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Abstract
In this article, we first present a summary of the general assumptions about
Down syndrome (DS) still to be found in the literature. We go on to show how
new research has modified these assumptions, pointing to a wide range of
individual differences at every level of description. We argue that, in the context
of significant increases in DS life expectancy, a focus on individual differences
in trisomy 21 at all levels—genetic, cellular, neural, cognitive, behavioral, and
environmental—constitutes one of the best approaches for understanding
genotype/phenotype relations in DS and for exploring risk and protective
factors for Alzheimer’s disease in this high-risk population.
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Introduction
Down syndrome (DS) is the most common neurodevelopmental 
disorder of known genetic cause, with an incidence of between 
1:750 and 1:1000 live births1,2. The syndrome has been extensively 
described at the group level, downplaying individual variation and 
treating DS as a homogeneous group. So, why do we argue in this 
paper that individual differences across DS at all levels—genetic, 
cellular, neural, cognitive, behavioral, and environmental— really 
matter? Our argument is that, in the context of significant increases 
in DS life expectancy3,4, a focus on individual differences in tri-
somy 21 constitutes one of the best approaches for exploring 
genotype/phenotype relations in DS and for identifying risk and 
protective factors for Alzheimer’s disease (AD).

DS has usually been described simply as arising from an extra 
copy of chromosome 21 and presenting with characteristic features 
including facial dysmorphology, a proportionally large tongue, 
low muscle tone, short stature, and intellectual disability. Associ-
ated conditions may include obstructive sleep apnea, as well as 
visual and hearing problems. Receptive language usually outstrips 
language production, spatial memory is thought to be better than 
verbal memory, and global processing is deemed to be superior to 
local processing. In adulthood, DS presents with accelerated aging 
and an increased likelihood of developing AD. The DS brain has 
been typically described as developing relatively normally during 
the first few months postnatally5, after which growth slows, with 
cortical areas being particularly reduced6.

Yet underlying these group-level accounts are large individual dif-
ferences at every level of description. We start with a consideration 
of individual differences in the genetics of DS and go on to examine 
studies of DS cell biology. We focus next on the broad individual 
differences in the DS brain, which recent studies have now identi-
fied as occurring as early as during fetal development. We go on 
to explore briefly some of the widespread individual differences in 
cognitive outcomes in DS, particularly with respect to language and 
memory, and challenge assumptions that individuals with DS are 
global rather than local processors7. In the following section, we 
argue that individual differences in sleep patterns in DS are likely to 
be an important contributor to the differences in language, memory, 
and AD outcome. We then look briefly at mouse models of DS and 
AD. We finally conclude that a focus on individual differences at 
every level across the syndrome is likely to yield deeper insights 
into genotype/phenotype associations.

Individual differences in Down syndrome genetics
The most common cause of DS is the additional copy of an entire 
chromosome 21. In ~88% of cases, the extra copy is maternally 
derived, through an error in cell division called non-disjunction. 
The extra chromosomal content can occur through different mecha-
nisms and at different points during the formation of germ cells. 
Non-disjunction8 can arise during meiosis I (~65% maternal; ~3% 
paternal), during meiosis II (~23% maternal; ~5% paternal), or 
from a mitotic error (~3%). DS can also occur when only a seg-
ment of chromosome 21 has three copies (partial trisomy)9 or 
when the whole chromosome is triplicated but only a proportion 
of the cells are trisomic (mosaicism) with other cells being nor-
mal. Mosaicism is found in ~1.3–5% of cases10, but it is possible 

that mosaicism occurs more frequently, the low percentage being 
due to ascertainment bias, especially in cases with low-level mosai-
cism. Further genetic differences can be introduced by variation 
in the amount of crossover during meiosis I. Research on parental 
origin or the mechanism of mosaicism is currently sparse, making 
it difficult to identify the main mechanism. While mosaicism has 
sometimes been claimed to yield a milder cognitive phenotype9,11, 
data addressing this are very sparse and, where they do exist, the 
degree of mosaicism does not correlate with phenotypic severity. 
Interestingly, though, mosaicism provides an excellent opportunity 
to study phenotypic differences, since disomic and trisomic cell lines 
derived from mosaics only differ in the extra chromosome 2112.

