
Bargaining in Global Communication Networks

Abstract

We study a Rubinstein-Stahl two-player non-cooperative bargaining game played by
n players connected in a communication network. We allow the players to communicate
with any peer in the same component via the existing paths connecting the peers in
a given communication network (global interaction). The unique stationary subgame
perfect equilibrium profile characterizes the players’ expected payoff as function of their
betweenness centrality score. Secondly, we study a dynamic link-formation game which
allows the players to activate new linkages or sever existing ones in order to increase
their bargaining power for a given marginal cost per link. We identify the conditions
under which the resultant pairwise stable network structures belong to the family of
the nested split graphs.

JEL classification: C72; C78; D85 Keywords: Communication; Network; Noncooperative bargain-
ing; Network formation
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1 Introduction

In almost any socio-economic situations, agents interact and take into account the choices of other

peers. However, it is also clear that agents in a community communicate only with a subset of the

whole population. This fact in particular helped the development of the literature on networks

where a pairwise communication possibility is represented by a connection or link between two

nodes/players. This is also the starting point of Calvó-Armengol (2001). The author studies

a Rubinstein-Stahl two-player non-cooperative bargaining game where n players are connected

through a graph but are constrained to communicate with their direct peers; the communication

constraint characterizes the bargaining power of each node composing a network and therefore

their ex-ante expected payoff: nodes with a higher number of connections with other peers (degree)

benefit from higher bargaining power than the rest of the agents in the same component.

There are cases when it seems plausible to constrain the communication possibilities exclusively

to direct connections. However, in many others agents seem to benefit from exploiting their direct

links to reach third peers in a chain of interactions. For example, in a business environment the

value of direct connections is often not limited to the pairwise interaction within the connected

peers, but also extends to the indirect connection possibilities that the same peers could recip-

rocally open. We first study how, in a bargaining context, the location of each agent across a

communication structure could impact their relative bargaining power. In our model the agents

can interact not only at a local level (with direct peers) but also with distant agents, via existing

communication paths connecting them. However, some players could belong to relatively more

paths than others and therefore, they will enjoy a higher than average chance of get interaction

with other peers. We characterise the brokerage power of some agents observed in many social

and economic environments which does not necessarily coincide with the number of their own con-

nections (degree). The bargaining process is sequential and involves only two partners at a time.

Each bargaining pair is chosen at random and the stochastic process is function of the network

architecture. Ex-post payoffs are not affected by the network structure when we assume players to
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be homogeneous in time preferences, while ex-ante expected payoffs do.1 Nevertheless, under our

model setting we are able to derive an allocation rule which rewards agents with relatively high

weighted betweenness centrality score and thus not necessarily those that are more connected.

Furthermore, we investigate which communication network is expected to arise as a stable

structure when the players can strategically rewire their connections. In particular, when choosing

to activate or sever a (costly) link, each agent will face the following trade-off: to activate a

new connection is profitable if and only if the improvement of the same player’s brokerage power

is greater than its marginal cost. Interestingly, we can show that under certain conditions, the

architecture of the pairwise stable network structure is nested: the neighbourhood of each node

is contained in the neighbourhoods of nodes with higher degrees. These strongly hierarchical

architectures are observed in many various real-world networks.2

The paper contributes to the literatures on networks and game theory in two ways. We first

characterise the unique stationary equilibrium of the n-player bargaining game where players are

connected in a communication network and could reach peers distant by more than one link. This

result could help to explain the brokerage power of agents playing crucial intermediary roles in

various existing communication networks. Finally, we enrich the analysis studying the network

architectures which could endogenously arise under certain conditions as pairwise stable networks.

The paper is organised as follows. Section 2 reviews the related literature. In section 3 we

introduce the model setup and characterise the subgame perfect equilibrium profile. In section

4 we study the link-formation game and define the pairwise stable networks arising for different

constant marginal cost per link. Section 5 concludes.
1This is consistent with the results in Calvó-Armengol (2001). As pointed out by the same author, the “out-

side option” in the pairwise bargain is payoff equivalent to playing a Rubinstein-Stahl two-player non-cooperative
bargaining game with an alternative partner, and therefore it is a non-credible threat.

