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Abstract

We study a normative model of an internal capital market, used by a company

to choose between its two divisions’ pet projects. Each project’s value is initially un-

known to all but can be dynamically learned by the corresponding division. Learning

can be suspended or resumed at any time and is costly. We characterize an inter-

nal capital market that maximizes the company’s expected cash flow. This market

has indicative bidding by the two divisions, followed by a spell of learning and then

firm bidding, which occurs at an endogenous deadline or as soon as either division

requests it.
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1 Introduction

A corporate finance textbook (e.g., Webster, 2003, Chapter 12) would recommend that a

company invest in a project if and only if the project’s internal rate of return exceeds the

cost of capital. If companies operated in this manner, their investment decisions would be

independent across projects within the company, conditional on the projects’ cash flows.

In practice, such independence is an exception rather than the rule (Ozbas and Scharf-

stein, 2010).

Investment decisions can be interdependent for two reasons: projects may be mutually

exclusive, or internal capital, used to finance these projects, may be scarce. We use the

term “internal capital market” to describe a project-selection mechanism that deals with

either situation. We are interested in the design of an optimal internal capital market.

We focus on problems in which project values are initially unknown but can be learned

over time. Before deciding which project to finance, a company carries out due diligence

on each project. If due diligence were unnecessary or infeasible, optimal project selection

would be trivial because the company would immediately choose the project with the

highest expected value, without any deliberation.

The situation in which Universal Music Group found itself in 2011 fits our model’s

environment exactly. Universal was considering two alternative projects: the purchase of

EMI Music and the purchase of Warner Music Group.1 Purchasing both was infeasible, if

only because of antitrust concerns. Assessing the profitability of each purchase required

costly due diligence by the teams of lawyers, consultants and accountants, to evaluate

music catalogs, potential synergies, and antitrust risks.

EMI is based in London; Warner Music is based in New York. Universal (headquar-

tered in Santa Monica) also happens to have two divisions: one in London and one in

New York. Universal could charge the London division with carrying out due diligence

1See http://www.completemusicupdate.com/article/bmg-and-universal-may-co-bid-for-warner-and-
emi/ and http://www.completemusicupdate.com/timeline-emisale/.
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pertaining to the purchase of EMI and could charge the New York division with carrying

out due diligence pertaining to the purchase of Warner Music. Our first question asks

how Universal should orchestrate its divisions’ due diligence to maximize its expected

cash flow.

The example of Universal carries one further complication. The London division fa-

vors buying EMI because this purchase would increase the influence of the London di-

vision. The New York division similarly favors buying Warner Music. If Universal’s

headquarters cannot monitor each division’s due diligence, then each division is likely

to be strategic when deciding whether to follow the headquarters’ recommendations re-

garding due diligence (moral hazard) and when deciding whether to report truthfully the

outcomes of its due diligence (adverse selection). Hence, our second question asks how

the optimal policy can be implemented in the presence of both moral hazard and adverse

selection.

To address the two design questions raised above, we study Universal’s problem in an

auction-like environment. HQ (the headquarters) allocates an item (the requisite funds

to pursue an acquisition) to one of two divisions, denoted by D1 and D2. The value

of each division’s project (the profitability of the acquisition) is either 0 or 1 and is dis-

tributed independently across the two divisions. Initially, each division has a belief about

its project’s value and revises this belief as it learns (carries out due diligence).

Time is continuous, and the time horizon is infinite. At each instant, each division can

learn at a cost. A division’s learning affects the arrival intensity of “good news,” which

reveals the project’s value to be 1. The alternative, “no news,” means that the project’s

value can be either 0 or 1 and causes the division to revise its value estimate downward.

HQ maximizes the expected cash flow, defined as the expected value of the winning

project net of both divisions’ expected cumulative costs of learning. Assuming HQ can

directly control each division’s learning, observe learning outcomes, and select the win-

ning project, HQ’s problem is a stochastic-control and optimal-stopping problem. This
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Figure 1: An optimal policy’s prescription for each pair (x1, x2) of the project’s expected
values.

problem’s solution—an optimal policy—is this paper’s first contribution. The second

contribution is the optimal policy’s implementation in the presence of moral hazard and

adverse selection.

Figure 1 summarizes an optimal policy when the cost of learning is sufficiently small.2

This optimal policy is stationary and prescribes, for every pair (x1, x2) of the two projects’

expected values, whether either division should win immediately, and if not, which divi-

sion should learn. Normalizing x2 ≥ x1, four prescriptions are possible:

2For larger costs, an optimal policy is a special case, and is characterized later in the paper.
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1. Division 2 wins immediately

D2 wins immediately whenever x1 and x2 are either both close to 0 or both close to 1.

In this case, there is little uncertainty about each project’s value, and so learning is

not worth the cost. D2 also wins immediately whenever x2 is substantially larger

than x1. In this case, there is little uncertainty about the fact that the value of project 2

exceeds the value of project 1, so learning is unlikely to affect the decision regarding

which project to select and hence is suboptimal.

2. Division 2 learns

D2 learns when x1 and x2 are close to each other (so that which project is more

valuable is highly uncertain), and when both x1 and x2 are far away from 0 and 1 (so

that each project’s value is highly uncertain). In this case, the need for information

is so great that it is worthwhile to ask D2 to learn first, and to plan on also asking

D1 to learn later if D2 does not observe good news. Asking D2 to learn without ever

planning to ask D1 to learn is suboptimal, as is explained below.

D2’s learning is more informative than D1’s, which suggests that asking D2 to learn

may be optimal. Indeed, because x2 > x1, D2 stands a higher chance of observing

good news than D1 does. At the same time, a spell of no news leads to a rapid

downward revision of D2’s belief because a likely event—the arrival of good news—

has failed to occur. Either way, as D2 learns, its belief changes fast.

Asking only D2 to learn, without planning to ask D1 to learn later on, amounts to

committing to choose D2’s project. Such a commitment is suboptimal because D2’s

belief is a martingale, and consequently, D2’s learning entails costs, but does not

affect the (ex-ante) expected value of D2’s project. By contrast, if D2’s learning, with

positive probability, is followed by D1’s learning, then the selected project’s identity

is contingent on the outcomes of learning, thereby justifying learning.

3. Both divisions learn
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Both divisions learn simultaneously if (i) x1 = x2 (i.e., which project is more valuable

is unclear), (ii) x1 and x2 are sufficiently large (i.e., learning by either division is

rather informative), and (iii) x1 and x2 are bounded away from 0 and 1 (i.e., each

project’s value is highly uncertain).

4. Division 1 learns

D1 learns whenever the values of x1 and x2 are complementary to those described

in scenarios 1–3. In this case, by having D1 learn, HQ bets on having D1 observe the

good news. HQ is “insured” by D2, which does not learn, and whose project can be

selected if D1 observes no news.

We show that the described optimal policy is implementable in the presence of moral haz-

ard and adverse selection. That is, the prescriptions of the optimal policy coincide with

equilibrium outcomes of a carefully constructed dynamic game, called optimal auction

game. In this game, each division learns privately and hence must be motivated to con-

form with the optimal policy. The optimal auction begins with indicative bidding: each

division publicly announces a real number, which does not directly affect the division’s

payment or the chances of getting its project selected. HQ uses the announced indicative

bids to compute the firm-bidding deadline, which HQ then publicly announces. Until the

deadline, each division can learn and, irrespective of whether it is learning, may be asked

by HQ to pay a fee for the right to remain in competition. At any time, either division

may request early firm bidding. Firm bidding takes the form of the second-price auction,

which determines the divisions’ payments and the winning project.

The fees and the firm-auction rules are chosen to ensure that each division pays the

“externality” that its participation imposes on the other division, by analogy to a Vickrey-

Clarke-Groves mechanism. Each division thus becomes a “residual claimant” to the cash

flow. As a result, at equilibrium, each division’s indicative bid equals its prior belief about

its project’s value. Furthermore, each division learns as prescribed by the optimal policy

and requests firm bidding if and only if it observes good news. Each division’s firm
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bid is its final belief about its project’s value. Thus, the highest expected-value project is

selected.

Our paper contributes to two literatures: corporate finance literature on internal cap-

ital markets and economic theory literature on irreversible project selection in the pres-

ence of uncertainty, including the literature on auctions with information acquisition. The

assumptions underlying our model of the internal capital market are motivated by the

vision described by Stein (1997).3 In particular, because internal capital is scarce (e.g., be-

cause of informational frictions associated with raising outside capital), not all profitable

projects can be financed and so HQ must ration. At the same time, even unprofitable

projects may end up being financed (e.g., because of HQ’s empire-building tendencies),

and so HQ invests all available internal capital. Accordingly, we assume that HQ selects

exactly one project.

Existing literature on internal capital markets is predominantly positive. Among the

positive models, in addition to Stein (1997), are Harris and Raviv (1996), Rajan et al.

(2000), Scharfstein and Stein (2000), de Motta (2003), and Inderst and Laux (2005). The

only normative dynamic model of an internal capital market that we are aware of is that

of Malenko (2012). Whereas our focus is on learning about, and selection from, two given

projects, Malenko (2012) studies selection from dynamically arriving projects and does

not model learning.

The economic theory literature on irreversible project selection can be interpreted to

model internal capital market. The real-option approach, exemplified by the work of

Dixit and Pindyck (1994), assumes that the values of projects evolve exogenously. We

extend their approach to situations in which these values evolve endogenously, as a result

of learning. Learning is the focus of multi-armed bandit problems (Bolton and Harris,

1999; Keller et al., 2005; Klein and Rady, 2010). Bandit problems model reversible project

selection because a selected arm can be unselected as new information arrives. In the
3For a textbook introduction to internal capital markets, see Tirole (2006, Section 10.5) and Gertner and

Scharfstein (2012).
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bandit problems in which no new information can ever justify unselecting an arm (and so

investment irreversibility is irrelevant), there is no way to incorporate the cost of learning

in a manner consistent with our model.4

Persico (2003), Compte and Jehiel (2007), Crémer et al. (2009), Shi (2012), and Krähmer

and Strausz (2011) analyze information acquisition in auctions, but do not investigate

situations in which learning can occur over an infinite horizon, information is cumulable

over time, and no structure is imposed on the timing of learning. The richness of the set

of admissible learning policies distinguishes our model and leads to novel insights. For

example, the insight that sometimes it is optimal for the higher-expected-value division

to learn would be lost in a model with a one-off chance to learn. The richness of the policy

set comes at a cost; we work with a rather special, good-news, learning technology.

Athey and Segal (2007) and Bergemann and Välimäki (2010) are our inspirations for

the auction implementation of the optimal policy.

The rest of the paper is structured as follows. Section 2 describes the environment.

Section 3 conjectures and informally justifies an optimal policy. Section 4 verifies the con-

jecture by appealing to the viscosity-solution techniques. Section 5 describes the optimal

policy’s implementation in a dynamic auction. Section 6 concludes.

2 Model

Time is continuous and is indexed by t ≥ 0. The time horizon is infinite.

Valuations

HQ holds an indivisible item, which it values at zero. HQ allocates this item to one of

two divisions, indexed by i ∈ N ≡ {1, 2} and denoted by Di. Di’s valuation vi ∈ {0, 1} is

4The challenge within the bandit framework is to make the cost of learning vanish once an irreversible
investment has been made.
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a random variable with Pr {vi = 1} = Xi (0), for some prior belief Xi (0) ∈ [0, 1], i ∈ N .

Valuations v1 and v2 are statistically independent.

Learning

At any time t, each Di can acquire information about vi, or learn. Let ai be the indicator

function with values in {0, 1} such that ai (t) = 1 indicates that Di learns at time t. The

cumulative cost of learning incurred by Di from time 0 to time t is c
∫ t

0 ai (s)ds, for some

cost parameter c > 0.

Di’s learning process {ai (t) | t ≥ 0}, denoted by ai, controls the arrival-intensity pro-

cess {λai (t) vi | t ≥ 0} of a Poisson process
{

Nai
i (t) | t ≥ 0

}
that has Nai

i (0) = 0, where

λ > 0 is interpreted as the precision of learning. The event when Nai
i (t) is incremented

is called good news (about vi). The event when Nai
i (t) is not incremented is called no

news. Because the event Nai
i (t) > 0 can occur only if vi = 1, the good news reveals

vi = 1. Processes Na1
1 and Na2

2 are assumed to be independent.

Define Xai
i (t), Di’s time-t type, or belief, to be the expectation of vi conditional on the

information revealed up to time t and on some learning process ai:

Xai
i (t) ≡ E

[
vi |

{
Nai

i (s) | 0 ≤ s ≤ t
}]

= E
[
vi | Nai

i (t)
]

.

The last equality in the display above obtains because Nai
i (t) summarizes all the history

that is relevant for learning about vi. For any learning-process profile a ≡ (a1, a2), the

tuple Xa (t) ≡
(
Xa1

1 (t) , Xa2
2 (t)

)
is a time-t type profile. By construction (by the Law of

Iterated Expectations), the process Xa is a martingale.

The Evolution of Types

For any t and t′ > t, Di’s type Xai
i (t′) is derived from Xai

i (t) by application of the Bayes

rule. According to the Bayes rule, Nai
i (t′) > 0 implies Xai

i (t′) = 1, whereas Nai
i (t′) = 0

9



implies
Xai

i (t′)
1− Xai

i (t′)
=

Xai
i (t)

1− Xai
i (t)

e−λ
∫ t′

t ai(s)ds. (1)

For future reference, let us describe the stochastic type process Xai
i in its differential

form. Because Xai
i is not conditional on vi, it is convenient to define the good-news Pois-

son process Ñai
i whose arrival intensity is also unconditional, and equals λai (t) Xai

i (t).

The stochastic differential equation for Xai
i becomes

dXai
i (t) =

(
1− Xai

i (t)
)

dÑai
i (t)− λai (t) Xai

i (t)
(
1− Xai

i (t)
)

dt (2)

subject to Xai
i (0) = Xi (0). The differential representation in (2) is a difference of two

terms. The first term is the upward jump in the belief caused by the arrival of good news.

