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Abstract

We study the problem of elicitation of subjective beliefs of an agent when

the beliefs are ambiguous (the set of beliefs is a non-singleton set) and the agent’s

preference exhibits ambiguity aversion; in particular, as represented by α-maxmin

preferences. We construct a direct revelation mechanism such that truthful re-

porting of beliefs is the agent’s unique best response. The mechanism uses knowl-

edge of the preference parameter α and we construct a mechanism that truthfully

elicits α. Finally, using the two as ingredients, we construct a grand mechanism

that elicits ambiguous beliefs and α concurrently.

JEL CLASSIFICATION: D81, D82

KEYWORDS: Ambiguity, α-maxmin preferences, maxmin preferences, elicitation

of beliefs and α



1 Introduction

In this paper, we study the problem of elicitation of beliefs of an agent when the be-

liefs are ambiguous and the agent’s preferences exhibit ambiguity-sensitivity. As an

(perhaps the most common) application consider a policy maker (principal) who

needs to take an action the outcomes of which depend on the realization of some

random event, and an expert (agent) who has private information regarding the like-

lihood of occurrence of the event (henceforth we will simply call this the “belief of the

agent”). There are well-known methods for eliciting beliefs when agents have unique

priors (in decision theory, such agents are said to have “probabilistically sophisticated

preferences,” an example being Subjective Expected Utility). In particular, using tools

from mechanism design theory, researchers have shown how an agent’s beliefs can be

elicited through the use of direct revelation mechanisms in which the agent’s unique

best response is to truthfully report the beliefs.1 The objective of this research is to

extend this to situations when the beliefs are ambiguous (non-unique priors) and the

agent’s preferences exhibit sensitiveness to ambiguity. In particular, in this paper we

consider the case of α-maxmin (α-MEU) preferences.2, 3

There are two problems that one encounters when going from eliciting beliefs of

subjective expected utility maximizers to eliciting ambiguous beliefs of agents with

alpha-maxmin preferences. The first of course is that a set - rather than a singleton -

needs to be elicited. Here, we use insights from the mechanism constructed in Karni

(2009).4 In fact for the special case of maxmin (MEU) preferences, our mechanism can

1Earliest work in this literature is from the 1950s showing construction of proper scoring rules

which are precisely direct revelation mechanisms where truthful reporting is the agent’s best response.

The earlier works assumed knowledge of the agent’s utility function (in fact the earliest assumed risk-

neutrality); this was subsequently relaxed through the use of random scoring rules. See the review

article by Gneiting and Raftery (2007). The paper by Karni (2009) is the most relevant for our purposes

and we discuss the connections shortly.
2See Hurwicz (1951), Jaffray (1989), Ghirardato, Maccheroni, and Marinacci (2004). We also show

how to elicit ambiguous beliefs when preferences are maxmin (MEU) (Gilboa and Schmeidler (1989))

- a special case of the α-maxmin.
3The work reported here is part of an ongoing larger project of ours on eliciting of ambiguous

beliefs.
4Karni’s mechanism goes beyond eliciting beliefs of agents with subjective expected utility prefer-
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be thought of as a natural extension of the mechanism in Karni.

The second problem is that attempts to elicit beliefs from choice data run into the dif-

ficulty that what is recovered from such attempts include not just the agent’s beliefs

but other aspects of the agent’s preference, for example, the agent’s attitude towards

ambiguity. Specifically, an agent with α-maxmin preferences evaluates an act by con-

sidering the weighted average of the worst expected payoff and the best expected

payoff with α and 1− α being the two weights. The parameter α reflects the agent’s

attitude towards ambiguity (alternatively, degree of optimism and pessimism) and

is different from the agent’s (ambiguous) beliefs. However, beliefs estimated from

choice data will result in obtaining “as if” priors that will incorporate interaction of α

with beliefs.5

We solve this problem by expanding the scope of the mechanism. Our direct revela-

tion mechanisms ask the agent to report the agent’s entire “type” where type includes

not just the beliefs but other (privately known) aspects of the agent’s preferences. At