2See for instance Uzzi (1996) who describes the network of all “better dress” firms in the New York apparel
economy. Soramäki et al. (2007) finds that the Fedwire bank network structure has a particularly dissortative
architecture where few hubs are largely connected while most banks have relatively few connections. Akerman and
Seim (2014) study the dynamic of the global arm-trade network over the period 1950-2007 and find dissortativity
over the sample indicating that few large countries with many connections trade with many small countries with
few connections. De Benedictis and Tajoli (2011) analyse the world trade network over the period 1950-2000 and
highlight a core-periphery architecture with strong dissortativity.
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2 Related literature

Among many papers analyzing bargaining processes between agents, we mention the original con-

tributions of Rubinstein (1982) and Morgenstern (1973). As previously pointed, our model uses

a bargain protocol based on Calvó-Armengol (2001) which adapts the Rubinstein (1982) setup to

a network setting. Similarly, in our model the final Nash equilibrium is defined by the players’

bargaining power as function of their location in the network. However, while Calvó-Armengol

(2001) constrains the communication possibilities to “local” interactions (direct neighbours), we

allow for “global” interactions but constrained to the existence and length of the paths connecting

the peers.3 Calvo et al. (1999) generalize the communication between agents allowing for commu-

nication chains and thus not strictly direct connections. However, their probabilistic setting differs

substantially from ours. Among many differences, our model characterizes the probability of com-

municating with a player not directly connected by a link as function of the network architecture,

while in their setting this probability is exogenous and discretionary.

Our network formation problem is analyzed using the definition of pair-wise stability introduced

by Jackson andWolinsky (1996). In König et al. (2009) the authors study the networks dynamically

emerging when the players aim to maximize their relative centrality scores (calculated using any

degree, betweenness, closeness, and Bonacich measure). As in their model, our setting implies

that a potential connection with a player with a relatively high centrality score would increase the

individual centrality more than a connection with a player with a lower score. However, in our

case, the number of connections owned by each player is endogenous and their activation relies on

a marginal benefit and marginal cost analysis.

In Sociology, communication networks and their relative implications have been widely studied

(see for instance Wasserman (1994) and Skvoretz and Willer (1993) for surveys). Our model’s

predictions are in line with various experimental results: the most crucial players are those that
3We would like to mention other papers modeling the bargain in a network setting. See for instance Borm et al.

(1994) for an exhaustive review.
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can control the communication flow within a component.4 As illustrated by Padgett and Ansell

(1993), there are cases in which the relative power of an agent is not fully explained by the number

of connections he owns. This could happen when there exists a player that uniquely connects

different subset of agents, or in other words when the existence of paths between most nodes is

conditional to the presence of one or a few critical nodes.

It is worth remarking that our interpretation of player’s criticality relies on our definition of

the linkage connecting a pair of agents. In particular, under our model setting, the link-structure

defines the communication paths connecting a set of agents. For any agent i it is possible to reach

any other agent j by passing through a chain of links which connect them. Therefore, in contrast

to many papers analyzing the spread of information, disease, or any general divisible good across

a network structure, the players can communicate and trade a good with any other player of the

component, as if they were directly "walking" through paths.5

3 Setup

3.1 Communication structure

Consider a finite set of agents N = {1, ..., n} connected in a network structure G(N,L) with L the

set of undirected linkages or connections between them. Each element {ij} ∈ L is a binary variable;

{ij} = 1 indicates a connection between the pair (i, j), while {ij} = 0 otherwise. We denote with

g ⊆ G a component, or a nonempty connected subnetwork g(N ′, L′) such that ∅ 6= N ′ ⊆ N and

L′ ⊆ L. A path Pij between i and j belonging to g is a sequence of linkages which connect the two

nodes and such that each node involved is distinct. A geodesic between two nodes is the shortest

path between them. Let σij be the number of geodesic paths in g which connect i and j, and σij(k)
4Some of the sociological contributions define the criticality of a player as his potential for exclusion, or the

power of some location to preclude exchanges with other agents, see for instance Pitts (1965) and Shimbel (1953).
5We would like to mention some important contribution from the literature on informal communication and

information spread through networks. See for instance Schrader (1991), Cowan and Jonard (2004), and Allen and
Cohen (1969).
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be the number of such geodesics passing through node k 6= i, j. Let bij(k) = σij(k)/σij ∈ [0, 1] be

the "partial" betweenness score of the node k given the pair (i, j), or the proportion of geodesic

paths connecting the pair (i, j) which pass through node k. Therefore, the general betweenness

centrality score6 of a node k is defined as bk = ∑
(i,j)∈N2 σij(k)/σij. Denote b̃i,k(j) = bi,k(j)/d(i, k)

the partial "weighted" betweenness score of the node j which takes into account the distance d(i, k).

