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Abstract: With the development of video-sharing websites, P2P, micro-blog, mobile WAP websites, and so on, 

sensitive videos can be more easily accessed. Effective sensitive video recognition is necessary for web 

content security. Among web sensitive videos, this paper focuses on violent and horror videos. Based on color 

emotion and color harmony theories, we extract visual emotional features from videos. A video is viewed as a 

bag and each shot in the video is represented by a key frame which is treated as an instance in the bag. Then, 

we combine multi-instance learning (MIL) with sparse coding to recognize violent and horror videos. The 

resulting MIL-based model can be updated online to adapt to changing web environments. We propose a 

cost-sensitive context-aware multi-instance sparse coding (MI-SC) method, in which the contextual structure 

of the key frames is modeled using a graph, and fusion between audio and visual features is carried out by 

extending the classic sparse coding into cost-sensitive sparse coding. We then propose a multi-perspective 

multi-instance joint sparse coding (MI-J-SC) method that handles each bag of instances from an independent 

perspective, a contextual perspective, and a holistic perspective. The experiments demonstrate that the 

features with an emotional meaning are effective for violent and horror video recognition, and our 

cost-sensitive context-aware MI-SC and multi-perspective MI-J-SC methods outperform the traditional MIL 

methods and the traditional SVM and KNN-based methods. 

Index terms: Cost-sensitive context-aware MI-SC, Multi-perspective MI-J-SC, Horror video recognition, 

Violent video recognition, and Video emotional feature extraction. 

1. Introduction 

The emergence and development of video-sharing websites, P2P, micro-blog, podcasting, mobile WAP 

websites, and 3GP websites facilitate the dissemination of sensitive videos, such as adult, horror, violent, and 
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terrorist videos. Fig. 1 shows some examples of violent videos and horror videos. Diffusion of sensitive 

videos poses a major threat to national security, social stability, and the physical, psychological, and mental 

health of viewers. Effective recognition of sensitive videos is necessary for web content security [54]. 

Recognition of sensitive videos is a newly emergent research topic in the multimedia and pattern recognition 

communities, in the context of multimedia retrieval [55, 56], multimedia content understanding [59, 60], and 

multimodal fusion [56, 57], etc. In recent years a number of specific attempts have been made to deal with the 

problem of sensitive video recognition, and most of them focus on adult video recognition [11, 12, 18, 21]. In 

this paper, we focus on recognition of horror videos and violent videos. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Fig. 1. Examples of frames taken from (a) violent videos and (b) horror videos. 

 

1.1. Related work 

Violent videos usually stimulate psychic impulses by showing the use of force to injure others or oneself. 

The contents of violent videos [51] include fights, gun shots, explosions, and self-mutilation. The current 

recognition methods usually use visual features or audio features separately or fuse visual and audio features. 

The visual features can be used to detect human violence, such as kicking and fist fighting, in videos [52]. For 

instance, Datta et al. [22] adopted an accelerated motion vector to detect fight scenes. Wang et al. [44] 

detected violence in videos using the accumulated squared derivative features which were extracted from 

dense trajectories derived from videos. Xu et al. [53] detected violent videos by capturing distinctive local 

shape and motion patterns. Audio features can be used to detect violent speech or actions. For instance, Cheng 

et al. [23] used a hierarchical audio-based method to identify car racing and gunplay. Theodoros et al. [24, 31] 

extracted eight audio features from the frequency and time domains to detect violent videos. Acar et al. [50] 

detected violent videos using mid-level audio features in a bag-of-audio words method using Mel-frequency 
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Cepstral coefficients (MFCCs). Visual and audio features can be combined to more accurately locate violent 

scenes. Nam et al. [32] recognized violent videos by detecting blood and flames and exploiting representative 

audio effects, such as explosions and gunshots. Smeaton et al. [35] combined visual and audio features to 

select representative shots in an action video. Giannakopoulos et al. [43] detected violence using the statistics 

of audio features and average motion and motion orientation variance features. Lin and Wang [45] combined 

auditory and visual classifiers in a co-training way to detect violent shots in movies. 

Horror videos strive to elicit the primary emotions of fear, horror, and terror. The contents of horror 

videos include serial killings, ghosts, monsters, vampires, animal killing, and irreligion. Horror information 

may arouse fears in children and teenagers and even induce phobias [46, 47]. The earlier work [5, 6, 8] on 

horror video recognition was carried out as a part of a video scene classification based on human emotions. 

Specific work on horror video recognition with its own characteristics emerged [13, 14]. Xu et al. [14] 

detected audio emotional events to locate horror video segments in videos which are known a priori to contain 

such segments. Wu et al. [13] represented each video as a bag of independent frames and applied 

multi-instance learning (MIL) to horror video recognition. 

The current methods for violent and horror video recognition have the following limitations: 

 They focus on using low level visual, motion, and audio features, or they only use affective audio 

features. Research on affective color and visual semantics, together with affective audio semantics in 

violent and horror videos, is still exploratory, but the results of this research are available for 

application to violent and horror video recognition. 

 The current methods only focus on independent frames and do not consider the underlying contextual 

cues within violent and horror videos, even though contextual cues between frames are useful for 

recognizing violence and horror. 

 While contexts between frames are useful for recognizing violent and horror emotions, independent 

frame cues also have emotional content. The independent frame cues, contextual cues among frames, 

and holistic features of the entire video are different sources of information for violent and horror video 

recognition. Well-chosen features from different perspectives can embody a variety of discriminative 

information. The current violent and horror recognition algorithms do not include the fusion of 

multi-perspectives to improve their performance. 

 Web information changes rapidly. The current violent and horror video algorithms, overall, are unable 
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to update the classifiers online when new training samples are obtained. 

1.2. Our work 

As a variant of supervised learning, each sample for multi-instance learning (MIL) is a bag of instances 

instead of a single instance. Each bag is given a discrete or real-valued label. In binary classification, a bag is 

considered as positive if at least one instance in it is positive, and considered as negative if all its instances are 

negative. As a prior, a violent or horror video contains at least one violent or horror shot
2
, and all the shots in a 

non-violent or non-horror video are necessarily non-violent or non-horror. If a video is treated as a bag and a 

shot in the video is treated an instance in the bag, violent and horror video recognition is consistent with the 

framework of MIL. So, we use MIL to recognize violent and horror videos. 

The most current models for MIL in common use, such as axis-parallel concepts [15], the diverse density 

(DD) method [25], the expectation-maximization version of diverse density (EM-DD) [27], the MI-kernel 

method [28], the mi-SVM and MI-SVM [19], the mi-Graph and MI-Graph [29], and the adaptive p-posterior 

mixture-model (PP-MM) kernel [42], are trained in batch settings, in which the entire training set is available 

before each training procedure begins. Babenko et al. [48] proposed an online MIL algorithm based on a 

boosting technique. However, this online method assumes that all the instances in a positive bag are positive. 