first blush, it is not clear why that should help; after all the mechanism will now have

to satisfy incentive compatibility type constraints not just for reported beliefs but for

those other aspects of the preferences as well. Nevertheless, as we show in this paper,

this approach does allow us to “disentangle” beliefs from those other aspects of the

preference. To help understand how our mechanism works, in our exposition, we

break up the “grand” mechanism into smaller parts. First we describe a procedure

that truthfully elicits the beliefs if α were known to the designer. Next, we show a

procedure that truthfully elicits α. This might give the impression that we need to

run the mechanisms sequentially, eliciting α before eliciting beliefs, and ensure that

the first mechanism does not contaminate the second. However, these concerns do

not arise here. After we present the two mechanisms separately, we show how to

combine them into a single mechanism that concurrently elicits the beliefs and the

parameter α truthfully.

ences and in fact works for all probabilistically sophisticated preferences.
5In this respect, α is reminiscent of “nuisance parameters” in the statistical estimation literature.
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2 Preliminaries

The objective of the mechanism designer is to elicit the agent’s ambiguous beliefs

regarding an event E. Let [ µ, µ ], with 0 ≤ µ < µ ≤ 1 represent the ambiguous beliefs

about E. The convention is that µ ∈ [ µ, µ ] is the probability that E happens; therefore

1− µ is the probability that event Ec, the complement of E, happens.

The agent’s risk preference is reflected in the vN-M utility function u(·). Note that in

the mechanisms we consider, the mechanism designer does not need to know u(·).

We assume, as is common in most of the literature, that all departures from expected

utility is due to ambiguity aversion. In particular, this means that the agent’s payoffs

from objective compound lotteries is exactly the same as an expected utility maximizer’s

with same risk preferences.

We will consider direct revelation mechanisms. By eliciting we mean that truthful

reporting is the agent’s unique best response when facing the mechanism.

2.1 Some further notation

In the following, x, y, z, etc. will denote monetary payoffs. We assume the agent

strictly prefers more money: for x > y, we have u(x) > u(y).

xEy denotes the (subjective) act that pays x if event E happens and y if event E does

not happen (i.e., event Ec happens).

For p ∈ [0, 1], `(p; x, y) denotes the objective lottery that pays x with probability p

and y with probability 1− p. For p ∈ [0, 1] p′ ∈ [0, 1], q ∈ [0, 1], and prizes x, y, w, z,

let L(q; `(p; x, y), `(p′; w, z)) denote the objective compound lottery that “pays” the

lottery `(p; x, y) with probability q and the lottery `(p′; w, z) with probability 1− q.
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3 Belief elicitation

For prizes w and z, and given that the agent’s set of beliefs regarding the event E is

the interval [ µ, µ ], payoff of the agent from the act wEz is

[α]

[
min

µ∈[ µ,µ ]
[µ][u(w)] + [1− µ][u(z)]

]
+ [1− α]

[
max

µ∈[ µ,µ ]
[µ][u(w)] + [1− µ][u(z)]

]

One can readily see the problem of belief elicitation with such preferences. For prizes

x > y, the agent’s payoff from the act xEy is given by

α
[
µu(x) + (1− µ)u(y)

]
+ (1− α) [µu(x) + (1− µ)u(y)]

which is equal to

[u(x)][αµ + (1− α)µ] + [u(y)][α(1− µ) + (1− α)(1− µ)]

The agent’s observed choices therefore will be indistinguishable from those of an

agent with subjective expected utility (SEU) preferences with a unique prior αµ +

(1− α)µ for the event E.

Of course the agent does not truly have a single prior belief and that can be captured

by giving the agent the act yEx. However even in that case the agent’s elicited belief

will conform to the prior α(1− µ) + (1− α)(1− µ).

Essentially, the problem for belief elicitation is that (irrespective of the monetary

prizes chosen,) the agent’s “as if” prior incorporates interaction of the preference pa-

rameter α with the true set of beliefs.

