
Efficient regular path query evaluation using path indexes

George H. L. Fletcher
Eindhoven University of

Technology
The Netherlands

g.h.l.fletcher@tue.nl

Jeroen Peters
Eindhoven University of

Technology
The Netherlands

j.peters.1@student.tue.nl

Alexandra Poulovassilis
London Knowledge Lab
Birkbeck, University of

London, UK
ap@dcs.bbk.ac.uk

ABSTRACT
We demonstrate the use of localized path indexes in gener-
ating efficient execution plans for regular path queries. This
study is motivated by both the practicality of this class of
queries and by the current dearth of scalable solutions for
their evaluation. Our proposed solution leverages widely
available relational database technology and is often orders
of magnitude faster than currently known approaches. We
aim in this hands-on demonstration to both highlight the
promise of our approach and to stimulate further discus-
sion and study of engineering solutions for this practical yet
challenging class of graph queries.

1. INTRODUCTION
Massive graph-structured data collections are ubiquitous

in contemporary data management scenarios such as so-
cial networks, linked open data, and chemical compound
databases. A fundamental paradigm in graph query lan-
guages are the so-called regular path queries (RPQs) [16].
RPQs specify a regular expression over the edge labels in a
graph, and the query answer consists of every path in the
graph such that the sequence of edge labels along the path
forms a word in the language recognized by the regular ex-
pression. Variations and extensions of RPQs are supported
in recent query languages such as SPARQL 1.1 [8] and the
Cypher language of the Neo4j graph database.1

State of the art. Indexing of paths occurring in data has
been shown to be effective for query processing in the context
of object-oriented and semistructured databases [1, 15]. To
our knowledge, however, there has been no investigation of
using path indexing for the evaluation of RPQs over graph
databases. In particular, three general approaches to RPQ
evaluation have been proposed in the literature:

1. Automata- and search-based processing (e.g., [5, 10,
13]), where queries are evaluated by strategies such

1http://neo4j.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

as breadth-first-search pattern matching of the query
graph on the data graph;

2. Datalog-based processing (e.g., [3, 17]), where the Kleene
star operator is translated into recursive Datalog pro-
grams or recursive SQL views;

3. Reachability-index-based processing (e.g., [6]), where
restricted uses of Kleene star are translated into reach-
ability queries, which are then evaluated using off-the-
shelf reachability indexes.

Contributions. We present an overview of our ongoing study
of the use of path indexes for generating efficient execution
plans for RPQs. Our approach supports the evaluation of
arbitrary RPQs (unlike approach (3) above), and exhibits
significant improvement (often by several orders of magni-
tude) in query processing times over approaches (1) and (2).

In the next section we briefly define the problem. In Sec-
tion 3 we introduce the main data structures used in our
solution. We then discuss query plan generation and execu-
tion in Section 4. We conclude in Section 6 with an overview
of our system demonstration.

2. PRELIMINARIES

2.1 Data Model
We consider finite, directed, edge-labeled graphs. A graph

vocabulary is a finite non-empty set L of edge labels drawn
from some universe of labels. Let N be an infinite universe
of atomic data objects. An edge relation is a finite subset of
N×N . A graph over vocabulary L is an assignment G of an
edge relation `G to each ` ∈ L, i.e., there is an edge labeled
` from m to n if (m,n) ∈ `G. In the sequel, we will some-

times denote this by `(m,n) or m
`−→ n. As an example, a

graph Gex over the vocabulary {supervisor, knows,worksFor}
is shown in Figure 1.

The node set of G is the collection nodes(G) = {n | ∃m ∈
N, ` ∈ L : (n,m) ∈ `G or (m,n) ∈ `G}. For example,
the node set of the example graph contains nine elements:
nodes(Gex) = {ada, jan, . . . , zoe}.

Let k be a natural number. If k = 0, we say there is a
k-path from s to s, for every s ∈ nodes(G). If k > 0, for
s, t ∈ nodes(G), we say there is a k-path from s to t if there
exist n0, . . . , nk ∈ nodes(G) and edge labels `1, . . . , `k ∈ L
such that n0 = s, nk = t, and, for 0 < i ≤ k, (ni−1, ni) ∈ `Gi
or (ni, ni−1) ∈ `Gi .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://neo4j.com

sue liz joe

zoe sam tim

kim

ada

jan

knows

knows

worksFor

worksFor

knows

worksFor

knows

knows

worksFor

worksFor

knows

worksFor

knows

supervisor knows

knows

Figure 1: A graph Gex over vocabulary L = {supervisor, knows,worksFor}.

We denote by pathsk(G) the set of all pairs of nodes
(s, t) ∈ nodes(G) × nodes(G) such that there is an i-path
from s to t, for some i ≤ k.