This assumption is easily violated in practical applications. Li et al [49] extended the MIL algorithm based on 

embedded instance selection [16, 17] to an online MIL algorithm. However, a classifier still needs to be 

retrained using the new samples. The citation-kNN [26] is not part of the training process. It determines the 

label of each test bag using the labeled bag samples nearest to the test bag and the bag samples whose nearest 

bag samples contain the test bag. However, the citation-kNN is sensitive to outlier samples. Sparse coding (SC) 

is training-free, and the model can be updated online each time the labeled sample set is updated. Furthermore, 

SC is not sensitive to outliers, because the sparsity regularization can suppress outliers in the sparse 

representation. Therefore, we combine MIL with sparse coding to form a multi-instance sparse coding (MI-SC) 

technique for recognizing violent and horror videos. 

The contributions of our work are summarized as follows: 

 We extract color emotional features according to the results from psychological experiments. These 

color emotional features bridge the affective semantic gap to some extent. The color emotional 

features together with low-level visual features, motion features, and audio features are used for 
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violent and horror video recognition. 

 We propose a cost-sensitive context-aware MI-SC method which can make use of the context among 

frames in the same video and the context between visual and audio cues for violent and horror video 

recognition. A video is divided into a series of shots via shot segmentation and a key frame from each 

shot is selected. The visual feature vector of each key frame is extracted to represent the shot in which 

the key frame exists. An audio feature vector is extracted for the entire video. A video is represented as 

a bag of instances which correspond to the visual feature vectors. A graph is constructed using the key 

frames as nodes to represent their contextual relations. A cost-sensitive sparse coding model is 

constructed to represent the context between the bag of visual feature vectors and the audio feature 

vector. We solve the cost-sensitive context-aware MI-SC using the existing feature sign search 

algorithm via a mathematical transformation. 

 We propose a multi-perspective multi-instance joint sparse coding (MI-J-SC) method to combine 

information from a contextual perspective, an independent perspective, and a holistic perspective. The 

contexts between key frames form only a contextual perspective for violent and horror video 

recognition. A key frame also includes semantic meaning, so treating a video as a bag of independent 

instances can be considered as an independent perspective. The holistic features for the entire video 

can be treated as another perspective. The information from different perspectives more fully describes 

a video. The current MIL lacks the ability to fuse multi-perspectives. We incorporate the joint sparse 

coding into multi-instance classification to fuse the features from multi-perspectives, in order to obtain 

more accurate recognition of violent and horror videos. 

The experimental results show the effectiveness of the extracted video emotion features. The results on the 

violent and horror video datasets show that our methods outperform the traditional MIL-based methods and 

the traditional SVM and KNN-based methods. The results on the general MIL datasets show that our methods 

may be effective for other general multi-instance problems. 

The remainder of this paper is organized as follows: Section 2 presents the MI-SC technique. Sections 3 

and 4 propose our cost-sensitive context-aware MI-SC and multi-perspective MI-J-SC methods, respectively. 

Section 5 presents our method for extracting emotional features and our method for recognizing violent and 

horror videos. Section 6 reports the experimental results. Section 7 concludes this paper. 
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2. Multi-Instance Sparse Coding 

Multi-instance sparse coding (MI-SC) carries out MIL using the sparse coding technique. In the 

following, we first briefly introduce sparse coding. Then, we describe the mechanism of MIL via sparse 

coding. 

2.1. Sparse coding 

The goal of sparse coding [20] is to represent each input vector approximately as a weighted linear 

combination of “basis vectors” such that a small number of weights are non-zero. Given an h-dimensional 

input vector hx  and n basis vectors 1 2[ , ,..., ] h n

n

 U u u u , a sparse vector nw , whose entry jw

(1 j n  ) is the weight of ju , is found such that 

1

n

j j

j

w


 x Uw u .                                   (1) 

The objective of sparse coding is usually formulated as the minimization of the reconstruction error with 

sparsity regularization: 

2

2 1
min  

w
x Uw w                                   (2) 

where the 
1
 norm 

1
w  of w is the sparsity term and λ is a regularization factor to control the sparsity of w. 

2.2. MIL via sparse coding 

For MIL, a training dataset 
1 1{( , ), ,( , ), ,( , )}i i N Ny y yX X X  consists of N  bags 1{ }N

i iX  and their 

labels 1{ }N

i iy  . A bag 
iX  consists of 

in  instances:
 ,1 , ,{ , , , , }

ii i i j i nX x x x , where each instance ,i jx  is a 

vector. The task of MI-SC is to sparsely combine the training bags 1{ }N

i iX  to represent a test bag. 

Due to the set structure of the bags, a test bag cannot directly be sparsely and linearly reconstructed using 

the training bags. We apply a mapping function  : dX  to map each bag X to a high dimensional 

vector space: ( )X X (the descriptions and handling of the mapping functions will be detailed in Section 

3.3). Then, by mapping the training bags to the high dimensional vector space, a basis matrix 

1 2[ ( ), ( ), , ( )]N  B X X X  for sparse coding is obtained. Given a test bag tX , the sparse coding in the 

high dimensional vector space is defined as: 

2

2 1
min ( )t  

w
X Bw w .                                (3) 

The label of tX  is determined by the labels of the training samples whose weights are nonzero for sparsely 
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representing 
tX . It is clear that this is a training-free online learning model which is updated only by 

changing the labeled samples. The limitation of the above MI-SC is that the contexts among instances are not 

modeled. 

3. Cost-Sensitive Context-Aware MI-SC 

To handle the above limitation, we formulate context-aware MI-SC and cost-sensitive sparse coding, and 

propose a method for optimizing the coefficients for the cost-sensitive context-aware MI-SC. 

3.1. Context-aware MI-SC 

Traditional MIL usually assumes that instances in a bag are independent of each other. Zhou et al. [29] 

built a graph [33] in their SVM-based MIL method to model the contexts between instances in each bag. This 

graph representation of contexts is incorporated into our MI-SC method. 

For a bag 
iX , a graph 

iG  whose nodes are the instances in the bag is constructed. The distances 

between instances are computed. If the distance between two instances is smaller than a preset threshold, then 

the weight for the edge between the corresponding two nodes is set to 1, otherwise the weight is set to 0. A 

matrix
 

i in ni 
E  of the adjacency weights for 

iG  is obtained, where 
, 1i

a aE   ( 1,2,..., ia n ). 

The training samples are represented as 
1 1 1{( , , ),...,( , , ),...,( , , )}i i i N N NG y G y G yX X X , and a test bag is given as 

( , , )t t tG yX . We apply a mapping function : dG   to map each graph G  to a high dimensional vector 

space: ( )G G . Then, the basis matrix for spare coding is replaced by 
1 2[ ( ), ( ),..., ( )]nG G G  C . The 

context-aware MI-SC is formulated as: 

2

2 1
min ( )tG  

w
Cw w .                                (4) 

3.2. Cost-sensitive sparse coding 

In real applications, each bag 
iX  may be associated with another kind of feature. For example, an audio 

is usually associated with a video, and the holistic features of the audio can overall characterize the entire 

video. We propose a cost-sensitive sparse representation to incorporate the associated features into the bags. 