The second, negative, term is the downward revision of the belief caused by the failure of

the good news to arrive during learning; the magnitude of this revision follows from the

Bayes formula in (1).

An Optimal Policy

The environment is stationary, and so no generality is lost by focusing on stationary poli-

cies. A (stationary) policy is a tuple (α, τ), where the learning policy α ≡ (α1, α2) maps

a type profile x ≡ (x1, x2) into learning decisions (α1 (x) , α2 (x)) in {0, 1}2 \ (0, 0), and

where τ is the stopping time that designates when the item is allocated to the highest-

type division.5 A policy (α, τ) induces the type process denoted by {Xα,τ (t) | t ≥ 0}.
A policy (α, τ) is admissible if the learning process {α (X (t)) | t ≥ 0}, induced by

the learning policy α, is predictable and integrable,6 and if, for every i ∈ N and every

5No generality is lost by requiring that at least one division learn at any time until the item has been
allocated; (α1 (x) , α2 (x)) 6= (0, 0).

6A continuous-time stochastic process is predictable if it is measurable with respect to the σ-algebra
generated by all left-continuous adapted processes. In the current setting, predictability means that the
induced learning process is adapted with left-continuous paths; that is, at every t, α (X (t)) = α (X (t−)),
where X (t−) ≡ lims→t,s<t X (s). In other words, when armed with an admissible policy (α, τ) and ap-
proaching time t, HQ can foresee which division, if any, will learn at time t, according to α. HQ cannot
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Xi (0) ∈ [0, 1], the stochastic differential equation (2) has a unique strong solution.7

A policy (α, τ) and an initial type profile x induce the expected cash flow

J (x, α, τ) ≡ E

[
max
i∈N

{
Xα,τ

i (τ)
}
− c ∑

i∈N

∫ τ

0
αi (Xα,τ (s))ds | Xα,τ (0) = x

]
. (3)

For every initial type profile x, the value function φ is defined by

φ (x) ≡ sup
α,τ

J (x, α, τ) , (4)

where the maximization is over all admissible policies. An optimal policy (α∗, τ∗) is

defined to satisfy φ (x) = J (x, α∗, τ∗) for all x.

3 A Conjectured Optimal Policy and Value Function

An optimal policy and the induced value function are conjectured by appealing to HJBQVI

(Hamilton-Jacobi-Bellman Quasi-Variational Inequality), a continuous-time analogue of

the Bellman equation. The conjecture is subsequently verified using the viscosity ap-

proach.

Define the effective cost ĉ ≡ c/λ, the cost of learning per unit of precision. The optimal

policy will be shown to depend on c and λ only through ĉ. Inspired by the divisions’

symmetry (except for their prior beliefs), a symmetric optimal policy and a symmetric

value function are conjectured. Hence, whenever the description of a policy or a value

function is restricted to the case in which x2 ≥ x1, the symmetric case x2 < x1 follows

immediately.

foresee, however, the jump in X that may occur at t (X is not left continuous) or whether the item will be
allocated at time t (even though adapted, τ need not be predictable).

7Protter (1990, Chapter V) discusses the conditions for existence and uniqueness of strong solutions to
stochastic differential equations.
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3.1 HJBQVI

Define an open convex set Ω ≡ (0, 1)2, whose closure is Ω̄. On the boundary ∂Ω of

Ω, immediate allocation is trivially optimal; the identity of the division with the highest

valuation is known; x ∈ ∂Ω implies φ (x) = max {x1, x2}. It remains to find φ on Ω.

Any candidate value function, denoted by u, must satisfy HJBQVI, which can be de-

rived as the limit of the Bellman equation for the corresponding discrete-time model as

the length of each time period goes to zero. This derivation is standard and gives

min
i∈N

{
ĉ + xi (1− xi)

∂u (x)
∂xi

− xi (1− u (x)) , u (x)− xi

}
= 0, x ∈ Ω (5)

and the boundary condition

u (x) = max
i∈N
{xi} , x ∈ ∂Ω. (6)

The quasi-variational-inequality (QVI) component of (5) is u (x) ≥ max {x1, x2}. QVI

requires that the value provided by a candidate value function u be at least as high as the

value that can be obtained from immediately allocating the item.

The Hamilton-Jacobi-Bellman (HJB) component of (5) is

min
i∈N

{
ĉ + xi (1− xi)

∂u (x)
∂xi

− xi (1− u (x))
}

= 0, x ∈ Ω.

HJB requires that, whenever u suggests the suboptimality of immediate allocation (i.e.,

u (x) > max {x1, x2}), some division, say, Di, learns, and u satisfies the no-arbitrage con-

dition

c + λxi (1− xi)
∂u (x)

∂xi︸ ︷︷ ︸
payoff revision due to no news

= λxi (1− u (x))︸ ︷︷ ︸
payoff revision due to good news

, x ∈ Ω. (7)

The left-hand side of (7) is the flow cost c of learning plus λxi (1− xi), the rate at which

Di’s type declines if no news arrives, multiplied by ∂u (x) /∂xi, the change in the contin-

12



uation value in response to that decline. The right-hand side of (7) is the expected arrival

intensity λxi of good news times the discrete change 1− u (x) in the continuation value

in response to the arrival of good news. Thus, condition (7) is essentially definitional; it

requires any candidate value function to promise zero expected change in the payoff from

following a candidate optimal policy. In other words, any expected change in the future

payoff must be incorporated into the current expected payoff.

To admit the possibility that a value function is nondifferentiable on a null set (which

will be the case in our problem), we define a solution concept that ignores the points of

nondifferentiability.

Definition 1. A function u∗ : Ω→ R is a generalized solution of, or g-solves, HJBQVI if

u∗ satisfies HJBQVI almost everywhere in Ω.

Our conjecture for φ on Ω is denoted by F. It is constructed to g-solve HJBQVI and

satisfy the boundary condition (6). In principle, multiple functions may g-solve HJBQVI

subject to the boundary condition. The constructed conjecture is recommended by the

economic intuition for the underlying policy and, eventually, the verification argument.

The qualitative features of F vary with the magnitude of ĉ, and so three cases are distin-

guished.

3.2 Learning Is Prohibitively Costly: ĉ ≥ c2

The Conjecture

It is natural to conjecture that if the cost of learning exceeds some threshold, then, at any

type profile x, it will be suboptimal to ask any division to learn. Instead, the item will be

optimally allocated immediately to the highest-type division, as is illustrated in Figure 2.

The associated conjectured value function is

F (x) = max {x1, x2} .

13
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Figure 2: An optimal policy’s prescription for each type profile when the learning cost is
prohibitive; ĉ ≥ c2.
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Define the relevant effective-cost threshold to be c2 = 1
2 , or equivalently,

c2 ≡ inf
{

c′ ≥ 0 | inf
0≤x1≤x2≤1

{
c′ − x1 (1− x2)

}
≥ 0

}
. (8)

Threshold c2 in (8) is motivated by the infinitesimal look-ahead rule (Ross, 1970, Section

9.6), which is a continuous-time counterpart of the one-step look-ahead rule in discrete-

time stopping problems. The threshold c2 in (8) is the smallest (effective) cost c′ such that,

at any type profile x with x2 ≥ x1 (which is a normalization), HQ prefers allocating the

item immediately to the highest-type division (D2) to having the lowest-type division (D1)

learn for δ→ 0 units of time, at cost λc′δ, and only then allocating the item to whomever

by then has been revealed as the highest-type division. The revealed highest-type division

is D1 if and only if it observes the good news, which occurs with probability x1
(
1− e−λδ

)
.

With the complementary probability, D2 of type x2 remains the highest-type division. The

inequality associated with HQ’s stated preference is

x2 ≥ −λc′δ + x1

(
1− e−λδ

)
+
(

1− x1

(
1− e−λδ

))
x2, (9)

which leads to the inequality in (8) when δ→ 0.

The Conjecture G-Solves HJBQVI

Lemma 1. Suppose that learning is prohibitively costly, or ĉ ≥ c2. The conjectured value function

F (x) = max {x1, x2} g-solves HJBQVI subject to the boundary condition.

Proof. Substituting F into HJBQVI (5) and recalling the convention x2 ≥ x1 yields

min {ĉ− x1 (x1 − x2) , 0} = 0, x ∈ Ω,

which is implied by ĉ ≥ c2 and the definition of c2 in (8).

The set {x ∈ Ω | x1 = x2}, on which F is nondifferentiable, has measure zero. Thus,

15



by Definition 1, F g-solves HJBQVI.

It is immediate that F satisfies the boundary condition (6).

3.3 Learning Is Moderately Costly: c1 ≤ ĉ < c2

The Conjecture

If the (effective) cost ĉ of learning is below the threshold c2, defined in (8), asking some

division to learn is optimal, which follows from the infinitesimal look-ahead perturbation

formerly ruled out by (9). Further, it is natural to conjecture that any type profile x at

which learning occurs has x1 and x2 close to each other, so that it is quite uncertain which

division has a higher value, and has both x1 and x2 sufficiently far away from 0 and 1, so

that there is considerable uncertainty about each division’s value.

Which division learns depends on x and ĉ. For now, we focus on the case in which

c1 ≤ ĉ < c2, where c1 ≈ 0.047. Then, whenever learning occurs, the lower-type division

learns. The threshold c1 is the unique solution of8

log
(1−√c1)

2

c1
=

2
1−√c1

. (10)

The conjectured optimal policy is illustrated in Figure 3. To demarcate the set of type

profiles at which D1 learns—the lens-shaped region in the figure—normalize x2 ≥ x1.

Define a type threshold for D1 as a function of D2’s type:

b (x2) ≡
ĉ

1− x2
. (11)

In Figure 3, D1 learns if x1 > b (x2); otherwise, D2 wins immediately. When D1 learns, it

wins if and only if it observes the good news. Because b is increasing in ĉ, the lower the

cost of learning, the larger the set of type profiles at which some division learns.

8Equation (10) admits no interpretation by inspection and emerges from a condition that ensures that
asking the higher-type division to learn is suboptimal.
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Figure 3: The optimal policy’s prescription for each type profile when the learning cost is
moderate; c1 ≤ ĉ < c2. Within the lens-shaped region, one of the divisions learns. The
arrows indicate the direction in which the type profile is revised if the division that learns
observes no news. Outside the lens-shaped region, no division learns and the highest-
type division wins.
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In order to see the intuition for why the lower-type division, say D1, is the one that

learns, note that asking D1 to learn amounts to betting on D1’s observation of the good

news. This bet’s upside is to see D1 observe the good news and then let it win. The bet’s

downside is bounded by D2’s type. If D1 observes no news for a sufficiently long period

of time, HQ lets D2 win. Because D2 does not learn, its type does not deteriorate and so

ensures against the downward revisions of D1’s type.

The rest of the subsection is concerned with demonstrating, in Lemma 3, that the

conjectured value function F associated with the described conjectured policy g-solves

HJBQVI. In the course of this demonstration, the origins of the boundary b in (11) and of

the threshold c1 in (17) are explained.

The Conjecture G-Solves HJBQVI

A critical element in the proof of the conjectured policy’s optimality is an optimal stop-

ping problem referred to as the V-auxiliary problem, defined in (11). This problem is

solved by b of (11). In this problem, consistent with the conjectured optimal policy, D1,

the lower-type division, learns up to some optimally chosen deadline t ≥ 0. At t or as

soon as D1 observes the good news, learning stops, and the division with the highest

revised type wins. The value of the V-auxiliary problem is denoted by V and will be

a component of the conjectured value function F. Letting F abbreviate the event “D1
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observes the good news,” the function V is defined

V (x) ≡ sup
t≥0

 x1

(
1− e−λt

)
︸ ︷︷ ︸

payoff from D1’s winning

+ x2

(
1− x1

(
1− e−λt

))
︸ ︷︷ ︸

payoff from D2’s winning

− x1 c
∫ t

0
sλe−λsds︸ ︷︷ ︸

expected cost of learning if F

− ct
(

1− x1

(
1− e−λt

))
︸ ︷︷ ︸

expected cost of learning if not F


= sup

t≥0

{
1− (1− x2)

(
1− x1

(
1− e−λt

))
− c

(
(1− x1) t + x1

1− e−λt

λ

)}
,(12)

where the last equality is obtained by computing the integral and simplifying.

It is convenient to change variables in (12). Instead of maximizing over the deadline

t, maximize over D1’s corresponding threshold type, denoted by z. The relationship be-

tween the deadline and the threshold type is found by the Bayes rule, as in (1):

z
1− z

=
x1

1− x1
e−λt.

Substituting z from the display above into the expression for V in (12) yields

V (x) ≡ sup
z∈[x1,0)

{
1− (1− x1) (1− x2)

1− z
− ĉ (1− x1) [ϕ (x1)− ϕ (z)]

}
, (13)

where

ϕ (s) ≡ s
1− s

+ ln
s

1− s
, s ∈ (0, 1) .

In (13), the term 1− (1− x1) (1− x2) / (1− z) is the expected payoff from eventually al-

locating the item, either to D1 (as soon as D1 observes the good news) or to D2 (if D1

never observes the good news). The term ĉ (1− x1) [ϕ (x1)− ϕ (z)] is the expected cost of

learning.

Lemma 2 characterizes a solution of the V-auxiliary problem in (13) in terms of the
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Figure 4: Each of the depicted sets I and V̂ depends on ĉ and collects the type profiles at
which the conjectured optimal policy makes identical prescriptions. The sets I and V̂ are
separated by the function b.

type set

V̂ ≡
{

x ∈ [0, 1]2 | b (x2) < x1 ≤ x2

}
, (14)

and the complementary set

I ≡
{

x ∈ [0, 1]2 | x1 ≤ x2

}
�V̂ . (15)

These sets are depicted in Figure 4.

Lemma 2. Normalize x2 ≥ x1. The value of the V-auxiliary problem in (13) satisfies V (x) = x2
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if x ∈ I , and

V (x) = 1− (1− x1) (1− x2)

1− b (x2)
− ĉ (1− x1) [ϕ (x1)− ϕ (b (x2))] (16)

if x ∈ V̂ . The policy that achieves V has D2 win immediately if x ∈ I and has D1 learn if x ∈ V̂ .