As an example, in the graphGex we have that (sam, ada) ∈
paths2(Gex) via the paths sam

knows←−−− zoe
worksFor−−−−→ ada and

sam
knows←−−− zoe

knows←−−− ada, but (sam, ada) 6∈ paths1(Gex).

2.2 Regular Path Queries
Fix a vocabulary L. A regular path query (RPQ) is a

regular expression R over the alphabet {`, `− | ` ∈ L}, i.e.,
R is generated by the grammar

R ::= ε | ` | `− | R ◦R | R ∪R | Ri,j

for ` ∈ L and natural numbers i and j where i ≤ j. Intu-
itively, “ε” is the identity transition, “`” is forward navigation
along an edge with that label, “`−” is backwards navigation,
“◦” is path composition, “∪” is path disjunction (i.e., union
of paths), and “Ri,j” is bounded path recursion.

Given graph G over L, the semantics of evaluating an
RPQ R on G is a set R(G) consisting of all pairs (a, b) in
paths(G) such that there exists a path from node a to node
b in G whose label sequence `1 · · · `n defines a word in the
regular language specified by R.

As examples, we have in the graph Gex of Figure 1 that:

supervisor ◦ worksFor−(Gex) = {(kim, sue)}

and

(supervisor ∪ worksFor ∪ worksFor−)4,5(Gex) =

{(kim, kim), (kim, sue), (sue, kim), (sue, sue),

(ada, zoe), (ada, ada), (zoe, ada)}.

Note that we deviate from the traditional syntax of regular
expressions by replacing Kleene star“∗”with bounded recur-
sion. This is motivated by the following two observations.
First, bounded recursion is supported (and encouraged) in
practical graph query languages such as Neo4j’s Cypher.2

Second, since we focus in this work on index construction
and use, we are interested in query evaluation on a given
graph. It is easy to establish that for any graph G there
exists a natural number n(G) such that for every RPQ R it

is the case that R∗(G) = R0,n(G)(G).

2http://neo4j.com/docs/stable/, Section 8.8

3. INDEXES AND HISTOGRAMS
Given a graph G and a fixed k > 0, we now present our

indexing and selectivity estimation approaches for paths in
G localized to neighborhoods of size k.

3.1 k-path indexing
A label path is a sequence p = `1 · · · `n, where n > 0 is the

length of p, and `i ∈ {`, `− | ` ∈ L} for each 1 ≤ i ≤ n.
Our index on G is based on an ordered dictionary (which

can be implemented, for example, as a B+tree). In particu-
lar, we index pathsk(G) using an ordered k-path index IG,k

having search key 〈label path, sourceID, targetID〉. Specif-
ically, for each label path p of length at most k, and for
each pair of nodes (a, b) ∈ p(G), we insert (p, a, b) into IG,k.
Given a non-empty prefix p of a search key, IG,k returns an
ordered list IG,k(p) of all matching entries.

Example 3.1. In the graph of Figure 1, we have

IG,k(〈knows · knows · worksFor〉) =

〈(ada, tim), (jan, ada), (jan, jan), (jan, kim),

(joe, ada), (joe, jan), (joe, joe), (kim, joe),

(tim, jan), (tim, kim), (tim, tim)〉,

IG,k(〈knows · knows · worksFor, jan〉) =

〈(ada), (jan), (kim)〉,

IG,k(〈knows · knows · worksFor, jan, ada〉) = 〈()〉,

IG,k(〈knows · knows · worksFor, jan, joe〉) = 〈〉.

We have developed a prototype k-path index implemen-
tation that leverages the B+ tree index support of Post-
greSQL3. We translate RPQs into equivalent SQL state-
ments over IG,k implemented as a relational table and backed
by a B+tree (see [12] for full implementation details). In
building on mature relational technologies, we are following
an emerging trend in this direction [4, 7, 9] with practi-
cal benefits such as simplicity, ease of integration with and
deployment within existing IT ecosystems, and leveraging
field-proven technologies.

Notwithstanding the fact that we have described here an
implementation of our proposed k-path indexing technique

3http://www.postgresql.org

http://neo4j.com/docs/stable/
http://www.postgresql.org

using existing RDBMS technologies, other recent work [14]
describes an implementation of a B+tree-based k-path index
“from scratch”, focusing on issues such as index size, com-
pression and performance, and undertaking a comparative
performance study with the Neo4j graph DBMS over several
real and synthetic datasets and query workloads. That eval-
uation too demonstrates the potential of our k-path index-
ing approach (showing speed-ups in query evaluation times
ranging from 2 times to 8,000 times faster compared with
Neo4j). Detailed performance comparison between these ap-
proaches to path indexing is an area of future work.