The way we overcome the problem of disentangling the preference parameter α from

the set of beliefs is to employ procedures for eliciting beliefs and the parameter α. To

ease exposition we first describe them as two completely separate procedures: one

procedure for eliciting beliefs assuming the value of α is known to the designer (see

section 3.1) and another to elicit the preference parameter α (as shown in section 3.2).

We then show in section 3.3 how the two can be combined as a single mechanism that

elicits the set of beliefs while also eliciting the true value of the preference parameter

α.
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3.1 Eliciting beliefs; α known

In this subsection, we assume that the mechanism designer knows the value of α. The

main result is that except for α = 1/2, it is possible to elicit agent’s beliefs through

the use of a direct revelation mechanism in which truth-telling is the agent’s unique

best response.6

Theorem 1 Let [ µ, µ ] be the agent’s ambiguous beliefs for the event E and the agent has

α maxmin preferences. Suppose α is known. Then, for all α 6= 1/2, there exists a direct

revelation mechanism such that the agent’s unique best response is to report truthfully the

belief set [ µ, µ ].

The proof is constructive: we describe the mechanism that elicits beliefs truthfully.

Γbelief(α): Mechanism to elicit α-MEU beliefs

1. The agent is asked to report the belief set. Let [r, r ] denote the reported be-

lief set. (Of course it suffices to ask the agent to report the two numbers - the

minimum and the maximum - of the set.)

2. The mechanism chooses, with (objective) probability 1/2, either scheme A or

scheme B. For either scheme, two numbers, drawn independently according to

the uniform distribution over [0, 1] are used; let the smaller (larger) of the two

numbers be p ( p ).

• Scheme A: The mechanism calculates the two terms αp + (1 − α)p and

αr + (1− α )r.

– If

αp + (1− α)p ≥ αr + (1− α )r

the agent is given the lottery L( α; `( p; x, y), `( p; x, y) ).

– If on the other hand

αp + (1− α)p < αr + (1− α )r

the agent is given the act xEy.
6However, see the discussion toward the end of this subsection for the case when α = 1/2.
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• Scheme B: The mechanism calculates the two terms [α][1− p ] + [1− α][1−
p ] and [α][1− r] + [1− α ][1− r ]

– If

[α][1− p ] + [1− α][1− p ] ≥ [α][1− r] + [1− α ][1− r ]

the agent is given the lottery L( α; `( 1− p; x, y), `( 1− p; x, y) ).

– If, on the other hand

[α][1− p ] + [1− α][1− p ] < [α][1− r] + [1− α ][1− r ]

the agent is given the act yEx

§

A few remarks before we continue. First, in both schemes “tie-breaking” rule is to al-

locate the lottery in the case of equality; it can be checked that nothing would change

if the tie is broken the other way and the agent is awarded the act. A second, and

more important, issue is the timing of the randomization. While it does not matter

if the agent submits report before or concurrently with the choice of scheme by the

mechanism, an important assumption is that the resolution of uncertainty regarding

the event E happens after the randomization to choose the scheme.7

7Let πA(r, r, µ) and πB(r, r, µ) be the payoffs from scheme A and B when the prior is µ. As noted, it

is important that the randomization to select the scheme is done prior to the resolution of uncertainty

regarding the event E. In other words, when faced with the mechanism, the agent chooses r and r to

maximize [
1
2

] [
(α)

(
min

µ∈[ µ,µ ]
πA(r, r, µ)

)
+ (1− α)

(
max

µ∈[ µ, µ ]
πA(r, r, µ)

)]

+

[
1
2

] [
(α)

(
min

µ∈[ µ,µ ]
πB(r, r, µ)

)
+ (1− α)

(
max

µ∈[ µ,µ ]
πB(r, r, µ)

)]
If, on the other hand, the randomization to select the schemes are done after the uncertainty regarding

the event E is resolved then the problem faced by the agent would be to choose r and r to maximize

(α)

(
min

µ∈[ µ,µ ]

[{
1
2

}
{πA(r, r, µ)}+

{
1
2

}
{πB(r, r, µ)}

])

+ (1− α)

(
max

µ∈[ µ,µ ]

[{
1
2

}
{πA(r, r, µ)}+

{
1
2

}
{πB(r, r, µ)}

])
and in that case the mechanism may cease to be incentive compatible.
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We prove the result in two steps. We first show in the following lemma that the

agent’s best responses r and r must satisfy a set of linear equations. Using this result,

we then prove Theorem 1 by showing that for α 6= 1/2 the unique best response must

be to choose r = µ and r = µ.