For each bag 
iX , its associated feature vector 

ia  is extracted. Then, the training set can be represented 

by  1 1 1 1 2 2 2 2( , , , ),( , , , ),..., ( , , , )N N N NG y G y G ya X a X a X . Given a test bag tX , we define a diagonal matrix 

N ND  whose diagonal entries are the Euclidean distances between the associated feature vector of the test 

bag and the associated feature vectors of each training bag: 
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1( , , , , )t i t N tdiag   D a a a a a a .                          (5) 

To incorporate the associated features into the MI-SC, we formulate cost-sensitive context-aware MI-SC in a 

high dimensional feature space as follows: 

2

2 1
min ( )tG  

w
Cw Dw .                                (6) 

where the diagonal matrix D is included into the 
1
 norm in (4). The entries in D are cost values for the 

different training samples. In this way, the training samples, whose associated feature vectors have small 

distances to the associated feature vector of the test bag, are more likely to be selected to reconstruct the test 

bag. In the sensitive video recognition application, the videos which have audio tracks similar to the test video 

are more likely to be chosen to represent the test video. 

3.3. Optimization 

The traditional sparse coding optimization methods cannot be directly applied to the cost-sensitive 

context-aware MI-SC in (6). We transform the objective function in (6) to a form to which the traditional 

sparse coding optimization can be applied. Then the feature sign search (FSS) algorithm is used to solve for 

the coefficient vector w. Let q Dw , where Nq . In order to ensure that D is invertible, we add a very 

small value ε to the diagonal entries of D, and obtain an inverse as follows: 

      1 1 11

1 2, ,...,t t N tdiag   
         D a a a a a a                  (7) 

Substituting -1=w D q  into (6) yields: 

2
1

12
min ( )tG   

q
CD q q .                               (8) 

Let 1V CD , where d NV . Formula (8) is rewritten as: 

2

2 1
min ( )tG  

q
Vq q .                                (9) 

The function ( )   which is used to map bags into a high dimensional space is difficult to define explicitly. 

Instead, the scalar product ( ) ( )T

i jG G   in the high dimensional space is explicitly defined via a kernel 

function. So, we transform the objective of (9) into a form involving scalar products ( ) ( )T

i jG G  . It is clear 

that 

2

2
( ) ( ) ] [ ( ) ] [ ( )] ( ) 2 ( )T T T T T T

t t t t t tG G G G G G          Vq =[ Vq Vq q V Vq q V .       (10) 

Then, we only need to consider T
V V  and ( )T

tGV . It is clear that 
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1 1 1 1

1 1

1 2 1 2

1 1 1 2 1

1 2 1 2 2 2

1 2

= ( )
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N
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T T
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V V CD CD D C CD

D D

D
1

( )T

NG



 
 
 
 
 
  

D

                (11) 

and 

1 1

1 2

1

1 2

( ) ( ) ( ) ( ) [ ( ), ( ),..., ( )] ( )

( ) ( )

( ) ( )
( )

( ) ( )

T T T T

t t N t

T

t

T

T t

T

N t

G G G G G G

G G

G G

G G

     

 

 

 

 



 

 
 
 
 
 
  

V CD D

D
.                  (12) 

It remains to define a graph kernel function ()gK  to represent the scalar product ( ) ( )T

i jG G   of graphs 

iG  and jG  in the high dimensional feature space. The definition of a graph kernel function depends on a 

kernel function between any two instances. The Gaussian radial basis function (RBF) kernel , ,( , )i a j bK x x  

between an instance ,i ax  in bag i and an instance ,j bx  in bag j is defined as: 

 2

, , , , 2
( , ) expi a j b i a j bK   x x x x                               (13) 

where ρ is a scaling factor. Let ,i a  be the weight for the instance ,i ax , in bag i, which is defined as: 

 ,

,

1

1
i

i a n
i

a u

u

E








                                     (14) 

where u is the index for an instance in bag i and i
E  is the adjacency weight matrix for bag i. The kernel 

function ()g  [29] between graphs 
iG  and jG  is defined as: 

, , , ,

1 1

, ,

1 1

( , )

( , )

ji

i i

nn

i a j b i a j b

a b

g i j n n

i a j b

a b

K

G G

 

 

 

 

 


 

x x

 .                          (15) 

Using the graph kernel function, the objective function in (9) is explicitly formulated, and then the 

optimization in (9) is efficiently solved by the recently proposed feature-sign search algorithm (FSS) [30]. 

3.4. Classification 

After the optimal coefficient vector q is obtained, we calculate the reconstruction residual of the test bag 

for each bag label m, and the label with the smallest reconstruction residual is selected as the label to which 
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the test bag belongs. For each label m, we define a vector m Nδ  whose l-th entry m

l  is: 

0

l lm

l

l

q y m

y m



 



，

，
                                  (16) 

i.e., this vector only selects coefficients associated with labels m. The reconstruction residual ( )m tG  of the 

test bag for label m is defined as: 

2

2
( ) ( ) 1 ( ) 2( ) ( )m m T T m m T T

m t t tG G G     Vδ δ V Vδ δ V                  (17) 

where ( ) ( ) 1T

t tG G   . We assign the test bag the final label c which is defined as follows: 

 arg min( ( ))m t
m

c G .                                (18) 

4. Multi-Perspective Multi-Instance Joint Sparse Coding 

Based on the structured joint sparse representation [2, 3, 34], we propose multi-perspective cost-sensitive 

MI-J-SC which includes the above cost-sensitive context-aware MI-SC. 

4.1. Structured joint sparse representation 

It is assumed that there are K different types of feature and M labels in the training dataset. Let

k mh Nk

m


Ψ  be the matrix of each feature k (k=1,2,..,K) for the training samples with label m, where 

kh  is 

the dimension of the k-th type of feature and 
mN  is the number of the training samples with label m: 

1

M

mm
N N


 . Then, the matrix of the k-th type of feature for all the training samples is 

1 2[ , ,..., ]k k k k

MΨ Ψ Ψ Ψ . The k-th type’s feature vector khk z  of a test sample Z is reconstructed from the 

k-th feature vectors of the training samples: 

1

M
k k k k

m m

m

 z Ψ w                                      (19) 

where mNk

m w  is the reconstruction coefficient vector for the k-th feature vectors of the samples with label 

m, and k  is the residual term. Let 1 2( ) , ( ) ,..., ( )
T

k k T k T k T N

M
   w w w w  be the coefficient vector for the 

k-th type of feature. Let 1 2[ , ,..., ]K N K W w w w . The 
2,1

-mixed norm of W is: 

2

2,1 22
1 1 1

M K M
k

m m

m k m  

   W w W                              (20) 

where 1 2[ , ,... ] mN KK

m m m m


 W w w w . Then, the reconstruction in (19) can be represented by the least square 
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regression based on the 
2,1

 mixed- norm regularization [2, 3, 34]: 

2

2,1
1 1 2

1
min

2

K M
k k k

m m

k m


 

 
  

 
 
 

W
z Ψ w W .                           (21) 

The 
2,1

 mixed-norm includes the 
2
 norm of the vector of the coefficients of the K feature vectors for 

each training sample and the 
1
 norm of the vector of the 

2
 norm values for all the samples. The 

2,1
 

mixed-norm guarantees joint sparse representation. The reasons are summarized as follows: 

 The 
1
 norm in the 

2,1
 mixed-norm ensures that the training samples chosen to represent a test 

sample are as few as possible. 