3.2 k-path histogram
For query plan generation over IG,k, it is useful to have a

data structure selG,k which, given a label path p of length
at most k, returns an estimate of the selectivity of p in G,
i.e., the fraction of paths in pathsk(G) which satisfy p.

As an example, we have in the graph Gex of Figure 1 that
selGex,2(supervisor ◦ knows) ≈ 0.02, since only one of the 53
paths in paths2(Gex) is in supervisor ◦ knows(Gex).

There is a rich literature on statistics for query optimiza-
tion [2]. Here, we adopt the well-established histogram data
structure, since it is easy to deploy and extremely success-
ful in practice. In particular, we implement selG,k as an
equi-depth histogram. As with the path indexes, in our pro-
totype implementation we store and access our histogram as
a PostgreSQL table; see [12] for full implementation details.

4. QUERY EVALUATION WITH
PATH INDEXES

The processing of a RPQ R proceeds in three steps: The
first step is to replace each occurrence of bounded recursion
in R as a union over its expansion. The result is a semanti-
cally equivalent query R′ involving only edge labels or their
inverses, compositions, and unions. In the second step, all
unions in R′ are “pulled up” to the top level of the query,
resulting in a semantically equivalent query R′′ consisting
of a union of expressions each free of unions and bounded
recursion, i.e., R′′ = R1 ∪ · · · ∪ Rn where each Ri is a label
path. In the third step, each disjunct Ri is processed in
turn, with the aim of generating a physical execution plan
for each Ri in which a merge-join is used whenever possible
(to make the best use of the physical sort order of the index)
and a hash-join is used otherwise.

As an illustrative example, consider the query R = k ◦
(k ◦ w)2,4 ◦w, where k and w abbreviate knows and worksFor,
resp. Query plan generation proceeds as follows, where for
clarity of presentation we drop explicit use of the concate-
nation operation ◦:

1. (kb)2,4 is expanded, giving

R′ = k(kwkw ∪ kwkwkw ∪ kwkwkwkw)w.

2. Nested unions are pulled up to the top level, giving

R′′ = kkwkww ∪ kkwkwkww ∪ kkwkwkwkww.

3. Finally, physical execution plans are generated for each
of the disjuncts of R′′. In particular, suppose that
k = 3; then processing each of the disjuncts proceeds
as follows:

• kkwkww is processed, from left to right, generat-
ing the physical plan

IG,k(w−k−k−) 1 IG,k(kww)

in which 1 is implemented as a merge join. Note
the subexpression kkw has been inverted to obtain
the correct sort order to perform a merge join.

• kkwkwkww is processed from left to right, gener-
ating the physical plan

[IG,k(w−k−k−) 11 IG,k(kwk)] 12 IG,k(ww)

in which 11 is implemented as a merge join and
12 as a hash join.

• kkwkwkwkww is processed from left to right, gen-
erating the physical plan

[(IG,k(w−k−k−) 11 IG,k(kwk))

12 IG,k(wkw)] 13 IG,k(w)

in which 11 is implemented as a merge join and
12 and 13 as hash joins.

We term this evaluation strategy semi-naive. The com-
plete physical plan is formed as a union of these three
sub-plans.

The third step can be optimized by using the histogram
selG,k, as follows. For each disjunct D of R′′

1. if |D| ≤ k, return IG,k(D).

2. Find the most selective k-path subquery D′ of D (i.e.,
the k-path with smallest selG,k value). There are n−
k − 1 such subqueries to consider.

3. Let D = Dleft ◦ D′ ◦ Dright, and recur on Dleft and
Dright, to generate query plans for respective output
streams LEFT and RIGHT .

4. Determine the cost of each of the following alternative
query plans, and return the cheapest plan:

• [LEFT 1 IG,k(D′)] 1 RIGHT ,

• LEFT 1 [IG,k(D′) 1 RIGHT],

• [LEFT 1 IG,k(D′−)] 1 RIGHT , or

• LEFT 1 [IG,k(D′−) 1 RIGHT].

We term this evaluation strategy minSupport.
As an illustration of this strategy, consider again the first

disjunct kkwkww of our example query. Suppose we find
that the subquery kwk is the most selective amongst all four
subqueries of length k = 3 and that the subquery ww is
more selective than the subquery k. Then the physical plan
generated by the minSupport strategy would be

IG,k(k) 12 [IG,k(kwk) 11 IG,k(w−w−)]

in which 11 is implemented as a merge join and 12 as a hash
join.

Figure 2: Advogato query execution times (ms)

5. EMPIRICAL EVALUATION
We refer the reader to [12] for full details of an empirical

evaluation of our system with respect to a broad spectrum of
RPQs over four different real and synthetic datasets. In ad-
dition to the semi-naive and minSupport evaluation methods
described above, two other methods are investigated: naive,
in which k is fixed at 1 (so indexing is on edge labels, not
path labels), which corresponds to automaton-based evalu-
ation (approach 1, discussed in the Introduction); and min-
Join, which is similar to minSupport but also aims to mini-
mize the number of joins.