Translocation is another mechanism yielding DS, whereby some of 
the genetic material from chromosome 21, usually from the long 
arm, is moved to chromosome 14 or 22, or from the long to the 
short arm of chromosome 21. Translocation occurs in some ~4% 
of cases2,13–15.

These multiple origins of DS need to be taken into account when 
considering differences between individuals with trisomy 21. Addi-
tionally, individual differences exist on other chromosomes. The 
euploid population, while free from gross chromosomal abnormali-
ties, is nonetheless genetically different from one another, due to 
copy number variations (CNVs), single nucleotide polymorphisms 
(SNPs), and de novo mutations. Such differences also apply to 
people with DS, of course, who have many of these variants in addi-
tion to their extra copy of all or part of chromosome 21.

With full trisomy, intuitively it might be assumed that expression 
levels of triplicated genes are 1.5-fold that of the euploid popula-
tion. However, this is not so. Gene expression is differentially regu-
lated in different tissues, and each gene is subject to the potential 
of feedback control of expression levels. One recent study of whole 
genome expression in fibroblasts and lymphoblasts suggested that 
only a small majority of genes were over-expressed in the range 
predicted by gene dosage. In contrast, about a quarter showed no 
difference in expression between DS and diploid cells, and another 
quarter had intermediate expression16. In a second study, also in 
lymphoblastoid cells, only 22% of the genes analyzed on 
chromosome 21 were actually over-expressed 1.5-fold17. In this 
second study, a few were significantly more amplified (~7%), 
whereas, despite the three copies, many (>1/2) turned out to have 
near normal levels of expression, presumably due to compensa-
tory mechanisms. It must be remembered that these studies were 
carried out in cell lines; the results may therefore not reflect the 
gene expression profiles of the cells from which they were derived 
and certainly will not represent the expression levels in other tis-
sues. Interestingly, both of these cell studies additionally reported a 
considerable amount of inter-individual differences in gene expres-
sion. Expression studies are notoriously inconsistent. Nonetheless, 
however tentative the findings of the above two studies, it is clear 
that we cannot take for granted that an extra copy of chromosome 21 
will result in a 1.5-fold increase in the level of gene expression. How 
irregular expression levels of triplicated genes on chromosome 21 
(particularly those that may vary substantially between trisomic indi-
viduals), coupled with the heterogeneous origins, influence the DS 
neurocognitive phenotype remains an open but critical question.
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Whilst the expression and role of individual genes are undoubt-
edly important, the genome-wide implications of trisomy 21 are 
too often neglected. Functionally, genes sit in a complex biological 
network. The breadth of influence of genes varies, but those involved 
in epigenetic mechanisms warrant special attention. Epigenetic 
mechanisms, including DNA methylation and post-translational 
histone modifications, contribute substantially to the regulation of 
gene expression across the genome, and so the effects of changes in 
epigenetic gene dosage are far-reaching. There are at least 11 genes 
and multiple microRNAs (miRNAs) on chromosome 21 that are 
involved in epigenetic mechanisms18, including DNMT3L (a DNA 
methyltransferase), DYRK1A (a kinase), and H2AFZP (a histone 
variant). Relatively little research has gone into epigenetic proc-
esses in trisomy 21, although some studies indicate that people with 
DS have different DNA methylation from the euploid population19. 
As mentioned above, in some of these genes, expression levels may 
vary between individuals (such as BRWD1, a transcriptional regula-
tor). Trisomy 21 causes major disturbances in the level, activity, 
and subcellular localization of two major non-HSA21 transcrip-
tion factors: NFAT20 and NRSF/REST21,22. Both of these control the 
spatiotemporal expression patterns of thousands of downstream 
target genes, many of which are also transcription factors, gen-
erating a whole new layer of complexity. Individual differences 
in epigenetic regulation can of course also occur on genes not 
otherwise involved with chromosome 21, yielding potentially even 
wider individual differences in the mosaic DS population and those 
with DS arising from translocation.

