
Solving the linear interval tolerance problem for weight
initialization of neural networks

S.P. Adama,b,∗, D.A. Karrasc, G.D. Magoulasd, M.N. Vrahatisa

aComputational Intelligence Laboratory, Department of Mathematics, University of Patras, GR-26110
Patras, Greece

bDepartment of Computer Engineering, Technological Educational Institute of Epirus, 47100 Arta, Greece
cDepartment of Automation, Technological Educational Institute of Sterea Hellas, 34400 Psahna, Evia,

Greece
dDepartment of Computer Science and Information Systems, Birkbeck College, University of London, Malet

Street, London WC1E 7HX, UK

Abstract

Determining good initial conditions for an algorithm used to train a neural network is

considered a parameter estimation problem dealing with uncertainty about the initial

weights. Interval Analysis approaches model uncertainty in parameter estimation prob-

lems using intervals and formulating tolerance problems. Solving a tolerance problem

is defining lower and upper bounds of the intervals so that the system functionality is

guaranteed within predefined limits. The aim of this paper is to show how the problem

of determining the initial weight intervals of a neural network can be defined in terms

of solving a linear interval tolerance problem. The proposed Linear Interval Tolerance

Approach copes with uncertainty about the initial weights without any previous knowl-

edge or specific assumptions on the input data as required by approaches such as fuzzy

sets or rough sets. The proposed method is tested on a number of well known bench-

marks for neural networks trained with the back-propagation family of algorithms. Its

efficiency is evaluated with regards to standard performance measures and the results

obtained are compared against results of a number of well known and established ini-

tialization methods. These results provide credible evidence that the proposed method

outperforms classical weight initialization methods.

Keywords:

∗Corresponding author
Email address: adamsp@upatras.gr (S.P. Adam)

Preprint submitted to Neural Networks March 14, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Neural networks, Weight initialization, Interval analysis, Linear interval tolerance

problem

1. Introduction

The purpose of Interval Analysis (IA) is to set upper and lower bounds on the effect

produced on some computed quantity by different types of mathematical computing

errors (rounding, approximation, uncertainty etc) (Moore, 1966; Hansen & Walster,

2004). Intervals are used to model uncertainty in parameter estimation problems such

as the noise associated with measured data. Such problems arise in engineering design

or mathematical modeling where tolerances in the relevant parameters need to be de-

fined in terms of upper and lower bounds so that the desired functionality is guaranteed

within these bounds. The interval-based algorithms are used to reliably approximate

the set of consistent values of parameters by inner and outer intervals and thus take into

account all possible options in numerical constraint satisfaction problems.

The promising features of IA motivated researchers from different disciplines to

invest in the study and implementation of IA methods whenever reliable numerical

computations are required. Currently, this research field is rapidly growing due to the

increasing computation power of modern hardware. Examples of applications range

from finite element analysis (Degrauwe et al., 2010) and data analysis (Garloff et al.,

2007), to stock market forecasting (Hu & He, 2007), reliability of mechanical design

(Penmetsa & Grandhi, 2002), and many more. Research in the area of neural networks

has also benefitted from IA and a number of efforts utilizing concepts and methods

from IA are reported in the literature. Examples are those by de Weerdt et al. (2009) on

the use of IA for optimizing the neural network output, Ishibuchi & Nii (1998) on the

generalization ability of neural networks, Xu et al. (2005) on robust stability criteria

for interval neural networks, Li et al. (2007) regarding training of neural networks, and

others.

An important problem encountered when training a neural network is to determine

appropriate initial values for the connection weights. Effective weight initialization

is associated to performance characteristics such as the time needed to successfully

2

train the network and the generalization ability of the trained network. Inappropri-

ate weight initialization is very likely to increase the training time or even to cause

non convergence of the training algorithm, while another unfortunate result may be to

decrease the network’s ability to generalize well, especially when training with back-

propagation (BP), a procedure suffering from local minima, (Haykin, 1999; Hassoun,

1995; Lee et al., 1991). These are defaults and limitations for having successful prac-

tical application of neural networks in real life processes.

The importance manifested by the research community for this subject has been

demonstrated by the number of research work published in this area. The proposed

approaches can be, roughly, divided into two categories. Methods in the first category

perform input data clustering in order to extract significant information (feature vec-

tors or reference patterns) pertaining the pattern space and initial connection weights

are chosen to be near the centers of these clusters. The main drawback of these meth-

ods is the computational cost needed to preprocess the input data. Often this cost may

be prohibitive for these methods to be used in real world applications. The second

category includes those methods that are based on random selection of initial weights

from a subset of Rn, which is an interval defined considering important properties of

the pattern space and/or the parameters of the training process.

The notion of the interval, underlying random weight selection methods, suggests

the idea to use IA in order to deal with uncertainty about the initial weights. Hence,

the unknown initial weights are considered to be intervals with unknown bounds. Un-

der generally adopted assumptions about the input to any node, the resulting unknown

interval quantity is then limited within specific upper and lower bounds. Ensuring

that scientific computations provide results within guaranteed limits is an issue men-

tioned by researchers in IA as a tolerance problem. In consequence, the approach

proposed herein gives rise to formulating a linear interval tolerance problem which is

solved to determine significant intervals for the initial weights. Shary (1995); Pivkina

& Kreinovich (2006); Beaumont & Philippe (2001) and other researchers propose dif-

ferent methods for solving a tolerance problem. Besides formulating the problem of

determining initial weights as a linear interval tolerance problem, we also present here

a new algorithm for defining the required solution to the specific tolerance problem.

3

The proposed linear interval tolerance approach (LIT-Approach) deals with un-

certainty about the initial weights based exclusively on numerical information of the

patterns without any assumption on the distribution of the input data. IA provides the

means of handling uncertainty in parameters in much the same way this happens with

other approaches such as the possibilistic approach with Fuzzy sets (Zadeh, 1978), Ev-

idence theory (Shafer, 1976), Rough sets (Pawlak, 1991) or methods combining prop-

erties of these approaches. However, methods using fuzzy sets require parameters of

the membership functions to be tuned and eventually some preprocessing of the input

data to be done if pertinent input variables need to be identified. Moreover, when using

rough sets one needs to process the input data in order to deal with the indiscernibility

relation and establish upper and lower approximations of the concepts pertaining the

problem, see (Bello & Verdegay, 2012). Finally, application of the Dempster-Shafer

(evidence) theory is a matter of subjective estimation of uncertainty as it assumes that

values of belief (or plausibility) are given by an expert. Unlike all these approaches,

the interval computation used for LIT-Approach needs only elementary statistics of the

input data to be computed such the sample mean, the sample standard deviation or the

median and the quartiles of the sample.

