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Abstract

The analytical tractability and its maximum stability property make the
generalized extreme value (GEV) distribution an attractive choice in the theo-
retical and econometric modelling of unobservables in incomplete information
games. This paper presents new results on conditional moments of order
statistics of GEV distributed random variables. And it provides a recursive
algorithm to derive the GEV density in high dimensional problems, thereby
enabling simulating the Nested Multinomial Logit (NMNL) model on the basis
of the Markov chain Monte Carlo protocol of McFadden (1999).
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1 Introduction

Order statistics play important roles in theoretical and applied microeconomic anal-
ysis, typically in a setting of incomplete information. Conditional moments can
serve to impute unobservables, given relevant information. Closed form expressions
for them are attractive in theoretical work because they facilitate, or indeed en-
able, further analytical analysis, such as comparative statics. And they are useful
in empirical work because they avoid costly simulation and render moment based
estimation computationally more efficient. In applied demand analysis, the ana-
lytical tractability of the Generalized Extreme Value (GEV) distribution has made
it a popular modelling choice, giving rise to the family of models involving logit
choice probabilities'. This paper presents novel analytical results on conditional

distributions and moments of order statistics of GEV distributed random variables.

Decisions under uncertainty, made by “Bayesian-Nash” players, are intrinsic to
static and dynamic games of incomplete information. Typical examples of applied
interest falling into this class are auctions? and models of multilateral bargaining®.
Conditional moments of order statistics are thereby integral to the games’ Bayesian-
Nash equilibria. In auctions, for example, bidders do not know the valuations of
rival bidders, and in a setting of independent private valuations (IPV), the optimal
Bayesian-Nash bidding strategy, irrespective of auction mechanism, induces bidding
strategies whose payments equal the expectation of the second highest valuation,
conditional on one’s own bid being the highest*. An analogous result holds for
auctions with some types of asymmetric bidders®. In dynamic bargaining with
incomplete information, the analysis in extensive form games requires a notion of
beliefs about ex ante unknown gains from trade at each information set of the game,

i.e. a consistent conditional probability distribution, and its implied conditional

'McFadden (1974, 1981), and the huge literature following these papers.
2See Athey and Haile (2007) for an overview.
3 Ausubel, Cramton and Deneckere (2002); see also, e.g., Fudenberg and Tirole (1983), Chat-

terjee and Samuelson (1983), Myerson (1984); see also the related literature on mechanism design,

e.g Myerson and Satterthwaite (1983).
4Vickrey (1961), Myerson (1981), Samuelson and Riley (1981).
®Maskin and Riley (2000), Froeb, Tschanz and Crooke (1998); also Brannman and Froeb (2000).



expectation, of reaching that information set and of the gains flowing from it®.

The GEV distribution is a convenient modelling choice for unobservable or un-
certain payoffs in static games or mechanisms where agents’ optimal Bayesian-Nash
strategies involve considerations about the maximum payoff to rival agents; and in
dynamic mechanisms where an agent at any stage in the sequence considers the
maximum payoff of subsequent episodes. To the extent that those payoffs across
agents and episodes are independent, their maximum is also distributed EV type
1. The type 1 EV (Gumbel) distribution thus satisfies the maximum stability pos-
tulate”. As it turns out, the GEV distribution enjoys great analytical tractability.
The convenience of analytical tractability, paired with maximum stability, make the

GEV distribution an attractive choice to model incomplete information structures.

Analytical tractability entails the additional benefit in that it permits closed
form expressions for comparative static results, e.g. characterizing the effect of an
increase in the number of bidders on the expected revenue in an IPV auction. Such
results, next to the well-known analytical expressions for own and cross elasticities
in logit demand models, are of great value, e.g. in applied competition analysis. In
the microeconometric analysis of incomplete information games, the data typically
only capture the value of the winning agents’ optimal strategies, e.g the winning bid
or the price reached in the final of a sequence of bargaining episodes. The values
of rival agents’ strategies along and off the equilibrium path, such as losing bids
and inferior bargaining matches, typically are not observed. To the extent that
agents’ optimal strategies are constrained by, and hence depend on, such values,
structural econometric analysis needs to properly account for them. This can be
done relatively efficiently if they can be replaced - or imputed - by expectations,
conditional on observables; see, for example, Beckert, Smith and Takahashi (2015).
An analytical E (or expectation) step does not only avoid additional computations
necessary in simulation and numerical approximations, but it also improves the

precision of resulting estimators relative to their simulation-assisted counterparts®.