One of the reasons why individuals with DS are at higher risk 
for AD than the general population is that the amyloid precursor 
protein (APP) gene, implicated in the brain pathology of AD, lies 
on chromosome 21. Individuals with a translocation below the APP 
gene (i.e. without APP triplication) get DS but not AD. A number 
of genes that are functionally linked to APP are dysregulated in 
the DS brain, including BACE2, APOE, CLU, PSEN1, PSEN2, and 
MAPT22. While amyloid pathology is necessary, triplication of APP 
alone is not sufficient to cause AD. Whereas many people with 
DS present with dementia in their 30s, even by age 70 or 80 some 
adults with DS do not have dementia despite their significant plaque 
pathology24,25.

Genes on other chromosomes also play an important role in AD 
and here, too, individual differences exist. The apolipoprotein 
gene (APOE) on chromosome 19, also implicated in AD, har-
bors common variants: ε2, considered protective for AD (~7% 
of the general population); ε3, the most common allele (~79% 
frequency), neutral regarding AD risk; and ε4 (~14% frequency), 
thought to harbor the greatest risk for AD, particularly in 
carriers of two ε4 alleles. APOE variants modulate the age of 
onset of AD in DS26. Interestingly, the distribution of the APOE 
polymorphisms differs across ethnicities, the above figures holding 
for Caucasians.

The effects of these APOE allelic differences are detectable early 
in life. A recent study of euploid babies between 2 and 25 months 
of age showed that those who carried the ε4 variant differed from 

non-carriers in their rate of myelin development, with ε4 carriers 
showing decreased growth in the mid and posterior brain regions27. 
Similar allelic differences and their neural repercussions are likely 
also to occur in children with DS, impacting on other individual 
differences.

Other genes, e.g. DYRK1A and RCAN1, located on chromosome 
21, have been shown to be functionally important in the pathogen-
esis of DS and AD when expression is increased28,29. Individual eth-
nic differences also matter. Indeed, the common variants of these 
genes are not significantly associated with AD in Caucasians, but 
there is some suggestion of an association of the RCAN1 polymor-
phism in a small Chinese cohort30. Other research has suggested 
that BACE2 alleles, also located on chromosome 21, are important 
in AD, also affecting the age of dementia onset in DS31,32.

Individual differences in Down syndrome cell biology
The advent of human induced pluripotent stem cells (iPSCs) has 
added an exciting new tool for understanding individual differences 
in DS and their relationship to AD12,33. Shi et al.33 found that corti-
cal neurons generated from iPSCs and embryonic stem cells from 
patients with DS developed AD pathologies in the form of insolu-
ble intracellular and extracellular amyloid aggregates over months 
in culture, rather than years in vivo. Hyperphosphorylated tau 
protein, a hallmark of AD, was also localized to cell bodies and 
dendrites in iPS-derived cortical neurons from the patients with 
DS, recapitulating later stages of the AD pathogenic process. 
Interestingly, the same research group showed growth of amyloid-β 
plaques in iPSCs grown from tissue from a DS infant as young 
as 17 months33, attesting to the developmental nature of the brain 
pathology. Furthermore, an isogenic iPSC model of DS derived 
from a 16 year old with mosaic DS12 recapitulated these AD-related 
phenotypes and demonstrated that neurons from trisomy 21 iPSCs 
accumulate DNA double-strand breaks much faster than those from 
isogenic euploid controls. It is currently not known whether, but it 
is assumed that, such accumulated DNA damage is randomly dis-
tributed in the genome and as such may increase the variability of 
pathological phenotypes on the cellular level12.