 The 
2
 norm in the 

2,1
 norm ensures that when a training sample is not chosen to represent a test 

sample, all the K feature vectors of the training sample are not chosen to represent the test sample. 

This structured joint sparse coding can effectively fuse information from multiple features. 

4.2. Multi-perspectives of multi-instances 

We extend the above structured joint sparse representation to MIL to fuse information from 

multi-perspectives. Different perspectives can be defined according to different applications. We define the 

following three multi-perspectives in the context of sensitive video recognition: 

1) Independent perspective: As in traditional MIL, the instances in a bag are treated as independent. We 

define a mapping function
 

1 : 1d
X  to map the feature space of the bags { }X  to a

 1d -dimensional 

vector space: 1( )X X . Then, the training samples are transformed to 1 1 1 1

1[ ( ), , ( ), , ( )]i N  F X X X . 

In the 
1d -dimensional vector space, we define a kernel function 1()  between any two bags 

iX  and jX  

as follows: 

1 1 1 1

1

1 1 1 1

( , )

( , ) [ ( )] ( )

( , ) ( , )

ji

j ji i

nn

ia jb
T a b

i j i j n nn n

il il js js

l l s s

K

K K

   

 

    

  


 

x x

X X X X

x x x x

                 (22) 

where the kernel K() between two instances is defined as in (13). 

2) Contextual perspective: The graph constrained MI-SC in Section 3.1 is introduced to form a 

contextual perspective for MIL. We define a mapping function 2 : 2d
G   to map the features of each bag 

with a graph G to a d2-dimensional space: 2 ( )G G ( 2  is just   in (4)). The context-aware training 
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bags are transformed to 2 2 2 2

1[ ( ), , ( ), , ( )]i NG G G  F . In the 
2d -dimensional vector space, the kernel 

function 
2 ()  is defined as in (15). 

3) Holistic perspective: Statistical histograms of instances in bags can be used for bag classification. 

From a holistic perspective, we construct a feature histogram for a bag based on the bag-of-words model [4]. 

Given the set of the training bag samples, all the instances are clustered to form a lexicon of R code words 

1{ , , ,..., }r Rd d d . Each instance ijx  in a bag 
iX  is mapped to a code word ( )ij x  which is determined by: 

1

( ) arg minij ij r
r R


 

 x x d .                               (23) 

In bag 
iX , the number of occurrences ( , )ih r X  of each code word r ( 1,2,...,r R ) is counted: 

( , ) { : ( ) }i ij i ijh r r  X x X x , where | |  is the number of entries in a set. Then, bag 
iX  is represented by 

a normalized histogram 
iξ : 

1 1 1

(1, ) ( , ) ( , )
, , , ,

( , ) ( , ) ( , )

i i i

i R R R

i i i

r r r

h h r h R

h r h r h r
  

 
 
 
 
 
 
  

X X X
ξ

X X X  

.                     (24) 

Then, the set of the training samples is represented by 
1 1 1{( , , ), ,( , , ), ,( , , )}i i i N N Ny y yX ξ X ξ X ξ . We map 

each histogram feature vector to a high dimensional feature space using a mapping function
 

3 : 3d

i ξ . 

Then, the histograms of the training samples are transformed to 3 3 3 3

1[ ( ),..., ( ),..., ( )]i N  F ξ ξ ξ . In this high 

dimensional space, we define the kernel function between any two bags as follows: 

1 2

1 2

3 3

3 1 2

1 1

( , ) [ ( )] ( ) [ ] [ ] ( , )
R R

T

i j i j i j r r

r r

r r K 
 

  ξ ξ ξ ξ ξ ξ d d                    (25) 

where 
1 2

( , )r rK d d  is the Gaussian kernel function between two code words 
1r

d  and 
2r

d : 

1 2 1 2

2

( , ) exp( )r r r rK   d d d d .                             (26) 

4.3. Multi-perspective cost-sensitive MI-J-SC 

We use the structured joint sparse representation in Section 4.1 to fuse the information from 

multi-perspectives such as defined in Section 4.2. Also, cost-sensitive sparse coding can be applied to the 

structured joint sparse representation. Then, we propose a multi-perspective cost-aware MIL method by 

integrating multi-perspectives into a unified joint sparse coding framework based on the 
2,1

 norm. Given K 

perspectives (K is 3 in this paper), the training sample set is represented by K matrices 1 2{ , ,..., }K
F F F , where 



13 

1 2[ ( ), ( ),..., ( )]k k k k

N  F X X X . Given a test sample 
tX , its feature vector in each perspective k is 

represented by ( )k k

tf X . Let k Nw  be the coefficient vector for the training samples at perspective k 

and W be the matrix of the coefficient vectors of the K perspectives: 1 2[ , ,..., ]K N K W w w w . Then, 

multi-perspective cost-sensitive MI-SC is represented by: 

2

2,12
1

1
min

2

K
k k k

t

k




 
  

 


W
f F w DW                             (27) 

where D is the cost matrix defined in (5). In (27), the first term is the sum of the squared reconstruction errors 

from different perspectives, and the second term is the regularization to control the sparsity of the coefficients. 

We group the training feature set k
F  of each perspective k according to the class labels 1{ }M

mm   of the 

training samples: 
1[ ,..., ,..., ]k k k k

m MF F F F  where k

mF  is the matrix which consists of the k-th feature vectors of 

the training samples with label m. Accordingly, the k-th coefficient vector in W is also grouped as: 

1( ) ,..., ( ) ,..., ( )
T

k T k T k T

m M
  w w w . Let 1 2[ , ,..., ] mN KK

m m m m


 W w w w  (m=1,2,..,M), where 

mN  is the number of 

the training samples with class m. Then, Equation (27) is rewritten as: 

2

2,1
1 1 12

1
min

2

K M M
k k k

t m m m m

k m m


  

 
  

 
 
  

W
f F w D W                         (28) 

where m mN N

m


D  is the diagonal matrix whose entries are those elements in D corresponding to the 

training samples with label m. 

4.4. Optimization 

The 
2,1

 mixed-norm accelerated proximal gradient (APG) algorithm [34] is introduced to optimize the 

object function in (28). The APG cannot be directly applied to (28). We make a transformation to (28). Let 

m m mQ D W  where 1 2[ , ,..., ] mN KK

m m m m


 Q q q q . 1

m m m

W D Q . 1( )k k k k

m m m m m

F w F D q . Let 1( )k k

m m m

U F D . 

It follows that (28) is equivalent to: 

2
1 1 1

1
min

2

K M M
k k k

t m m m

k m m


  

 
  

 
 
  

2

W
2

f U q Q .                          (29) 

The APG algorithm can be applied to (29). 

The APG algorithm alternately updates a coefficient matrix ,[ ]t k t

mQ q  and an aggregation matrix 

,[ ]t k t

mV v  at each iteration t which consists of a generalized gradient mapping step and an aggregation step. 
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In the generalized gradient mapping step, given the current aggregation matrix ˆ t
V , the coefficient 

matrix t
Q  is updated. Let 1[ ,..., ,..., ]k k k k

m MU U U U . It is clear that 

1 1 1 2 1

1 12 1 2 2 2

1 2

( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( )
( )

... ... ...

