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Abstract 

Adolescence starts with puberty and ends when individuals attain an independent role in 

society. Cognitive neuroscience research in the last two decades has improved our 

understanding of adolescent brain development. The evidence indicates a prolonged 

structural maturation of grey matter and white matter tracts supporting higher cognitive 

functions such as cognitive control and social cognition. These changes are associated with a 

greater strengthening and separation of brain networks, both in terms of structure and 

function, as well as improved cognitive skills. Adolescent-specific sub-cortical reactivity to 

emotions and rewards, contrasted with their developing self-control skills, are thought to 

account for their greater sensitivity to the socio-affective context. The present review 

examines these findings and their implications for training interventions and education. 
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Introduction 

Adolescence is the period of transition from childhood to adulthood. The start of 

adolescence is defined by the onset of puberty, while its end is defined socially, as the time 

when an individual takes an independent role in society. The timing and length of 

adolescence has varied historically and varies between cultures. Research in the last two 

decades has used techniques such as magnetic resonance imaging (MRI) to study the 

healthy developing brain. Although total brain volume reaches adult levels at the end of 

childhood, it was found that adolescence is associated with significant, region-specific, 

changes in brain structure and brain function, leading to unique adolescent patterns of brain 

responses and behaviour. Here, I will present recent findings and reviews of this research, 

and consider the implication of the findings for training and education.   

Structural brain development  

A key finding from longitudinal MRI studies of brain development has been that there are 

during adolescence significant changes in white matter, which contains myelin-covered 

axons, and grey matter, which contains neuronal cell-bodies, dendritic trees and synapses 

[1,2]. Volumetric measures broadly show that white matter volume increases linearly during 

the first two or three decades of life, while grey matter volume peaks in mid- to late 

childhood, and decreases during adolescence [3,4].  

White matter 

The developmental increase in white matter volume is thought to reflect increased axon 

diameter and increased myelination. Diffusion tensor imaging (DTI) techniques allow the 

investigation of the organisation of white matter tracts using fractional anisotropy (FA) and 

mean diffusivity (MD), which measure the direction and mean diffusion of water, 

respectively. The first large longitudinal DTI study showed tract-specific non-linear 

developmental changes in FA and MD, with prolonged maturation of association tracts 

during adolescence, in particular frontal tracts [3]. Interestingly, there was extensive 

individual variability in developmental change, notably in the 20s, with for example, 40–50% 

of 19-32 year-olds showing increasing FA in the inferior longitudinal and fronto-occipital 

fasciculi between scans, demonstrating prolonged development in these regions, while 5–



3 
 

15% of this age group showed decreased FA between scans [3]. This individual variability 

may inform our understanding of psychiatric disorders, many of which emerge during 

adolescence and show frontal white matter anomalies [5]. 

Grey matter 

Synaptic density, i.e. the number of synapses per neuronal volume, increases during the first 

months and years of life, reflecting dendritic arborisation, and later decreases first in 

somatosensory regions during childhood and in the prefrontal cortex (PFC) during 

adolescence [6,7]. Changes in grey matter volumes, thought to reflect synaptic pruning, 

show a later development of frontal and temporal lobes than occipital and parietal lobes, 

indicating a prolonged maturation of brain structure in higher association areas. A recent 

longitudinal study suggests that the developmental decrease in cortical thickness may be 

accelerated in adolescence compared to childhood and early adulthood in all four lobes [8], 

although there is significant variability in developmental changes. This variability appears to 

be meaningful. For instance, delayed or greater changes in cortical thickness in the PFC 

during adolescence have been associated with higher IQ [9] and verbal working memory 

[10]. These findings can be related to heritability studies suggesting that more intelligent 

individuals show a longer period of sensitivity to the environment extending into 

adolescence [11]. 