Thus, the general weighted betweenness centrality is measured as

b̃j =
∑

(i,k)∈N2

bik(j)
d(i, k)

This measure shares same properties and boundaries of the general betweenness centrality but it

also weights each geodesic path by its length.7 Finally, define with Ni the open neighborhood of

i, or the subset of nodes j : j ∈ Ni → {ij} = 1. The link-structure defines the communication

channels between the players. In particular, we assume that an agent i ∈ g can communicate with

any other player belonging to the set Ni ⊆ N ; Ni defines the subset of players "reachable" by i, not

necessarily coinciding with N the whole set of players. Therefore, in the case of Ni = Ni ⊂ N , we

assume that i is able to communicate only with his direct neighbours and which are strictly less

than n−1 players, while Ni = N means that i can interact with any other player of the component

g using the geodesic paths connecting them.

3.2 Payoff and bargaining protocol

Each player in N can bargain shares of a “unit pie” x̂ = 1 with another peer with whom he

is directly or indirectly connected. In particular, the communication protocol follows a specific

stochastic process rewarding the agents located in a higher than average number of geodesic paths

connecting two players of the same component. The structural "criticality" of these players will
6See Freeman (1979) for details.
7It is clear that the measure scores its lowest value, b̃j = 0, for a node in a complete network or for a peripheral

node, while its highest value, b̃j = 1, for the central node in a star graph.
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allow them to pair-wisely bargain bigger shares of x̂. We summarize the procedure as follows:

At each round we consider two active players in g, a proposer i and a respondent j. The player

i is picked at random out of n players (with probability 1/n). A respondent j then is picked by i

with probability βji ∈ (0, 1] as defined below. Then i makes a proposal of share of x̂ to player j. If

j accepts the offer, the game ends with these payoffs. If j rejects the proposal, he becomes the new

proposer. The game proceeds until, and if, a bilateral agreement is reached.

Player j’s probability of being picked as receiver by the proposer i is defined as follows,

βji = Pr[σij]
1

d(i, j) +
∑
k 6=i 6=j

Pr[σik]
bik(j)
d(i, k) ∈ (0, 1]

where Pr[σ] is the probability of picking a specific geodesic path such as σik, bik(j) is the be-

tweenness score of j related to σik, and 1/d(i, k) is the uniform probability of being picked out of

the members of the path of size |σik| = d(i, k). The first element on the right side describes the

probability of j being picked out of the nodes composing the path Pij, while the second element

is the probability of being picked out of the nodes composing a path Pik with k 6= j and which

contains j itself.8

To clarify the intuition we make use of an example similar to the one studied by Olken and

Barron (2007). Suppose that initially each player is assigned to a distinct node which indicates a

location.9 A link between two locations indicates the presence of a road between them. At each

round a randomly chosen player travels from her location to another randomly chosen destination

in N . Along the path connecting the two locations, there is a chance that one of the intermediary

nodes stops her and bargains a share of the unit pie. Players in locations which are relatively

more "intermediary" have more opportunity to bargain than players in peripheral locations. An
8The βji score is strictly positive since we assume connected graphs and therefore there is always positive

probability for each node j to be reached by the proposer i. The highest boundary, βji = 1 is obtained only when
j is the unique node connected to the proposer i (a dyad graph), thus Pr[σij ] = 1 and 1/d(i, j) = 1.

9Clearly we assume that there as many players as locations.
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alternative example may interpret linkages and paths as follows. Consider two researchers of two

distinct departments, say i and j, not directly connected to each other. Suppose i has an idea

about a new project which he would like to start in collaboration with another scholar. The chance

that the two communicate and start a new project may depend on various factors among which

is the presence of third peers, say co-authors or colleagues, which introduce them. However, the

longer the chain of individuals between i and j, the higher the chance that i might for example

discuss the project with an intermediary scholar and not with j.10

To simplify the analysis without loss of generality, we assume only one geodesic path between

two players and uniform probability among the possible (n − 1) paths from i to k, thus reducing

the probability to11

βji = 1
n− 1

 1
d(i, j) +

∑
k 6=i 6=j

bik(j)
d(i, k)


Finally, for each j we compute the measure βj =

∑
i 6=j

βji, which is bounded above by n/2 and below

by 1
n−1Hn−1, where Hn−1 is the (n − 1)-th harmonic number. In particular, n/2 is scored by the

central node of a star graph of n nodes, and 1
n−1Hn−1 by a peripheral node of a line graph of n

nodes.12. It is clear that

βj = 1
n− 1

∑
i 6=j

1
d(i, j) + b̃j


or in other words, the βj score is function of the weighted betweenness centrality score of node j.