As an indicative subset of the empirical results obtained,
the three graphs in Figure 2 show the run-times of 8 queries
over the Advogato data set, for each of the four evaluation
methods, with values of k ranging from 1 to 3. Advogato is
a real-world social network having 6,541 nodes and 51,127
edges with |L| = 3, where edges indicate varying degrees of
trust between users in the network [11].4

We observe that the naive method always performs worst,
that the semi-naive method is generally outperformed by
minSupport and minJoin, and that the latter two perform
similarly. This demonstrates the value of the lightweight
histogram data structure for selectivity estimation. We also
see that increasing the value of k generally improves the run-
times for all methods (apart from naive, where k is fixed at
1 throughout).

6. DEMONSTRATION OVERVIEW
We give participants a hands-on overview of the life of

a regular path query, from its submission to our system,
through parsing and optimization, to execution. We fur-
ther demonstrate the speed-ups achieved by our approach
compared with Datalog-based evaluation (approach (2), dis-
cussed in the Introduction), where our solution is on average
1200x faster on the Advogato queries [12].

Through these interactive activities, we hope to both demon-
strate the promise of our approach to RPQ evaluation and
to stimulate further broader discussion and study in the re-
search community of engineering strategies for this challeng-
ing practical class of graph queries. A system demonstration
is an excellent setting in which to accomplish these goals.

7. REFERENCES
[1] E. Bertino et al. Object-oriented databases. In

E. Bertino et al, editor, Indexing Techniques for
Advanced Database Systems, pages 1–38. Kluwer, 1997.

4The data set is publicly available at http://konect.
uni-koblenz.de/networks/advogato

[2] G. Cormode, M. N. Garofalakis, P. J. Haas, and
C. Jermaine. Synopses for massive data: Samples,
histograms, wavelets, sketches. Foundations and
Trends in Databases, 4(1-3):1–294, 2012.

[3] S. C. Dey et al. On implementing provenance-aware
regular path queries with relational query engines. In
GraphQ, pages 214–223, Genoa, 2013.

[4] J. Fan, G. S. Raj, and J. M. Patel. The case against
specialized graph analytics engines. In CIDR,
Asilomar, California, 2015.

[5] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding
regular expressions to graph reachability and pattern
queries. Frontiers of Comp. Sci., 6(3):313–338, 2012.

[6] A. Gubichev, S. J. Bedathur, and S. Seufert. Sparqling
kleene: fast property paths in RDF-3X. In GRADES,
New York, NY, 2013.

[7] A. Gubichev and M. Then. Graph pattern matching –
do we have to reinvent the wheel? In GRADES,
Snowbird, Utah, 2014.

[8] S. Harris and A. Seaborne, editors. SPARQL 1.1
Query Language, W3C Recomm., 2013.

[9] A. Jindal and S. Madden. GRAPHiQL: A graph
intuitive query language for relational databases. In
Big Data, pages 441–450, Washington, DC, 2014.

[10] A. Koschmieder and U. Leser. Regular path queries on
large graphs. In SSDBM, pages 177–194, Chania,
Crete, Greece, 2012.

[11] P. Massa, M. Salvetti, and D. Tomasoni. Bowling
alone and trust decline in social network sites. In
DASC, pages 658–663, Chengdu, China, 2009.

[12] J. Peters. Regular path query evaluation using path
indexes. Master’s thesis, Eindhoven University of
Technology, 2015.

[13] P. Selmer, A. Poulovassilis, and P. T. Wood.
Implementing flexible operators for regular path
queries. In GraphQ, Brussels, 2015.

[14] J. Sumrall, G. H. L. Fletcher, and
A. Poulovassilis et al. Investigations on path indexing
for neo4j, 2015. Under review.

[15] K.-F. Wong, J. X. Yu, and N. Tang. Answering XML
queries using path-based indexes: A survey. World
Wide Web, 9(3):277–299, 2006.

[16] P. T. Wood. Query languages for graph databases.
SIGMOD Record, 41(1):50–60, 2012.

[17] N. Yakovets, P. Godfrey, and J. Gryz. WAVEGUIDE:
evaluating SPARQL property path queries. In EDBT,
pages 525–528, Brussels, 2015.

http://konect.uni-koblenz.de/networks/advogato
http://konect.uni-koblenz.de/networks/advogato

	Introduction
	Preliminaries
	Data Model
	Regular Path Queries

	Indexes and Histograms
	k-path indexing
	k-path histogram

	Query evaluation with path indexes
	Empirical evaluation
	Demonstration overview
	References