5Crampton (1985).
"David(1981); the Fréchet or EV type 2 distribution is the only other distribution satisfying

this postulate.
8McFadden (1989) and Pakes and Pollard (1989) provide results on the additional imprecision

of estimators due to simulation. Typically, there is a trade-off between estimator precision and



This paper provides novel results on conditional distributions and moments of
order statistics of GEV distributed random variables. These are complemented
by a result that establishes an algorithm to derive the GEV density in high dimen-
sional nested multinomial logit problems. This algorithm is critical to operationalize
the Markov chain Monte Carlo (MCMC) sampling scheme proposed by McFadden
(1999) to obtain random draws from GEV distributions in order to simulate high
dimensional nested logit models. Such models are common in the differentiate prod-
ucts literature where the number of choice alternatives can rapidly exceed 100 (Berry
et al. (1995), Beckert at al. (2015)). Simulating these models is of interest, for in-
stance, for the purpose of evaluating counterfactuals such as hypothetical mergers
and introductions of new products, or, as in McFadden (1999), to approximate mean

willingness-to-pay measures in GEV models that are nonlinear in income.

2 Framework

This section sets out the modeling framework within which the subsequent results
can be considered. For future reference, it provides two auxiliary results: It shows
(i) the well-known maximum stability property that the maximum order statistic of
conditionally extreme value distributed surpluses has also an extreme value distri-
bution, and (ii) that a restricted, two-stage nested optimization algorithm in an EV

model is consistent with an EV model on the second stage.

Consider the indirect utility, or surplus, accruing to a decision maker arising
from choice alternative k, denoted by Sk, k € K = {1,--- , K}. Let Sy = 6y + oeg,
where §; € R is a location parameter, ¢ > 0 is a scale parameter, and ¢, is an i.i.d.

extreme value type 1 residual, i.e. ¢ i EV(0,1).

Result (i): Distribution of the mazximum order statistic.

For y € R, Sk.x := max{Sy,k = 1,--- , K} is distributed extreme value, with

computational effort: simulation inflates the variance-covariance matrix of estimators inversely
proportional to the number of simulation sample draws; the computational cost, however, increases

in this number.



location parameter I = o In (2521 exp (%’“))

Proof:

FSK:K(y) = Pr<SK:K<y)
= Pr(op+oer <y, Vhk=1,--- K)

K
= HPr(ek<y_5k)
o
k=1
- e (on (-15))
= exp | —exp | —
o
k=1

R A O]

S <_exp(_ya;f>) |

and hence,

fsicnc(y) = %FSK:K(?J) = exp (—? —exp (_y - I)) |

Result (ii): Sequential Optimization.

Suppose the K choice alternatives can be partitioned such that k; € K;, j € J,
KinKi=0if j #1, and U;c, K; = K. Let K; = card(K;), and Sy, = au; + o6y,
where o, € R is a location parameter and ¢, is i.i.d. extreme value type 1, k; € K,
J € J. Assume that optimization proceeds in two steps: (1) Sk;.x, = max{Sk,, k; €
K;}, and (2) max{Sk,.x,,j € J}. Then, step (2) is equivalent to an multinomial
logit model, with J = card(J) choice alternatives, whose surpluses are i.i.d. extreme

value, with location parameters ¢; = o ln (ZkeKj exp (%’“))

Proof: This follows by backwards induction from Result (i) for the step (1)
optimization, and the standard logit model for step (2). O

This type of sequential structure is frequently observed in models of multi-
product firms (Berry et al. (1995)). Suppose that every oligopolistic firm produces

several distinct products. Consumers choose the best alternative, while the price of
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the best alternative could depend on surplus generated from the best rival product.®
In this case, the researcher may want to know the expected value of the best rival
product given a chosen alternative. The result of sequential optimization is useful

to compute such an expected value, as illustrated in the example in Section 4.

3 Some Results on Conditional Distributions and

Expectations

Consider the above framework with J choice alternatives, each with surplus S; =
d; +oej, 5 € J =A{1,---,J}. Also, for ease of exposition, suppose that S; >
Sy > 83> Sp, k>4 Let S = {S;,j € J}, and S_; = S\ {j}. Furthermore,
5.
exp(%) 5 )
let ~:—.,]:01n< e (—J>),and]_~:01n( ex —’“).
Pi Zjejexp(%]) Z]EJ P\ 5 j ZZ% p<0)

The setup in Beckert et al. (2015), for example, has J = 4.

Result 1: Conditional distribution of the second highest surplus, given the high-

est surplus.

Consider S;.; = maxS and S;_1.; = maxS \ {S;.;} = maxS_;. For y € R,

)
FSJ,1:J|SJ:J (y|SJ:J = 51) = €xp <— €xp (— (y p ! + 1111?1)))

e (oo (H155)) oo (oo (1
+— |exp | —exp | — —exp | —exp | —
p1 o o

Proof:

Pr(maxS_; < y|S; =maxS) =Pr(S; <y & S; < S1,5 € I-1) /.