Note that when Ni = Ni we replicate the setting of Calvó-Armengol (2001) since ∑
k 6=j bik(j) =

0 ∀j 6= k ∈ g, and Pr[σij|Ni] 1
d(i,j) = 1/|Ni|. On the other hand, increasing Ni such that Ni ⊂ Ni,

we flexibly extend communication between nodes to agents indirectly connected to each other.13

Hereafter, to simplify the notation, we will assume Ni = N . Finally, we remark that for each
10Here we assume that each agent in the path is equally valuable to i as project-partner.
11Note that this is the same to assume that we are selecting one of the geodesic paths between two nodes (if more

than one) with uniform probability. This would imply that bik(j) is a binary variable, assuming value 1 when j is
part of σik or 0 otherwise.

12In the Appendix, we propose an illustrative example of the βji probabilities in a given connected network.
13We remark that also in specific case of a complete network structure, the two settings coincide.
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bargaining pair (i, j), the game coincides with a Rubinstein (1982) game, with player i as the

initial proposer.14

For simplicity and without loss of generality we assume hereafter that x̂ = 1. For any bargain-

agreement and given an offerer i and a receiver j, we indicate with xij ∈ [0, 1] the proposed share

disclosed by j to i, and symmetrically 1 − xij the share disclosed by i to j. Consider the case

Ni = N ∀i ∈ g. We can define the unique stationary perfect equilibrium of the bargaining game.15

Proposition 1. For any g, the n-player bargaining game has a unique stationary perfect equilib-

rium. For all distinct players i, j, k ∈ N , the equilibrium shares are characterized by:

1− xij(g) = δj
∑
k 6=j

βkjxjk(g) (1)

Alternatively put, the equilibrium share offered by i to a j player of the same component is

equal to the expected flow obtained by j as proposer player from the rest of the receiver peers

k ∈ g.

Proposition 2. For any g ∈ G∗, the allocation rule Y : G∗ → Rn
+ corresponding to the n-player

bargaining game in g is given by:

Yi(g) = 1
n

∑
j∈g

[βjixij(g) + βij(1− xji(g))] ∀i ∈ N (2)

and it is efficient.

The results above define the individual equilibrium unit shares expected by each player i in

the network. It is clear from the definition of βji and βij that each equilibrium allocation Yi(g)

of a player i ∈ N is function of his relative betweenness centrality. In words, a relatively higher

centrality score implies ex-ante larger shares received from the rest of the peers. Following the
14The bargain protocol proposed should not be confused with a n-player multilateral bargaining.
15All the proofs are in the Appendix section.
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Corollary 1-2 in Calvó-Armengol (2001), assuming homogeneous time preferences, we can rewrite

the (2) as

Y h
i (g) = 1

1 + δ

1
n

(1 + δβi) ∀i ∈ N

where (1/1 + δ; δ/1 + δ) is the standard agreement as shown by Rubinstein (1982) in the case

of homogeneous time preferences. Finally, to highlight the impact of the structure on the final

expected bargaining allocation, we take the limit of Y h
i (g) for δ → 1,

lim
δ→1

Y h
i (g) = 1

2n(1 + βi),∀i ∈ g (3)

The (ex-ante) expected payoff of a player i ∈ g is implicitly function of βi and of the size of the

component, n. The player that has the highest chance to be a receiver/proposer in the bargain

process will also be the agent with highest expected payoff. These results are complementary

to the ones in Calvó-Armengol (2001) since we extended the communication possibilities to any

geodesic path instead of direct connections only; in other words our setting can replicate their

result assuming Ni = Ni for all i ∈ g. A clear consequence of this is that, given a component g of

order n > 2 and homogeneous discount factor δ,

Y ∗i ≥ Y ∗j ⇐⇒ βi ≥ βj ∀(i, j) ∈ g

In summary, assuming a bargain protocol constrained by the communication structure inter-

connecting the agents, we characterize each individual optimal share as function of the player

location in the network. In particular, when we allow each player in the network to reach other

players distant by more than one link, agents with highest expected payoff are not necessarily the

ones which are more connected (highest degree) but those with the highest weighted betweenness

centrality score.16

16In the Appendix we discuss the well studied case of Florentine marriage network proposed by Padgett and
Ansell (1993).
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4 Stable network