It is worth noting here the approach formulated by Jamett & Acuña (2006) as an

interval approach for weight initialization. The solution proposed “solves the network

weight initialization problem, performing an exhaustive search for minima by means

of interval arithmetic. Then, the global minimum is obtained once the search has been

limited to the region of convergence”. For the experimental evaluation proposed, inter-

val weights are initially defined as wide as necessary (with amplitudes up to 106). In

addition, the IA solution adopted by these researchers extends to defining an interval

version of the gradient descent procedure. On the contrary, the method presented in this

paper uses IA concepts only for computing effective intervals for the initial weights and

therefore it is not computationally expensive.

The sections of this paper are organized as follows. Section 2 is devoted to a pre-

sentation of the IA concepts underpinning the LIT-Approach. Section 3 presents the

analysis of LIT-Approach including both theoretical results and the weight initializa-

tion algorithm. Section 4 is dedicated to the experimental evaluation of our approach

4

and its comparison with well known initialization procedures. Finally, Section 5 sum-

marizes the paper with some concluding remarks.

2. Interval Analysis and the Tolerance Problem

2.1. Interval Arithmetic

The arithmetic defined on sets of intervals, rather than sets of real numbers is called

interval arithmetic. An interval or interval number I is a closed interval [a, b] ⊂ R of

all real numbers between (and including) the endpoints a and b, with a 6 b. The terms

interval number and interval are used interchangeably. Whenever a = b the interval is

said to be degenerate, thin or even point interval. An interval X may be also denoted

as
[
X, X

]
, [X] or even [XL, XU] where subscripts L and U stand for lower and upper

bounds respectively. Interval variables may be uppercase or lowercase, (Alefeld &

Mayer, 2000). In this paper, identifiers for intervals and interval objects (variables or

vectors) will be denoted with boldface lowercase such as x, y, z and boldface uppercase

notation will be used for matrices, e.g. X. Lowercase letters will be used for the square

bracketed notation of intervals [x, x], or the elements of an interval as a set. An interval

[x, x] where x = −x is called a symmetric interval. Finally, if x = [x, x] then the

following notation will be used in this paper.

rad(x) = (x − x)/2, is the radius of the interval x

mid(x) = (x + x)/2, is the midpoint (meanvalue) of the interval x

|x| = max{|x|, |x|}, is the absolute value (magnitude) of the interval x

IR, denotes the set of real intervals

IRn, denotes the set of n−dimensional vectors of real intervals

Let � denote one of the elementary arithmetic operators {+,−,×,÷} for the simple

arithmetic of real numbers x, y. If x, y denote real intervals then the four elementary

arithmetic operations are defined by the rule

x � y = { x � y | x ∈ x, y ∈ y} (1)

5

This definition guarantees that x � y ∈ x � y for any arithmetic operator and any values

of x and y. In practical calculations each interval arithmetic operation is reduced to

operations between real numbers. If x = [x, x] and y = [y, y] then it can be shown that

the above definition produces the following intervals for each arithmetic operation:

x + y = [x + y, x + y] (2a)

x − y = [x − y, x − y] (2b)

x × y =
{
min

(
xy, xy, xy, xy

)
,max

(
xy, xy, xy, xy

)}
(2c)

x ÷ y = x ×
1
y
, with (2d)

1
y

=

1
y
,

1
y

 , provided that 0 <
[
y, y

]
(2e)

The usual algebraic laws of arithmetic operations applied to real numbers need to be

reconsidered regarding finite arithmetic on intervals. For instance, a non-degenerate

(thick) interval has no inverse with respect to addition and multiplication. So, if x, y

are non-degenerate intervals then,

x + y = z ; x = z − y, (3a)

x × y = z ; x = z ×
1
y
. (3b)

The following sub-distributive law holds for non-degenerate intervals x, y and z,

x × (y + z) ⊆ x × y + x × z. (4)

One may easily verify that the usual distributive law holds if x is a point interval or

if both y and z are point intervals. Hereafter, the multiplication operator × will be

omitted as in usual algebraic expressions with real numbers. A very important property

of interval arithmetic operations is that,

if a,b,c,d ∈ IR and a ⊆ b, c ⊆ d (5)

then a � c ⊆ b � d, � ∈ {+,−,×,÷}.

This property is the inclusion isotony of interval arithmetic operations and it is con-

sidered to be the fundamental principle of IA. More details on interval arithmetic and

its extensions can be found in Hansen & Walster (2004); Alefeld & Mayer (2000);

Neumaier (1990).

6

2.2. Interval Linear Systems

An interval linear system is a system of the form,

Ax = b (6)

where A ∈ IRm×n, also noted
[
A,A

]
, is an m-by-n matrix of real intervals, b ∈ IRm,

also noted
[
b, b

]
, is an m-dimensional vector of real intervals and x is the n-dimensional

vector of unknown interval variables. Solving a system of linear interval equations

has attracted the interest of several researchers in the field of IA for more than forty

years. Initially, research focused on systems with square interval matrices (A ∈ IRn×n)

and a number of different methods for studying and solving such systems have been

proposed.

To solve the above system of interval linear equations Ax = b, generally, means to

compute the solution set defined as∑
(A,b) = {x ∈ Rn | Ãx = b̃ for real Ã ∈ A, b̃ ∈ b}. (7)

That is,
∑

(A,b) is the set of all solutions for all matrices Ã ∈ A with real elements and

all vectors b̃ ∈ b having real number components. This set is generally not an interval

vector but a rather complicated set that is usually impractical to define and use (Hansen

& Walster, 2004). In practice, defining this solution set resulted in proposing meth-

ods such as the interval versions of Gaussian elimination or the Gauss-Seidel method

which compute vectors that bound
∑

(A,b). Note that these interval algorithms differ

significantly from corresponding point algorithms as they use preconditioning with a

point matrix for the algorithms to be effective (Hansen & Walster, 2004; Neumaier,

1990). Other frequently used methods are those based on the Rump/Krawczyk itera-

tion (Krawczyk, 1969; Rump, 2001).

An important issue was to define the narrowest interval vector containing the solu-

tion set
∑

(A,b). This interval vector is called the hull of the solution set. Determining

the hull is a problem that is NP-hard as shown by Heindl et al. (1998), and so, in gen-

eral, methods try to compute only outer bounds for the hull. Other important research

results include: the work by Rohn (2003) on the solvability of systems of linear inter-

val equations with rectangular matrices, the algorithm proposed by Hansen (2006), to

7

solve over-determined systems and the work presented by Kubica (2010) on interval

methods for under-determined nonlinear systems.

For such methods one may refer to Alefeld & Herzberger (1983); Neumaier (1990);

Kreinovich et al. (1997); Hansen & Walster (2004); Hansen (1992); Kearfott (1996).