9This is due to competition among firms. For the detail, see Beckert et al. (2015).
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Counsider the numerator:

P(y7 61)

E,

JET -1

0y — 0,
+ H exp (— exp (— <61 + -
JE€EIT-1

2))) (- (- -
(o

(-5

2 o

+ / exp
oo v

exp (:e>([> (: exp
(61 - eXp

y—0;

—i—/ ’ exp
exp (— exp (

y—=0;

" exp (—€; — exp(—e

—00

exp (— exp <—
-0
+p1 exp <— exp (— (y . L

g

+

I e (e (- (15

) — exp —exp(

—1Inpy)) de

110 e (exp (<251
)

Pr(S; <y & S; < S1,j € J)

y—6;

€5 <

0y — 9,

g

— 5
! ‘7+min{y

+ €

q)]
o)

5

)
)>> exp(—e1 — exp(—e1))de;
i—_] )) (1 —exp <—exp (_y —051»)

<1+ Z exp 5 061>>) de,
=)

51—




As a consistency check:

lim P(y,61) = m

Yy—+00

-1
lim P(y,d1) = exp (— exp (—y 1)) .
61 —+o00 g

i

Result 2: Conditional mean of the second highest surplus, given the highest

surplus.
E[Sy_1.71S55 =51 =0y+1+oln(l —p)/p1,

where 7 is Euler’s constant.

Proof: Result 1 implies for the first term that its mean is 6; — o Inp; + oy, while

it implies for the second term that its mean is p% [I_1 — I]. Therefore,

1
E[S;_1.5|S5.;=51] = oy+d —olnp; + p_ ([ — 1]
1

o
= oy+I1+—1In(1l—m),
b1
where v = oe. O

Remark: This is the same result as Brannman and Froeb (2000), equation (6),

using a result in Froeb et al. (1998).

exp(%)

Let 71 = J \ {1}, and define pyj 7, = —— 7~
Sieaoo()

Result 3: Probability of first and second highest surplus.

Pr(Sy; =5 & Sj_1.5 = 52) = pipayg_,-

Proof: The result follows immediately from the Markov property of order statis-

tics (e.g. David (1981), Section 2.7). It can be derived from first principles as



follows:

7 = Pr(S; =maxS§, 5% = maxS_;)
= Pr (51 > Sj,7 € J-1;5 > S,k € «7—{1,2})
= Pr(Si> %8 > Sk € T q2)

= E€2 Pr (Sl > SQ|SQ HPI" (Sk < SQlSQ)]

k>2

[T (oo (- (252 +0))
(1-o (o (- (552 )

— /eXp (—62 — exp (—€) (1 + ZeXp (6k ; 52))) des

k>2

—/exp (—Eg—exp <1+;exp( ’“_52))> des

= /exp (—e2 —exp (—e2 — Inpy 7 ,)) des — /exp (—€ey —exp (—ex — Inpy)) deg

= p2‘j71 — D2
= D2jg_.D1-
U
exp( 2
Let S_15 = {Sk, k> 2}, I 19o=0ln (Zk>2 exp ((%k)), and P22 = p( )

Result 4: Conditional distribution of the third highest surplus, given the ﬁrst
and second highest. For y € R,

Fs, 518 1.,.8,,(y) = Pr (maXS_{LQ} < y|Sy =maxS_ 1,5 = maXS)

- e (e (50 e (e (57)
= — exp| —exp| —— + —exp| —exp | —
y21 o D1 o
o R )
- exp| —exp| ——— —exp| —exp| —
DP1p1+ P2 o o
Lo (oo () ) oo e (5]
exp| —exp| ——— —exp| —exp| — .
o o

P1P2| 71
9

_|_




Proof:
Pr(S; <y,j > 2;S, =maxS_1, 51 = maxS)

Pr (maxS_q12y < y[S2 = maxS_y, 5) = maxS) = o
1P2|J-1

10



Consider the numerator:

P(ly) = Pr(S;<y,S; <52,7>2,5 <S51,k>1)

—0; dg — 0 01 — O
= Pr(€j<y j7€j< 2 ! 6, > 26 < ! 2+61>
o o o

09 — 0 — 0
= Pr<6j< 2 ]+min{y 2,62},j>2;)
o o

H {Pr (ej < 02 =9, +min{y_62,62}
o o

) (o555 )
[ () (o (555)

exp (—ey — exp (—€2)) deo

(g (5)) (e (o (- (552 +)

exp (—ey — exp(—ez)) deg

y—0g

_ /Oo exp (_exp<_62) Z;exp (5f - 52)) (1 — exp (—exp(—ez) exp (51 - 52)))

exp (—ey — exp(—ez)) deg

/fo exp <—exp (—%) Zexp (%)) (1 —exp (—exp(—eg)exp (51 - 52)))

exp (—ez — exp(—ez)) deg

= K

€2

762

= —/ ’ exp [ —ex — exp(— 1+ Z exp > desy
% JjeET -2
0;