Consider a third stage of the game. In particular, at this stage each player can simultaneously

form new links or sever existing ones. Assume a positive marginal cost per link c ∈ R++, paid by

the player proposing to activate a link. Any connection between two players will be activated or

severed unilaterally by one of the two players involved. The intuition is that, net of activation cost,

a new link is always marginally beneficial for the pair involved in terms of increasing the probability

of bargaining; thus, a player would always accept a new link from another peer. Formally, each

player simultaneously chooses a vector gi = (gi1, ..., gii−1, gii+1, ..., gin) where gij = {0, 1}. The

payoff of each player i is defined by the expected utility Ui(g) = Y h
i (g)− cϕi, with ϕi the number

of connections activated by the player i. We have gi ∈ Si = {0, 1}n−1 with Si the set of strategies

of player i and S = ×i∈NSi the set of strategies of all players. Define as a link-active player, a

node i ∈ g such that ∃j 6= i : {ij}. We use the notion of network stability proposed by Jackson

and Wolinsky (1996): a network is pairwise stable if it is such that no player has incentive to cut

an existing link and no pair wants to form a new link. More formally,

Definition 1. A network G(N,L) is pairwise stable if

1. ∀i, j ∈ N ⇒ Ui(G⊕ {ij}) ≥ Ui(G) and Uj(G⊕ {ij}) ≥ Uj(G)

2. ∀i, j /∈ N ⇒ if Ui(G) < Ui(G⊕ {ij})⇒ Uj(G) > Uj(G⊕ {ij})

It is intuitive that players located in distinct (non-isomorphic) locations in a network G will

probably face different marginal incentives to activate and/or severe linkages. The previous stages

of the game characterize the equilibrium private contribution for each player as function of his

criticality in G. Therefore, in the third stage, each player could modify her link structure to

improve her centrality, given the existing network architecture G.
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Two remarks are worth mentioning.17 Firstly, it is crucial that the centrality of the players

are only weakly monotonic with respect to their degrees; a link activation cannot decrease the

betweenness centrality score of the players involved, but can potentially be neutral. Secondly,

a connection with a player with relatively high betweenness centrality increases the centrality

score of the node activating the link more than a connection with a player with low betweenness

score; informally, a link with a relatively central player gives access to more geodesic paths than a

connection with a less central agent. These two features will explain the existence and the specific

architecture of some of the equilibrium network structures.

Denote with Gs a pairwise stable network. We can present the following result,

Proposition 3. Consider c > 0 and c̄ > c. Then,

• for any c < c the complete network is the unique pair-wise stable,

• for c ≥ c̄ the empty network is the unique pair-wise stable,

• for c ∈ (c, c̄) and if all the players are link-active, any pairwise stable network is a nested

split graph.18

The result points out that in a complete network, where each player has minimal betweenness

score, for any two players it is beneficial to sever the link connecting them if and only if the cost

to keep active the connection is higher than the particularly small gain in probability derived from

it; it is always beneficial to activate a link with another player, thus a complete network is always

a possible equilibrium for small enough cost per link.19 Moreover, the marginal benefit weakly

increases when the new link is activated with a node with a higher betweenness centrality score.

This implies that, if a new link ij is activated by i, any link iq with q 6= j : b̃q > b̃j must be already

active. Recursively and, for intermediate cost c, this leads to a nested split structure.
17These observations are based on König et al. (2009). In particular, we will make use of the result in Corollary

11 and Proposition 1 of the same paper.
18For a formal definition of nested split graph, we refer to the definitions in the Appendix.
19It is particularly easy to see this result for a zero marginal cost.
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Figure 1: A nested split graph

5 Conclusions

This paper studies the impact of the structure of a given communication network on the expected

payoff of players that pairwisely bargain a’ la Rubinstein-Stahl. We analyse the network archi-

tecture which may arise as a pairwise stable structure when the players can strategically rewire

their connections, given a fixed marginal cost per link. We build our setting over that proposed

by Calvó-Armengol (2001), and in particular we extend his model in order to allow the players to

communicate with peers that are distant from them by more than one connection. The (unique)

subgame perfect equilibrium profile obtained for a given network structure rewards the agents with

relatively higher betweenness centrality score. In words, agents which belong to more communi-

cation paths on average than other peers, expect to interact with other agents relatively more

often, and therefore their ex-ante payoffs are expected to be higher. Finally, we find that for an

intermediary cost per link the pairwise stable connected network belongs to the family of nested

split graphs. These are network structures where the neighbourhood of each node is contained in

the neighbourhoods of nodes with higher degrees.
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Appendix

Proof of Proposition 1. The proof follows that of Proposition 1 in Calvó-Armengol (2001). For

any player i ∈ N , define a stationary strategy σi consisting of a set of proposal (xij, 1− xij) made

by i to any other player j ∈ N , and a set of responses to the offers made to i by j such that i

accepts if and only if 1− y ≥ 1− yji. Suppose that for some t = 0, 1, ... player j rejects the player

i’s offer at round t. Then, at t+1, j offers a share 1−yjk to a selected player k 6= j that accepts it.