Proof. The threshold b (x2), defined in (11), is derived using the infinitesimal look-ahead

rule for optimal stopping problems (Ross, 1970, Section 9.6). According to this rule, at

any type profile x, it is optimal for D1 to learn if and only if learning for amount δ→ 0 of

time and then allocating the item to the division with the highest revised type delivers a

weakly higher cash flow than immediately allocating the item to the higher-type division.

Assuming (and verifying shortly) that the infinitesimal look-ahead rule applies, D1

learns if x ∈ V̂ , and D2 wins immediately if x ∈ I . The threshold function b emerges from

the indifference condition. When x1 = b (x2), HQ is indifferent between (i) allocating the

item to D2 and (ii) having D1 learn for δ→ 0 units of time and then allocating the item to

the division with the highest revised type. This indifference condition is

x2 = lim
δ→0

(
−cδ + b (x2)

(
1− e−λδ

)
+
[
1− b (x2)

(
1− e−λδ

)]
x2

)
.

Computing the limit and simplifying gives b as defined in (11). The value function in

(16) is then derived from (13) assuming that the infinitesimal look-ahead rule applies as

described.

By Theorem 9.3 of Ross (1970), to ascertain that the infinitesimal look-ahead rule in-

deed applies, one must verify that I is closed in the sense that x ∈ I implies that, for any

x′1 < x1, (x′1, x2) ∈ I . The set I is indeed closed, by inspection of (14) and (15). Hence,

the infinitesimal look-ahead rule applies, and the desired result follows.

The threshold c1 in (17) emerges from the condition that, for any x ∈ V̂ , rules out the

profitability of an infinitesimal deviation whereby D2 learns for an infinitesimal amount
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of time before the conjectured optimal policy is resumed. This deviation can be verified

to be unprofitable if and only if ĉ ≥ c1, where

c1 ≡ min
{

c′ ≥ 0 | min
0≤x1≤x2≤1

Φ
(
x, c′

)
≥ 0

}
(17)

for

Φ (x, ĉ) ≡ 1− x2 (1− x1) (ϕ (x1)− ϕ (b (x2))) . (18)

The right-hand side of (18) depends on ĉ implicitly, through b (θ2) ≡ ĉ/ (1− θ2). Here,

Φ is proportional to HQ’s payoff from having D1 learn as prescribed by the conjectured

policy less the payoff from asking D2 to learn for δ → 0 and only then asking D1 to learn

as prescribed by the conjectured policy. This payoff is nonnegative for all x ∈ V̂ as long

as ĉ ≥ c1. Lemma B.1 of Appendix B proves that c1 defined in (17) can be equivalently

and more simply characterized as the unique solution of (10).

Lemma 3. Suppose that learning is moderately costly, or c1 ≤ ĉ < c2. The conjectured value

function F (x) = 1{x∈V̂}V (x) + 1{x∈I}x2 g-solves HJBQVI and satisfies the boundary condi-

tion.

Proof. HJBQVI is verified by considering two cases: x ∈ I and x ∈ V̂ .

1. Suppose x ∈ I , or equivalently, x1 ≤ b (x2), so that F (x) = x2. As in the proof of

Lemma 1, the implied HJBQVI equation is

min
i∈N
{ĉ− x1 (1− x2) , 0} = 0, x ∈ Ω

which holds true because x1 ≤ b (x2) = ĉ/ (1− x2), by x ∈ I .

2. Suppose that x ∈ V̂ , or equivalently, x1 > b (x2), so that F (x) = V (x). HJBQVI is
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verified component by component of the min function:

min

 ĉ + x1 (1− x1)
∂V(x)

∂x1
− x1 (1−V (x)) ,

ĉ + x2 (1− x2)
∂V(x)

∂x2
− x2 (1−V (x)) , V (x)− x2

 = 0.

(a) To show

ĉ + x1 (1− x1)
∂V (x)

∂x1
− x1 (1−V (x)) = 0, (19)

differentiate V in (16) to obtain

∂V (x)
∂x1

=
1− x2

1− b (x2)
+ ĉ (ϕ (x1)− ϕ (b (x2)))− ĉ (1− x1) ϕ′ (x1) . (20)

Substitution of the above display and of V into (19) verifies the equality.

(b) The inequality V (x) ≥ x2 follows by “revealed preference,” that is, by con-

struction of the V-auxiliary problem.

(c) To show

ĉ + x2 (1− x2)
∂V (x)

∂x2
− x2 (1−V (x)) ≥ 0, (21)

apply the Envelope Theorem (Milgrom and Segal, 2002) to the definition of V

in (16) to obtain
∂V (x)

∂x2
=

1− x1

1− b (x2)
.

Substituting the above display and (16) into (21), dividing by ĉ, and substitut-

ing the definition of b yields an equivalent desired inequality:

Φ (x, ĉ) ≥ 0, (22)

where Φ is defined in (18). Because Φ is increasing in ĉ, the inequality in (22)

holds for all admissible x if and only if ĉ is sufficiently large. Then, because

ĉ ≥ c1, and because c1 satisfies (17), the provisional inequality sign in (22) is
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definitive.

F is non-differentiable only on a null subset of the 45-degree line in the type space. Hence,

by Definition 1, F g-solves HJBQVI, as desired. It is immediate that F satisfies the bound-

ary condition.

3.4 Learning Is Cheap: ĉ < c1

The Conjecture

If the (effective) cost ĉ of learning falls below threshold c1, defined in (17), asking the

higher-type division to learn is no longer suboptimal. Intuitively, learning drives the di-

visions’ types apart, thereby helping HQ identify the highest-valuation division. Learn-

ing is faster for the higher-type division, say D2, which is more likely than D1 to observe

the good news. If D2 observes the good news, its type jumps to 1. If D2 observes no

news, its type is revised substantially because an event deemed likely (the arrival of the

good news) has failed to occur. That is, in some informal sense, D2’s learning is more

informative than D1’s learning.

Because each division’s revised type is a martingale, the policy of asking only D2 to

learn and then selecting D2’s project regardless of the learning outcome does not affect the

project’s expected value but entails learning costs, and so cannot be optimal. Therefore,

D2’s learning can be optimal only if it is sufficiently long to potentially flip the ranking

of the divisions’ revised types. Lengthy learning can be optimal only if learning is suffi-

ciently cheap—which leads to the condition ĉ < c1—and only if the need for information

is sufficiently large. The need for information is large when the types x1 and x2 are close

to each other (so that which project is more valuable is highly uncertain), when both x1

and x2 are far away from 0 and 1 (so that each project’s value is highly uncertain), and

when x2 is rather large (so that D2’s learning is rather informative).

The conjectured optimal policy is illustrated in Figure 5. For the type profiles in the
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Figure 5: The optimal policy’s prescription for each type profile when the learning cost
is small; ĉ < c1. Within the lens-shaped region (which encompasses the heart-shaped
region), at least one of the divisions learns. The arrows indicate the direction in which the
type profile is revised if the division (or divisions) that learns observes no news. Outside
the lens-shaped region, no division learns and the highest-type division wins.
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heart-shaped region, the highest-type division learns. Elsewhere in the lens-shaped re-

gion, the lowest-type division learns. On the diagonal traversing the heart-shaped re-

gion, both divisions learn. If neither division learns, the highest-type division wins. The

boundary of the lens-shaped region is demarcated by function b defined in (11), as before.

The demarcation of the heart-shaped region is subtler and will be derived after additional

notation has been developed.

The Conjecture G-Solves HJBQVI

The economic intuition for D2’s occasional learning, supplied above, will be comple-

mented by a technical intuition. The notation required to formulate the conjectured

value function will be introduced along the way. The technical intuition can be infor-

mally viewed as the first step of a value-function-iteration-like procedure. Take the value

function in Lemma 3 to be the initial guess for the value function for the case in which

ĉ < c1.

For every x ∈ V̂ , Lemma 3 prescribes that D1 learn. This prescription induces the

value function that violates HJBQVI whenever ĉ < c1. In particular, inequality (22) in

Step 2c of the lemma’s proof fails on the failure set

F ≡ {x | Φ (x, ĉ) < 0} . (23)

Figure 6a illustrates the failure set. On and only on F , infinitesimal learning by D2 fol-

lowed by D1’s learning is a profitable deviation from the policy in which only D1 learns

on V̂ . The described identification of the failure set would be the first step in the “value-

function iteration process.”

Lemma 6 “patches” the failure set F by making D2 learn on a certain set, called patch,

which is a strict superset of F , as is illustrated in Figure 6b. The infinitesimal episodes of

learning by D2 on F can be linked together to form longer spells of learning on F . Each
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Figure 6: The fallacy of the conjecture that the lower-type division learns within the lens-
shaped region is exposed by the failure of HJBQVI on the (smaller) heart-shaped failure
region, denoted by F .
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of these longer spells is more profitable for HQ than an infinitesimal episode (followed by

D1’s learning). As a result, even though on the boundary of F , HQ is indifferent between

infinitesimal learning by D2 and learning by D1 all the way, HQ strictly prefers a longer

episode of learning by D2 to learning by D1. The profitability of having D2 learn thus

extends beyond the failure set and to the patch.

What remains of V̂ once it has been patched is the new region on which we conjecture

that D1 learns. This set is denoted by

V ≡ V̂\ (A∪ B ∪ C) , (24)

where the sets A, B, and C are depicted in Figure 7 and will be derived formally shortly.

To characterize the sets A, B, and C, we consider three more auxiliary stopping prob-

lems: A-auxiliary, B-auxiliary, and C-auxiliary. In each of these three problems, the goal

is to find the optimal amount of time that a division (or divisions) must learn before the

learning pattern is changed.

To formulate the C-auxiliary problem, used to characterize the set C, define the bounds

x ≡ 1−
√

1− 4ĉ
2

and x̄ ≡ 1 +
√

1− 4ĉ
2

. (25)

The C-auxiliary problem is defined on the set

Ĉ ≡
{

x ∈ [0, 1]2 | x ≤ x1 = x2 ≤ x̄
}

,

which is a subset of V̂ . In this problem, both divisions learn until either observes the good

news or until both revised types reach some optimally chosen threshold. At that thresh-

old, the type profile enters V , and the strategy described in Lemma 3 is followed; that is,

D1 learns. Formally, the C-auxiliary problem’s value function, denoted by C, satisfies, for
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any x ∈ Ĉ,

C (x1) ≡ max
z∈[θ,x1]

1− (1−V (z, z))
(

1− x1

1− z

)2

− 2ĉ (1− x1)
2 [σ (x1)− σ (z)]︸ ︷︷ ︸

≡MC(z)

 , (26)

where

σ (s) ≡ 2s
1− s

+
1
2

(
s

1− s

)2

+ ln
s

1− s
, s ∈ (0, 1) ,

and where the maximand in (26) is denoted by MC (z), for future reference. The maxi-

mand is constructed analogously to the maximand in (13) and, to conserve space, will not

be written out in detail.

Lemma 4 characterizes a solution of the C-auxiliary problem in terms of the type sub-

set

C ≡
{

x ∈ Ĉ | x1 ∈ (a, ā)
}

, (27)

where

a ≡ inf {z ∈ (x, x̄) | Φ (z, z, ĉ) ≤ 0} (28)

ā ≡ max

{
z ∈ (a, x̄) | 1−V (z, z)

(1− z)2 − 2ĉσ (z) =
1−V (a, a)

(1− a)2 − 2ĉσ (a)

}
. (29)

The origins of a and ā defined above is revealed in the lemma’s proof.

Lemma 4. Normalize x2 ≥ x1. The value of the C-auxiliary problem in (26) satisfies C (x1) =

V (x1, x1) if x ∈ Ĉ\C, and satisfies

C (x1) = 1− (1−V (a, a))
(

1− x1

1− a

)2

− 2ĉ (1− x1)
2 [σ (x1)− σ (a)] (30)

if x ∈ C. The policy that achieves C has D1 learn as in Lemma 3 if x ∈ Ĉ\C and has both divisions

learn if x ∈ C.

Proof. Recall that the maximand in (26) is denoted by MC (z). Its dependence on x1 is
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Figure 8: MC, the maximand in the C-auxiliary problem. The sign of dMC (z) /dz coin-
cides with the sign of Φ (z, z, ĉ).

suppressed, motivated by the observation that the maximizer in (26) depends on x1 only

through the restriction z ∈ [θ, x1]. To understand the solution of maxz∈[θ,x1] MC (z), it

is instructive to study the shape of MC on [x, x̄]. This shape is described by the sign

of dMC (z) /dz, which, by differentiation, can be verified to coincide with the sign of

Φ (z, z, ĉ). Figure 8 illustrates MC.

Note that Φ (x, x, ĉ) = Φ (x̄, x̄, ĉ) = 1 (by direct substitution) and that Φ (z, z, ĉ) is at first

decreasing in z and then increasing in z (by Lemma B.2 in Appendix B) and is uniquely

minimized at some z, at which Φ (z, z, ĉ) < 0. In order to see that Φ (z, z, ĉ) < 0, note
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that, by the definition of c1 in (17) and by Lemma B.1, minz Φ (z, z, c1) = 0. Because Φ is

strictly increasing in ĉ, ĉ < c1 and minz Φ (z, z, c1) = 0 imply Φ (z, z, ĉ) < 0.

To summarize, Φ (z, z, ĉ)—and hence also dMC (z) /dz—first switches the sign from the

positive to the negative and then from the negative to the positive. This positive-negative-

positive sign pattern implies that MC is wave-shaped, with local maxima at a, defined in

(28), and x̄, and with local minima at x and somewhere between a and x̄. Moreover, by

Lemma B.4 of Appendix B, x̄ is the unique global maximum, and so MC (x̄) > MC (a).

Coupled with MC (x̄) > MC (a), the wave shape of MC implies the existence of a unique

ā ∈ (a, x̄) such that MC (ā) = MC (a). Condition MC (ā) = MC (a) can be simplified to

express ā equivalently (but still implicitly) by (29).