—|—/ i exp (-62—€Xp —i—ZeXp ))) des
-0 j>2

—exp (_ exp (—-) ;exp ( )) / exp (—62 — exp(—e) (1 +exp (51 - 52))) de;
om0 o259

y—0g
(e

= [— exp (—es — exp(—eg — Inpy)) + exp (—62 — exp (—62 — lnp2|J_1))} dey

—0o0

o (oo (52 (1o (o (- (% ) ))
o (<o (22 ) (- (e (-252))

11




y — 02 Yy — 0y
= —poexp|—exp| — T—l—lan +po7,exp | —exp| — T+lnp2‘J1
I 09
—exp <— exp (——y pu {172})> p2|12 (1 — eXp (— exp <— (—y o + lnp2|12)>))
I _
cow (0w (-1702) ) (1-ew (—ow (-122) ) )
o o
— 0 — 0y
= —p2exp (— exp (— (y - 2+ IHPQ))) + p2|7_, €xp (— exp (— (yT +1Inpgg_,
(oo (-=512))
—D2j12€Xp | —€Xp T,
I 09
+D212 €XP (— exp (—%) (exp (%) + exp (— —Inpy gz 1)))
-1 I_ )
+ exp <exp (—w)) exp (— exp <_2) exp (ﬁ + exp <—2)))
o o o
y—14
= —p2exXp | —exp T+ P2j7,€Xp | —exp | — .
—1_ -1
—Pa2|12 €XP <— exp ( o & 2}>) + P2j12 €XP (— exp (_y p ))
—1_ —1_
+exp (exp (—w)) — exp (—exp (_y 1)) .
o o

COIlSiStGHCy check: 1imy—>+oo P(y) = —p2 + P2y, = p2|J_1(1 - plc) = DP2jg_.P1,
where pic = exp ( ) / exp ( )

Furthermore, denoting m = pips7_,,

D2 i1 €XP (%) 1—m
pfm = P1P2|g_y a exp (%1) o
Pz, 1
T ;
P22 eXp (62) 1
T exp ( ) + exp (;2) P12\ g4
1 2 jeg OXP <%> Ok
T w2 (o)
1 1=—p
C opipi e
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Result 5: Conditional mean of the third highest surplus, given the first and
second highest.

1-— 1 1-— 1 \
E [maxS_{LQ}|Sl = maxS, 5 = maXS_l] = a-— Piy + —1 4 — b1 oln(l —p; — ps
D1 D1 D1 P11t P2
+ oln (1 —po 7
P1p217_, ( o 1)

where « is a constant.

Proof: This follows from Result 4 and

k=2 XD (%k)

D jeg OXP <%]>

= oln(l —p; — po)
D>z OXP (%k)

Djeg., P (%)

= oln (1 —p2|3_1) .

[_{172} —I = oln

]_{172} — I_l = oln

Result 6: Probability of first, second and third highest surplus.
Pr (Sl =maxS, S =maxS_1,53 = maxS_{LQ}) = P1P2 T 1 P3IT_ 1.0y

Proof 1: This follows from the Markov property of order statistics, and from
Result 3, by induction. U

Proof from first principles: Let

T = Pr (51 =max S, Sy = maxS_q, 53 = maXS_{Lz})
= PI‘(Sl > SQ,SQ > 53;53 > Sk,k > 3)

) 09 — 0 03 — 0,
= PI‘(€2< ! 2+61,€3< 2 3+62;€k< 3 k+€3,k}>3)
o o o
03 — 0, 01 — O 03 — 0.
= E, HPr € < 3 k+€3|€3)Pr(€2< ! 2—|—€1, 3 2+€3<€2
o o o

= E, HPr 63)

[ 03 — O 01 — O
E., Pr(3 2+€3<62< ! 2+€1
| o o

)

03 — 0O
€k<3 k

+€3

x~
Vv
w
7~ N 7 N

€1, 63)

13



Consider the inner conditional expectation, and define pi|12 = p1j7, =

w)asB20 ]
N O O ) R G S )]

o

exp(—e; — exp(—ey))de;

e O
(555 ) (o ol (552))
= P <1 — exp (— exp (- <53 ; i +et hlplm))))

oo (- (855 ) e e o (255) o (552

Inserting back into the outer expectation,

Moo (-o(-(25%)))

= DP112P3|7 15 — P1j12P3 — P37, + P3

exp(%l)-l—exp(%)
and similarly for ps; 7 ()

d3 — 01

03 — O 0 — O
M :IE‘;Q{Pr(3 2—|—€3<€2< ! 2+61 € >
o o

7T2:E

€3

= P12 [p3|j,{1,2} —pg] — P3jg_1P1
= DipeDs3|g_; oy P12 — P3|y D1
= p]. |:p3|‘7_{1’2} _p3‘j711|

= DP1P2|g-1P3|T 123
O

Result 7: Conditional distribution of maxS_gi 23y, gwen S > Sy > S3 >

max 87{1,273} .