Thus, j gets an expected discounted payoff of δj
∑
k 6=j yjkβkj. So, in order for player j’s rejection at

t of a share 1−x < 1−xij to be credible, we must have 1−xij ≤ δj
∑
k 6=j yjkβkj. At the same time,

we must have 1 − xij ≥ δj
∑
k 6=j yjkβkj. Therefore, 1 − xij = δj

∑
k 6=j yjkβkj ∀i, j, k ∈ N . Player i

knows that any other j player accepts a share 1 − yij, in which case i gets yij. Then, necessarily

xij ≥ yij. Also, player j accepting a share 1− xij requires that 1− xij ≥ 1− yij ⇔ xij ≤ yij. Then

xij = yij. Thus, 1− xij = δj
∑
k 6=j yjkβkj and xij = yij ∀i, j, k ∈ N .

To prove the uniqueness, let xi(g) = ∑
j 6=i βjixij ∀i, j ∈ N . Then, (1) can be rewritten as

1− xij(g) = δjxj(g). Adding up we obtain,
xi(g) + ∑

j 6=i βjiδjxj(g) = 1

xij(g) = 1− δjxj(g)

Writing the first row of the system in matrix notation, M ·A = 1, with A = [x1(g), ..., xn(g)]′,

1 = [1, ..., 1]′, and M is a n× n matrix given by mii = 1 and mij = βjiδj. It is easy to see that M

is invertible and then the solution to the system is unique and given by A = M−11.

Proof of Proposition 2. A player i has the chance of bargaining a positive share of x̂ either

if picked as proposer (probability 1/n), or as receiver or in the communication path to reach a

receiver (probability βij). Thus, the payoff of each player i is the sum of the expected payoff for

each type of player. An allocation rule Y is efficient if and only if ∑
i∈g Yi(g) = 1.
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∑
i∈g Yi(g) = 1

n

∑
i∈g

∑
j∈g

βjixij(g) +
∑
i∈g

∑
j∈g

βij(1− xji)


⇔ ∑
i∈g Yi(g) = 1

n

 ∑
{i:j}∈g

βjixij(g) +
∑
{j:i}∈g

βij(1− xji)


⇔ ∑
i∈g Yi(g) = 1

n

∑
{i:j}∈g

βji = 1
n

∑
i∈g

∑
j∈g

βji = 1

since ∑
j∈g βji = 1. Therefore the allocation is efficient.

Proof of Proposition 3. Consider a complete graph Kn of n > 2. We know that by construction

bi = 0 ∀i ∈ Kn. Therefore, βi = 1 and Yi(Kn)h = 1
1 + δ

1
n

(1 + δ) = 1
n
∀i ∈ Kn. This also implies

that each player gets a payoff equal to Ui(Kn) = 1
n
− cϕi. If a player severs an active link obtains

a gain of c but a loss in terms of probability equal to (1− 5
2

1
n−1): the net impact in terms of utility

is 1
n
− 1

1+δ
1
n
(1 + δ 5

2
1

n−1). Define c = 1
n
− 1

1+δ
1
n
(1 + δ 5

2
1

n−1). It follows that for any c ≤ c, it is not

beneficial to any player to cut a link. Moreover, since the net impact 1
n
− 1

1+δ
1
n
(1 + δ 5

2
1

n−1) is the

smallest possible, if c ≤ c and G 6= Kn, each player will have the incentive to activate a new link

(if it is possible). Thus, for c ≤ c, the complete network is the unique pairwise stable structure.

Consider the empty network Ge. By construction, b̃i = 0 ∀i ∈ Ge, and Ui(Ge) = 0 ∀i ∈ Ge.

Define G′ = Ge+{ij}. Then, still b̃i = b̃j = 0, but Yi(G′)h = Yj(G′)h = 1
2 . Therefore, Ui(G

′) = 1
2−c

for player i who activates the link. Define c̄ = 1/2. It follows that for c > c̄ no player in Ge benefits

from activating a link, i.e. Ge is pairwise stable. Moreover, since 1/2 − c is the highest marginal

benefit which a player could obtain by activating a new link, in any graph different than Ge, the

players with active link would benefit from severing their connections. Thus, for c ≥ c̄, the empty

network is the unique pairwise stable structure.