( ) ( ) ( ) ( ) ... ( ) ( )

k T k k T k k T k

N

k T k k T k k T k

T T N

k k

k T k k T k k T k

N N N N

     

     

     

 

 
 
 
 
 
  

X X X X X X

X X X X X X
U U D D

X X X X X X

              (30) 

and 

1

1 2

( ) ( )

( ) ( )
( ) ( )

...

( ) ( )

k T k

t

k T k

T k T t

k t

k T k

N t

 

 


 



 
 
 
 
 
  

X X

X X
 U X D

X X

                             (31) 

where the scalar product ( ) ( )k T k

i j X X  between bags 
iX  and jX  is evaluated using a kernel function 

which is explicitly defined in (15), (22), or (25). A matrix 1, , ,[ ,..., ,..., ]t t k t K t N K P p p p  is defined as 

follows: 

, ,( )k t T T k t

k t k kv p U X U U , k=1,2,..,K.                          (32) 

Then, 

, 1 , ,k t k t k t  q v q , k=1,2,…,K                               (33) 

and 

1 1

1

2

max 1 ,0 , 1, ,t t

m mt

m

m M
 



 
   
 
 

q q   
q

                          (34) 

where   is the step size parameter. 

In the aggregation step, the aggregation matrix is updated by constructing a linear combination of t
Q  

and 1t
Q : 

1 1 11(1 )
( )t t t tt t

t

 



   
  V Q Q Q                             (35) 

where conventionally 2 / ( 2)t t    [36]. 

4.5. Classification 

Using the obtained optimal coefficient matrix Q, the reconstruction residual ( )m tX  of the test bag for 

label m M{1, , }  is defined as: 
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2

2
1 1

( ) ( ) ( ( )) ( ) ( ) 2( ) ( ) ( )
K K

k k k k T k T k k k T k k

m t t m m m m t m

k k

K 
 

     X X U q δ q U U δ q U X δ q       (36) 

where ( )k

mδ q  is a coefficient selector that only selects coefficients associated with label m, i.e., the l-th 

entry in ( )k

mδ q  is defined as follows: 

( )
0

l lk

m l

l

q y m
d

y m


 


q

，

，
.                                (37) 

Similar to (18), the label that has the smallest residual is assigned to the test bag 
tX . 

5. Sensitive Video Recognition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Bag construction for each video. 

 

We apply the proposed cost-sensitive context-aware MI-SC and multi-perspective MI-J-SC to recognize 

sensitive videos, especially horror videos and violent videos. Given a set of N videos 1 2{ , ,..., }NI I I , they are 

labeled as 1 2{ , ,..., }Ny y y  ( {1,2}iy  , i.e., M=2) where a sensitive video is labeled “1” and a non-sensitive 

video is labeled as “2”. Each video iI  is divided into in  shots ,1 ,2 ,{ , ,..., }
ii i i ns s s  by measuring mutual 

information and joint entropy between frames [37]. In each shot, we select the frame which is closest to the 

mean of the color emotional features in the shot as a key frame, and then a key frame set ,1 ,2 ,{ , ,..., }
ii i i nθ θ θ  for 

video iI  is obtained. The visual and audio feature vector 
,i jf  for each key frame 

,i jθ  is extracted. An audio 

feature vector 
ia  is extracted from the entire audio associated with iI . A bag for each video is constructed 

by treating the feature vector of each key frame as an instance, as shown in Fig. 2. Then, the above MI-SC 

A video

Video shots

Key Frames

Audio Frames

Visual-audio features

     
  

A video bag

...

... ...

... ...

... ...

     ... ...

...

An audio feature vector
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methods can be applied to 
1 2{ , ,..., }NI I I . The optimal coefficients obtained by the cost-sensitive 

context-aware MI-SC or the multi-perspective MI-J-SC are used to classify the test videos as sensitive or 

non-sensitive. In the following, we describe the features extracted from horror and violent videos. 

The features extracted from videos are based on emotional perception theory. Different colors, textures, 

and audio rhythms may produce different emotions. So, we extract the following video features that produce 

emotions in the viewers: color emotional features, visual features, and audio features. These 

emotion-producing features are used for horror video recognition. Additional motion features are used for 

recognizing violent videos. 

5.1. Color emotional features 

Ou et al. [38, 39] developed color emotion models for single colors and harmony models for two color 

combinations by psychophysical experiments. We extract color emotional features based on these color 

emotion models. 

Ou et al. found that color emotions for single-colors depend on the following three factors: activity, 

weight, and heat, which are defined as follows: 

* 2 * 2 * 2

* 0

* 1.07 0

2.1 0.06 ( 50) ( 3) (( 17) /1.4)

1.8 0.04(100 ) 0.45cos( 100 )

0.5 0.02( ) cos( 50 )

Activity L a b

Weight L h

Heat C h

        


     
    


                    (38) 

where ( * * *, ,L a b ) and ( * *, ,L C h ) are the color components in the CIELAB and CIELCH color spaces, 

respectively. Based on (38), we define an emotional intensity (EI) for each pixel (x,y) as follows: 

2 2 2( , )EI x y Activity Weight Heat   .                           (39) 

Given a frame in a video, the EIs for all the pixels are computed. Based on the EIs, a color emotion histogram 

is acquired and employed as part of the color emotional features. 

Ou and Luo [1] developed a quantitative two-color harmony model which consists of three independent 

color harmony factors: hue effect (
HH ), lightness effect (

LH ), and chromatic effect (
CH ). These three 

harmony factors for two colors are explicitly estimated using hues, saturations, and lightness values of these 

two colors in the CIELAB color space (The details can be found in [1]). The overall harmony score CH 

between these two colors is defined as the sum of the three factors: H C LCH H H H   . Given a frame, for 

each pixel we calculate the color harmony score CH1 between its color and the mean of the colors of its 

surrounding pixels and the color harmony score CH2 between its color and the mean of the colors of all the 
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pixels in the frame. The color harmony score CHf of this pixel is defined as the sum of the two scores: CHf 

=CH1+CH2. Based on the color harmony scores in the frame, we construct a color harmony histogram which 

is used as another part of the emotional features. 

5.2. Visual features 

The visual emotional features include lighting features, color features, texture features, and Rhythm 

features. 

1) Lighting feature: Lighting affects viewers’ feelings directly [5, 7]. The lighting effect is determined 

by two factors: the general level of light and the proportion of shadow area. We use the median of the L values 

of all the pixels in a frame in the Luv color space [7] to characterize the general level of the light in the frame. 

The proportion of the pixels, whose lightness values are below a certain shadow threshold, is used to estimate 

the proportion of shadow area. 

2) Color feature: The color values used in the HSV space are clearly distinguishable by human 

perception, so we use the means and variances of components of the HSV color space in a frame to 

characterize the main cues of colors in the frame. Particular colors have strong relations with movie genres [7]. 