The derived properties of MC have the following implications for the program in C (x1) ≡
maxz∈[x,x1] MC (z). When x1 /∈ (a, ā), MC is maximized on [θ, x1] at x1, and so C (x1) =

V (x1, x1); D1 learns. When x1 ∈ (a, ā), MC is uniquely maximized on [θ, x1] at a, and so

C (x1) > V (x1, x1); both divisions learn until either division observes the good news or

until both types fall to a, whereupon D1 learns.

To characterize the setA in Figure 7, we formulate the A-auxiliary problem on the set

{x ∈ (a∗, a]× [0, 1] | x2 ≥ x1} .

In this problem, the choice is when to stop asking D2 to learn and instead adopt the

strategy described in Lemma 3, which begins with D1 learning. The value of this stopping

problem is, for any x ∈ V̂ ,

A (x) ≡ max
z∈[x1,x2]

1− (1−V (x1, z))
1− x2

1− z
− ĉ (1− x2) [ϕ (x2)− ϕ (z)]︸ ︷︷ ︸

≡MA(z;x1)

 , (31)

where the maximand is denoted by MA (z) and is constructed using the arguments anal-
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ogous to those used in the construction of V and C above.

Lemma 5 characterizes a solution to the A-auxiliary problem in terms of the type sub-

set

A ≡ {x ∈ (a∗, a]× [0, 1] | x2 ∈ (d (x1) , u (x1))} , (32)

where

a∗ ≡ inf {x1 ∈ [0, 1] | ∃x2 ∈ [x1, 1] s.t. Φ (x, ĉ) = 0} , (33)

d (x1) ≡ inf {z ∈ [x1, 1] | Φ (x1, z, ĉ) ≤ 0} , x1 ∈ (a∗, ā) , (34)

and, letting b−1 denote the inverse function of b,

u (x1) ≡ sup

z ∈
[

x1, b−1 (x1)
]
|

1−V(x1,d(x1))
1−d(x1)

− ĉϕ (d (x1))

= 1−V(x1,z)
1−z − ĉϕ (z)

 , x1 ∈ (a∗, ā) . (35)

The origin of the objects entering the definition of A is revealed in the lemma’s proof.

Lemma 5. Normalize x2 ≥ x1. The value of the A-auxiliary problem in (31) satisfies A (x) =

V (x) if x ∈ (a∗, a]× [0, 1] \A, and satisfies

A (x) = 1− [1−V (x1, d (x1))]
1− x2

1− d (x1)
− ĉ (1− x2) [ϕ (x2)− ϕ (d (x1))] (36)

if x ∈ A. The policy that achieves A has D1 learn as in Lemma 3 if x ∈ (a∗, a]× [0, 1] \A and

has D2 learn if x ∈ A.

Proof. Recall that the maximand in (31) is denoted by MA (z; x1). By differentiating, the

sign of dMA (z; x1) /dz coincides with the sign of Φ (x1, z, ĉ). Hence, the argument anal-

ogous to the argument in the proof of Lemma 4 applies, except now, in Φ (x1, z, ĉ), only

one argument, z, varies.

In particular, Lemma B.3 of Appendix B establishes that MA is a wave-shaped function
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Figure 9: MA, the maximand in the A-auxiliary problem. The sign of dMA (z; x1) /dz
coincides with the sign of Φ (x1, z, ĉ).

of z, as depicted in Figure 9. By inspection of MA, for a given x1, a local maximum of

MA (z; x1) is given by (34).

Coupled with MA (b−1 (x1) ; x1
)
> MA (d (x1) ; x1) (by Lemma B.5 of Appendix B), the

wave shape of MA implies the existence of a unique u (x1) ∈
(
m (x1) , b−1 (x1)

)
such that

MA (u (x1) ; x1) = MA (d (x1) ; x1). Condition MA (u (x1) ; x1) = MA (d (x1) ; x1) can be

simplified to express u (x1) equivalently (but still implicitly) as in (35).9

The derived properties of MA have the following implications for the program in A (x) ≡
9As defined in (35), u satisfies A (x1, u (x1)) = V (x1, u (x1)).
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maxz∈[x1,x2] MA (z; x1). When x2 /∈ (d (x1) , u (x1)), MA (·; x1) is maximized on [x1, x2] at

x2, and so A (x) = V (x). When x2 ∈ (d (x1) , u (x1)), MA (·; x1) is uniquely maximized

on [x1, x2] at d (x1), and so A (x) > V (x).

To characterize B, the remaining set in Figure 7, we formulate a degenerate auxiliary

problem, the B-auxiliary problem. The problem is defined on the set

B ≡ {x ∈ (a, ā)× [0, 1] | x2 ∈ (x1, w (x1))} , (37)

where a is defined in (28), ā is defined in (29), and

w (x1) ≡ inf
{

z ∈
[

x1, b−1 (x1)
]
| V (x1, z) = B (x1, z)

}
, x1 ∈ (a, ā) . (38)

The problem consists in having D2 learn until it observes the good news or until its re-

vised type drops down to D1’s type x1 (the “choice” of this threshold x1 is the degenerate

decision), whereupon both divisions learn as prescribed by the C-auxiliary problem. This

policy’s value is

B (x) ≡ 1− (1− C (x1))
1− x2

1− x1
− ĉ (1− x2) [ϕ (x2)− ϕ (x1)] . (39)

The function B is constructed using the arguments analogous to those used in the con-

struction of V, C, and A above.

We can now assemble the pieces.

Lemma 6. Suppose that learning is cheap, or ĉ < c1. The conjectured value function

F (x) = 1{x∈A}A (x) + 1{x∈B}B (x) + 1{x∈C}C (x) + 1{x∈V}V (x) + 1{x∈I}x2

g-solves HJBQVI and satisfies the boundary condition.

Proof. HJBQVI is verified by considering four cases: x ∈ I , x ∈ V , x ∈ C, and x ∈ A ∪ B.
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1. Suppose that x ∈ I , so that F (x) = x2. HJBQVI holds by Step 1 in the proof of

Lemma 3.

2. Suppose that x ∈ V , so that F (x) = V (x). HJBQVI follows from the argument in

Step 2 in the proof of Lemma 3 with one modification. Part 2c of that step requires

the inequality Φ (x, ĉ) ≥ 0. To show this inequality here, note that Φ (x, ĉ) < 0 ⇐⇒
x ∈ F , by the definition of the failure set F in (23). Because F ⊂ A ∪ B ∪ C (by

Lemmas B.5 and B.6) and V ∩ (A∪ B ∪ C) = ∅ (by the definition of V in (24)),

x ∈ V implies x /∈ F . As a result, Φ (x, ĉ) ≥ 0 for all x ∈ V , as desired.

3. Suppose that x ∈ C, so that F (x) = C (x2) and ∂F (x) /∂xi = (1/2) ∂C (xi) /∂xi.10

HJBQVI in (5) will be verified component by component of the min function:

min
{

ĉ +
x2 (1− x2)

2
∂C (x2)

∂x2
− x2 (1− C (x2)) , C (x2)− x2

}
= 0.

(a) The inequality C (x2) ≥ x2 follows by “revealed preference.” By construction

of the C-auxiliary problem, C (x2, x2) ≥ V (x2, x2). By construction of the V-

auxiliary problem, V (x2, x2) ≥ x2. Therefore, C (x2) ≥ x2.

(b) To show

ĉ +
x2 (1− x2)

2
∂C (x2)

∂x2
− x2 (1− C (x2)) = 0, (40)

differentiate C in (30) to obtain

∂C (x2)

∂x2
=

2
1− x2

(
1− C (x2)−

ĉ
x2

)
. (41)

Substitution of the above display and of C into (40) verifies the equality.

4. Suppose x ∈ A ∪ B. If x ∈ A, then F (x) = A (x). If x ∈ B, then F (x) = B (x).
10Note the notational convention according to which ∂F (x) /∂xi 6= ∂C (xi) /∂xi. The rationale is that

∂F (x) /∂xi is the change in the conjectured value function in response to a marginal change in a single
type, whereas ∂C (xi) /∂xi is the change in the conjectured value function in response to identical marginal
changes in both types.

36



HJBQVI is verified component by component of the min function:

min

 ĉ + x1 (1− x1)
∂F(x)

∂x1
− x1 (1− F (x)) ,

ĉ + x2 (1− x2)
∂F(x)

∂x2
− x2 (1− F (x)) , F (x)− x2

 = 0.

(a) To verify

ĉ + x2 (1− x2)
∂F (x)

∂x2
− x2 (1− F (x)) = 0, (42)

replace F and ∂F/∂x2 in the display above by A and ∂A/∂x2 if x ∈ A, and by B

and ∂B/∂x2 if x ∈ B. The function ∂A/∂x2 is obtained by differentiating (36):

∂A (x)
∂x2

=
1−V (x1, d (x1))

1− d (x1)
+ ĉ (ϕ (x2)− ϕ (d (x1)))−

ĉ
x2 (1− x2)

.

The function ∂B/∂x2 is obtained by differentiating (39):

∂B (x)
∂x2

=
1− C (x1)

1− x1
+ ĉ (ϕ (x2)− ϕ (x1))−

ĉ
x2 (1− x2)

.

(b) To show F (x) ≥ x2, it suffices to show F (x) ≥ V (x) and, in order to conclude

that V (x) ≥ x2 by construction of the V-auxiliary problem, to show x ∈ A ∪
B =⇒ x ∈ V̂ . Hence, it will be shown that (i) A (x) ≥ V (x) and B (x) ≥ V (x),

and (ii) A ⊆ V̂ and B ⊆ V̂ .

i. When x ∈ A, A (x) ≥ V (x) follows “by revealed preference,” by construc-

tion of the A-auxiliary problem.

When x ∈ B, showing B (x) ≥ V (x) is mildly more involved, but is also

essentially a revealed-preference argument, applied twice. In particular,

extend the A-auxiliary problem (originally defined on A) onto the set B.

Using the same arguments as in Lemma 5, this problem’s solution can be

verified to imply that, whenever x ∈ B, D2 learns until either he observes

the good news or until his belief drops down to x1, at which point the
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prescription of the V-auxiliary problem is followed, delivering the contin-

uation value V (x1, x1). So, by revealed preference, A (x) ≥ V (x).

On B, the B-auxiliary problem has the same threshold as the extended A-

auxiliary problem, but once this threshold has been reached, delivers a

higher continuation value, C (x1), with C (x1) ≥ V (x1, x1) by “revealed

preference” in the C-auxiliary problem. So, B (x) ≥ A (x), which, com-

bined with A (x) ≥ V (x), gives B (x) ≥ V (x), as desired.

ii. The inclusion A ⊆ V̂ follows because Lemma B.5 shows that x1 ∈ (a∗, a)

implies u (x1) < b−1 (x1). That is, u (x1) , the upper boundary of set A, on

which the A-auxiliary problem is defined, lies strictly below b−1 (x1) , the

upper boundary of set V̂ .

The inclusion B ⊆ V̂ follows because Lemma B.6 shows that x1 ∈ (a, ā)

implies w (x1) < b−1 (x1). That is, w (x1) , the upper boundary of set B, on

which the B-auxiliary problem is defined, lies strictly below b−1 (x1) , the

upper boundary of set V̂ .

(c) It will be shown that

ĉ + x1 (1− x1)
∂F (x)

∂x1
− x1 (1− F (x)) ≥ 0. (43)

If x ∈ A, apply the Envelope Theorem to A in (36) to obtain

∂A (x)
∂x1

=
∂V (x1, d (x1))

∂x1

1− x2

1− d (x1)
.

Substituting the above display and the definition of A in (36) into the tentative
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inequality (43) and dividing by ĉ yields the equivalent tentative inequality

1 ≥ x1 (1− x2) (ϕ (x2)− ϕ (d (x1)))

+
x1 (1− x2)

(1− d (x1)) ĉ

[
1−V (x1, d (x1))− (1− x1)

∂V (x1, d (x1))

∂x1

]
,

which further simplifies by substituting V and ∂V/∂x1 using (19) and by di-

viding both sides by 1− x2:

1
1− x2

≥ x1 (ϕ (x2)− ϕ (d (x1))) +
1

1− d (x1)
. (44)

If x ∈ B, differentiate B in (39) and use the expression for ∂C (x1) /∂x1 to obtain

∂B (x1, x2)

∂x1
=

1− x2

(1− x1)
2

(
1− C (x1)−

ĉ
x1

)
.

Substituting the above display and the definition of B in (39) into the tentative

inequality (43) leads, once again, to the tentative inequality (44).

If x2 = d (x1), the inequality (44) holds trivially, as equality. To show that

the inequality holds also for x2 > d (x1), it suffices to show that its left-hand

side increases in x2 faster than its right-hand side. Indeed, the left-hand side’s

derivative, which is 1/ (1− x2)
2, is larger than the right-hand side’s derivative,

which is

x1ϕ′ (x2) =
x1

x2 (1− x2)
2 ,

by x1 < x2. Thus, the tentative inequality (44) is definitive, as desired.

It is immediate that F satisfies the boundary condition.
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3.5 Synthesis

To summarize, the conjectured value function is

F (x) =



x2 if c2 ≤ ĉ

1{x∈V}V (x) + 1{x∈I}x2 if c1 ≤ ĉ < c2

1{x∈A}A (x) + 1{x∈B}B (x)

+1{x∈C}C (x) + 1{x∈V}V (x) + 1{x∈I}x2

if ĉ < c1,

(45)

where A, B, C, and V are defined, respectively, in (36), (39), (30), and (16).

The underlying conjectured optimal policy can be read off Figure 2 when c2 ≤ ĉ,

Figure 3 when c1 ≤ ĉ < c2, and Figure 5 when ĉ < c1.

4 Verification of the Conjectured Value Function

Theorem 1. The conjectured value function F in (45) is the sought value function; that is, φ = F.

By implication, the conjectured optimal policy is indeed optimal.

The theorem’s proof builds on several intermediate results and is distilled toward the

end of the section.

