

j

odn �
´

f dn

�

�

�

�

+
2
m

k f k•


�

�

�

�

ÂJ
j=1
´ ⇣

f
⇣

µ
j
N

⌘

� f
⌘

1n
Bm

j

odn +
ˆ

f 1n⇣
[J

j=1Bm
j

⌘codn

�

�

�

�

+
2
m

k f k•


�

�

�ÂJ
j=1 supµ2Bm

j

�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

n
⇣

Bm
j

⌘

+ k f k• n
⇣⇣

[J
j=1Bm

j

⌘c⌘�
�

�

+
2
m

k f k• .

Each Bm
j is contained in a ball with radius 1/m around µ

j
N , and thus dp

⇣

µ
j
N , µ

⌘

< 1
m for each

µ 2 Bm
j . Because f is uniformly continuous, for every e > 0, there is a d > 0 such that whenever

dp (µ, u) < d, | f (µ)� f (u)| < e. Take some e > 0; then, for m � 1/d,
�

�

�

f
⇣

µ
j
N

⌘

� f (µ)
�

�

�

< e for all
µ 2 Bm

j and all j. Then, from previous calculations

�

�

�

�

ˆ
f dnm �

ˆ
f dn

�

�

�

�

 e +
1
m

k f k• +
2
m

k f k• .

Because f is bounded, the last two terms on the right-hand side can be made arbitrarily small by
choosing m sufficiently large, whereas e is arbitrary. Hence,

´
f dnm !

´
f dn as m ! •, which

implies that nm ) n.

B.3 Proof of Lemma 3

A prospect set is a parametrically given plane curve G ⌘ {(p (q1) , a (q1)) | q1 2 Q1}. The signed
curvature of G at q1 is given by2

k (q1) ⌘
a00 (q1)p0 (q1)� a0 (q1)p00 (q1)
⇣

(p0 (q1))
2 + (a0 (q1))

2
⌘3/2 , (B.3)

2The curvature of G at a point is the reciprocal of the radius of the circle osculating G at that point; see the Wikipedia
entry on curvature: https://en.wikipedia.org/wiki/Curvature.
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where primes refer to derivatives with respect to q1. Because G is simple3 and regular,4 curve
G is strictly convex if and only if k is either always positive or always negative. Because the
denominator in (B.3) is always positive, requiring that k does not change the sign is equivalent to
requiring that the numerator in (B.3) not change the sign.

When q1 = q⇤, the numerator in (B.3) is negative, or �r (q⇤) ( fH (q⇤)� fL (q⇤))
2 /c < 0, be-

cause fH (q⇤) 6= fL (q⇤) by the lemma’s hypothesis and FL (q⇤) = FH (q⇤) by part (ii) of Condi-
tion 1. Thus, the strict convexity of G is equivalent to the numerator in (B.3) being always nega-
tive:5

a00 (q1)p0 (q1)� a0 (q1)p00 (q1) < 0.

Substituting the definitions of a and p into the above display, dividing by (R0 (q1))
2, which is

positive when q1 6= q⇤, and rearranging gives the sought inequality (26) of Lemma 3.
This curvature condition captured by (26) is local and alone does not suffice to conclude that

the prospect set is convex (in the sense of Definition 1); a spiral is a counterexample. Condition 1,
however, which ensures a (0) = a (1) = 0, thereby ruling out a spiral and ensuring that the
curvature condition in (26) is equivalent to the convexity of G.

3A curve is simple if it does not intersect itself.
4A curve G is regular if its derivative (a0, p0) 6= (0, 0) for all q1 2 Q1, which holds in our model.
5In general, the sign of the curvature k indicates the direction in which the unit tangent vector rotates as a function

of the parameter along the curve. If the unit tangent rotates counterclockwise, then k > 0. If it rotates clockwise,
then k < 0. In our model, as q1 increases, the unit tangent vector of G rotates clockwise and thus k must be negative
everywhere.
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