P(y)

Pr (maxS,{1,273} < y|S; = max S, Sy = maxS_1,S3 = maXS,{LQ}) =5

14



where R is as in Result 8, and

Plyy = A+B+C+D+E+F+G+H

y—1 q12
A = D112P3|T_ (1 2y €XP (— exp (—%))

-1
B = —pipapsexp <— exp (_y - ))
—I_
C = —p3|L771 exXp (_ exp <_y - 1))
-1
D = psexp (— exp (_y_>)
o
I _5
EF = D112 €Xp <— exp (—w)) (1 — exp (_ exp (_y 3)>)
g o
y—1I_qp, —1
F = —P1j12 €XP (— exp (-%)) D323 (1 — exp (_ exp (_y . 123)))
I S
G = —exp (— exp <_—y {1’2’3})) D323 <1 — exp (— exp (_y 23)))
g o
I g
H = exp (— exp <—w)) P (1 — exp (— exp <_u>>) _
g o

Proof: R follows from Result 6. Furthermore, for any y € R,

P(y) = Pr (maXS_{17273} <y,S; >8> S5 > rnaXS_{Lg,g})
05 — 0
= Pr ({ej <2

-4 03 — o o — O
—|—min{y 3,63},j€{4,---,J}},63+ 30 2 <at 10 2)

0 )

= E, HPr (€j< 63_5j+min{y_53,63}
o

’ o
Lj>4

= E, HPr (€j< 53_5j—|—min{y_53,63}
o

’ o
Lj>4

03 — 0 01 — 0
eg)Pr(63+ 30 2<62<61+ 10 2

)

d3 — 0
61763) ;€L > > ! +€3H
o

) M] |

01 — 0y

03 — 0.
Eel |:PI‘(€3+ 30_ 2<€2<€1+

53— 6,

-0
—l—min{y - 2 €3}

I
=
—
g
}—U
—
7 N
o
AN
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where M is as defined in the proof of Result 6. Therefore,

exp (— exp (—63)(; exp <6j ; 63))) Lecr=my

on (o0 (-2) (Z oo (%)) 1|

o (1wt o (555 oo (5559
e (e (252))

con{-emt (o (552 en (255

In this expression,

A = / oo exp (— exp(—es) (Z exp (5j - 5))) Prjiz exp(—e; — exp(—es))dey

j>4

_ Yy — 03
= D1)12D3|J _(10y XP | — €XD T, 1HP3|J,{1,2}

y—1 (2
= p1|12p3\\7_{172} €Xp | —€xXp _T

B = —/_OO exp (—exp(—eg) (Z exp (‘53' ; 53))) Piji2 X

j>4
exp (— exp(—e3) <exp (51 ; 53) + exp (52 ; 63))) exp(—€s — exp(—€s))des
- (-ow (457 )
= Pypsexp | —exp | —T—— — In p3
y—1
= —P1)12P3 €Xp (— exXp (— > ))
¥y—93
C = —/ ’ exp (—exp(—e;;) (Zexp (5j_63>>> X
o
—o0 >4

exp (— exp(—ez) exp (52 — 53)) exp(—e3 — exp(—e3))des

y—1_,
= —P3jg_,€Xp| —€Xp | — .

P(y> = Eea

16



b= [ OO xp <—eXp(—€3) (;GXP (%))) y
oo (o (o (P25) s (222)) Yt
e (o221
B = /OO exp <—exp & <‘24 exp <%ﬂ)>) Piis exD(—es — exp(—es))des
L)) (1o 255)
roe (e () (S

(
s (-t (o (2 o (225) s -t

- (25 s oo (522
G = — /OO exp (—exp (-%) (2 exp <%)>> exp (—eXp(—63) exp (52 - 53)) x

exp(—e3 — exp(—e3))des

)25
m = [ (- () (Sen(2))
exp (— exp(—e3) (exp (51 ~ 53) + exp (52 ~ 53))) exp(—e€s — exp(—e3))des
~ e (_ exp (_y — I;{1,2,3})> Psjiz3 (1 — exp (— exp (—y_TIm))> :

from which the result follows. O

Q

Consistency check:

lim P(y) = P1112P3|J_(1,0y — P1)12D3 — P3|g_1P1 = P1D2|J_1D3|T_{1,23

Yy—+00
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Result 8: Conditional mean of maxS_g1 23y, given S} = max S, S = maxS_y, 53 =

max 57{172}.
E| _ _ _ _p4
max S_g1 23151 = max S, Sy = maxS_y, S5 = maXS,{l,g}} =06+ I

where [ is a constant, R is as in Result 8 and

1
Q = pipepsig oo l-012y — Prpnepsl — payg 11 + psl + P2 (I_pi23y — I-1.2})

1 1 1
~P1j2Pspas (Igios — 1) — Psps— (I_f123 — 1) +P3|123; (I_fios —1).