Sex and Puberty  

Although sexual maturation, growth, and body fat redistribution, are related to puberty, 

very little is currently known in humans of the effect of hormones on brain development 

during adolescence [12,13]. Recent studies collecting puberty assessments or salivary levels 

of pubertal hormones and have demonstrated that age and puberty status could 

independently account for aspect of brain maturation during adolescence, e.g. volume of 

subcortical regions [12], cortical thickness [14], and MD measures of white matter tracts in 

boys [15]. In animal studies, androgens and oestrogens have differential effects on different 

brain areas [12,13]. Although brain differences between sexes in humans mostly reflect 

differences in total volume, some region-specific differences in brain maturation can be 

observed, both cortically and subcortically [2,12,16] and may be driven by differential 

hormone effects. This spatially sexually specific dimorphic cortical maturation may provide a 
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framework to better understand sex differences in cognition and behaviour, such as 

differences in risk-taking and antisocial behaviour, or differences in the emergence of 

psychiatric disorders [5].  

Mismatch model 

In 2008, two research teams proposed that the increased risk-taking and sensation-seeking 

observed during adolescence compared to childhood and adulthood may emerge from 

differential developmental of two brain systems [17,18]. The suggestion was that 

adolescent-specific behaviour emerged from a mismatch between earlier, puberty-driven, 

maturation of sub-cortical regions supporting emotional and reward processing, and later 

maturation of parietal, frontal and temporal cortex regions supporting self-regulation and 

social cognition [17–19]. Although this theoretical framework is likely too simple, 

considering for example the different time courses of structural changes observed in 

individual sub-cortical regions [12], a recent study contrasting PFC cortical thickness and 

volumes of the nucleus accumbens (NAcc) and amygdala, provides support for the mismatch 

model [20]. This study reports greater and later developmental changes in the PFC than in 

the amygdala and NAcc, and evidence of mismatch in most participants at the individual 

level [20].  

Functional brain development 

Neuroimaging techniques have allowed the investigation of not only the structural changes 

occurring during adolescence, but also of functional changes. Findings from resting state 

connectivity and electroencephalogram (EEG) oscillation studies will first be presented. As 

there is little event-related potential (ERPs) research on adolescence [21], the subsequent 

sections will focus on functional MRI (fMRI) studies of cognitive, social and emotional 

development (see [21,22] for more detailed reviews).  

Resting state 

The analysis of correlations of fluctuations in blood-oxygen level dependent (BOLD) signal at 

rest has shown a pattern of (i) decreased short-range connectivity and increased long-range 

connectivity, and (ii) increased within-functional network (e.g. default, sensorimotor, 

fronto-parietal) and decreased between-functional network connectivity during 
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development. Reanalysis of these data suggests however that developmental differences 

are smaller than first thought because of confounding effects of motion [23], an issue the 

field is currently trying to address [24]. Importantly, individual differences in functional 

connectivity at rest and during task performance associate with cognitive performance 

during adolescence (e.g. for cognitive control [25]). EEG coherence patterns, thought to 

reflect increased communication between sites, continue to mature until at least mid-

adolescence [21], and have been found to predict motor skill acquisition in young adults 

[26]. A good correlation between networks showing high EEG temporal correlation and 

networks identified using tractography from structural MRI data demonstrates the 

possibility of linking structural and functional measures [27].  

Cognitive control 

Cognitive control can be broadly defined as the ability to flexibly adapt one’s behaviour in 

the pursuit of an internal goal by the coordination of thoughts and actions. Cognitive control 

abilities improve steeply during childhood, and more slowly through adolescence. During 

adolescence basic executive functions tasks assessing working memory (WM), inhibition, or 

task switching are associated with increased activation in the parietal cortex and both 

increases and decreases in activation in the lateral PFC [22,28] (Figure 1). Functional 

changes are also observed for more complex cognitive control tasks of performance 

monitoring, feedback learning and relational reasoning [22]. An unspecific broad PFC 

recruitment at young ages may be replaced by the activation of increasingly specialised PFC 

regions for particular aspect of cognitive control, such as the inferior frontal gyrus for 

response inhibition [29], or the rostrolateral PFC for relational reasoning [30]. Little is known 

regarding synaptic and neurotransmitter changes underlying cognitive control development 

[31]; however studies using common genetic variants affecting neurotransmitter systems 

allow for indirect investigations of these changes, and can demonstrate associations with 

individual differences in cognitive development (e.g. for working memory [32]). 