The number of different methods proposed to solve systems of linear interval equa-

tions underlines the importance of the subject, especially regarding the difficulty to

generally indentify the hull of the solution set of such a system. Research effort has

been dedicated on the evaluation of different methods solving systems of linear inter-

val equations. Important works on this matter include Neumaier (1984); Goldsztejn

(2007); Ning & Kearfott (1997); Rohn (1993).

2.3. Tolerance Problem and the Tolerance Solution Set

The tolerance problem arises in engineering design and system modeling and refers

to the estimation of the tolerance of certain parameters of a system or a device so that

its behaviour i.e. its output is guaranteed within specified bounds. In mathematical

terms, if F : Rn → Rm is the mapping relating variables x = (x1, x2, . . . , xn)> with out-

put parameters y = (y1, y2, . . . , ym)>, then the tolerance problem is associated with the

computation of a domain for the variables of F such that the corresponding y = F (x)

lie within some predefined range, (Neumaier, 1986, 1990).

In Shary (2002) the tolerance problem is described as a particular problem related

with the analysis of a system. Using intervals and quantifier formalism to model un-

certainty, about a system’s parameters, Shary defines three types of solutions to the

general input-state-output equation describing a system. These solutions are sets of

values providing answers to different issues of systems analysis. Hence, according

to Shary (2002), for the interval equation F (a, x) = b of a system with n unknown

parameters x ∈ Rn, there are three particular cases of the general AE-solution set:

• the United solution set consisting of the solutions of all point equation systems

of the form F (ã, x) = b̃ with ã ∈ a and b̃ ∈ b,

• the Controllable solution set containing all point vectors x such that for any b̃ ∈ b

one can find the right ã ∈ a such that F (ã, x) = b̃, and finally,

8

• the Tolerable (or Tolerance) solution set formed by all point vectors x such that

for any ã ∈ a the image F (ã, x) ∈ b.

In the case of a static linear system F has the form of the interval linear system Ax = b

and the solution set defined by (7) is the United solution set. Using the notation intro-

duced in Shary (1995) the solution sets defined previousely are:

United solution set:∑
∃∃

(A,b) = {x ∈ Rn | (∃Ã ∈ A)(∃b̃ ∈ b)(Ãx = b̃)} (8)

Controllable solution set:∑
∃∀

(A,b) = {x ∈ Rn | (∀b̃ ∈ b)(∃Ã ∈ A)(Ãx = b̃)} (9)

Tolerance solution set:∑
∀∃

(A,b) = {x ∈ Rn | (∀Ã ∈ A)(∃b̃ ∈ b)(Ãx = b̃)} (10)∑
⊆
(A,b) = {x ∈ Rn |Ax ⊆ b} (11)

Both the Controllable and the Tolerance solution sets are subsets of the more general

United solution set. The specific uncertainty problem defines which of the above so-

lution sets contains the solution of the problem. With respect to the assumption that F

describes the input-output relation of a static linear system, the tolerance solution set

provides answers to the question whether there are input signals x̃ to the system such

that the output Ax remains within specified limits b. Moreover, it is worth noting here

that the elements of the solution sets, as defined previously, are not just points in Rn

but they may be intervals in IRn as well (Shary, 1995; Pivkina & Kreinovich, 2006).

3. Weight Initialization with the LIT-Approach

3.1. Random Selection of Initial Weights

Random initialization of connection weights seems to be the most widely used ap-

proach for real world applications. A number of approaches such as those presented in

this section claim the reputation to provide improvement in BP convergence speed and

9

avoidance of bad local minima, (Nguyen & Widrow, 1990; Wessels & Barnard, 1992).

Unless differently defined, hereafter din denotes the number of inputs to a node.

Fahlman (1988) studies on random weight initialization techniques resulted in the

use of a uniform distribution over the interval [−1.0, 1.0]. This seems to constitute a

simplified approach for use in any problem without further hypotheses.

Boers & Kuiper (1992) initialize the weights using a uniform distribution over the

interval
[
−3/
√

din, 3/
√

din

]
. This interval is defined so that the stimulus of any node

is located around the origin of the axes where the sigmoid activation function has its

steepest slope. This interval is the same as the one defined by the conventional method

of Wessels & Barnard (1992). However, in order to avoid false local minima detected

when applying this conventional method, Wessels & Barnard (1992) also propose a

more refined method adopting a different strategy for the input-to-hidden layer connec-

tions and for the hidden-to-output layer connections.

Bottou (1988) defines the interval
[
−a/
√

din, a/
√

din

]
, where a is chosen so that the

weight variance corresponds to the points of the maximal curvature of the activation

function. For the logistic sigmoid activation function a is set to be approximately equal

to 2.38 and 0.66 for the hyperbolic tangent. Criticism on this approach concerns the

fact that it was not compared against other methods.

Kim & Ra (1991) calculated a lower bound for the initial length of the weight vec-

tor of a neuron to be
√
η/din where η is the learning rate used by the training procedure.

Smieja (1991) based on the study of the hyperplanes dynamics, proposes uniformly

distributed weights normalized to the magnitude 2/
√

din for each node. The thresholds

for the hidden units are initialized to a random value in the interval
[
−
√

din/2,
√

din/2
]

and the thresholds of the output nodes are set to zero.

Drago & Ridella (1992) proposed a method aiming to avoid flat regions in the er-

ror surface in an early stage of training. Their method is called statistically controlled

activation weight initialization (SCAWI). They determine the maximum magnitude of

the weights through statistical analysis. They show that the maximum magnitude of

the weights is a function of the paralyzed neuron percentage (PNP), which is in turn

related to the convergence rate. By determining the optimal range of PNP through

computer simulations, the maximum magnitude of the weights can be obtained. The

10

weights are uniformly distributed over the interval [−r, r] with r = 1.3/
√

1 + niv2 for

the hidden layer nodes and r = 1.3/
√

1 + 0.3nh for the output layer nodes. Here, ni de-

notes the number of inputs to the network and nh is the number of nodes in the hidden

layer. In addition v2 is the mean of the expectation of the quadratic values of the inputs,

v2 = 1/ni
∑ni

i=1 E[I2
i].

Nguyen & Widrow (1990) proposed a simple modification of the widely used ran-

dom initialization process of Fahlman (1988). The weights connecting the output units

to the hidden units are initialized with small random values over the interval [−0.5, 0.5].

The initial weights at the first layer are designed to improve the learning capabilities of

the hidden units. Using the magnification factor defined by the relation, β = 0.7H1/N

where H is the number of hidden units and N is the number of inputs, the weights are

randomly selected in the interval [−1, 1] and then scaled by v = βv/‖ v ‖ where v is the

first layer weight vector. Results obtained by Pavelka & Procházka (2004), provide sig-

nificant experimental evidence on the superiority of Nguyen-Widrow’s method against

typical random initialization techniques.