Individual differences in Down syndrome brains
As mentioned, it used to be thought that the DS brain developed 
relatively normally throughout fetal life and during the first months 
postnatally5. This assumption has turned out to be incorrect. New 
studies reveal that DS prenatal brain size is only relatively nor-
mal until about 20–24 weeks gestation, after which individual 
differences in fetal brain development emerge (unpublished data, 
Rutherford & Patkee 2015). Some DS brains show reduced vol-
ume of the hippocampus, cerebellum, and occipital-frontal areas 
already during fetal life. In some DS brains, there is initially more 
or less normal dendritic formation and arborization, but this is 
followed by a stagnation in the developmental process; subse-
quently dendrites increase neither in number nor in complexity 
as the DS fetus develops34. At birth, many DS brains already have 
smaller dendritic arborization35–37 and fewer synapses38,39, likely to 
contribute to the reduced functional brain connectivity found in 
many newborns with DS40.
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Despite large individual differences, some DS brains are difficult 
to distinguish from the neurotypical case during fetal development 
(unpublished data, Rutherford & Patkee 2015), but the neural phe-
notype becomes progressively more pronounced in DS as devel-
opment proceeds, with increasing dissociations between cortical 
thickness (increased) and surface area (reduced) in, for example, 
frontal and temporal regions41. However, yet again, individual dif-
ferences are apparent, particularly in the early stages of develop-
ment. In other words, individual differences at both the structural 
and the functional levels can start very early in the DS develop-
mental trajectory, subsequently yielding large individual differ-
ences in functional connectivity, which correlate, for instance, with 
communication skills42. Finally, 40% of infants with DS are born 
with congenital heart disease, which also potentially compromises 
blood flow to the brain, but even those without heart problems 
ultimately go on to develop atypical brains43.

Examining the brains of adults with DS, MRI studies have dem-
onstrated that the size of the cerebellum, hippocampus, and cor-
tex is significantly smaller than in the neurotypical case, while 
basal ganglia are similar in size and ventricles are enlarged44. 
Individual differences are particularly apparent when comparing 
DS adults with or without dementia; the former have reduced ven-
tricular, hippocampal, and caudate volumes, as well as increased 
levels of peripheral cerebrospinal fluid (CSF), compared to those 
without dementia45. The differences between those with and 
without dementia can start very early. In vivo studies of children 
with DS identified plaques in DS brains as early as 8 years of age46. 
To be noted, however, were the large individual differences, with 
some DS brains having no plaques until early adulthood.

Individual differences in Down syndrome cognition
Atypical cognitive phenotypes in DS become increasingly evident 
across the lifespan47. Children under 12 months old often show 
few cognitive differences from neurotypical controls on standard-
ized tests (due, perhaps, to a lack of sensitivity to detect them) but, 
as they get older, the rate of intellectual development in DS slows 
considerably.

Most of the cognitive studies of DS have reported group data, 
comparing DS either to neurotypical controls48–50 or to other neu-
rodevelopmental disorders51–56. Yet hidden within these group data 
are wide individual differences, particularly in IQ scores, language, 
and other measures57–61. And these differences start early; in our 
recent research on infants/toddlers with DS, standard composite 
scores (not dissimilar to IQ scores) on the Mullen Scales of Early 
Learning62 show significant variation, with many young children 
scoring at floor, while some others’ scores reach the 80s to 90s. 
In adults with DS, some 50% have IQs at floor, whereas a few 
have IQs in the 70s or above63. The significance of these individ-
ual differences is being increasingly recognized, such that we are 
developing new task batteries to detect the wide range of scores 
more precisely64,65.

Individual differences in basic-level processes like reaction time, 
attention, and memory impact on developmental trajectories over 
time. For example, the DS memory profile is associated with poor 
short-term verbal memory66 and poor long-term visual memory54. 

In contrast, implicit memory is thought to be comparable to age-
matched neurotypicals49. However, again these observations are 
based on group data, with individual memory profiles being signifi-
cantly more variable67. In Vicari et al.’s49 paper, implicit memory—
measured by reaction time—was on average longer in DS than in 
neurotypicals, but the standard deviations were almost three times 
larger in the DS group. This might mean that some individuals with 
DS had shorter reaction times even than the controls. Such indi-
vidual differences are camouflaged when reporting average group 
data yet are critical to fully understand the DS phenotype.