The particular colors in a frame can be represented by the covariance matrix Θ of the L, u, v values of pixels 

in the frame: 

2 2 2

, ,

2 2 2

, ,

2 2 2

, ,

L L u L v

L u L u v

L v u v v

  

  

  

 
 

  
 
 

Θ .                             (40) 

The determinant of (40), det( )  Θ , is used as the feature for the particular colors. 

3) Texture feature: Texture is another important factor relevant to image emotion, because different 

textures give people different feelings. Geusebroek and Smeulders [40] proposed a six-stimulus basis for 

stochastic texture perception: Texture distributions in image scenes conform to a Weibull distribution 

associated with a random variable x: 

1 1

( )

x
x

wb x e




 

 

  
  

 
 

  
 

                                 (41) 

where β represents the contrast of the image (a higher value for β indicates more contrast), and γ represents the 

grain size of the image (a higher value for γ indicates a smaller grain size, i.e., more fine textures). The 

parameters β and γ completely characterize the spatial structure of the texture, and they are used as the texture 

feature for horror and violent video recognition. 
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4) Rhythm feature: In horror and violent videos, quick shot switching and strong motions are often used 

to excite nervous moods in the viewers. We use the inverse length of a shot to represent the speed of shot 

switching. For a frame, the mean and standard deviation of motions between frames in a short clip centered at 

the frame are used to measure the quantity of motion associated with the frame [10]. 

5.3. Audio features 

Specific sounds and music are often used to highlight emotional atmosphere and promote dramatic 

effects. The following audio features [9] are extracted: 

 The mean and variance of the 12 MFCCs (Mel-frequency Cepstral coefficients) of each frame and 

the 12 MFCCS’ first-order differential, where the MFCCs are computed from the fast Fourier 

transform (FFT) power coefficients. 

 Spectral power which is used to measure the energy intensity of an audio signal: For an audio signal 

s(t), each frame is weighted with a Hamming window h(t), where t is the index of a sample in the 

frame. The spectral power of an audio frame of the signal s(t) is calculated as: 

2
1

0

1
10log ( ) ( )exp 2

T

t

to
s t h t j

T T






  
  
   

                       (42) 

        where T is the number of samples of each frame, and o is the index of an order of the DFT 

coefficients. 

 The mean and variance of the spectral centroids of the audio signal, which are employed as 

measures of music brightness. 

 Time domain zero crossings rate which provides a measure of the noisiness of an audio signal. 

5.4. Motion features 

The following motion features are extracted especially for violent video recognition: 

1) Optical flow: Corners in the previous frame are detected. Optical flow is used to estimate the 

positions of the corners in the current frame. The distance moved by each corner between the previous and 

current frames is calculated. The sum, mean, and standard deviation of the distances moved by the corners are 

used as motion features. 

2) Motion template: The motion template is constructed using the motion history image obtained from 

consecutive frames. The motion template is segmented into a number of regions. The global motion 

orientation of the template and the mean and standard deviation of the motion orientations of all these regions 
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are calculated and used as additional motion features. 

Empirically, all the above color emotional features, visual features, and audio features are useful for both 

horror video recognition and violent video recognition. The above motion features are useful only for violent 

video recognition, rather than horror video recognition, because violent videos use much more intense 

motions than horror videos to trigger strong emotions. In each instance the used features are combined into a 

feature vector. The value of each component in a feature vector is normalized according to the maximum of 

the values of this component over all the samples in the dataset. For the cost-sensitive context-aware MI-SC, 

all the audio features extracted from an entire video form a single audio feature vector for the video. This 

audio feature vector is used to calculate the cost matrix. For the multi-perspective MI-J-SC, the same features 

are used in all the three perspectives. 

6. Experiments 

In the experiments, the color emotion histogram has 64 bins. The color harmony histogram has 25 bins. 

The shadow threshold for lighting feature extraction was experimentally determined as 0.18. For an audio 

signal, we extracted a single-channel audio stream at 44.1 KHz and computed 12 MFCCs over 20ms frames. 

We used the precision (P), recall (R), and F1-measure (F1) to evaluate the performance of an algorithm. 

Let HS be the horror or violent videos in a dataset, and ES be the videos that are recognized as horror or 

violent by the algorithm. The precision (P), recall (R), and F1-measure (F1) are defined as: 

1

2

HS ES
P

ES

HS ES
R

HS

P R
F

P R










  
 



                                    (43) 

The proposed sensitive video recognition methods were compared with the following methods: 

 EM-DD [27]: This is an MIL method which combines the EM algorithm with the diverse density 

(DD) maximization [25]. 

 mi-Graph [29]: This method uses a graph [33] to model the contexts between instances in a bag. 

 MI-kernel [28]: This method regards each bag as a set of feature vectors and then applies a 

set-based kernel directly for bag classification. 

 MI-SVM: This method is extended from SVM to deal with MIL problems. It represents a positive 

bag by the instance farthest from the separating hyper-plane. 
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 mi-SVM: It looks for the hyper-plane such that for each positive bag there is at least one instance 

lying in the positive half-space, and all the instances belonging to negative bags lie in the negative 

half-space. 

 Citation-KNN: It is extended from KNN to deal with MIL problems. It considers not only the 

labels of the bags which are nearest to the test bag, but also the labels of the bags whose nearest 

samples contain the test bag. 

 SVM: The feature vectors of the key frames in a video were averaged into one vector. These 

averaged feature vectors of all the training samples were used to construct a classical SVM-based 

sensitive video classifier. 

 KNN: The KNN, instead of the SVM in the SVM-based classifier, was used to train a classifier. 

In the following, we report first the results of horror video recognition, then the results of violent video 

recognition, and finally the results on the general MIL datasets for validating the effect of proposed MI-SC 

methods. 

6.1. Horror video recognition 

We downloaded horror and non-horror videos from the internet. This dataset consists of 400 horror 

videos and 400 non-horror videos. These videos come from different countries, such as China, US, Japan, 

South Korea, and Thailand. The genres of the non-horror movies include comedy, action, drama, and cartoon. 

Half of the horror videos and half of the non-horror videos were used for training, and the remaining videos 

were used for testing. The average accuracies of ten times 10-fold cross validation were used to measure the 

performance of each method. 