In addition to the above, a number of interesting methods related to this context

have been formulated by Osowski (1993); Chen & Nutter (1991); Yam & Chow (1995,

1997); LeCun (1993); Schmidhuber & Hochreiter (1996), as well as by others re-

searchers.

Despite the availability of such an armory of weight initialization methods, it seems

that, there does not exist any, widely accepted, assessment, regarding the effective-

ness of these methods with some specific problem or a class of problems. Research

efforts concerning the comparison of different weight initialization techniques include

those reported in Thimm & Fiesler (1994); Fernández-Redondo & Hernández-Espinosa

(2001). Thimm and Fiesler compared several random weight initialization schemes

using a very large number of computer experiments. They concluded that the best ini-

tial weight variance is determined by the dataset, but differences for small deviations

are not significant and weights in the range [−0.77, 0.77] seem to give the best mean

performance. Fernández-Redondo & Hernández-Espinosa (2001) presented an exten-

sive experimental comparison of seven weight initialization methods; those reported

11

by Kim & Ra (1991); Li et al. (1993); Palubinskas (1994); Shimodaira (1994); Yoon

et al. (1995); Drago & Ridella (1992). Researchers claim that methods described in

Palubinskas (1994); Shimodaira (1994) above proved to give the better results from all

methods tested. However, they argue that the method presented in Shimodaira (1994)

suffers from the need of pre-processing.

3.2. Analysis of the LIT-Approach

Let us consider a multi-layer perceptron (MLP) with 3 layers, input, hidden and

output. Let N,H and O denote the number of nodes of the three layers, respectively.

The analysis presented hereafter refers to any node, say j (1 6 j 6 H), in the hidden

layer and so the results apply without any further assumption to every node in the hid-

den layer. Nodes in the hidden and the output layers are considered to have a sigmoid

activation function which is either the logistic function or the hyperbolic tangent. In

consequence, the output of any node, say the jth, is given by

y j = sig(
N∑

i=1

w jixi + w jb), 1 6 j 6 H, (12)

while output of a node in the output layer is given by

zk = sig(
H∑

j=1

wk jy j + wkb), 1 6 k 6 O. (13)

Note that w ji is the weight of the connection from the ith input node to the jth hidden

one. Moreover, w jb and wkb denote the weights of the bias connections to the jth hidden

and the kth output nodes respectively.

Sigmoid functions (sig) are able to effectively discriminate between inputs when

these inputs lie in the so-called active region of their domain, that is the input range

where the derivative of the activation function has a large value. When training the

network, in order to avoid problems such as premature saturation, a realistic hypothesis

is to start training with such weight values that the node input would be in the active

region of the sigmoid function, (Boers & Kuiper, 1992; Yam & Chow, 1997). Then,

the training algorithm is responsible to explore the domain of definition of the sigmoid

function, in order to determine those values of the weights that minimize the error of

12

the network output. For any node, say the jth, in the hidden layer having its input in

the active region of the sigmoid means that:

−a 6
∑

i

w jixi + w jb 6 a, (14)

where −a and a are the lower and the upper bounds of the active region of the sigmoid

activation function.

Suppose that p patterns are available for training and each pattern is represented by

an N-dimensional vector x = (x1, x2, . . . , xN)>. Then expression (14) yields the follow-

ing linear system of p inequalities with N + 1 unknown variables w j1,w j2, . . . ,w jN ,w jb.

−a 6
∑
i

w jix1
i + w jb 6 +a

−a 6
∑
i

w jix2
i + w jb 6 +a

· ·

−a 6
∑
i

w jix
p
i + w jb 6 +a

(S1)

Note that in general, p > N +1 and so this system is over-determined and has a solution

only if p − (N + 1) pattern vectors are linearly dependent. Problems where the number

of features is higher than the number of patterns are known as High Dimension Low

Sample Size (HDLSS) problems and constitute a special research topic, (Ahn et al.,

2007; Yata & Aoshima, 2010).

Weight initialization methods define symmetric intervals for selecting values of the

initial weights. Hence, it is legitimate to assume that each unknown weight w ji is a real

number taken from a symmetric interval [w ji] = [−w ji,w ji], 1 6 i 6 N and [w jb] =

[−w jb,w jb] is the symmetric interval for the unknown thresholds. If [a] = [−a, a]

denotes the interval for the active range of the activation function of the jth node, then

expression (14) may be written in interval form as,∑
i

[w ji]xi + [w jb] ⊆ [a]. (15)

In accordance to subsection 2.3 this relation defines w ji as a solution to the tolerance

problem associated with the equation∑
i

[w ji]xi + [w jb] = [a]. (16)

13

From another point of view, if one considers the p input patterns available for train-

ing then this equation expands to the following interval system of linear equations,

[w j1]x1
1 + [w j2]x1

2 + · · · + [w jN]x1
N + [w jb] = [a]

[w j1]x2
1 + [w j2]x2

2 + · · · + [w jN]x2
N + [w jb] = [a]

· ·

[w j1]xp
1 + [w j2]xp

2 + · · · + [w jN]xp
N + [w jb] = [a]

(S2)

Let us denote this system Xwj = a, with X being the p × (N + 1) matrix formed

by the p × N matrix of the pattern values augmented with the p-dimensional vector

(1, 1, . . . , 1)> for the threshold, wj = ([w j1], [w j2], . . . , [w jN], [w jb])> is the (N + 1)-

dimensional vector of the unknown weight intervals and a = ([a], [a], . . . , [a])> the

p-dimensional vector of the right hand side. Note that the elements of X are real num-

bers which are here considered as point intervals in order to comply with notation of

subsection 2.3.

From an algebraic point of view a solution to this interval linear system is an in-

terval vector wa such that substituting it to (S2) and executing all interval arithmetic

operations yields the valid equality Xwa = a. All the interval vectors that are alge-

braic solutions to some interval linear equation or a system of equations form a non-

empty set. So, speaking about the solution of an interval equation (system of equa-

tions, inequalities, etc.) on its own is irrelevant with respect to the specific uncertainty

problem modelled by the interval equation (system of equations etc.) at hand (Shary,

2002). The right thing would be to refer to the solution of some specific problem state-

ment relating to the interval equation (system of equations, inequalities, etc.). Hence,

what really matters with the solution of the latter interval system is to obtain an inter-

val vector, say w∗j = ([w∗j1], [w∗j2], . . . , [w∗jN], [w∗jb])>, such that for all given patterns

xk ∈ RN , 1 6 k 6 p the following relation is valid,

N∑
i=1

[w∗ji]xk
i + [w∗jb] ⊆ [a] . (17)

This statement clearly identifies the system (S2) as the formulation of an interval linear

tolerance problem for the initialization of the connection weights to any node in the

hidden layer of an MLP.