Proof: The result follows from Result 7, and (except for constants that involve

Euler’s constant and are subsumed in [3)
/Ady = PiePs|g_qo l-112}
/de = —piepsl
/Cdy = =Pz i

/D@ — pol

I_ I_
/Edy = p1|12[ {(17’2’3}— {172}}

g
/de = —D112P3| T 25 ll{;%} B ﬂ
/ Gdy = —psps {1{22»3} _ % ]
/de = Pysim [1—_{;2,3} B ﬂ .
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4 Extensions to the Generalized Extreme Value

Distribution

4.1 Analytical Results

The generalized extreme value (GEV) distribution is the basis of the nested multi-
nomial logit (NMNL) model. Consider the specific case in which a decision maker
has one outside option and J = #J inside options; the GEV CDF of this model,

henceforth referred to as model G, is

F(ej,j€{0,T}) =exp | —exp (—%) - (Zexp (—0(16—1)\))> _ ,
Jj€ET

where A € [0, 1] captures the correlation of the inside options. When a researcher
analyzes a consumer’s choice from a particular group of products (e.g., automobiles),
all other alternatives are lumped into the outside option. Thus, in applications, it
is very important to allow the correlation between shocks of inside products and
correlation between the outside option and an inside product to differ from each
other.

Notice that

F(ej,j € J-1) =exp | — Z exp (—ﬁ) ;

JE€EIT-1
and
F(e;) = exp (— exp <—2)> , 7=0,1,--- J
o
Also,
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Finally, let P, denote the NMNL choice probability of alternative 1,
exp (=2 ) (Y., ex 5 )7
P\za—xn jeg SXP \ sa—n
5 5 1—x
exp (2) + <Zjej exXp <a(1j—,\)>>
-2
0;—0
(Seaes (75))
_ si—6 \ )\
exp (60061) + (Zjej exp (—0(71_;\)»

which reduces to the MNL choice probability p; when A = 0.

P =

In the MNL model with i.i.d. EV(0,0) residuals, it is well known that

E[51|Slzmaxj] = 61—Ulnp1+06
= ;+oln 1+Zex (6j_51) + e
- 1 A P P )
Jj€EIT-1

where p; is the MNL choice probability for alternative 1 and e is Euler’s constant.
The corresponding result for the NMNL model is

Result 9: Under model G,

E [S1]S1 = max {J U{0}}] =61 + oln Dy + o7,

1-)
where Dy = exp (2=2) + (Zjej exp (%)) .
Proof: Start by considering

Pr(S; < y|S; = max {J U{0}}) = Pr(Si <y & 51; max {J U {0}})
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Ply) = Pr(Si<y & Sy =max{J U{0}})
= /y Pr(Sy < 551 = s)Pr(S; < 5,7 € J-1]51 = s) fs,(5)ds

_ /y Pr(Sy < 551 = $)Pr(S; < 5,j € T4 & Sy = s)ds
= /_:61 exp ( exp (-%1) [exp (50 ; 51) + (;7 €xp (%)) ) ] )
(Eor () ot
S } )
(T () [ e () e (e (-2) 22

—0o0

y=or €, —olnD, €1 —olnD;
= P —exp| —————exp | ————— | | dey,
e O o o

from which the result follows. O

Note that Result 9 implies the well-known result for the conditional mean in the
MNL model. Also, since

o= (-2) ( (%) + (Soo (ﬁ») |

Result 9 implies the symmetry property,

E[S;|S; = max {J U{0}}] = E[S|S, =max{J U{0}}]

1-2
do J;
—_— O'lIl (exp (;) —I— (Z exXp (m)) ) s
JjeJ
Result 10: The distribution of the maximum under model G is EV(I()), o),

where
reon 8]+ ()
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for any j,k € J.




Proof: This follows from

P(y) = Pr(max{J U{0}} <y)
= Pr(S;<y,j=01---,J)

) ()

Notice that 7(0) = I, the conventional inclusive value and expectation of the

maximum in a standard logit model.

Let M_; = max{S;,j € {J-1 U{0}}}. A corollary to this result is that the
distribution of M_; is EV(I_;(\), o), where

I1(\) =oln |exp <%) +| 2 e (ﬁ)

Jje€IT-1

1-X

Result 11: The conditional expectation of the second-highest surplus, given the
highest surplus, in model G.