Table 1 shows the values of the average Precision (P), Recall (R) and F1 measure (F1) of our methods 

based on cost-sensitive context-aware MI-SC and multi-perspective cost-sensitive context-aware MI-J-SC, 

and also the values for the competing methods based on mi-Graph, MI-kernel, MI-SVM, Citation-KNN, 

EM-DD, SVM, and KNN. In order to validate the effectiveness of the audio cost in the method based on 

cost-sensitive context-aware MI-SC, the audio features were not included in the feature vector in each 

instance when testing the method based on cost-sensitive context-aware MI-SC. We also compared the 

method based on cost-sensitive context-aware MI-SC with the method based on the pure context-aware 

MI-SC obtained by removing the audio cost from this method, i.e., the diagonal matrix D was fixed as 

D=diag(1 , 1, . . . , 1). It is unfair to compare the method based on the pure context-aware MI-SC with the 
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competing methods in which the audio features are used. Therefore, we removed the audio features from the 

feature vectors and compared the method based on the pure context-aware MI-SC with the mi-Graph-based 

method without audio features. From Table 1, the following points were revealed: 

Table 1. The experimental results on the horror video dataset (%) 

Algorithms Precision (P) Recall (R) F1 measure 

Multi-perspective cost-sensitive MI-J-SC 85.56(±0.51) 85.21(±0.39) 85.38(±0.32) 

Cost-sensitive context-aware MI-SC 81.62(±0.72) 83.38(±0.87) 82.46(±0.19) 

Pure context-aware MI-SC 80.02(±1.08) 82.00(±0.76) 80.98(±0.53) 

miGraph with audio features 81.87(±1.95) 82.4(±1.25) 82.14(±1.20) 

miGraph without audio features 80.01(±1.59) 80.82(±0.92) 80.40(±1.06) 

MI-kernel 80.70(±1.42) 81.43(±0.9) 81.05(±0.5) 

MI-SVM 79.78 78.92 79.35 

Citation-KNN 78.85 70.54 74.46 

EM-DD 77.59 72.97 75.21 

SVM 75.41 75.41 75.41 

kNN 89.10 57.30 69.70 

 

 Our method based on multi-perspective cost-sensitive MI-J-SC is much more accurate than all the 

other methods. This shows that horror video recognition benefits from multi-perspectives. The 

lower standard deviations imply that our method is stable. 

 The method based on the cost-sensitive context-aware MI-SC has a higher mean F1 value and a 

much lower standard deviation than the method based on the pure context-aware MI-SC. This 

indicates that the visual-audio context is useful for horror video recognition and the method based 

on the cost-sensitive MI-SC effectively fuses the visual and audio features. 

 Our method based on cost-sensitive context-aware MI-SC, our method based on multi-perspective 

cost-sensitive context-aware MI-J-SC, the method based on the pure context-aware MI-SC and the 

method based on the mi-Graph method, all of which model contextual cues among instances in a 

bag, outperform other MIL-based methods in which the instances are treated independently. This 

shows that the contextual relations between instances are useful for horror video recognition. 

 The results of the mi-Graph-based MIL method, in which SVMs rather than sparse coding are used, 

are reported. It is seen that our method based on cost-sensitive context-aware MI-SC yields more 

accurate results than the mi-Graph-based method with audio features. Although the method based on 

the pure context-aware MI-SC yields less accurate results than the mi-Graph-based method with 

audio features, it yields more accurate results than the mi-Graph-based method without audio 
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features. It is apparent that the sparse coding-based MIL methods outperform the SVM-based MIL 

method for horror video recognition. 

 The two non-MIL-based methods, the KNN-based method and the pure SVM-based method, overall 

yield less accurate results than the MIL-based methods. This is because they use holistic features in 

videos. If a horror video contains only a small number of horror frames, then the holistic features 

inevitably weaken the features obtained from the horror frames. The pure SVM-based method 

outperforms the KNN-based method, because SVM considers experiential risk and structural risk. 

Furthermore, the training free characteristic of the sparse coding classifiers makes it feasible to extend our 

methods based on cost-sensitive context-aware MI-SC and multi-perspective cost-sensitive context-aware 

MI-J-SC to online classifiers that are necessary for network video analysis applications. 

The computational efficiency of the proposed model is ensured by the efficient optimization methods for 

obtaining the sparsity coefficient vector. The feature sign search (FSS) algorithm in the cost-sensitive 

context-aware MI-SC produces a significant speedup for sparse coding. The APG algorithm in the 

multi-perspective cost-sensitive MI-J-SC is a fast algorithm for solving the 
2,1

 norm-regularized 

optimization. Table 2 compares the runtimes of the proposed methods and other representative methods on the 

horror video dataset tested on a computer with Intel(R) Core(TM)2 Quad CPU. It is seen that the test speed of 

our sparse coding-based methods is comparable to other representative methods, not taking into account the 

fact that our methods have no training time. 

Table 2. Runtime in seconds per video for different methods 

 Training Test 

Multi-perspective 

cost-sensitive MI-J-SC 
0 0.07 

Cost-sensitive context-aware 

MI-SC 
0 0.05 

mi-Graph 1.02 0.05 

mi-kernel 1.02 0.06 

SVM 1.06 0.04 

Citation-kNN 0 0.19 

 

In the experiments we fused different features to show their different contributions. Seven different 

combinations of the visual features (VF), the audio features (AF), and the color emotion features (EF) were 

obtained. Table 3 shows the precision, recall, and F1 measure for multi-perspective MI-J-SC, mi-Graph, 

MI-SVM, SVM, and kNN using these seven feature combinations on the horror video dataset. It is seen that 

the best one among three types of features is the audio feature, which has the highest F1 measure. Generally, 
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the combination of the visual features, the audio features, and the color emotional features can improve the 

recognition accuracy, which shows the complementary characteristics of the three types of features. 

Table 3. The results for different feature combinations (%) 

  VF EF AF VF+EF VF+AF EF+AF VF+EF+AF 

Multi- 

perspective 

MI-J-SC 

Precision 70.1 69.8 81.0 68.8 81.6 84.1 85.4 

Recall 72.7 73.6 81.8 70.4 81.3 84.7 85.2 

F1 measure 71.4 71.7 81.4 69.6 81.5 84.4 85.3 

mi-Graph 

Precision 69.1 69.9 80.8 76.4 82.7 82.7 84.0 

Recall 68.8 68.5 81.3 77.0 81.5 84.8 83.0 

F1 measure 68.9 69.2 81.0 76.7 81.8 83.7 83.5 

MI-SVM 

Precision 72.2 73.3 71.3 72.0 84.1 81.0 80.7 

Recall 73.3 74.3 81.7 74.0 83.3 81.8 82.8 

F1 measure 72.8 73.8 81.5 73.0 83.7 81.4 81.8 

SVM 

Precision 72.8 70.6 76.9 71.0 77.4 75.6 78.6 

Recall 73.0 70.3 76.5 71.5 77.0 76.5 79.0 

F1 measure 72.9 70.5 76.7 71.3 77.2 76.1 78.8 

kNN 

Precision 76.6 72.9 86.0 74.5 88.0 89.4 89.1 

Recall 58.0 71.3 50.5 57.0 49.5 57.0 57.3 

F1 measure 66.0 72.1 63.6 64.6 63.4 69.6 69.7 

 

6.2. Violent video recognition 

Table 4. The experimental results on the violent video dataset (%) 

Algorithms Precision (P) Recall (R) F1 measure 

Multi-perspective cost-sensitive MI-J-SC 86.57(±0.48) 87.87(±0.87) 87.2(±0.53) 

Cost-sensitive context-aware MI-SC 86.13(±0.98) 85.95(±0.95) 86.04(±0.87) 

mi-Graph 85.95(±2.28) 85.82(±1.69) 85.85(±1.15) 

MI-kernel 84.77(±3.37) 84.99(±2.84) 84.79(±1.25) 

MI-SVM 82.75 82.54 82.64 

Citation-KNN 78.88 83.33 81.04 

EM-DD 71.01 84.52 77.17 

SVM 82.25 79.66 80.93 

kNN 80.78 73.59 77.02 

 

We downloaded violent and non-violent movies from the internet. This dataset consists of 400 violent 

videos and 400 non-violent videos. Half of the violent videos and half of the non-violent videos were used for 

training, and the remaining videos were used for testing. The average accuracies of ten times 10-fold cross 

validation were used as the final performances for each method. Table 4 shows the recognition results of our 

methods based on cost-sensitive context-aware MI-SC and multi-perspective cost-sensitive MI-J-SC, and the 

competing methods based on mi-Graph, MI-kernel, MI-SVM, Citation-KNN, EM-DD, SVM, and KNN. All 

the methods use the same features including color emotional features, visual features, audio features, and 

motion features which are all introduced in Section 5. It is seen that our methods yield more accurate results 

than the competing methods, and our multi-perspective cost-sensitive context-aware MI-J-SC method yields 
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more accurate results than our cost-sensitive context-aware MI-SC method. The results have the same 

characteristics as on the horror dataset. 