14

Different algorithms have been proposed to construct interval solutions to the linear

tolerance problem in terms of its inner interval approximations, (Shary, 1995; Beau-

mont & Philippe, 2001). Prior to discussing the existence of an algorithm for deriving a

solution for this linear interval tolerance problem we need to discuss the non emptiness

of the tolerance solution set of the system (S2).

Lemma 1. Consider the interval linear system Ax = b, where A ∈ IRm×n is an m-

by-n matrix of real intervals, b ∈ IRm is an m-dimensional vector of real intervals

b = {b1, b2, · · · , bm} and x is the n-dimensional vector of unknown interval variables.

If 0 ∈ bk for all k ∈ {1, 2, · · · ,m} then the tolerance solution of this system is not empty.

Proof. It is straightforward to see that the trivial m-dimensional vector t0 = (0, 0, · · · , 0)

is such that At0 ⊆ b. Thus the tolerance solution set of this system is not empty.

However, the trivial solution may not be adequate for the problem at hand. To fur-

ther advance with this issue one may prove the algebraic solvability of the given system

(S2) then solve the system and finally select the solutions that are in the tolerance so-

lution set (Shary, 1995). Another way to proceed is a constructive approach which

consists in proposing an algorithm for constructing tolerance solutions. A number of

approaches are presented in Shary (1995). The proposed LIT-Approach is also a con-

structive one.

Here let us present the algorithm of Shaidurov using the same notation as given in

Shary (1995). Let an interval m × n matrix A = (aij) and an interval right-hand side m

dimensional vector b = (bi) and let
∑
∀∃(X,b) denote the solution set to the associated

linear interval tolerance problem.

Algorithm

For some given t ∈
∑
∀∃(X,b), t = (t1, t2, · · · , tn)> calculate the intervals

ri =
rad(bi) − |mid(bi) −

∑n
j=1 ai jt j|∑n

j=1 |ai j|
, (18)

i = 1, 2, · · · ,m, and then put ρ = min
16i6m

ri. The vector (t + ρe) is a solution to the linear

tolerance problem. Note that e is the interval vector ([−1, 1], [−1, 1], . . . , [−1, 1])>.

Regarding the tolerance problem for weight initialization the hypothesis of having

an initial solution to start with this algorithm can be satisfied by taking the initial vector

15

t to be the trivial vector (0, 0, · · · , 0). A similar method proposed by Neumaier (1986)

as well as other approaches can be found in Shary (1995). Moreover, a discussion re-

garding various aspects and optimality criteria of the different algorithms can be found

in Shary (1995) and Pivkina & Kreinovich (2006). The question concerning the best

approach when solving the weight initialization tolerance problem depends on the per-

formance parameters set for the weight initialization problem itself. We consider that

this question has both theoretical and practical importance and needs to be separately

addressed outside this paper.

3.2.1. Theoretical results

Hereafter, we present our approach to constructing a solution to the tolerance prob-

lem for the initialization of weights. We take advantage of the fact that the intervals

are symmetric and build the proposed method based on the following mathematical

results omitting the hypothesis of disposing an initial solution vector t. Without loss

of generality and for the sake of readability the notation used is the same as above for

equations (15)–(17).

Lemma 2. For any symmetric intervals w1 and w2 such that w1 ⊆ w2 and any real

numbers x1 and x2 such that x1 6 x2 then the relation x1w1 ⊆ x2w2 is satisfied.

Proof. The relation x1 6 x2 implies that [x1, x1] ⊆ [x2, x2] holds true for the point

intervals corresponding to x1 and x2. Hence, given that the interval multiplication is

inclusion isotonic the relation x1w1 ⊆ x2w2 is satisfied.

Lemma 3. Consider the interval equation [x][w] = [a], where [a] is a symmetric

interval, [a] = [−a, a], and [x] = [xL, xU] with 0 < xL 6 xU . Then the solution of the

equation is [−w,w] = [−a, a]/xU .

Proof. Let us assume that [w] is an interval of the form [wL,wU]. Then the multiplica-

tion operation of intervals implies for [−a, a] that −a = min{xLwL, xLwU , xUwL, xUwU}

and a = max{xLwL, xLwU , xUwL, xUwU}. Moreover, the inequality 0 < xL 6 xU im-

plies that wL < 0 < wU and so −a = xUwL and a = xUwU . Thus, the solution of the

interval equation is [−w,w] = [−a, a]/xU .

16

When the coefficient of [w] is not an interval [x] but a finite set of p real numbers

x1, x2, . . . , xp then one may consider this as an interval linear system of p equations of

the variable [w]. Then, the following Lemma 4 gives a solution to this interval linear

system.

Lemma 4. Consider the interval system of p linear equations with one variable [w] of

the form, x[w] = [a], where [a] is a symmetric interval, [a] = [−a, a], and x is a real

number from a set with finite number of elements, x ∈ X = {x1, x2, . . . , xp}. Suppose

that xm = max
xk∈X
|xk |. Then the interval [wm] which is a solution of the interval equation

xm[w] = [a], is such that, ∀xk ∈ X, xk[wm] ⊆ [a], and hence, [wm] is a member of the

tolerance solution set for this interval system.

Proof. One may observe that, [wm] = [−a, a]/xm, according to Lemma 3 and consider-

ing xm = [xm, xm] to be a point inteval. Given that, |xk | 6 xm, for any xk ∈ X, it follows

that, xk 6 xm, and xk/xm 6 1. In consequence, xk[wm] = [−a, a]xk/xm ⊆ [−a, a].

Hence [wm] is a solution in the tolerance solution set.

The following proposition is a generalization of the previous Lemma 4 for an interval

system of p linear equations with n unknown variables and symmetric right-hand side

intervals.

Proposition 1. Consider the interval system of linear equations of the form, x1[w1] +

x2[w2] + · · · + xn[wn] = [a], with [a] being a symmetric interval, [a] = [−a, a], and

each xi a real number from a set with finite number of elements, that is, xi ∈ Xi =

{x1
i , x

2
i , . . . , x

p
i } ⊂ R, 1 6 i 6 n. In addition, for 1 6 i 6 n let xm

i = max
xl∈Xi

|xl|,

and [w∗] be the interval defined by the relation [w∗] = [−a, a]/
∑
i

xm
i . Then the vector

w∗ = ([w∗1], [w∗2], . . . , [w∗n]) with [w∗i] = [w∗], 1 6 i 6 n constitutes a solution in the

tolerance solution set for this interval system.