Lemma 1 For an agent with the α-maxmin preferences, the best response when facing the

mechanism Γbelief(α) above is to submit reports r and r that satisfy the two equations

αr + (1− α )r = αµ + (1− α )µ (3.1)

and

(1− α)r + αr = (1− α)µ + αµ (3.2)

Proof of Lemma 1: The arguments are essentially the same as those used to show

that truthfully reporting one’s true valuation is the weakly dominant action in a Vick-

rey (second price) auction.

The agent’s payoff from the act xEy is

[u(x)][αµ + (1− α)µ] + [u(y)][α(1− µ) + (1− α)(1− µ)] (3.3)

whereas payoff from the lottery L( α; `( p; x, y), `( p; x, y) ) is

[u(x)][αp + (1− α)p] + [u(y)][α(1− p) + (1− α)(1− p)] (3.4)

Similarly, the agent’s payoff from the act yEx is

[u(x)][α(1− µ) + (1− α)(1− µ)] + [u(y)][αµ + (1− α)µ] (3.5)

and payoff from the lottery L( α; `( 1− p; x, y), `( 1− p; x, y) ) is

[u(x)][α(1− p) + (1− α)(1− p)] + [u(y)][αp + (1− α)p] (3.6)

Now suppose the agent reports r and r such that equation (3.1) is violated; in partic-

ular, r and r such that αr + (1− α )r > αµ + (1− α )µ. (The arguments for the case

when αr + (1− α )r < αµ + (1− α )µ are similar.)
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Suppose Scheme A is chosen. If p and p are such that αp + (1 − α)p ≥ αr + (1 −
α )r, the agent is awarded the lottery L( α; `( p; x, y), `( p; x, y) ), resulting in payoff

[u(x)][αp + (1− α)p] + [u(y)][(α)(1− p) + (1− α)(1− p)], which is exactly the same

payoff that would result if the agent reported αr + (1− α )r = αµ + (1− α )µ. Simi-

larly, if αp + (1− α)p < αµ + (1− α )µ, the agent is awarded the act xEy resulting in

payoff equal to [u(x)][αµ + (1− α )µ] + [u(y)][(α)(1− µ) + (1− α )(1− µ)], again the

same payoff the agent would have received if αr + (1− α )r = αµ + (1− α )µ. How-

ever, if αp + (1− α)p ∈ ( αµ + (1− α )µ, αr + (1− α )r ), then the agent is awarded

the act xEy. A report that did not violate equation (3.1) would have resulted in being

awarded the lottery L( α; `( p; x, y), `( p; x, y) ) giving the agent a higher payoff than

what the agent receives.

The arguments are similar if the chosen r and r are such that equation (3.2) is vi-

olated. Suppose in particular that [α][1 − r] + [1 − α ][1 − r ] > [α][1 − µ] + [1 −
α ][1 − µ ]. (Again, the arguments for the case when [α][1 − r] + [1 − α ][1 − r ] <

[α][1− µ] + [1− α ][1− µ ] are similar and hence skipped.) Suppose Scheme B is cho-

sen. If [α][1− p ] + [1− α][1− p ] ≥ [α][1− r] + [1− α ][1− r ] or if [α][1− p ] + [1−
α][1− p ] < [α][1− µ] + [1− α ][1− µ ], the agent’s payoff is the same as the payoff

the agent would have received if equation (3.2) was not violated. However, when

[α][1− p ] + [1− α][1− p ] ∈ ( [α][1− µ] + [1− α ][1− µ ], [α][1− r] + [1− α ][1− r ] ),

the agent receives the act yEx but would have been strictly better off if the report had

not violated equation (3.2) since in that case the agent would have been awarded the

lottery L( α; `( 1− p; x, y), `( 1− p; x, y) ).