 

Adolescence is a period when students become increasingly responsive and able to learn 

from negative feedback [33], which may have implications for education. Other links 

between cognitive control abilities and school performance have been made. For example, 

working memory performance and its neural correlates are associated with arithmetic skills 
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[34], while improved reasoning about increasingly complex relations may support maths 

learning [35]. Improved cognitive control also allows adolescents to improve their ability to 

organise and monitor memory representations and memory retrieval [36].  

Social cognition and emotion  

Adolescence is also a period of major social cognitive changes [37]. Within the social brain, 

adolescents consistently show greater activation than adults in the medial PFC (MPFC) and 

reduced activation in the temporal cortex (Figure 1) [4,22]. Adolescents become increasingly 

socially oriented towards their peers, and show greater sensitivity to the presence of peers 

and evaluation by peers both at the behavioural and the neural level [37]. Although 

adolescents can be more self-centred than adults, for instance they are less likely to take 

another individual’s perspective into account [38], they are also more sensitive to peer 

exclusion [39], and more risk-taking in the presence of peers [17,19]. A better understanding 

of the brain basis of social functioning and social development during adolescence could 

help foster social competence [37]. 

 

The importance of the social context is paralleled by the importance of the emotional, 

affective and reward context during adolescence, both impacting on decision making [40]. In 

an extension of the mismatch model [17,18], developing cognitive control skills are 

proposed to compete with increased reactivity to emotional stimuli, for example observed 

via greater amygdala response to emotional faces during adolescence [41], and increased 

reactivity to rewards, apparent through increased striatal activation observed when 

adolescents receive rewards [22,42] (Figure 1). This adolescent-specific reactivity to 

emotion and rewards, and the salience of the social context for adolescents, associated with 

diminished self-control (e.g. inhibition inappropriate emotions, desires, and actions) are 

thought to be behind the small increase in mortality compared to childhood [43]. However, 

as this increase continues into early adulthood, risk-taking is not unique to adolescents, but 

they are likely to differ from adults in what they find tempting or rewarding [44]. 
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Figure 1: Summary of key aspects of brain development during adolescence. Lateral PFC 
and IPS are the main regions of the cognitive control network. While there is a consistent 
increase in IPS activation during cognitive control tasks into adulthood (+), the findings in 
the dorsal aspect of the lateral PFC are more mixed (?). The ventral aspect of the lateral PFC 
also shows both increases and decreases in activation with age in tasks requiring self-control 
in an affective or reward context. The MPFC, ATC and pSTS/TPJ are key region of the 
mentalising network of the social brain. MPFC activation consistently decreases with age (-) 
in social cognition tasks, while temporal cortex activation tends to increase with age (+). 
Finally, the striatum and amygdala show peaks in activation during adolescence (^) when 
participants receive a reward or are presented with emotional stimuli, respectively. All 
cortical regions highlighted here show decreased grey matter volume and cortical thickness 
during adolescence, while amygdala volume increases during adolescence, and striatum 
volume decreases during adolescence. Age and puberty stage both play a role in structural 
and functional changes taking place during adolescence. ATC: anterior temporal cortex; IPS: 
Intraparietal sulcus; MPFC: medial prefrontal cortex; PFC: prefrontal cortex; pSTS: posterior 
superior temporal sulcus; TPJ: temporo-parietal junction.  