Proof. For every xk
i ∈ Xi, 1 6 k 6 p, it stands that xk

i 6 xm
i . Then, according to

Lemma 2, the relation xk
i [w∗i] ⊆ xm

i [w∗i] is valid. So, for any combination of elements

of the sets X1,X2, . . . ,Xn, we have:

xk1
1 [w∗1] ⊆ xm

1 [w∗1]

17

xk2
2 [w∗2] ⊆ xm

2 [w∗2]

...

xkn
n [w∗n] ⊆ xm

n [w∗n]

Adding the above relations and given that interval addition is inclusion isotonic we

have that,
xk1

1 [w∗1] + xk2
2 [w∗2] + · · · + xkn

n [w∗n] ⊆

xm
1 [w∗1] + xm

2 [w∗2] + · · · + xm
n [w∗n] ⊆

xm
1 [−a, a]

1∑
i

xm
i

+ xm
2 [−a, a]

1∑
i

xm
i

+ · · ·

+ xm
n [−a, a]

1∑
i

xm
i

=

(xm
1 + xm

2 + · · · + xm
n)[−a, a]

1∑
i

xm
i

= [−a, a].

This proves the proposition.

This proposition applies directly to the interval linear system (S2) above or to

Xwj = a. Notice that each of the sets Xi corresponds to a column vector of X and the

interval vector ([w1], [w2], . . . , [wn])> stands for the interval vector wj of the weights to

any node j. So the following relation defines a solution to the system (S2).

[w∗ji] = [−a, a]/(U + 1), (19)

with, U =
N∑

i=1
u(i), and u(i) = max

16k6p
(|xk

i |), where |xk
i | denotes the absolute value of xk

i .

These intervals stand for any weight interval [w ji] as well as for the bias [w jb] and

verify relation (17). So, this solution is a member of the tolerance solution set.

3.2.2. Refining the method

The above approach effectively tackles the problem of neural saturation by decou-

pling the weights from the patterns. This problem has already been addressed by other

researchers using mathematically questionable hypotheses (Yam & Chow, 2000). The

solution provided by this approach takes into account the outliers for each component

of the input sample. However, in practice the random selection of weights reduces the

18

impact of the input to the hidden node y j induced by outliers with large values. Re-

calling the arguments of Wessels & Barnard (1992), the standard deviation of the input

y j to a hidden node is given by σy j = (w
√

din)/3 where din is the number of inputs to

the node and w defines the interval [−w,w] where the weights are randomly selected

from. It is easy to verify that if w is computed using our approach then even for small

values of din (e.g. 5) the value of σy j is very small (0.53) and tends to become smaller

(→ 0.13) as din increases. This means that the intervals computed by the proposed

method can be widened while still satisfying the tolerance conditions. Hence, the idea

is to “modulate” each interval with respect to the effective range of the input sample

and thus differentiate the weight intervals corresponding to different features of the in-

put data. This is achieved by taking into account some statistics of the input data (e.g.

the variance).

Let us denote sxi a statistic providing summary information about the ith input data

component xi such as the third quartile (Q3) or any q-quantile marking the boundary

of approximately 4/5 of the input data. These statistics provide important information

about the location of the majority of the input data regardless the distribution of the

sample. If the input data display normal distribution then some multiple of the sample

standard deviation can be used instead. Given this hypothesis and following definitions

of Proposition 1 above we may conclude that [w∗ji]sxi ⊆ [w∗ji]xm
i . Equating the two sides

of this relation and solving permits to derive the interval

[W∗ji] = [w∗ji]xm
i /sxi , (20)

which effectively satifies the previous assumptions. Moreover, this relation widens the

weight intervals with respect to the majority of the input data and as argued previously

it complies “statistically” with the tolerance problem solution.

In the above heuristic using some suitably chosen sxi , such as Q3, to divide the

right-hand side of (20) is done in order ensure enlargement of the weight intervals with

respect to the majority of the input data. In descriptive statistics, outliers are expected

to lie outside the interval [Q1 − k(Q3 − Q1),Q3 + k(Q3 − Q1)] for some nonnegative

constant k and Q3 − Q1 being the Inter Quartile Range (IQR) (Agresti & Franklin,

2009). Note that typically, for statistical packages such as Minitab and SPSS, k = 1.5

19

(Meyers et al., 2013). So, if the value of an outlier, say xl
i, is used instead of sxi , then

this oulier should be carrefully chosen otherwise depending on this value the fraction

xm
i /xl

i in equation (20) tends to one. In consequence, depending on the input data dis-

tribution and the outlier used this heuristic will probably result in unnoticeable (i.e.

insignificant from practical point of view) enlargement of the weight intervals.

Furthermore, the use of the above heuristic results in defining interval weights

whose ranges are inversely proportional to the variance of the corresponding input

data components. So, for an input data component, say xi, with a high variance value,

defining a shorter weight interval implies that it is likely to select smaller weight values

for this input. In consequence, for some given w jb the intercept −w jb/w ji of the hyper-

plane defined by a hidden node with the xi axis (see Figure 1) is more likely to cover

the range of values of xi being positioned inside the majority of the values of the input

data distribution, rather than an intercept that passes through the axes origin, or one that

lies far away from the values of xi. On the contrary when the values of xi have a small

variance then the initial weight interval should be larger. This implies that the initial

weights are likely to have large values so that the intercept −w jb/w ji is more likely

to be in the range of values of xi, see Figure 1. Moreover, the other benefit expected

by defining intervals with variable ranges is to diversify as much as possible the sets

of initial weights selected for the hidden nodes. Hence, different nodes tend to define

initial hyperplanes whose distance from the origin of the axes given by |w jb|/
N∑

i=1
w2

ji is

as diversified as possible.

Concerning the inital distance of any hyperplane from the origin of the axes we

need to note that 0 6 |w jb|/
N∑

i=1
w2

ji. The effect of widening produced by (20) on the

weight intervals tends to move the hyperplanes towards the beginning of the pattern

axes as it tends to increase the denominator in the distance formula. On the other hand,

theoretically there is no upper bound for this distance. This is a common issue to all

weight initialization techniques that randomly select initial weights from some interval

defined around 0 with very small real values. In our approach this may occur if all

weights are selected from extremeley narrow symmetric intervals which in their turn

are computed if the interval [−a, a] is divided by a big number corresponding to the

quantity U + 1, when the problem at hand has a huge number of features. However, as

20

we will show later in section 4 even in the case of a real life problem such as the MNIST

dataset (LeCun et al., 2004) with 784 features the algorithm demonstrates a very in-

teresting behaviour outperforming other weight initialization techniques. A thorough

study of the UCI repository of machine learning database (Frank & Asuncion, 2010)

shows that problems with a very big number of features are treated as dimensionality

reduction or feature extraction ones before being considered as classification or regres-

sion problems.