Collecting the arguments from above together, any report of r and r such that equa-

tion (3.1) is violated gives strictly lower expected payoff than reports that satisfy

equation (3.1) when Scheme A is chosen. And any report of r and r such that equa-

tion (3.2) is violated gives strictly lower expected payoff than reports that satisfy

equation (3.2) when Scheme B is chosen. Since each scheme is chosen with proba-

bility 1/2 the result follows. ‖

We are now ready to prove Theorem 1.

Proof of Theorem 1: From Lemma 1 we know that the agent’s best response is to

submit reports r and r such that equation (3.1) and equation (3.2) are satisfied.

8



For α 6= 1/2 the matrix

[
α 1− α

1− α α

]
has full rank. Hence the system of linear

equations (3.1) and (3.2) (in r and r) has a unique solution. Finally, since r = µ and

r = µ solve the equations (3.1) and (3.2) it then follows the truthful reporting is the

unique best response. ‖

When α = 1/2 the matrix above drops rank and the solution is no longer unique.

However, the real problem is that when α = 1/2 for any act, multiple values of µ and µ

gives rise to exactly the same level of payoff. In other words, for α = 1/2, the agent’s

belief ( as can be deduced from observed behaviour) is not uniquely defined. In that

case it is no surprise that the elicitation procedure is unable to elicit unique beliefs.

3.2 Eliciting α

This subsection describes a mechanism to elicit the preference parameter α. We re-

mind the reader that we assume that all departures from expected utility are due to

ambiguity aversion only. In particular, the agent evaluates objective compound lot-

teries the same way as someone with Expected Utility preferences would.

The mechanism is as follows.

Γα: Mechanism to elicit α

1. The agent is asked to report α. Let the reported value be denoted as α̂.

2. Two numbers are drawn independently from the uniform distribution. Let the

larger (smaller) number be called p (p).

3. A third number, β is also drawn from the uniform distribution.

4. The mechanism calculates the values [ α̂p + (1− α̂)p ] and [ βp + (1− β)p ].

5. The allocation rule is as follows.

• If

[ βp + (1− β)p ] ≥ [ α̂p + (1− α̂)p ]

the agent is awarded the lottery L( β; `( p; x, y), `( p; x, y) ).

9



• If

[ βp + (1− β)p ] < [ α̂p + (1− α̂)p ]

the agent is given an ambiguous act defined below.

Ambiguous Act:

– A number p ∈ [ p, p ] is chosen.

– The agent is given no further information regarding how (i.e., the dis-

tribution from which) it is chosen. In other words, all that the agent

knows is that p is determined randomly and it is at least p and at most

p.

– The act pays x with probability p and y with probability 1− p. (Note

that this is a sort of “reduced form” description of the ambiguous act.

A more detailed description would involve describing the physical ac-

tion/experiment for creation of some event, say D with - crucially - the

probability p of the event D being some number in [ p, p ]. The act pays

x if D happens and y if D does not happen.)

§

It is straightforward to check that this mechanism elicits α. Notice first that the agent’s

payoff from the (engineered) ambiguous act is

[u(x)][αp + (1− α)p] + [u(y)][α(1− p) + (1− α)(1− p)]

whereas payoff from the compound lottery L( β; `( p; x, y), `( p; x, y) ) is

[u(x)][βp + (1− β)p] + [u(y)][β(1− p) + (1− β)(1− p)]

We now employ the same type of reasoning we have used in the proof of Lemma 1.

So, assume that α̂ > α. (The case when α̂ < α is analogous and left as an exercise).

If either β > α̂ or β < α, truth-telling and misreporting gives the same payoff 8 but

if β ∈ (α, α̂), the agent receives the act whereas if the agent had reported truthfully,

8In the former scenario, the agent receives the lottery L( β; `( p; x, y), `( p; x, y) ) which is what the

agent would have received under truth-telling and in the latter the agent receives the ambiguous act

which is what the agent would receive if the agent had reported truthfully.