1
E[M_4]S =max{S;,j € JU{0}} =6 +0clnDy +0oy+ i [I(A\)_1 —I(N)],
1
P, the NMNL choice probability of alternative 1.

Proof: Notice first that

P(y) = Pr(maxS_; <y|S =max{S;,j € JU{0}})
= Pr (maXSj < y,j e J & Sj < Sl,j eJ 1 U {0}) /Pl,

where P; is the NMNL choice probability for alternative 1.
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Next, consider the numerator of the above expression,

N(y) = Pr(maxS;<y,jeJ & 5; < S1,j€ J1U{0})
= E., [Pr(e <d—d;+e,jedaU{0}ea <y—0d)
+Ee, [Pr(e; <y—10;,j € TaU{0}|er =2y —d1)]
= E,[Pr(e<d—0j+e€,j€Taler<y—01)Pr(e <d—do+e]er <y—o1)]
+Ee, [Pr(e; <y—0d5,j € Tala>y—d)Pr(e <y—dle >y —d)

y—b1
= / Pr(ej <51—5j+€1,j Gj_bfl)Pl“(éo<51—50+61|€1)d€1

—00

—l—/ Pl"(Ej <y—5j,j67_1,61)Pr(60<y—50)d61
y—01

o i)
(Z; - (a%l_fb)) .

(o i) S o)) oo (5))

JE€EIT-1
5 5 1-A
—exp | —exp <—%) exp (f) + (Z exp <0(1—J_>\)>> )
JjeJ
Using Result 10 yields the result. U
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4.2 Empirical Example

Suppose that J firms compete in a differentiated-product market and each firm offers
multiple products. The set of products that firm j produces is denoted by ;. Each
consumer chooses an alternative from the common choice set K = (J,;c, K;. The
indirect utility of choosing alternative k; is given by Sy, = ag, + o€y, for k; € Ky,
J € J, where ¢, is i.i.d. extreme value type 1. We may be interested in the expected
value of indirect utility of the best alternative and the expected value of indirect
utility of the best rival product. Let M_; = max{Sy, k € £\ K;}. Then,

Result 11: The conditional expectation of the best rival surplus, given the high-

est surplus, in model G.

1
E [ij|5kj = maX{Sk, kelku {0}}} = 6163- + O'IIIij + a7y + F [[,J()\) — [()\)] s
J

where
1-\

S I

kE/C\’Cj

and P; is the NMNL choice probability that a consumer chooses one of the products
produced by firm j:

Py = ijelcj P

5 GEV Sampler

This section describes a practical method to draw a random sample € = {¢; }3]:0 from
model G. The building block for the method is an MCMC procedure developed by
McFadden (1999).

Theorem (McFadden, 1999): Construct vectors € recursively for t = 1,...,T.
At step t, draw (0,1) uniformly distributed random variables 7' and C; for j =
0,1,..., J. Define € = —olog(—10g(¢})), g¢ =/— (—C}log(¢})), and f, = 07 F(€") /0€...0€.
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Then, ¢ is a draw from g(-), g = g(¢"), and f; = f(€'). Define a Markov chain

~t et frge—1
€ lf /’7 S ftflgt .
t—1

€ otherwise

m(‘#
Il
——

Call the vectors €' obtained in this manner a GEV sampler. Let f®(¢) denote the
density of the vector €' obtained at step t of the sampler, conditioned on €. Then,
the sequence €’ is an irreducible, aperiodic, Harris recurrent Markov chain, with the

following properties:

1. For any €, [*_|f(e) — f¥(e)|de — 0 as t — +oo;

2. For any real-valued function A(-) that is integrable with respect to f, the
process is strongly ergodic, with ST h(éh) — Eh = [ h(e) f(e)de almost
surely as T" — 4-00.

Thus, we can obtain a sampler, whose density is arbitrarily close to the true den-
sity. The next subsection describes how to compute the density f; = 87 F (") /0¢,...0¢.

5.1 GEYV density for the Nested Logit Model

Consider a generalized extreme value based nested model, with S’ij = 0;j +ov;j, and

the CDF of v; = [vy]eq0,7} is given by

F(v;) = exp| —exp (—?)—(

where

A(vp) = exp (—exp <_7)>
B(vjj€J:) = exp |- (Zexp (_mD _



Notice - as a check - that the term B also factorizes into the product of EV(0,0)
CDF's when A = 0.

Then,

0 0
vig Fli) = BaVio

where fo(vy0) = %exp (—% — exp (_m)) is the EV(0,0) pdf.