As mentioned in the introduction, DS is often described as hav-
ing better visuospatial memory than verbal memory, as well as 
better global processing than local processing. First, individual 
differences are large, and, second, in-depth probing of processing 
across modalities (visual/auditory) and across levels of processing 
(low-level perceptual processes vs. high-level) yielded no consist-
ent global processing style7.

Another domain that yields wide individual differences in DS is 
language—for some, considered the domain of greatest vulnerabil-
ity in the syndrome59,68. This claim is made from comparisons of 
children with DS to neurotypicals at the group level. A very dif-
ferent picture emerges when individual differences are taken into 
consideration. For example, Zampini and D’Odorico69 reported 
that, in their longitudinal study of DS vocabulary acquisition, at 
36 months the lowest scoring child was nonverbal, while the 
highest scoring child was close to the normal range, producing 
243 words. When the same children were assessed 6 months later, 
the nonverbal child remained nonverbal, whereas the one with 
the most developed language had doubled production to nearly 
500 words. This highlights the wide individual differences in DS 
language development, which persists into adulthood70.

However, in order to fully understand how those with DS develop, 
it is crucial to study how individual differences in underlying 
processes (e.g., auditory/visual attention, motor control) constrain 
higher-level cognitive outcomes (e.g. language). For example, there 
is much greater variability in the timing of the onset of muscle acti-
vation in DS than in neurotypicals71,72, such that distal muscles are 
often activated before proximal muscles. It is possible, then, that the 
variability in underlying mechanisms, such as muscle activation, 
becomes subsequently measurable as differences in DS cognitive 
abilities.

Another example from our recent work on very young children 
with DS reveals that individual differences in an electrophysiologi-
cal measure of auditory attention in toddlers with DS are associ-
ated with differences in language ability73. On average, the toddlers 
with DS oriented to changes in pitch more than changes in speech, 
but wide individual differences emerged: toddlers with DS who 
oriented more to changes in pitch had worse expressive language, 
suggesting that those who rely excessively on global properties of 
sounds (e.g., tone, changes in pitch) are not using an optimal strat-
egy for language learning. As a group, the toddlers were also slow 
at disengaging attention from visual stimuli, but again individual 
differences indicated that those who were particularly poor at dis-
engaging visual attention had worse language ability.
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Thus, individual differences in both visual and auditory attention 
predict language differences in the DS children, indicating that 
small differences in attention during very early development impact 
the subsequent development of other higher-level domains like 
language74.

Individual differences in Down syndrome sleep
Sleep has a crucial function in ensuring metabolic homeostasis 
and the clearance of toxins like β-amyloid from the brain. Using 
real-time assessments of tetramethylammonium diffusion and 
two-photon imaging in live mice, Xie and colleagues75 showed 
that deep sleep is associated with a 60% increase in the intersti-
tial space, resulting in a striking increase in convective exchange 
of CSF with interstitial fluid. The researchers showed that con-
vective fluxes of interstitial fluid increase the rate of β-amyloid 
clearance during sleep. The restorative function of sleep may thus 
be a consequence of the enhanced removal of potentially neurotoxic 
waste products that accumulate in the central nervous system when 
awake. Therefore, if individuals with DS show differences in their 
sleep architecture, such β-amyloid clearance may be differentially 
compromised.