Consider a general pairwise stable graph Gs of n ≥ 3 players and intermediate cost. Rank

the players according to their degree and label them such that {1, 2, ..., n} is the ordered set of

n players with ϕ1 ≥ ϕ2 ≥ ... ≥ ϕn. We start showing that for any player i the following logic

statement is true:

∃{ij} =⇒ ∃{īj′} ∀j′ < j (4)
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Suppose it is not the case and ∃{ij} but @{īj′}. Then, by definition @{īj′} ⇒ @{ij′} ∧ @{j′i}.

However, this is a contradiction to Gs since for j′ < j, i can at least optimally cut the link {ij}

and activate {ij′} weakly improving his utility. Thus in a stable network Gs, condition (4) must

be true. Recall that if all the players are link-active, it means that ∀i ∈ Gs ∃j 6= i : {ij} ∈ L.

We show recursively that the structure of Gs is nested. Start from player 1. Then, by (4) any

player j 6= 1 will be connected to 1. Take player 2. Recall that the marginal benefit of a linkage

weakly increases with the centrality score of the target player. Therefore, player 2 can only have

at most the same neighbors of 1; any link received by 2 is also active with 1 by (4). In other words,

N2 ⊆ N1. Continue until player n and we obtain Nn ⊆ Nn−1 ⊆ ... ⊆ N1, or a nested split graph.

Definition 2. (from Mahadev and Peled (1995)) Let G = (N,L) be a graph whose distinct positive

degrees are υ1 < υ2 < ... < υk, and let υ0 = 0 (even if no agent with degree 0 exists in G). Further,

define Υi = {v ∈ N : υv = υi} for i = 0, ..., k. Then the vector Υ = (Υ0,Υ1, ...,Υk) is called the

degree partition of G.

Definition 3. (from Mahadev and Peled (1995)) Consider a nested split graph G = (N,L) and

let Υ=(Υ0,Υ1, ...,Υk) be its degree partition. Then the nodes N can be partitioned in independent

sets Υi, i, ..., [ f2 ] and dominating sets Υi, [k2 ] + 1, ..., k. Moreover, the neighborhoods of the nodes

are nested. In particular, for each node v ∈ Υi, i, ..., k,

Nv =


⋃i
j=1 Υk+1−j, if i, ..., [ f2 ],

⋃i
j=1 Υk+1−j \ v if [k2 ] + 1, ..., k
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Impact of a new linkage

We study the impact of a new link on the equilibrium configuration of a given network structure.

Intuitively, a new connection potentially modifies the bargaining power of the new paired players

as much as of third players belonging to the same component. We know that, given a connected

component g, activating a linkage between two nodes i, j ∈ g creating the component g⊕ij implies

that (b′i, b′j) ≥ (bi, bj) with b′i,j the centrality scores of i, j ∈ g⊕ ij. In words, a new linkage between

two nodes i, j of the same component g weakly increases the centrality scores of the same i and

j. Moreover, for any new linkage connecting (i, j), b′j′ ≤ bj′ with j′ 6= i, j, i.e. the impact of

a new connection on the centrality scores of the rest of the nodes in the component is weakly

negative. Denote with ˜̄B(g), we indicate the average weighted betweenness of g. We can present

the following theorem.20

Theorem 1. The average weighted betweenness score of g is function of n and the distance between

the pairs of nodes d. In particular, ˜̄B(g) = (n− 1)(H̄d− 1) where Hd is the dth harmonic number.

Proof. Consider two nodes u, v ∈ N distant d(u, v) = d. Define the set P h
u,v(w) = {w| d(u,w) =

h ∧ d(w, v) = d − h} with 0 ≤ h ≤ d, and their union ∪dh=0P
h
u,v. Then, for h ∈ [2, d] we have∑

w∈Ph
u,v

b̃u,v(w) =
∑

w∈Ph
u,v

1
h
. Therefore, we derive that

∑
w∈N

b̃u,v(w) =
∑

w∈Pu,v

b̃u,v(w) =
d∑

h=0

∑
w∈Pu,v

b̃u,v(w) =
d∑

h=2

∑
w∈Pu,v

1
h

=
∑

w∈Pu,v

(Hd − 1)

with Hh the hth Harmonic number, with h from 2 to d. Then, we can rewrite the graph average
20We remark that Comellas and Gago (2007) shows that, given a connected graph g of order n, B̄(g) = (n −

1)(L̄(g)− 1), where B̄(g) = 1
n

∑
i∈g bi is the average betweenness score in g, and L̄(g) = 1

n(n−1)
∑

(i,j)∈N2 d(i, j) is
the average distance between two nodes in g. The main difference with our result is due to the fact that the modified
betweenness score discounts the length of a path between two nodes, or alternatively said, partial centrality scores
related to relatively long paths have small impact on the final probability measure.
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modified betweenness as