10



the agent would have received the (compound) lottery. Since β > α, and x > y,

misreporting results is lower payoff than truth-telling.

From the discussions above, we have the following result.

Proposition 1 It is possible to elicit the preference parameter α by using a direct revelation

mechanism in which truthfully reporting the true value of α is the agent’s unique best re-

sponse.

3.3 Eliciting Beliefs and α concurrently

We have described elicitation of beliefs in section 3.1 under the assumption that the

true value of α is known to the designer and then shown in section 3.2 the process to

elicit α. While this was useful for purposes of exposition, one potential drawback is

that this might create the impression that when the designer does not know the value

of α, the task of elicitation of beliefs requires the second process to be conducted

prior to running the process for belief elicitation. However, we now show that the

two processes can be combined into a single mechanism that elicits beliefs and α

concurrently.

Section 3.1 uses the mechanism Γbelief(α) to elicit the beliefs. Let Γbelief(α̂) be a mod-

ification of this mechanism where, instead of the true α, a reported value α̂ is used

everywhere. Recall that Γα is the mechanism used to elicit α in section 3.2. Now

consider the following.

The agent is asked to report µ, µ, α; let r, r, α̂ denote the report. Consider the following

mechanism.

The mechanism for eliciting beliefs and α concurrently: With probability 1/2, the

mechanism chooses Γbelief(α̂) and with probability 1/2 it chooses Γα.

We now show that the agent’s best response is to report beliefs and α truthfully. Sup-

pose Γbelief(α̂) is chosen. It is easy to see that the agent’s best response is to choose r,

r and α̂ such that

α̂r + (1− α̂ )r = αµ + (1− α )µ

11



and

(1− α̂)r + α̂r = (1− α)µ + αµ

This is two equations in three unknowns and while r = µ, r = µ and α̂ = α is a

solution, it is not the only solution. Put differently, if Γbelief(α̂) were chosen with

certainty, then while truth-telling is still a best response it is no longer the unique best

response. However, the mechanism also chooses Γα with strictly positive probability.

And the crucial observation is that if Γα is chosen then the reported values of r and r

are completely irrelevant and further, any α̂ 6= α gives strictly lower expected payoff

than α̂ = α. Hence, if Γα is chosen then the agent is better off having reported α̂ = α.

But then, if the agent reports α̂ = α, simply repeating the arguments from section 3.1

shows that if Γbelief(α̂) is chosen then reporting r = µ and r = µ gives strictly higher

expected payoff than any other reporting strategy. Therefore truthful reporting of

both beliefs and α is the agent’s unique best response under the mechanism described.

It is not difficult to see why combining the two separate procedures into one sin-

gle procedure works. In an informal, sense there is no “contamination” from one

to the other. In both procedures truth-telling is a best response. Put differently, the

complication that one faces in other situations (when trying to combine two sepa-

rate mechanisms into a single mechanism) whereby the agent may lie and “sacrifice”

payoff in one case to obtain a higher payoff in the other case does not arise here. In

the mechanism Γα, reporting α̂ = α is the agent’s unique best response irrespective

of the values of r and r . And when facing the mechanism Γbelief(α̂), conditional on

having truthfully reported α̂ = α, the agent has strictly higher expected payoff from

truthfully reporting r = µ and r = µ than from any false reporting.

3.4 Maxmin Expected Utility (MEU) as a Special Case

The maxmin model of Gilboa and Schmeidler (1989), also known in the literature as

the MEU model, represents preference of an ambiguity averse agent (with ambiguous

beliefs [ µ, µ ] regarding the event E) who evaluates the act xEy according to

min
µ∈[ µ,µ ]

µu(x) + [1− µ]u(y)

12



This can be thought of as a special case of α-maxmin with α = 1. It is easy to check

that the mechanism Γbelief(α = 1) elicits the agent’s beliefs. (Actually, the mechanism

Γbelief(α = 1) can be simplified: there is no need to draw two numbers p and p. A

single number p can be drawn which will play the role of p if scheme A is chosen and

p, if the scheme chosen is B.)
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