The above considerations and the results obtained are valid for continuous valued

input patterns. For some input xi which is binary or a constant value then sxi = 0. This

constitutes a major incovenience as it results in a division by 0 for the fraction xm
i /sxi in

equation (20). To avoid this problem we choose to leave the interval [w∗ji] unchanged

by imposing sxi = 1. For this we require β 6 sxi where this lower bound is defined as

β = 0.1. Whenever sxi < β we impose sxi = 1. The following formula summarizes the

rule for computing sxi .

1
2
{
sgn

{
sxi − β

}
+ 1

}
sxi −

1
2
{
sgn

{
sxi − β

}
− 1

}
(21)

where sgn denotes the sign function. This choice introduces a kind of “discontinuity”

which can be avoided if one chooses sxi = β. However, even this option is still a heuris-

tic one. In a future correspondence we could investigate the possibility to adaptively

define β as an interval derived by the data and discuss the impact of such a formulae on

specific experiments. In the present research the benchmarks and real world problems

tackled provide no hints as to which is the optimum formula for sxi definition in this

specific case.

Typically, normalization or scaling is applied (Bishop, 1995) so that the input sam-

ples are in the interval [−1, 1], mainly in order to facilitate training (LeCun, 1993).

These operations normally do not alter the status of the input data. So, the previous

considerations remain valid and the use of the term sxi for properly modulating the

original weight intervals [w∗ji] still applies after normalization or scaling of the input

data. For the rest of this paper, we assume that the values of the input patterns are

normalized to be in the interval [−1, 1] or the interval [0, 1]. Under these hypotheses

we may state that the relation [w∗ji]sxi ⊆ [w∗ji]1 is valid and suggests that solving the

21

following equations: [
W ji

]
sxi = [w∗ji], 1 6 i 6 N (22)

permits to define the intervals,

[
W∗ji

]
= [w∗ji]

1
sxi

, 1 6 i 6 N (23)

that obviously satisfy the relation,

[W∗
j1]sx1 + [W∗j2]sx2 + · · · + [W∗jN]sxN + [w∗jb]1 =

[w∗j1] + [w∗j2] + · · · + [w∗jN] + [w∗jb] =

= [a] (24)

Hence, the interval vector W*
j = ([W∗

j1], [W∗j2], . . . , [W∗
jN], [w∗jb])> is a solution in the

tolerance solution set of the interval system (S2). Recall that sxi is computed using

formula (21).

3.2.3. Initializing hidden-to-hidden and hidden-to-output layer connection weights

The analysis presented above focuses on effective initialization of weights of the

input-to-hidden layer connections. Earlier implementations of a complete algorithm

were based on minimal assumptions regarding the initial values of weights for hidden-

to-hidden and hidden-to-output layer connections, that is, random selection of values

in the interval [−1, 1]. This choice gave rather satisfactory results in the case of small

sized networks and datasets, see section 4, suites 1 and 2 of experiments. In order to

define a full scale algorithm for initializing weights of any MLP two issues are consid-

ered here. The first deals with saturation of the nodes in any hidden layer, while the

second defines an order of magnitude for the weights of connections leading to ouput

layer nodes.

In order to avoid saturation of any node in the kth hidden layer we adopt the hy-

potheses of the previous analysis. This means that weights of connections linking a

node in the hidden layer k with the ouputs of nodes in the layer k − 1 are randomly

selected in the interval [−ak/(Hk−1 + 1), ak/(Hk−1 + 1)], where Hk−1 is the number of

nodes of the layer k − 1 and ak is the active range of the activation function of the node

22

in the hidden layer k. The previous formula for nodes in the hidden layer k is derived

considering that the outputs of the layer k − 1 have a maximum value equal to 1. In

practice, instead of (Hk−1 + 1) the value of Hk−1 can be used without any difference

regarding the training performance.

For the weights of the hidden-to-output connections different approaches are pro-

posed by different researchers (subsection 3.1). In order to optimize the choice of these

weights we used the formula [−3A/
√

din, 3A/
√

din] introduced in Wessels & Barnard

(1992) where instead of din we set H for the number of hidden layer nodes. The au-

thors in that paper determined the value of the scale factor A = 1 through experiments

with small sized networks. We adopted the same approach but we also experimented

with networks with a higher number of nodes in the hidden layer. For these networks

when A = 1 the fraction 3A/
√

H becomes too small yielding extremely narrow weight

intervals for the hidden-to-output layer connections which slow the training process.

By gradually increasing the value of A we observed that the network performance im-

proved and so we came up with the following rule of thump.

The value of A = 1 is valid for networks with a relatively small number of nodes

in the hidden layer i.e. H / 30. For medium to larger sized networks i.e. H > 30

the best network performance was observed when A > 1. Experimented with H = 36

we found that A ≈ 1.2 and A ≈ 3 for H = 300. Finally, for H = 650 we noticed that

A should be set to 4 for nodes with the logistic sigmoid activation function while for

nodes with the hyperbolic tangent this value should be A ≈ 2. We cannot guarantee that

these results are optimal for every considered dataset. However, the resulting intervals

roughly confirm the findings for the weight intervals reported in Nguyen & Widrow

(1990) and Thimm & Fiesler (1994). To the best of our knowledge there is no specific

study on this matter in the literature and in light of these results this should constitute

an interesting point for deeper investigation.

3.3. Algorithm and Discussion

3.3.1. Algorithm Description

The algorithm implementing the above approach computes one specific interval

[W∗ji] for each component i of the input data as well as the interval [w∗jb] for the thresh-

23

old. Thus, n+1 intervals are computed once and they are used for selecting the weights

of any node in the hidden layer.

Input Data Coding

1. Continuous input data are scaled to be in the interval [−1, 1] (or [0, 1]). Binary

variables are set to {−1, 1} (or {0, 1}).

2. For each continuous valued input data variable xi compute the third quartile Q3

and set sxi = Q3. If xi displays normal distribution compute the sample standard

deviation σxi and set sxi = 2σxi . If xi can be approximated by the normal distri-

bution then sxi = kσxi for some suitably chosen k. If xi is not continuous then

Apply rule (21) above.

3. Define the value of the parameter a for the bounds of the active region interval

[−a, a] depending on the type of the activation function of the jth node, see

subsection 3.3.2 hereafter.

Computing Weights of Input to Hidden Layer Connections

4. For each node j in the hidden layer and any input connection i the weight w ji

is randomly selected with uniform distribution from the interval [W∗ji] defined

using relation (23) above.