4.1 The Big Picture

Continuous-time modelling enables us to compute explicitly HQ’s value function and

derive the implied optimal policy. In addition, the statements of the results are not con-

taminated by provisos stemming from the indivisibility of information increments, which

would be inherent in any discrete-time formulation. The cost of the continuous-time ap-

proach is the unfamiliar mathematics required to rigorously justify the results. In partic-

ular, the concept of viscosity solution emerges; it has no counterpart in discrete time. A
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number of technical conditions are also invoked. Therefore, before delving into the formal

analysis, we informally outline the main ideas and relate continuous-time optimization

to its familiar discrete-time counterpart.

Consider the dynamic programming principle (DPP). DPP says that HQ’s value today

equals HQ’s expected continuation value at an arbitrary future stopping time plus the

flow payoffs enjoyed until that time. These intervening flow payoffs and the eventual

continuation value depend on the intervening controls, which are chosen to maximize

HQ’s value today. This statement of DPP is the same in both continuous and discrete

time and relies on the same backward-induction argument. The argument requires either

a finite horizon or discounting. We impose neither. However, without loss of generality,

we could have imposed a finite horizon. Indeed, if learning is protracted, eventually,

beliefs become so precise that further learning cannot possibly justify its costs. So DPP

holds in our setting.

One can show that DPP holds if and only if the DPP equation holds for the small-

est possible positive stopping time. In a discrete model, this smallest time is one period,

and the corresponding DPP equation is known as the Bellman equation. In a continuous

model, the smallest time is operationalized by taking limits, thereby obtaining a differen-

tial counterpart of the Bellman equation, known as the HJBQVI equation. Taking limits

is delicate, however, because limits may not exist, even under natural “technical” condi-

tions. That is, the value function need not be differentiable; it may have “kinks.” Kinks

are not an issue in discrete time, because the Bellman equation is not a differential equa-

tion.

In continuous time, kinks cannot be neglected. A candidate value function that solves

HJBQVI at all points of differentiability but with its kinks unrestricted may fail to be the

sought value function. That is, extraneous generalized solutions of HJBQVI are possible.

Enter viscosity solution, which uses HJBQVI to discipline the candidate value function

not only at the points of differentiability, but also at the kinks.
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In our maximization problem, viscosity solution restricts upward kinks, but not down-

ward kinks.11 It is somewhat of a folk wisdom that, in maximization problems, value

functions abhor upward kinks. For instance, that, in a static problem, under natural con-

ditions, the value function admits no upward kinks can be seen graphically by taking the

upper envelope of the reward functions for various values of the control while varying the

state. Clausen and Strub (2012) show how upward kinks can be ruled out in a dynamic

problem (not related to ours).12 HJBQVI’s viscosity solution strengthens generalized so-

lution by imposing the requisite optimality restrictions on the kinks. A characterization

theorem obtains; the sought value function, and only this function, is the viscosity solu-

tion of HJBQVI.

The conjectured value function F in (45) has no upward kinks at all, as will be shown.

(The downward kinks are where regions A and B border V in Figure 7 and on the 45-

degree line except within the heart-shaped region in Figures 4 and 7.) So the viscosity

conditions on the kinks hold automatically. All that remains to verify is that HJBQVI

holds at all points of differentiability, which we have already done. Thus, the conjectured

value function is the viscosity solution of HJBQVI and hence is the sought value function.

To summarize, the conditions that viscosity solution imposes on kinks are substantive,

not technical. The economic content of these conditions is not peculiar to the continuous-

time model. In the discrete model, the same content is already embedded into the Bellman

equation, which is comprehensive because it is not restricted to the value function’s points

of differentiability. Just as, in discrete time, the value function is the unique solution

of the Bellman equation, in continuous time, the value function is the unique viscosity

solution of HJBQVI. This viscosity characterization of the value function is the essence of

the verification procedure, justified and performed in the remainder of this section.

11The kinks interpretation is inherent in Theorem 5.6 of Bardi and Capuzzo-Dolcetta (1997, p. 80).
12Their Figure 1(b) is an illustration.
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4.2 The Dynamic Programming Principle

Lemma 7. For any initial type profile x ∈ [0, 1]2 and any finite stopping time τ, the value

function φ, defined in (4), satisfies the recursive relationship that is the dynamic programming

principle (DPP):

φ (x) = supα,τ′ E

[
1{τ′<τ}max

i∈N

{
Xα,τ′

i
(
τ′
)}

+ 1{τ′≥τ}φ
(

Xα,τ′ (τ)
)

−c ∑
i∈N

∫ τ′∧τ

0
αi

(
Xα,τ′ (s)

)
ds | Xα,τ′ (0) = x

]
. (46)

The critical step in DPP’s proof is the ability to treat HQ’s problem as if it were finite-

horizon.

Lemma 8. For any initial type profile x, there exists a finite horizon Tx such that the value of

HQ’s problem in (4) is unaffected by restricting attention to the policies that allocate the item no

later than at time Tx.

Proof. If the initial type profile violates x � (1, 1), then it is apparent that allocating the

item immediately to division i with xi = 1 is uniquely optimal. In this case, Tx = 0. For

the remainder of the proof, assume that x � (1, 1).

Denote the set of type profiles near the western and southern boundaries of the type

set by

S ≡
{

x ∈ [0, 1]2 | min {x1, x2} ≤ x
}

,

where x is defined in (25). For an arbitrary type profile x � (1, 1), define the finite bound

Tx ≡ 1{x/∈S}
1
λ

ln

[
x1

1− x1

x2

1− x2

(
1− x

x

)2
]

, (47)

where 1{·} is the indicator function. It will be shown that Tx is the finite horizon men-

tioned in the lemma’s statement.

We shall refer to two technologies. The regular learning technology is as specified
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in the model (Section 2). The superior learning technology is obtained by modifying

the regular learning technology so that, for the same flow cost c, HQ learns about both

projects simultaneously. Learning using the regular learning technology is abbreviated as

r-learning. Learning using the superior learning technology is abbreviated as s-learning.

The remainder of the proof has two steps. Step 1 argues that x ∈ S implies the opti-

mality of immediate allocation. Step 2 shows that, for any initial type profile x � (1, 1),

within time Tx, r-learning leads either to the revised type profile in S or to the arrival of

good news.

Step 1

The infinitesimal look-ahead rule (ILAR) is defined to prescribe immediate allocation

if and only if HQ’s cash flow is higher after immediate allocation than after s-learning for

δ → 0 units of time followed by the allocation to the division with the highest type.

Formally, ILAR prescribes immediate allocation if and only if13

max {x1, x2} ≥ −λĉδ + max {x1, x2}+ (1−max {x1, x2})min {x1, x2}
(

1− e−λδ
)

.

Taking the limit δ→ 0 gives

ĉ ≥ (1−max {x1, x2})min {x1, x2} . (48)

ILAR prescribes s-learning if and only if the inequality in (48) fails.

At all x ∈ S, the ILAR inequality (48) holds by the construction of x in (25).

The set S is closed in the sense that x ∈ S =⇒ x′ ∈ S for any type profile x′ that is an

s-learning revision of x conditional on no news. Any such revision satisfies x′ ≤ x, which

implies the desired inclusion.

13Under the normalization x2 ≥ x1, the displayed inequality is identical to (9). If no good news arrives
about the lowest-type division while s-learning, ILAR allocates the item to the other division, regardless
of whether good news about that other division arrives. So s-learning is equivalent to r-learning about the
lowest-type division, as far as ILAR is concerned.
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Suppose that HQ can use only the superior learning technology. Because S is closed

and because the ILAR inequality (48) holds on S, we conclude that, whenever x ∈ S,

immediate allocation is in fact optimal (Ross, 1970, Section 9.6). Downgrading the learn-

ing technology only strengthens the case for immediate allocation. That is, if HQ can use

only the regular learning technology, x ∈ S implies that immediate allocation is optimal.14

Thus, Tx = 0 in (47) is an appropriate finite horizon in the lemma’s statement.

Step 2

It remains to confirm that Tx in (47) is an appropriate horizon for the lemma’s state-

ment in the case in which x /∈ S and x � (1, 1). So assume that x /∈ S and x � (1, 1).

The longest r-learning can take to drive the revised belief into the set S is the time

necessary to drive x1 (almost) down to x and then to drive x2 down to x. These times are

implied by the Bayes rule in (1) and are, correspondingly,

1
λ

ln
(

x1

1− x1

1− x
x

)
and

1
λ

ln
(

x2

1− x2

1− x
x

)
.

These times add up to Tx defined in (47), thereby establishing the desired bound.

We can now prove DPP.

Proof of Lemma 7 (Sketch). The lemma’s conclusion follows from the DPP in Proposition 3.1

of Pham (1998). A handful of inconsequential differences between Pham’s setup and ours

are worth noting.

Pham’s focus on a finite-horizon problem is not restrictive for us because, by Lemma 8,

without loss of generality, attention can be restricted to policies that allocate the item in

finite time.

Pham assumes that the intensity of the Poisson jump process is independent of the

14In the proof, the superior technology helps sidestep the question as to which division HQ should ask
to learn. A rigorous treatment of this question under the regular technology would require the use of
the dynamic programming techniques, which rely on the present lemma, thereby leading to a circular
argument.
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state. By contrast, in our problem, the jump intensity, λaX, depends on the state process,

X. Nevertheless, stochastic integration with respect to this more general jump process is

well-defined—which is all that matters for Pham’s argument.15

Pham considers a discounted problem of which the non-discounted problem, such as

ours, is a special case.

4.3 Continuity of the Value Function

The viscosity characterization of the sought value function is simpler to state and easier

to prove if it is known a priori that the value function is continuous.

Lemma 9. The value function φ, defined in (4), is continuous on [0, 1]2.

Proof. Let x and x′ be two arbitrary type profiles.

1. Suppose that x′ ≥ x. It will be shown that φ (x′) ≥ φ (x).

Define ∆ ≡ x′ − x. Fix an arbitrarily small ε > 0.

Let (α̃, τ̃) denote an ε-optimal policy, which implicitly depends on ε:16

J (x, α̃, τ̃) > φ (x)− ε, for all x ∈ Ω.

Define the translated policy
(

α̃|∆, τ̃∆

)
, which prescribes at any type profile y ∈

[∆1, 1]× [∆2, 1] what (α̃, τ̃) prescribes at the translated type profile y− ∆.

The inequality

φ
(
x′
)
≥ J

(
x′, α̃|∆, τ̃∆

)
follows from the definition of the value function φ.

The inequality

J
(

x′, α̃|∆, τ̃∆

)
≥ J (x, α̃, τ̃)

15Process X is a finite variation process. Hence, the stochastic integral with respect to X is well-defined,
as a path-by-path Riemann-Stieltjes integral (see, e.g., Protter, 1990, Chapter I.6).

16We are careful not to predicate our results on the existence of an optimal policy. Hence, we introduce
the ε-optimal policy. Existence is a result, not an assumption.
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obtains because (i) policy
(

α̃|∆, τ̃∆

)
initiated at x′ is weakly more likely to lead to

good news than policy (α̃, τ̃) initiated at x, by x′ ≥ x, and (ii) if neither policy

leads to good news, then the eventual allocation gives a weakly higher payoff under

policy
(

α̃|∆, τ̃∆

)
initiated at x′ than under policy (α̃, τ̃) initiated at x, again, by x′ ≥

x.

Chaining together the three inequalities displayed above gives φ (x′) > φ (x) − ε.

For the inequality to hold for all ε > 0, it must be that φ (x′) ≥ φ (x), as desired.

2. Suppose x′ ≥ x and x � (1, 1). It will be shown that

φ
(
x′
)
≤ φ (x)

1− x′1
1− x1

1− x′2
1− x2

+

(
1− 1− x′1

1− x1

1− x′2
1− x2

)
. (49)

Start at the type profile x′. Assume that HQ is prepared to learn about vi until the

revised type drops from x′i to xi. The required duration of learning is implied by the

Bayes rule in (1), and the probability that, during this time, no good news about vi

arrives is
1− x′i
1− xi

.

One can now interpret (49). The right-hand side of inequality (49) would be HQ’s

value if (counterfactually) HQ were temporarily granted the possibility of learning

about both v1 and v2 at no cost until either good news is observed or x′ is revised

down to x. The inequality sign follows from the fact that HQ’s is a Bayesian decision

problem, and so (free) information has a nonnegative value.

3. Fix a type profile x. It will be shown that if a sequence (x′ (n)) converges to x and

satisfies x′ (n) ≥ x for each n, then φ (x′ (n))→ φ (x).

If x � (1, 1) fails, then φ (x) = 1, and so, for any x′ ≥ x, φ (x) = φ (x′), by 1.
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Suppose x � 1 holds. Combining the inequalities in 1 and 2 gives, for any x′ ≥ x,

0 ≤ φ
(
x′
)
− φ (x) ≤

(
1− 1− x′1

1− x1

1− x′2
1− x2

)
(1− φ (x)) .

The inequalities displayed above imply

x′ (n)→ x =⇒ φ
(
x′ (n)

)
→ φ (x)

as long as the sequence (x′ (n)) has x′ (n) ≥ x for all n.

4. Take any two type profiles x′ and x, not necessarily ordered. Let x′ ∨ x and x′ ∧ x

denote, respectively, the pairwise maximum and pairwise minimum of x′ and x.

By 1,

φ
(
x′ ∧ x

)
≤ φ (x) ≤ φ

(
x′ ∨ x

)
φ
(
x′ ∧ x

)
≤ φ

(
x′
)
≤ φ

(
x′ ∨ x

)
.

If x′ → x, then x′ ∨ x → x′ ∧ x. So, By 3, x′ → x implies φ (x′ ∨ x) → φ (x′ ∧ x),

which, combined with the display above, gives

φ
(
x′
)
→ φ (x) .

In other words, φ is continuous on [0, 1]2.