 

Limitations of functional imaging research 

The BOLD signal is an indirect measure of neural activity, and as such may be subject to the 

influence of a broad range of factors affecting the link between neural activity and BOLD 

during development [45]. Developmental differences in brain activation may be associated 

with either quantitative or qualitative differences [28], and may reflect underlying changes 

in brain structure [46], and changes in task-related functional connectivity [25,47]. EEG 

offers a somewhat more direct measure of neural activity, associated with a better time 
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resolution; however, the interpretation of age group differences is also difficult [21]. A 

common limitation to both techniques is the difficulty in dissociating the impact of age or 

performance on BOLD or ERPs, and confounding effects of movement [21,22,48].  

Interventions 

Adolescence as a sensitive period  

The research reviewed above demonstrates adolescents’ brains and cognition are in a state 

of flux. Studies in adults have shown that training interventions can lead to changes in 

behaviour, brain function, and brain structure [49]. Animals studies indicate that 

mechanisms of neural plasticity, implemented via synaptic reinforcement and pruning, 

differ between brain regions [50], however little is known of developmental changes in 

neural plasticity, in particular in humans. It has been suggested that the changes in neural 

efficiency and integration of networks occurring during adolescence may render this period 

particularly sensitive to training interventions. Indeed, despite suggestions that earliest 

interventions are the most effective [51], this may not be true for aspects of cognition and 

mental health problems which are developing during adolescence [37,52]. There is however 

currently little evidence of adolescence as a sensitive period [52]. Brain structure and 

current level of cognitive functioning, as well as genetic differences [54], may constrain the 

maximum level of performance achievable through training [49]. It is also necessary to 

consider whether accelerating all aspects of development may be useful, as, for example, 

the specificities of adolescents’ cognition may render them more flexible, explorative and 

adaptable [22], which may be beneficial in a range of contexts. For example, while 

improving inhibitory control may improve behaviour in class overall, it may limit 

adolescents’ creativity in arts. Such trade-offs will need to be fully considered [53].  

Training interventions 

Training interventions targeting adolescents have taken a variety of forms, from cognitive 

computerised training of working memory or selective attention, to mindfulness meditation 

training and physical activity. A number of these interventions have been implemented in a 

school context and aim to improve academic performance by improving cognitive skills (e.g. 

CogMed working memory training [55]) or indirectly by improving self-regulation, social 
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interactions, and well-being (e.g. Mindfulness in Schools Programme [56]). This work 

demonstrates that findings from cognitive neuroscience and psychology can lead to school-

based intervention programmes, however much more research needs to be done to 

develop evidence-based training interventions for education. One key challenge of cognitive 

training is transfer of improved performance to a wider range of measures, in particular 

school attainment measures. This may require the implementation of domain-specific (e.g. 

within the science curriculum), rather than domain-general training [49]. A second challenge 

is the need to assess which intervention would be most beneficial. Executive functions seem 

to be particularly important in achieving positive life outcomes despite adversity in low-

socio-economic status children and adolescents [57], however interventions focusing on 

physical exercise, boosting brain functioning and improving body health, or on parental 

care, may have broader benefits. A third challenge regards the consideration of individual 

differences [49], i.e. the identification of who may benefit most from what type of training, 

and of which measures, from genetics [54] to functional connectivity [26] and socio-

economic status, may best predict  the success of an intervention at the individual level. 

 

Conclusions 

This review summarised recent research on the adolescent brain. Adolescence is seen as a 

period of continued structural changes in association areas, which allow for a prolonged 

development of cognitive abilities such as social cognition and cognitive control. 

Functionally, adolescent brains show increased integration and individuation of brain 

networks, task-specific changes in activation in both posterior brain regions and the PFC, 

and increased responses in the striatum to emotions and rewards. These adolescent-specific 

patterns of brain activation are thought to lead to a greater influence of the social, 

emotional and reward context on decision-making. The prolonged development of the 

adolescent brain, and its specificities, may render adolescents particularly sensitive to 

certain types of interventions. Testing this hypothesis and the implications of the findings 

reviewed here for adolescent education is an important direction for future research. 
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