We also tested performance of violent video recognition methods on the VSD (violent scene detection) 

2014 dataset [62], which benchmarks violence detection in Hollywood movies at the MediaEval 

benchmarking initiative for multimedia evaluation. The training set in the dataset has 24 Hollywood movies 

and contains binary annotations of all the violent scenes, where a scene was identified by its start and end 

frames. A set of 7 Hollywood movies was used for testing. All the test violent segments were annotated at 

video frame level, i.e., a violent segment was defined by its starting and ending frame numbers. We 

segmented the test videos into scenes and labeled the scenes as violent or non-violent using the videos’ 

annotations at the frame level. Table 5 compares the results of our methods for detecting violent scenes with 

the state-of-the-art results on the dataset. It is seen that the results of our methods are better than the 

stat-of-the-art results. The effectiveness of the extracted features and the MI-SC-based classification in our 

methods is clearly shown. 

Table 5. Comparison between the results (%) of our methods and the state-of-the-art results on the Hollywood movie test set and 

the YouTube movie test set, respectively 

Test subset Method Precision Recall F1 measure 

Hollywood 

movies 

Multi-perspective MI-J-SC 63.8 69.8 66.6 

Context-aware MI-SC 50.8 69.5 58.7 

FUDAN [63] 41.1 72.1 52.4 

RECOD [61] 33.0 69.7 44.8 

VIVOLAB [58] 38.1 58.4 46.1 

 

6.3. MIL datasets 

Although we focused our multi-perspective context-aware MI-J-SC method on applications to sensitive 

video recognition, our method can be used in other applications. To verify the generality of our 

multi-perspective context-aware MI-J-SC method, we tested it on the general datasets which were widely used 

to evaluate the performance of MIL methods. They include five benchmark datasets: Musk1, Musk2, Elephant, 

Fox, and Tiger [15, 19]. The Musk1 and Musk2 datasets are musk molecule datasets. Each molecule which 

corresponds to a bag has several shape structures which correspond to instances. Each structure was 

represented by a 166 dimensional vector. The Musk1 dataset contains 47 positive and 45 negative bags. The 

Musk2 dataset contains 39 positive and 63 negative bags. The Elephant, Fox and Tiger datasets are image 

datasets. Each image which corresponds to a bag was segmented into several image patches which correspond 

to instances. A 230 dimensional vector was extracted from each patch. Each of these three datasets contains 
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100 positive and 100 negative bags. 

Table 6. Accuracy (%) on the MIL benchmark datasets 

Algorithm Musk1 Musk2 Elephant Fox Tiger 

Multi-perspective MI-J-SC 91.1(±2.8) 90.6(±1.3) 88.5(±1.1) 62.7(±1.8) 86.8(±1.2) 

mi-Graph 88.9(±3.3) 90.3(±2.6) 86.8(±0.7) 61.6(±2.8) 86.0(±1.6) 

MI-Graph 90.0(±3.8) 90.0(±2.7) 85.1(±2.8) 61.2(±1.7) 81.9(±1.5) 

MI-Kernel 88.0(±3.1) 89.3(±1.5) 84.3(±1.6) 60.3(±1.9) 84.2(±1.0) 

MI-SVM 77.9 84.3 81.4 59.4 84.0 

mi-SVM 87.4 83.6 82.0 58.2 78.9 

Miss-SVM 87.6 80.0 N/A N/A N/A 

PP-MM 95.6 81.2 82.4 60.3 82.4 

DD 88.0 84.0 N/A N/A N/A 

EM-DD 84.8 84.9 78.3 56.1 72.1 

 

We compared our multi-perspective context-aware MI-J-SC method with the methods based on 

mi-Graph, MI-Graph, MI-Kernel, MI-SVM, mi-SVM [19], Miss-SVM [41], PP-MM kernel [42], the diverse 

density (DD) [25], and EM-DD [27]. For all the methods the same features from the benchmark datasets were 

used. The performance of each method was evaluated using the accuracy which is the proportion of the 

samples which are correctly classified. Our multi-perspective context-aware MI-J-SC method and the methods 

based on mi-Graph, MI-Graph, and MI-Kernel were run by us. The 10-fold cross validations for ten times 

were carried out to yield the average accuracies and standard deviations. The results of the competing methods 

based on MI-SVM and mi-SVM [19], Miss-SVM [41], PP-MM kernel [42], DD [25], and EM-DD [27] were 

directly taken from [29]. All the results are shown in Table 6. It is seen that our multi-perspective MI-J-SC 

method achieves better performances than the methods based on MI-Graph and mi-Graph on the Musk1, 

Elephant and Fox datasets. The performances of the methods based on multi-perspective MI-J-SC, MI-Graph, 

mi-Graph, and MI-Kernel on the Musk2 and Tiger datasets are comparable. More importantly, our 

multi-perspective MI-J-SC method yields lower standard deviations on all the benchmark datasets. This shows 

the stability of our multi-perspective context-aware MI-J-SC method. 

7. Conclusion 

In this paper, we have proposed a cost-sensitive context-aware MI-SC method in which a graph kernel 

has been used to model the contexts among frames and cost-sensitive sparse coding has been used to model 

the contexts between visual cues and audio cues. We have also proposed a multi-perspective MI-SC method 

which can effectively fuse information from the contextual perspective, the independent instance perspective, 

and the holistic perspective. Based on the color emotion and color harmony theories, we have extracted each 
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video’s color emotional features which are higher level features in contrast with the low-level color and visual 

features. These color emotional features together with the cost-sensitive context-aware MI-SC method and the 

multi-perspective MI-J-SC method have been applied to recognize violent and horror videos. Experimental 

results have shown that the extracted emotional features are effective for recognizing violent and horror 

videos. It has been shown that our methods not only are superior to traditional MIL-based methods and 

traditional SVM and KNN-based methods on the violent and horror video datasets but also may be effective 

in other general multi-instance problems as tested on the general MIL datasets. Although this paper focuses on 

the recognition of violent and horror videos, our cost-sensitive context-aware MI-SC method and our 

multi-perspective MI-J-SC method are available for recognizing other types of web videos. 
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