4.4 Viscosity Characterization of the Value Function

The viscosity characterization of the value function has two components: the relevant

HJBQVI equation and the notion of the viscosity solution for that equation. We introduce

each in turn and then present the characterization.
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The HJBQVI Revisited

It is convenient to transform (5), the HJBQVI equation with which we have been work-

ing so far, into the equivalent form that makes apparent the applicability of the existing

techniques developed to deal with HJBQVI equations induced by convex Hamiltonians

(to be clarified shortly). To do so, note that, because the right-hand side of (5) is zero,

one can multiply each argument of the min operator by an arbitrary positive function of

x without affecting the set of the generalized solutions. In particular, multiplying the HJB

component of (5) by 1/xi and taking u outside the min operator gives the transformed

HJBQVI:

u (x) + H (x,∇u (x)) = 0, x ∈ Ω, (50)

where

∇u (x) ≡
(

∂u (x)
∂x1

,
∂u (x)

∂x2

)
,

and, for any p ≡ (p1, p2) ∈ R2,

H (x, p) ≡ min
i∈{1,2}

{
(1− xi) pi − 1 +

ĉ
xi

,−xi

}
. (51)

The function H is called Hamiltonian.17 The associated boundary condition (6), un-

changed, is reproduced here for convenience:

u (x) = max
i∈N
{xi} , x ∈ ∂Ω. (6)

All future references to HJBQVI are to the transformed equation (50).

17As a matter of terminology, H in (51) is not a Hamiltonian for the HJBQVI in (5), but is the Hamiltonian
for the transformed HJBQVI in (50).
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The Concept of Viscosity Solution

Viscosity solution refines a generalized solution (Definition 1) by imposing restrictions on

the function even at the points at which no derivative exists. Superdifferential and subd-

ifferential exist more generally, and viscosity solution disciplines them. Formally, define

D+u (x) and D−u (x) to be, respectively, the (local) superdifferential and the (local) sub-

differential of some function u at x:

D+u (x) ≡
{

p ∈ R2 | lim sup
y→x

u (y)− u (x)− p · (y− x)
|y− x| ≤ 0

}

D−u (x) ≡
{

p ∈ R2 | lim inf
y→x

u (y)− u (x)− p · (y− x)
|y− x| ≤ 0

}
.

Any vector p in D−u (x) is called a subgradient of u at x and has the property that, for

a sufficiently small neighborhood S ⊂ Ω of x, at point (x, u (x)), vector (p,−1) supports

the epigraph of u restricted to S.18 Graphically, the epigraph of u restricted to S is the

“downward kink” of u at x.19 Analogously, any vector p in D+u (x) is a supergradient of

u at x and has the property that vector (p,−1) supports an “upward kink” of u at x.

Definition 2. A continuous function u∗ : Ω → R is a viscosity solution of (50) if, for

every x ∈ Ω,

p ∈ D+u∗ (x) =⇒ u∗ (x) + H (x, p) ≤ 0 (52)

p ∈ D−u∗ (x) =⇒ u∗ (x) + H (x, p) ≥ 0. (53)

Henceforth, when referring to a viscosity solution without explicitly specifying the

equation, we refer to HJBQVI subject to the boundary condition.

18An epigraph is the set of points lying on or above the graph of a function.
19In contrast to another common definition of a (non-local) subgradient, here, we do not presume that u

is convex. Therefore, the restriction of u to a sufficiently small neighborhood S is necessary to isolate the
downward kink of u at x, thereby requiring a local definition of subgradient.
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The Viscosity Characterization of the Value Function

Proposition 1. A function is the sought value function φ, defined in problem (4), if and only if it

is the (unique) continuous viscosity solution of HJBQVI subject to the boundary condition.

The necessity and sufficiency claims in Proposition 1 can be split into two lemmas.

The necessity part follows.

Lemma 10. The value function φ, defined in (4), is a continuous viscosity solution of HJBQVI

subject to the boundary condition.

Proof (Sketch). The lemma’s conclusion follows by combining the arguments in the proofs

of Theorems 9.2 and 9.8 of Oksendal and Sulem (2005). Their theorems show that, in both

the optimal-stopping problem (their Theorem 9.2) and the combined stochastic-control

and impulse-control problem (their Theorem 9.8), the sought value function is a viscosity

solution of the relevant HJBQVI. Our problem has both optimal stopping and stochastic

control. The theorems of Oksendal and Sulem (2005) apply because, in our problem, the

sought value function is continuous (Lemma 9) and DPP holds (Lemma 7).

The working assumption of Oksendal and Sulem (2005) is that the jump process has

a state-independent intensity. This assumption is unnecessarily strong; their arguments

admit a state-dependent jump intensity and so apply in our setting. In particular, with

a state-dependent jump intensity, stochastic integration with respect to a jump processes

remains valid (see, e.g., Protter, 1990, Chapter I.6) and the conclusion of Dynkin’s lemma

still holds (see, e.g., Hanson, 2007, Theorem 7.1).

The sufficiency part of Proposition 1 follows.

Lemma 11. HJBQVI subject to the boundary condition has a unique continuous viscosity solu-

tion.

Proof. The lemma’s conclusion follows from Remark 3.2 of Bardi and Capuzzo-Dolcetta

(1997, p. 53) once the Hamiltonian H has been shown to satisfy condition H1 of their

Theorem 3.1 (Bardi and Capuzzo-Dolcetta, 1997, p. 51).
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Condition H1 is ascertained by verifying the conditions in Remark 3.4 of Bardi and

Capuzzo-Dolcetta (1997, p. 54), which applies because H is of the form in equation (0.1)

of Bardi and Capuzzo-Dolcetta (1997, p. 25).20 Indeed, to cast our problem in the notation

of that condition, define Z ≡ {1, 2, 3, 4} and rewrite H:

H (x, p) ≡ min
z∈Z
{− f (x, z) · p− l (x, z)} ,

with the convention f (x, 1) = f (x, 3) = (0, 0), f (x, 2) = (− (1− x1) , 0), and f (x, 4) =

(0,− (1− x2)), and l (x, 1) = −x1, l (x, 3) = −x2, l (x, 2) = 1 − ĉ/x1, and l (x, 4) =

1− ĉ/x2.

Note that the function f is continuous (in particular, because Z is a discrete set); the

set Z is finite; because linear, the function x 7−→ f (x, z) is Lipschitz continuous uniformly

with respect to z ∈ Z; x 7−→ l (x, z) is (uniformly) continuous in Ω̄ (because continuously

differentiable), with a modulus of continuity independent of z ∈ Z (because Z is a finite

set). Hence, the conditions in Remark 3.4 of Bardi and Capuzzo-Dolcetta (1997, p. 54) are

satisfied, so Remark 3.2 of Bardi and Capuzzo-Dolcetta (1997, p. 53) applies, and hence

the lemma’s conclusion follows.

Lemmas 10 and 11 combine to yield the proof of Proposition 1.

Proof of Proposition 1. That the value function is a continuous viscosity solution follows

from Lemma 10. That any continuous viscosity solution is a value function follows from

the uniqueness of the continuous viscosity solution (Lemma 11) and from the fact that the

value function is a continuous viscosity solution (Lemma 10).

20The Hamiltonian in equation (0.1) of Bardi and Capuzzo-Dolcetta (1997, p. 25) is a sup, whereas H in
(51) is an inf (indeed, a min). This discrepancy is inessential for verifying H1 because |sup {A} − sup {B}| =
|inf {−A} − inf {−B}|, and because each property required of each function in Remark 3.4 of Bardi and
Capuzzo-Dolcetta (1997, p. 54) holds if and only if the corresponding property holds for the negative of
that function.
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4.5 Verification

Here, we finally prove Theorem 1, which verifies the conjectured value function. By

Proposition 1, it suffices to verify that this function is a viscosity solution. To do so, we

exploit the special structure of HJBQVI afforded by the fact that we are dealing with a

maximization problem. This special structure is captured by the concavity of the Hamil-

tonian: p 7−→ H (x, p) is (weakly) concave for any x ∈ Ω, as can be ascertained by inspec-

tion of (51). The implication is, roughly, that viscosity solution imposes no restrictions

on downward kinks of the function (Bardi and Capuzzo-Dolcetta, 1997, Theorem 5.6), so

only the upward kinks need to be checked.

It turns out that the conjectured solution has no upward “kinks,” so there are no kinks

to check. To formalize the lack of upward kinks, we define semiconvexity. A function u

is semiconvex if there exists a constant κ ≥ 0 such that the function x 7−→ u (x) + κ |x|2

is convex.

Lemma 12. The conjectured value function F, defined in (45), is locally Lipschitz continuous and

seminconvex.

Proof. In Section 3, F has been constructed as an upper envelope of the surfaces derived

from the value functions for various auxiliary problems. Each constituent surface is semi-

convex because it is in C2. Indeed, any function in C2 has a continuously differentiable—

and hence Lipschitz, and hence locally Lipschitz—gradient. Therefore, by the observation

in the last sentence of Bardi and Capuzzo-Dolcetta (1997, p. 65), each constituent surface

is semiconvex.

Because F is an upper envelope of the semiconvex surfaces, the conclusion of Bardi

and Capuzzo-Dolcetta (1997, Exercise 4.6, p.75) applies and F itself is semiconvex.

Because F is semiconvex, it is locally Lipschitz continuous (Bardi and Capuzzo-Dolcetta,

1997, Proposition 4.6, p. 66).
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Lemma 13. The conjectured value function F, defined in (45), is a continuous viscosity solution

of HJBQVI subject to the boundary condition.

Proof. By Lemmas 1, 3, and 6, F is a generalized solution of HJBQVI subject to the bound-

ary condition.

Because the Hamiltonian p 7−→ H (x, p) is weakly concave for any x ∈ Ω, and because

F is a semiconvex locally-Lipschitz (Lemma 12) and a generalized solution of HJBQVI,

Corollary 5.2(i) of Bardi and Capuzzo-Dolcetta (1997, p. 78) implies that F is a viscosity

solution.

The verification of the conjectured value function can now be completed.

Proof of Theorem 1. By Lemma 13, F is a viscosity solution. By Proposition 1, the viscosity

solution is the value function. Hence, φ = F, as desired.

5 An Optimal-Policy Implementation in the Presence of

Moral Hazard and Adverse Selection

In the preceding sections, we derived an optimal policy by assuming that HQ can both

directly control divisions’ learning and observe the news, if any. What if HQ can do

neither? That is, can the optimal policy still be implemented in the presence of moral

hazard and adverse selection? This section shows that it can be.

The proposed implementation is accomplished in a dynamic auction.21 This auction

begins with indicative bidding, followed by information acquisition and then firm bid-

ding. The firm bidding occurs by the deadline that HQ specifies on the basis of the

indicative bids. In addition, either division can call for early firm bidding, before the

deadline.
21The auction’s construction is inspired by VCG mechanism’s dynamic extensions by Bergemann and

Välimäki (2010), and Athey and Segal (2007).
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5.1 The Optimal-Auction Game

Building on the environment described in Section 2, we define the optimal auction game,

which features both moral hazard and adverse selection. The game has two players, D1

and D2, who are bidders. HQ is the auctioneer.

Timing and Actions

At time t = 0, each Di privately observes his initial type Xi (0) ∈ [0, 1] and holds a com-

monly known belief about the full-support probability distribution from which X−i (0) is

drawn.22 Having observed Xi (0), Di publicly submits an indicative bid bi ∈ [0, 1].

The submitted indicative-bid pair b ≡ (b1, b2) determines the deadline by which

HQ solicits firm bids. To construct this deadline, let X̄|b denote the type process X ≡
{(X1 (t) , X2 (t)) | t ≥ 0} that is conditional on (X1 (0) , X2 (0)) = b and on each division

learning according to the optimal learning policy α∗ without ever observing the good

news. Given the optimal stopping time τ∗, define

τ̄|b ≡ E
[
τ∗ | X = X̄|b

]

to be the (deterministic) time necessary for the item to be optimally allocated conditional

on X = X̄|b. Time τ̄|b is the deadline for firm bidding.23 Until time τ̄|b, each division may

learn.

In particular, at time t ∈
(

0, τ̄|b
)

, each Di

• privately takes a learning action ai (t) ∈ {0, 1} and, if ai (t) = 1, privately observes

the learning outcome (the good news or no news),24

• makes a flow payment pi (t) = cα∗−i

(
X̄|b (t)

)
to HQ,

22We do not specify this probability distribution because it is not needed in the analysis.
23The stopping time τ̄|b is finite by Lemma 8.
24Because no one but the division itself observes whether it learns and what it learns, the model features

both moral hazard and adverse selection.
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• either publicly requests firm bidding by choosing action ri (t) = 1 or refrains from

doing so by choosing action ri (t) = 0.

Let T denote the minimum of τ̄|b and the first time at which any division publicly requests

firm bidding:

T ≡ τ̄|b ∧ inf {t ≥ 0 | r1 (t) + r2 (t) ≥ 1} . (54)

At time T, each Di submits its firm bid Bi ∈ [0, 1]. The item is allocated and time-T

payments are administered according to the rules of the second-price auction. (The ties

are resolved, say, uniformly at random.)

No action can be taken by any player at any time t > T; the game ends at T.

Payoffs

Let 1{Di wins} denote the indicator function that equals 1 if and only if Di wins the second

price auction at the firm-bidding stage. In this notation, Di’s payoff is

1{Di wins}vi − c
∫ T

0
ai (s)ds−

∫ T

0
pi (s)ds− B−i,

where T, defined in (54), denotes the time at which the item is allocated.

Consistent with the definition of HQ’s objective function in the expected cash-flow

maximization problem (3), the cash flow is

∑
i∈N

(
1{Di wins}vi − c

∫ T

0
ai (s)ds

)
.

The payments (pi, Bi)i∈N do not affect the cash flow. If interpreted as monetary, these

payments cancel out because the divisions’ monetary loss is HQ’s gain. Alternatively,

these payments could be the divisions’ productive efforts, which are costly to the divi-

sions but valuable to HQ, and so would cancel out, too.
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5.2 Implementation of the Optimal Policy

We show that the optimal auction game has an equilibrium whose outcome is the optimal

policy.

Stationary Strategies

We restrict attention to equilibria in stationary strategies. Only stationary strategies will

be defined, to conserve notation.25 Let X̃i (t) ≡
(
X̃i

1 (t) , X̃i
2 (t)

)
denote Di’s time-t belief,

where X̃i
j (t) is the expected value of vj conditional on information available to Di at time t.