˜̄B(g) = 1
n

∑
w∈N

B̃w = 1
n

∑
w∈N

∑
(u,v)∈N2

b̃u,v(w) = 1
n

∑
(u,v)∈N2

∑
w∈N

b̃u,v(w) = 1
n

∑
(u,v)∈N2

(Hd−1) = (n−1)H̄d

with H̄d is the average of Hd − 1 values for each d. Note that Hd is monotonic and concave with

respect to d, and therefore, ˜̄B(g) increases at a decreasing rate with L̄. However, we remark that

for relatively small order n, the impact of small distances d could be relatively high on the final

probability. This is due to the fact that the Harmonic number is more affected by smaller distances

d.

In words, the average weighted betweenness score in a component g is function of the number

of nodes and the average length of the geodesic paths between a pair of nodes. Consequently, we

can also state that given a non-regular component g of order n > 2, increasing the density of the

graph weakly decreases the average bargaining power. This leads to lower average variance across

the bargained shares.

Suppose a component g of n > 2 players and the activation of a new link. We can define two

"types" of players: the ones activating the new link, say (i, j′) ∈ g : {ij′} /∈ g, and the rest of the

peers, say j ∈ g : j 6= i, j′. Define g′ = g ⊕ {ij′}. Then, it is easy to see that

∆βij(g′) = 1
n− 1

∑
(j,k)∈N2

∆b̃jk(i) ≥ 0

and symmetrically for j′. Moreover, the activation of the link {ij′} can only weakly increase the

centrality scores of i and j′, or ∆bi(g′) ≥ 0, but always increases the final probability of i and j′ of

1/n−1 due to the new direct connection between them; the final change on the probabilities βi and

βj′ is strictly bigger than zero. Symmetric results could be obtained for the case of link-severing.

On the other hand, the impact of {ij′} on j players depends on each individual j’s location in

the component. In particular, given cardinality n > 2, any activation {ij′} implies a reduction of
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centrality for at least one player j and at least by 1/(n− 1). However, the new linkage {ij′} could

also positively affect the centrality of a player j 6= i, j′. We expect that the final total average

impact will be negative, but the local impact on each j will depend on their respective location in

g.

Example: Computation of β scores

Figure 2

Consider the network of n = 5 players in Figure 2 and assume Ni = N . Each geodesic path σik

is picked with uniform probability 1/4. We report in Table 1 the relative probabilities (each element

defines the probability βji with j the row-player and i the column-player). Player 2 expects to be a

respondent with higher probability compared to the other nodes, given almost any receiver player,

while player 5 with the smallest chance. In terms of centrality score, the vector of betweenness

scores associated to the graph is b = (0, 5, 0, 3, 0).
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Table 1

j/i 1 2 3 4 5 βj

1 0 0.25 0.125 0.125 0.083 0.583
2 0.583 0 0.583 0.5 0.292 1.958
3 0.125 0.25 0 0.125 0.083 0.583
4 0.208 0.375 0.417 0 0.542 1.542
5 0.083 0.125 0.083 0.25 0 0.542∑
j βji 1 1 1 1 1

5.1 Example: the Florentine marriage network in 1430’s

Padgett and Ansell (1993) analysed in detail for the first time the social network which connected

the most powerful families in Florence in the 1430. In particular, the authors proposed an alterna-

tive explanation of the rise of the political influence of the Medici family which took into account

their relative "position" in the network.

Figure 3: Florentine marriage network in 1430’s. The Medici family (red) scores the highest
betweenness centrality.

Analysing only the number of connections owned by each of these families is not particularly
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insightful. The Medici family scores the highest degree but the difference with families like the

Guadagni is not striking. Looking at the betweenness centrality score instead, the Medici family

scores the highest value, 0.522, much higher than the Guadagni’s score 0.255. As pointed out by

the same authors, the Medici were in a high brokerage position between different factions, and this

could have consolidated their political power over time. Interpreting this in our context, the Medici

family was often an essential step for families from different factions wishing to communicate and

exchange information. In our setting, a high betweenness score implies high β scores, or high ex-

ante expect payoff from the bargain process. The β scores for the Medici and Guadagni families

are respectively βM = 2.97 and βG = 1.35. To illustrate the asymmetry in the partial β measures,

we observe for example that βMG = 0.125 and βGM = 0.06; Members of the Guadagni family

would cross 12.5% of the times members of the Medici family in order to communicate with other

families of the network, while members of the Medici family meet the Guadagni family less than

half of this time in order to reach other families of the community.
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