Indeed, there is an increased risk of sleep fragmentation in DS 
because of obstructive sleep apnea in this population76–79. Edgin 
and collaborators found that children with DS with obstructive 
sleep apnea syndrome had impaired executive function as well as 
verbal IQs nine points lower than those without apnea79. Even in 
the euploid population, poor sleep quality, particularly sleep frag-
mentation, is a strong predictor of lower academic performance80, 
reduced attentional capacities81, poor executive function82, and 
challenging behaviors83. As far as young adults with DS are con-
cerned, our ongoing work suggests that 16–35 year olds with dis-
turbed sleep have poorer cognitive scores, lower adaptive behavior 
scores, and poorer verbal fluency65. Again, individual differences 
in sleep patterns start early. Our current work with infants and tod-
dlers with DS is revealing correlations between increased sleep 
fragmentation (not duration) and decreased memory, language, and 
attention shifts84. If amyloid clearance is subject to wide individual 
differences in DS due to varying levels of sleep fragmentation, this 
may be a clue to one of the reasons why some individuals go on to 
present with dementia and others do not. It is therefore possible that 
individual differences in sleep patterns in the DS population across 
the lifespan, together with other factors, impact on risk and protec-
tive factors for AD.

Individual differences in Down syndrome animal 
models
Murine models of DS and of AD-DS exist, based on ortholog genes 
to human chromosome 21, which are located on chromosomes 
10, 16, and 17 in the mouse85,86. Most are kept on inbred, identical 
genetic backgrounds and are used to identify genes associated with 
neurobehavioral traits. Although rarely reported, it is clear that, 
even in inbred strains, phenotypic variability occurs in terms of 
rate of development, disease, and behavioral traits. Using prenatal 
and postnatal cross-fostering methods, several studies have shown 
that these individual differences stem from environmental fac-
tors, such as amount of maternal licking/grooming, i.e. epigenetic 
programming by maternal behavior87, rather than genetic differ-
ences between offspring88–90. It is becoming increasingly likely that 

individual epigenetic changes arising from experience of a parent 
can be transmitted to their offspring and to future generations91. 
Variations in rat maternal care have been shown to affect hippoc-
ampal function as well as performance on hippocampal-dependent 
learning and memory tests in the offspring88. There is every reason 
to believe that mouse models of DS would reveal similar effects 
(see discussion in 86). For instance, transgenic mice overexpressing 
Dyrk1A, a candidate gene on chromosome 21, show serious altera-
tions in adult neurogenesis, including reduced cell proliferation rate, 
altered cell cycle progression, and reduced cell cycle exit, leading to 
premature migration, differentiation, and reduced survival of newly 
born cells. In addition, less proportion of newborn hippocampal 
TgDyrk1A neurons are activated upon learning, suggesting reduced 
integration in learning circuits. A number of these alterations can 
be normalized both pharmacologically and by environmental 
stimulation92.

Concluding thoughts
The fact that DS presents with so many individual differences, at so 
many levels, clearly indicates that thinking of DS merely in terms 
of an extra copy of chromosome 21 would be simplistic. Many 
other genetic, epigenetic, and environmental factors play a role in 
how the DS phenotype expresses itself in each individual. Whereas 
mosaicism has sometimes been claimed to yield a milder cogni-
tive phenotype, albeit with few data to support the claim, it remains 
unknown whether genetic differences in the original, individual 
causes of DS lead to corresponding differences in neurocognitive 
outcomes. Numerous other interacting factors are likely to contrib-
ute to individual differences and cognitive-level outcomes in DS, 
including early neural development, sleep, attention, memory, and 
the environment.

It is also important to note that having a neurodevelopmental 
disorder like DS actually changes the environment (both social and 
physical) in which infants and children develop, in terms of paren-
tal expectations and their interactions with their child61,93. A more 
complex, dynamic view is thus required of how individual dif-
ferences in the child’s social, cultural, and physical environments 
interact with individual differences in genetics and epigenetics.

One thing is clear: scientists cannot consider those with DS as a 
homogeneous group. Consideration of individual variation at mul-
tiple levels opens a series of new questions raised in this review that 
remained hidden in studies at the DS group level. Thus, scientists 
must take on board the crucial importance of individual differences 
if we are to understand fully the relationships between genotype 
and the emerging phenotype, and why some individuals with DS do 
not go on to present with dementia despite their brain histopathol-
ogy. Moreover, it is becoming increasingly clear that Alzheimer’s 
dementia is a developmental disease74 and that trisomy 21 is a par-
ticularly good model for understanding many of the complexities of 
that developmental process across the lifespan.
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