Thus, we distinguish between X̃i, Di’s belief process about (v1, v2), and X, the actual

type process that obtains conditional on the initial type profile (X1 (0) , X2 (0)) and the

subsequent learning actions of bidders. The stationarity of Di’s strategy is defined with

respect to each division’s belief process X̃i.

Di’s (stationary) strategy is a tuple
(
b̃i, ãi, r̃i, B̃i

)
, where

• indicative bidding strategy b̃i associates an indicative bid b̃i (x) ∈ [0, 1] with each

initial belief X̃i (0) = x,

• learning strategy ãi associates a decision ãi (x) ∈ {0, 1} of whether to learn with

each belief X̃i (t) = x,

• stopping strategy r̃i associates a decision r̃i (x) ∈ {0, 1} of whether to call for firm

bidding with each belief X̃i (t) = x,

• firm bidding strategy B̃i associates a firm bid B̃i (x) ∈ [0, 1] with each terminal belief

X̃i (T) = x.

25If D−i uses a stationary strategy, Di has a stationary best response. Thus, the focus on stationary strate-
gies is an equilibrium refinement, not a restriction on admissible strategies.
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Equilibrium Defined

The divisions’ belief processes
(
X̃i)

i∈N and strategies
(
b̃i, ãi, r̃i, B̃i

)
i∈N constitute a (Bayes-

Nash) equilibrium if the beliefs conform with the Bayes rule given the strategies, and the

strategies are best responses given these beliefs:

• (the Bayes rule) each Di uses the Bayes rule and the knowledge of equilibrium to

derive its belief process X̃i from the observations of D−i’s indicative bid, Di’s initial

type and own news, and D−i’s decisions of whether to call for firm bidding;

• (best responses) for any belief x ∈ [0, 1]2 of Di, its indicative bid b̃i (x), its decisions

ãi (x) and r̃i (x), and its firm bid B̃i (x) maximize the expected payoff in the contin-

uation of the optimal auction game.

The Implementation Theorem

Theorem 2. The optimal auction implements the optimal policy, which solves (4). That is, the

optimal auction game has an equilibrium at which:

1. (Indicative Bidding) Each division bids its initial belief about its project’s value. That is,

b̃i (x) = b∗i (x) ≡ xi for all x ∈ [0, 1]2.

2. (Learning) Each division learns as prescribed by the optimal policy. Each division requests

firm bidding when and only when it observes the good news. That is, ãi (x) = α∗i (x) and

r̃i (x) = r∗i (x) ≡ 1{xi=1} for all x ∈ [0, 1]2.

3. (Firm Bidding) At the deadline T or as soon as either division requests firm bidding (whichever

occurs first), each division bids its terminal belief about its project’s value. That is, B̃i (x) =

B∗i (x) ≡ xi for all x ∈ [0, 1]2.

Moreover, each Di’s expected payoff conditional on the initial type profile is nonnegative.

58



Proof. Note that, on the path of the equilibrium described in the theorem’s statement,

each Di’s belief, X̃i, coincides with the actual type process X, influenced by both divisions’

learning outcomes: X̃1 = X̃2 = X.

The remainder of the proof proceeds in two steps. Step 1 shows that
(
b∗i , α∗i , r∗i , B∗i

)
i∈N

is an equilibrium strategy profile by showing that each division is a “residual claimant”

to the cash flow. Step 2 shows that each division’s expected equilibrium payoff is non-

negative.

Step 1

Throughout this step, we assume that D−i adheres to its posited equilibrium strategy,

whereas Di contemplates deviations, which will be shown to be unprofitable.

Because the firm-bidding stage is a second-price auction, at any firm-bidding time T,

for any belief X̃i (T) = x, bidding B̃i (x) = B∗i (x) ≡ xi is a weakly dominant strategy for

Di. It remains to verify that deviating to some alternative strategy
(
b̃i, α̃i, r̃i

)
prior to the

firm-bidding stage cannot improve on
(
b∗i , α∗i , r∗i

)
.

From the knowledge of his own indicative-bidding strategy b̃i and D−i’s strategy,

Di can infer D−i’s belief process X̃−i, D−i’s learning process
{

α∗−i
(
X̃−i (t)

)
| t ≥ 0

}
, and

hence also D−i’s actual type process X−i. Consequently, following any deviation b̃i, Di’s

belief process coincides with the actual type process, X̃i = X, whereas D−i’s belief process

may deviate from X.

To express Di’s payoff as a function of its strategy, let α̃ ≡
{(

α̃i (X (t)) , α∗−i
(
X̃−i (t)

))
| t ≥ 0

}
denote the learning process induced by Di’s strategy

(
b̃i, α̃i, r̃i

)
. Let Xα̃ denote the type

process associated with α̃.

Let τ̃ denote the firm-bidding stopping time induced by Di’s strategy
(
b̃i, α̃i, r̃i

)
. Di’s

choice of r̃i affects τ̃ through the term inf {t ≥ 0 | r1 (t) + r2 (t) ≥ 1} in (54). Di’s choice of

b̃i affects τ̃ both directly and indirectly. Directly, b̃i affects τ̃ by affecting HQ’s choice of the

firm-bidding deadline, τ̄|b. Indirectly, b̃i affects D−i’s belief X̃−i and thus also the learning

process
{

α∗−i
(
X̃−i (s)

)
| t ≥ 0

}
, which, in turn, affects term inf {t ≥ 0 | r1 (t) + r2 (t) ≥ 1}
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in (54) through D−i’s strategy r∗−i.

Di’s continuation payoff at an (actual) type profile x, before firm bidding, is

E

[
max
j∈N

{
X

α̃j
j (τ̃)

}
− c ∑

j∈N

∫ τ̃

t
α̃j
(
Xα̃ (s)

)
ds | x

]
−E

[
Xα̃−i
−i (τ̃) | x

]
. (55)

The first term in (55) is the cash flow. The second term will be shown to equal x−i.

To see that the second term in (55) is x−i, note that the process
{

Xα̃−i
−i (t) | t ≥ 0

}
is a

bounded, and therefore uniformly integrable, martingale, and τ̃ is a stopping time—both

with respect to the filtration generated by
{

Xα̃ (t) | t ≥ 0
}

. Hence, by Doob’s optional

sampling theorem, E
[

Xα̃−i
−i (τ̃) | x

]
= x−i, a constant that is independent of Di’s choices.

Thus, Di chooses its strategy
(
b̃i, α̃i, r̃i

)
to maximize the expected cash flow, the first

term in (55). Consequently, Di ’s problem is equivalent to solving HQ’s problem (4) for an

optimal policy (α, τ), but with additional restrictions on the class of admissible policies.

Relative to HQ’s policy choice in problem (4), Di’s choice of (α, τ) is restricted because Di

can affect D−i’s strategy (α̃−i, r̃−i) only indirectly, through b̃i. Nevertheless, Di can access

HQ’s (first-best) optimal policy by adopting its prescribed strategy
(
b∗i , α∗i , r∗i

)
, thereby

inducing not only α̃i = α∗i , but also α̃−i = α∗−i and τ̃ = τ∗.

Thus, Di’s best response to D−i’s posited strategy is Di’s posited strategy, as desired.

Step 2

To show that each Di’s expected equilibrium payoff is non-negative, a stronger result

will be proved. This stronger result is that, on the equilibrium path, even if Di could exit

the optimal auction at any time t after having settled all past payments {pi (s) | s ≤ t}
and foregoing the opportunity to win the item, Di would not benefit from this exit. (The

theorem’s statement corresponds to the special case of t = 0.) This stronger result fol-

lows from Di’s payoff decomposition in (55), which, following the application of Doob’s
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optional sampling theorem, yields the equilibrium continuation payoff:

E

[
max
j∈N

{
Xα∗

j (τ∗)
}
− c ∑

j∈N

∫ τ∗

t
α∗j
(

Xα∗ (s)
)

ds | x

]
− x−i. (56)

The first term in (56) is the maximized cash flow. The maximized cash flow is at least

x−i because allocating the item immediately to D−i is always possible. Hence, (56) is

nonnegative, as desired.

In the optimal auction, the payments make each division a residual claimant to HQ’s

cash flow. At the final, firm-bidding, stage, the second-price-auction payments make

the winner pay the “externality” that he imposes on the loser by depriving the loser of

winning. The payments at the preceding, learning, stage take care of the externality that

a division’s presence imposes on the other division when it makes the other division

engage in costly learning, instead of letting it win immediately.26

6 Conclusions

The paper solves for a cash-flow-maximizing policy for a company that faces an irre-

versible project-selection problem with information acquisition. This policy is imple-

mented in a dynamic auction that features indicative bidding, a spell of learning, and

a second-price auction. The use of an internal auction to make a decision within a com-

pany is plausible. Companies have successfully used market-like mechanisms to predict

sales (Hewlett-Packard), manage manufacturing capacity (Intel), generate business ideas

(General Electric), and select marketing campaigns (Starwood).27 An internal auction

would be impractical, however, if a company were unable to commit to subsequently not

undoing any payments received from or made to its divisions in the course of the auction.

26The flow payments at the learning stage can be replaced by a side payment paid by the winner (in
addition to the second-price auction payment), without affecting the divisions’ incentives and the expected
cash-flow.

27See Wikipedia entry "Prediction Market" for further examples and references.
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One would expect the requisite commitment to be available to successful companies with

a developed reputation for committing to cash-flow-maximizing decisions.

A Appendix: Omitted Proofs

All proofs are in the papers’ main body.
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B Supplementary Appendix: Auxiliary Technical Lemmas

Lemma B.1. The cost c1 defined in (17) is the unique solution of (10). Moreover, the inner

minimum in (17) is attained at θ1 = θ2:

min
0≤θ1≤θ2≤1

Φ (θ1, θ2, c1) = min
0≤x≤1

Φ (x, x, c1) = 0. (B.1)

Proof. The proof proceeds in steps.

1. Claim: A unique x ∈ (0, c2) solves (10).

Proof: The conclusion follows by observing that the left-hand side of (10) is strictly

decreasing in c1 (verified by differentiating) and maps (0, c2) onto R+, and that the

right-hand side is strictly increasing in c1 and maps (0, c2) onto (2, 4).

2. Claim: At the unique x that solves (10), (B.1) holds.

Proof: Differentiating gives:

dΦ (θ1, θ2, x)
dθ1

= −θ2

(
1 +

1
θ1

+
x

1− x− θ2
+ log

x (1− θ1)

θ1 (1− x− θ2)

)
. (B.2)

Because
d2Φ (θ1, θ2, x)

dθ2
1

=
θ2

θ2
1 − θ3

1
> 0,

dΦ (θ1, θ2, x) /dθ1 ≤ 0 for all θ1 ≤ θ2 if and only if dΦ (θ1, θ2, x) /dθ1|θ1=θ2
≤ 0, or

using (B.2),

1 +
1
θ2

+
x

1− x− θ2
+ log

x (1− θ2)

θ2 (1− x− θ2)
≥ 0, θ2 ∈

[
θ, θ̄
]

. (B.3)

To establish the inequality in (B.3), note that the derivative of its left-hand side is

(
x− (1− θ2)

2
) (

1− x− θ2
2
)

(1− θ2) θ2
2 (1− x− θ2)

2 ,

1



where 1− x− θ2
2 ≥ 1− θ2 > 0 and 1− x− θ2 ≥ (1− θ2)

2 ≥ 0, both by θ2 (1− θ2) ≥
x, or equivalently, by θ2 ∈

[
θ, θ̄
]
. Hence, the sign of the derivative is the sign of

x− (1− θ2)
2, which changes from negative to positive, crossing zero at θ2 = 1−√x,

as θ2 increases from θ to θ̄. Hence, the left-hand side of (B.3) is minimized at θ2 =

1−√x and attains the value

2
1−√x

− log

(
1−√x

)2

x
= 0,

where the equality follows from (10).

3. Claim: The unique x that solves (10) satisfies x = c1, where c1 is defined in (17).

Proof: Differentiating,

dΦ (θ1, θ2, ĉ)
dĉ

=
(1− θ1) (1− θ2)

2 θ2

ĉ (1− ĉ− θ2)
2 > 0.

Hence, min0≤θ1≤θ2≤1 Φ (θ1, θ2, x) = 0 implies min0≤θ1≤θ2≤1 Φ (θ1, θ2, ĉ) < 0 for any

ĉ < x. Therefore, x = c1.

Lemma B.2. Suppose that ĉ < c1. Define f :
[
θ, θ̄
]
→ R by f (x) = Φ (x, x, ĉ). Then,

the function f is at first positive, then intersects zero at a point, then is negative, then

intersects zero at a point, and then is positive again.

Proof. The proof proceeds in steps.

1. Claim: 1− ĉ− x2 > 0 for any x ∈
[
θ, θ̄
]
.

Proof:

1− ĉ− x2 ≥ 1− ĉ− θ̄2 =
1−
√

1− 4ĉ
2

> 0.

2. Claim: (x− x∗)
(

ĉ− (1− x)2
)
> 0 for any x ∈ [θ, x∗) ∪

(
x∗, θ̄

]
, where x∗ = 1−

√
ĉ

is such that x∗ ∈
(
θ, θ̄
)
.

2



Proof: The inequality follows by inspection; it remains to verify that x∗ ∈
(
θ, θ̄
)
.

Indeed,

x∗ − θ =
1 +
√

1− 4ĉ− 2
√

ĉ
2

> 0

θ̄ − x∗ =
2
√

ĉ +
√

1− 4ĉ− 1
2

> 0.

3. Claim: If x ∈
[
θ, θ̄
]

with f (x) < 0 exists, then f is at first positive, then intersects

zero at a point, then is negative, then intersects zero at a point, and then is again

positive.

Proof: Because f (θ) = f
(
θ̄
)
= 1, f (x) < 0 =⇒ x ∈

(
θ, θ̄
)
. Then, by

f (x) = (1− x) g (x) , where g (x) ≡ 1− ĉ− x2

1− ĉ− x
+ x log

ĉ (1− x)
x (1− ĉ− x)

,

f (x) = 0 ⇐⇒ g (x) = 0, which justifies the focus on g. Differentiating,

g′ (x) =
ĉ
(
1− ĉ− x2)

(1− x) (1− ĉ− x)2 + log
ĉ (1− x)

x (1− ĉ− x)
.