[

A(vio) = fo(vio)B,

Denote sum in the exponent of the exponential in B by C i.e.
C = Clv;jeds)
= Yo <_L) 7
jed; o(l=X)
so that
F(v;) = A(vy) exp (—C<Vij;j € Ji)lf’\) )

Tedious calculations yield the following result: For J; = #7;,
aJi-‘rl
fwi) = ———F)
H;‘TZ:O i

J;
= Jo(vio) [Hgo%) B(vijij € J) [Clvijsj € T) ™" + 0(A) + 0o(A%) + - - + o(A )],

(5-1)

where go(v;;) = = exp <—U(lfjk)> and o(\),0()\?),--- is a function of X\, A%, and so

on. Notice - again as a check - that A = 0 implies that f(v;) = H}]i:o fo(vij)-

5.2 Example

Consider the case of J; =4, and let B = B(v;5;j € J;) and C = C(v;;;5 € J;)-
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0 1 Vi1 A
B = Bexp(-——2%
vy, o *xp ( o(l— )\)> ¢

= go(Vﬂ)BciA

0 —2A A
Gyﬂayig B go(Vﬂ)gO(ViQ)B |:C + mc :|
0 o, BA o AN
Dol = 90(vir)go(viz) go(vis) B {C 1 3¢ T WC
o : o, BN s, BARAFD AN iy
AMLI+N24+A) s
+ (1= ) C .
Hence, in the case J = 3,
3
_ BN oy AMIHN)
_ 3 23—1 A-2
f(vi) = fovio) Ll_[l 90(vi;) | B [C +17 3¢ T WC )

while X

Fwi) = folvio) [H 9o(vij) | B(viji j € Ji)C(vigs j € Ti) ™

j=1
and in the case J = 4,
3
_ 6A vy BACAFL) AL+ N) o
4N 3\ 2\—2

f(Vz) = fO(ViO) jl;[lgo(l/ij) B |:C + mc 1 + (1 — )\)2 C R

AML+N)(24N) (A3

(1=A)3 ’

while .y

fw) = folvio) [H 90(vis) | B(vijij € Ji)Clvigij € Ti) ™™

=1

5.3 Recursion
This subsection provides a recursive characterization of o(\), 0(A\?), -+ ,0(A7i71) in

equation (5-1), which can be used in practice. For notational convenience, drop the
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index 7. Let J > 2, and in the expression for f(v) above consider the term in square

brackets at level J:
D(J) = 11y O~ 4 4, O~V oy oAV,

where 1.7, -+, 7.7 denote the respective coefficients on the powers of C' at level J

which are functions of powers of A. With this notation,
D(J+1) = 11y2C" P 4y O o 400 O

Note, from the example, that

Y0 = Vg1 =1
ML HA) (T =24
MLI4N) - (J=14N)
VI+1:d+1 = (1 — )\)J .

The remaining coefficients at level J + 1 can be constructed from those at level J

as follows:
gJA
V2041 = 7111)\ + Yo.s
gJ(J=DA+1
V3041 = 2 (( 1 _)\) ) + V3.g

1.7 2N+ (J =2
YIJ+1 = 2L 1J(1_>\( )) +’YJ:J-

The proof follows by induction. Consider the derivative at level J:

o’ ! . T (-
———B =[]0 B[CT 40, C P oy, 07U
Hj:l I j=1

Let D(J) = C~ 4 7, C- 001 4y 0A-1),
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Then,

97 +1 J o
— B = v —B|D(J)+ B D J}
H;];rll v; ]1_[190( 2 Hayﬁrl } () Vjt+1 (J)
J+1 7 (- DA+ 1
= TLot) [BCDW) 4 B |20, o
j=1 1 - )\ 1 — )\
A+J -1,
+7J:J 1— 2\ O :|:|
J+1

= H gO(VJ)B [C’—(J-‘rl))\ + ,yQZch—J/\—l NI ’YJ;JC_QA_(J_D T
j=1

JN (J—DA+1
mc + V2. 1 ——>\

J+1 I
= [Joo)B [c—(J+1)A+ {%:JJF _} -1
J=1

AJ =1

C-U-DA-2 .
+eeet VT

1—1IA

(J_ 1)>\+1:| C_(‘]_l))‘_2+.. A“_J_ 1O_>\_J:|

|:’V3:J‘|"72:J -\ NI T

which establishes the recursion.

6 Conclusion

This paper presents new analytical results for conditional expectations of order
statistics resulting from independent GEV distributed random variables. These
results are useful in many economic models of incomplete information games that are
applied in demand and competition analysis, to enable comparative statics analysis
and to render their estimation more efficient. The paper also offers a recursive
algorithm to derive the GEV density in high dimensional problems that are common
in the differentiated product literature, thereby providing an essential building block
for the MCMC algorithm to simulate NMNL models proposed by McFadden (1999).
Given the overwhelming popularity of the family of GEV models in applied economic
analysis, these results can be expected to be useful to a wide community of applied

microeconomic researchers.
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