If g (w) = 0 for some w ∈
[
θ, θ̄
]
, then

g′ (w) =

(
ĉ− (1− w)2

) (
1− ĉ− w2)

(1− w)w (1− ĉ− w)2 .

By Step 1, the sign of g′ (w) is the sign of ĉ− (1− w)2, which, by Step 2, changes the

sign from negative to positive at x∗ ∈
(
θ, θ̄
)
. Hence, if x with g (x) < 0 exists, then

g intersects zero twice: once from above and to the left of x∗, and once from below

and to the right of x∗.

4. Claim: For some x ∈
(
θ, θ̄
)
, f (x) < 0.

3



Proof: Note that, at x ∈
[
θ, θ̄
]
,

dg (x)
dĉ

=
(1− x)2 x

ĉ (1− ĉ− x)2 > 0.

Then, g (x∗)|ĉ=c1
= 0 implies g (x∗) < 0 for ĉ < c1. Combining this observation

with Step 3 implies the lemma’s conclusion.

Lemma B.3. Suppose that ĉ < c2. Define f :
[
θ, θ̄
]
→ R by f (x) = Φ (θ1, x, ĉ). Then, f is

negative on an interval, possibly an empty one.

Proof. The proof proceeds in steps.

1. Claim: Define κ (x) ≡ (1− x)
[
(1− θ1) x2 + 2ĉ− (1− x)

]
− ĉ2. Then, (x− x∗) κ (x) >

0 for any x ∈ [θ, x∗) ∪
(
x∗, θ̄

]
, for some x∗ ∈

(
θ, θ̄
)
.

Proof: First, it will be shown that κ
(
θ̄
)
> 0. Indeed,

κ
(
θ̄
)
≥ κ

(
θ̄
)∣∣

θ1=θ̄
=

1
2

(
−1 +

√
1− 4ĉ + 2

(
2−
√

1− 4ĉ
)

ĉ
)
> 0.

To show the second inequality in the above display, it will be shown that b (ĉ) ≡
κ
(
θ̄
)∣∣

θ1=θ̄
is a strictly quasi-concave function of ĉ on (0, c2). Indeed, differentiating

implies that the sign of b′ (ĉ) coincides with the sign of

√
1− 4ĉ + 3ĉ− 1,

which is a strictly concave function in ĉ on (0, c2) (which is verified by differentiating

twice), evaluates to 0 at ĉ = 0, and evaluates to −1/4 at ĉ = c2. Thus, on (0, c2), the

above display is at first positive and then negative. Hence, b′ (ĉ) on (0, c2) is at

first positive and then negative, and so b is strictly quasi-concave. Finally, because

b (0) = b (c2) = 0, b (ĉ) > 0 on (0, c2), and so the desired inequality follows.

4



It will be shown that κ (θ) < 0. Indeed,

κ (θ) ≤ κ (θ)|θ1=θ =
(

2 +
√

1− 4ĉ
)

ĉ− 1
2

(
1 +
√

1− 4ĉ
)
< 0.

To show the second inequality in the above display, it will be shown that ξ (ĉ) ≡
κ (θ)|θ1=θ is strictly increasing in ĉ on (0, c2). Indeed, differentiating ξ gives

ξ ′ (ĉ) =
2
(
1− 3ĉ +

√
1− 4ĉ

)
√

1− 4ĉ
> 0,

where the inequality follows from ĉ ∈ (0, c2). Furthermore, ξ (c2) = 0, and so

ξ (ĉ) < 0 for all ĉ ∈ (0, c2).

By differentiation, κ′′ (x) = − (1− θ1) 6x − 2θ1 < 0, and so κ is a strictly concave

function. Hence, by κ (θ) < 0 and κ
(
θ̄
)
, on the interval

(
θ, θ̄
)
, κ crosses zero once,

from below, at a point, which is denoted by x∗ ∈
(
θ, θ̄
)
.

2. Claim: If x ∈
[
θ, θ̄
]

with f (x) < 0 exists, then f is negative on an interval.

Proof: If f (s) = 0 for some s ∈
[
θ, θ̄
]
, then

f ′ (s) =
(1− s)

[
(1− θ1) s2 + 2ĉ− (1− s)

]
− ĉ2

s (1− ĉ− s)2 .

The sign of f ′ (s) is the sign of the numerator, κ (s), which, by Step 1, changes the

sign from negative to positive at x∗ ∈
(
θ, θ̄
)
.

Hence, if f (x) < 0 for some x ∈
[
θ, θ̄
]

and f (x′) > 0 for some x′ ∈
[
x, θ̄
]
, then

it must be that f intersects zero somewhere in (x, x′), at which point f ′ is positive.

Because the slope of f ′ must remain positive at any larger intersection point, there

can be no larger intersection point. Because x with f (x) < 0 can be chosen to be

arbitrarily small, the argument implies that the set
{

x ∈
[
θ, θ̄
]
| f (x) < 0

}
is convex.
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Lemma B.4. Suppose that

MC (x) ≡ 1− [1−V (x, x)]
(

1− θ1

1− x

)2

− 2ĉ (1− θ1)
2 [σ (θ1)− σ (x)] .

Then, arg maxx∈[θ,θ̄]M
C (x) =

{
θ̄
}

.

Proof. By differentiation,

dMC (x)
dx

=

(
1− θ1

1− x

)2 [dV (x, x)
dx

+ 2
V (x, x)− 1

1− x
+ 2ĉ

1
x (1− x)

]
= ĉ

(1− θ1)
2

x (1− x)3 Φ (x, x, ĉ) ,

where the second equality follows by substitution. Thus the sign of dMC (x) /dx coin-

cides with the sign of Φ (x, x, ĉ). Then, by Lemma B.2, dMC (x) /dx first switches the sign

from positive to negative and then switches the sign from negative to positive. These sign

switches imply that MC is wave-shaped, with local maxima at a ∈
(
θ, θ̄
)
, defined in (28),

and at θ̄. It remains to verify that MC (θ̄) > MC (a).

Note that by (16), V
(
θ̄, θ̄
)
= θ̄. Substituting V

(
θ̄, θ̄
)
= θ̄ into the expression for MC (θ̄)

gives

MC (θ̄) = 1− (1− θ1)
2
(

1
1− θ̄

+ 2ĉ
[
σ (θ1)− σ

(
θ̄
)])

.

Similarly, substituting the expression for V (a, a) from (16) into the expression for MC (a)

and using Φ (a, a, ĉ) = 0 implied by (28) gives

MC (a) = 1− (1− θ1)
2

(
1

1− b (a)
+

ĉ

a (1− a)2 + 2ĉ [σ (θ1)− σ (a)]

)
.
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Thus,

MC (θ̄)−MC (a) = (1− θ1)
2

(
1

1− b (a)
+

ĉ

a (1− a)2 + 2ĉ
[
σ
(
θ̄
)
− σ (a)

]
− 1

1− θ̄

)

= (1− θ1)
2


1

1−b(a) + ĉ
(

2σ
(
θ̄
)
− 1

θ̄(1−θ̄)
2

)
−ĉ
(

2σ (a)− 1
a(1−a)2

)
− θ̄(1−θ̄)−ĉ

θ̄(1−θ̄)
2


= (1− θ1)

2

(
1

1− b (a)
+ ĉ

(
2σ
(
θ̄
)
− 1

θ̄
(
1− θ̄

)2

)
− ĉ

(
2σ (a)− 1

a (1− a)2

))
,

where the last equality follows from the definition of θ̄, which implies θ̄
(
1− θ̄

)
− ĉ = 0.

Note that, for x ∈ (0, 1),

d
dx

(
2σ (x)− 1

x (1− x)2

)
=

1

x2 (1− x)2 > 0.

Hence, θ̄ > a implies

2σ
(
θ̄
)
− 1

θ̄
(
1− θ̄

)2 > 2σ (a)− 1

a (1− a)2 .

Combined with 1− b (a) > 0, the above display implies MC (θ̄)− MC (a) > 0. That is,

the function MC :
[
θ, θ̄
]
→ R is uniquely maximized at θ̄.

Lemma B.5. Suppose that

MA (x; θ1) ≡ 1− (1−V (θ1, x))
1− θ2

1− x
− ĉ (1− θ2) [ϕ (θ2)− ϕ (x)] .

Then, arg maxx∈[θ1,θ−(θ1)]M
A (x; θ1) = {θ− (θ1)}.

7



Proof. To show MA (θ− (θ1) ; θ1) > MA (d (θ1) ; θ1), write

1−MA (θ− (θ1) ; θ1)

1− θ2
=

1−V (θ1, θ− (θ1))

1− θ− (θ1)
+ ĉ

[
ϕ (θ2)− ϕ

(
θ− (θ1)

)]
= 1 + ĉ

[
ϕ (θ2)− ϕ

(
θ− (θ1)

)]
,

where the second equality is by V (θ1, θ− (θ1)) = θ− (θ1).

Evaluating V in (16) at (θ1, d (θ1)) and using Φ (θ1, d (θ1) , ĉ) = 0 (by the definition of d in

(34)), one can write

1−V (θ1, d (θ1))

1− d (θ1)
=

1− θ1

1− b (d (θ1))
+

ĉ
d (θ1) (1− d (θ1))

.

Then,

1−MA (d (θ1) ; θ1)

1− θ2
=

1−V (θ1, d (θ1))

1− d (θ1)
+ ĉ [ϕ (θ2)− ϕ (d (θ1))]

=
1− θ1

1− b (d (θ1))
+

ĉ
d (θ1) (1− d (θ1))

+ ĉ [ϕ (θ2)− ϕ (d (θ1))] .

Subtracting gives

MA (θ− (θ1) ; θ1)−MA (d (θ1) ; θ1)

1− θ2

= ĉ
(

ϕ
(
θ− (θ1)

)
− 1

θ− (θ1) (1− θ− (θ1))
−
(

ϕ (d (θ1))−
1

d (θ1) (1− d (θ1))

))
+

1− θ1

1− b (d (θ1))
+

ĉ
θ− (θ1) (1− θ− (θ1))

− 1.

The first line of the right-hand side of the above display is positive by θ− (θ1) > d (θ1)

and by
d

dx

(
ϕ (x)− 1

x (1− x)

)
=

1
x2 (1− x)

> 0.
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The second line, using the definition of b, can be rearranged to give

1− θ1

1− b (d (θ1))
+

θ1

θ− (θ1)
− 1 =

b (d (θ1)) (θ
− (θ1)− θ1) + θ1 (1− θ− (θ1))

θ− (θ1) (1− b (d (θ1)))
> 0,

where the inequality follows from θ1 < θ− (θ1) < 1.

Lemma B.6. For θ1 ∈ (a, ā),

V
(
θ1, θ− (θ1)

)
> B

(
θ1, θ− (θ1)

)
.

Proof. From the definition of B in (39),

B
(
θ1, θ− (θ1)

)
= 1− (1− C (θ1))

1− θ− (θ1)

1− θ1
− ĉ

(
1− θ− (θ1)

) [
ϕ
(
θ− (θ1)

)
− ϕ (θ1)

]
.

Then,

V
(
θ1, θ− (θ1)

)
− B

(
θ1, θ− (θ1)

)
=
(
1− θ− (θ1)

) (1− C (θ1)

1− θ1
+ ĉ

[
ϕ
(
θ− (θ1)

)
− ϕ (θ1)

]
− 1
)

.

From the definition of C (θ1) in (26),

1− C (θ1)

1− θ1
= (1− θ1)

(
1−V (a, a)

(1− a)2 + 2ĉ [σ (θ1)− σ (a)]

)

= (1− θ1)

(
1

1− b (a)
+

ĉ

a (1− a)2 + 2ĉ [σ (θ1)− σ (a)]

)
.
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Thus,

V (θ1, θ− (θ1))− B (θ1, θ− (θ1))

1− θ− (θ1)
= (1− θ1)

(
1

1− b (a)
+

ĉ

a (1− a)2 + 2ĉ [σ (θ1)− σ (a)]

)

+ ĉ
[
ϕ
(
θ− (θ1)

)
− ϕ (θ1)

]
− 1

=

(
(1− θ1)

1− b (a)
+

ĉ
θ− (θ1) (1− θ− (θ1))

− 1

+ (1− θ1) ĉ

[
2σ (θ1)−

1

θ1 (1− θ1)
2 −

(
2σ (a)− 1

a (1− a)2

)]

+ĉ
[

ϕ
(
θ− (θ1)

)
− 1

θ− (θ1) (1− θ− (θ1))
−
(

ϕ (θ1)−
1

θ1 (1− θ1)

)])
.

Note that, using the definition of b,

(1− θ1)

1− b (a)
+

ĉ
θ− (θ1) (1− θ− (θ1))

− 1 =
(1− θ1)

1− b (a)
+

θ1

θ− (θ1)
− 1

=
θ1 [1− θ− (θ1)] + b (a) [θ− (θ1)− θ1]

θ− (θ1) (1− b (a))
> 0,

where the inequality follows from θ1 < θ− (θ1) < 1. Moreover,

2σ (θ1)−
1

θ1 (1− θ1)
2 −

(
2σ (a)− 1

a (1− a)2

)
> 0

by θ1 > a and by
d

dx

(
2σ (x)− 1

x (1− x)2

)
=

1

x2 (1− x)2 > 0

for x ∈ (0, 1). Finally,

ϕ
(
θ− (θ1)

)
− 1

θ− (θ1) (1− θ− (θ1))
−
(

ϕ (θ1)−
1

θ1 (1− θ1)

)
> 0

by θ− (θ1) > θ1 and by

d
dx

(
ϕ (x)− 1

x (1− x)

)
=

1
x2 (1− x)

> 0
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for x ∈ (0, 1) . Thus, V (θ1, θ− (θ1))− B (θ1, θ− (θ1)) > 0 as required.
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