5. For each node j in the hidden layer the weight w jb of the bias is randomly se-

lected with uniform distribution from the interval [w∗jb] defined using relation

(19) above.

Computing Weights of Connections from Hidden Layer (k − 1) to Hidden Layer (k)

6. These weights are random numbers selected to be uniformly distributed in the

interval [−ak/Hk−1, ak/Hk−1] as defined in the previous subsection.

Computing Weights of Hidden to Output Layer Connections

7. Weights of the hidden to the output layer connections are random numbers se-

lected to be uniformly distributed in the interval
[
−3A/

√
N, 3A/

√
N
]

where the

scale factor A is defined in the previous subsection.

24

3.3.2. Discussion

Step 3 of the algorithm requires setting the bounds of [−a, a] for the active region

of the sigmoid activation function. This interval is assumed to be the region where

the derivative of the sigmoid activation function is greater than or equal to 0.04Dmax

or 0.05Dmax where Dmax denotes the maximum magnitude of the derivative of the sig-

moid, (Yam & Chow, 2000, 2001). For example in case a logistic sigmoid activation

function is used then a = 4.59 or a = 4.34. For the experiments shown in this paper the

values adopted are those defined by the Neural Network Toolbox of MATLAB, that is,

a = 4 for the logistic sigmoid and a = 2 for the hyperbolic tangent. These values are

computed for λ = 1 where λ is the slope parameter of the sigmoid activation function.

Most of the issues pertaining the fomulation of the LIT-Approach were analyzed

and resolved in earlier subsections. Here we will briefly refer to the ability of the

proposed method to cope with prematurely saturated units and symmetry breaking.

These matters are reported in the literature (Hassoun, 1995; Haykin, 1999) as troubles

of neural network training that need to be addressed by weight initialization. Regard-

ing premature saturation of the units the proposed method by default defines initial

weights which prevent saturation of the hidden nodes at an early stage of training. In

addition, symmetry breaking that is preventing nodes from adopting similar functions

is addressed using random weight selection from intervals with different bounds.

Besides these matters, Wessels & Barnard (1992) note that another problem is what

they call false local minima for which they name three possible causes. These are the

following: Stray hidden nodes, that is nodes defining initial decision boundaries which

have been moved out of the region of the sample patterns. Hidden nodes having dupli-

cating function are the nodes that define separating hyperplanes having the same initial

position and orientation. Finally, dead regions in the pattern space are created when

in these regions the hidden nodes are arranged so that they all happen to be inactive,

that is, there are no hyperplanes defined by the hidden nodes inside these regions. The

LIT-Approach tackles these issues based on the way it defines the weight intervals. The

issues regarding stray hidden nodes and dead regions are sufficiently addressed based

on the way the LIT-Approach defines the initial weight intervals and then on the way

25

the hidden nodes define the initial hyperplanes to be in the heart of the pattern data, see

subsection 3.2.2. Moreover, hidden nodes are not likely to have duplicating function

due to the random weight selection. The LIT-Approach, while not specifically designed

to tackle these specific problems, it, however, addresses them efficiently as shown by

the results of the experiments hereafter. Based on the advantages of distributions such

as those proposed in Sonoda & Murata (2013) there might be improvements concern-

ing how the LIT-approach tackles random weight selection, now defined by uniform

distribution.

Finally, we need to note that the proposed approach does not intend to deal with

the problem of structural local minima in the weight space. This issue concerns the

training phase of an MLP and it has effectively been tackled in Magoulas et al. (1997).

4. Experimental Evaluation

In order to assess the effectiveness of the proposed method we designed and con-

ducted three different suites of experiments. The first suite deals with the comparison

of the performance of the proposed method against six different weight initialization

methods which are based on random selection of initial weights from predefined inter-

vals. The benchmarks used for this first suite mainly concern classification problems,

while one of them deals with regression and a second with prediction of a highly non-

linear phenomenon. Moreover, a number of experiments were executed on function

approximation and they are presented in a separate subsection. The second suite con-

stitutes a thorough comparison of the proposed LIT-Approach with the well known

initialization procedure proposed by Nguyen & Widrow (1990).

The performance measures considered for all experiments are: the convergence

success of the training algorithm, the convergence rate and the generalization perfor-

mance achieved for the test patterns. The convergence success of the training algorithm

is the number of initial weight sets for which the training algorithm reached the prede-

fined convergence criteria. The convergence rate is the number of epochs needed for

the training to converge. For benchmarks with continuous valued output, generalization

performance is computed using the mean absolute error of the output of the network

26

and the target output, and for classification benchmarks, generalization is defined as

the percentage of successfully classified previously unknown test patterns. The anal-

ysis of the experimental results was carried out using the statistical analysis package

SPSS v17.0 (Green & Salkind, 2003), STATService 2.0 (Parejo et al., 2012) and the R

statistical computing environment.

Hereafter, training a network for some specific benchmark with initial weights se-

lected using some weight initialization method is called a trial. A training experiment

is a set of trials corresponding to training the network for some specific benchmark

using a set of initial weights selected by the same weight initialization method.

4.1. Suite 1 of Experiments

4.1.1. Experimental Setup

This suite of experiments was set up in order to investigate the efficiency of the

proposed approach on a relatively broad spectrum of real world problems. Compar-

ison is done against the following (in alphabetical order of the abbreviations used)

well known weight initialization methods; BoersK, (Boers & Kuiper, 1992), Bottou,

(Bottou, 1988), KimRa, (Kim & Ra, 1991), NW, (Nguyen & Widrow, 1990), SCAWI,

(Drago & Ridella, 1992), and Smieja, (Smieja, 1991).

The real world problems adopted for the experiments are benchmarks reported in

various research papers used to compare performance of different weight initialization

methods, as for example Fernández-Redondo & Hernández-Espinosa (2001); Thimm

& Fiesler (1997); Yam & Chow (2000, 2001). These real world problems are briefly

described in the following paragraph. Detailed description and more information can

de found in the UCI repository of machine learning database (Frank & Asuncion, 2010)

and references cited therein.

1. Auto MPG prediction (inputs:7, outputs:1). This dataset concerns city-cycle fuel

consumption in miles per gallon, to be predicted in terms of 3 multi-valued dis-

crete and 4 continuous attributes. The number of instances is 398. Six patterns

with missing values have been removed.

2. British language vowels recognition (inputs:10, outputs:11). As stated in the

benchmark summary, this is a speaker independent recognition problem of the

27

eleven steady state vowels of British English using a specified training set of

10 linear prediction coefficients derived log area ratios. The original dataset

comprises 991 instances pronounced by different speakers. A subset containing

the first 330 instances were retained for training and testing.

3. Glass identification (inputs:9, outputs:1). Based on 9 attributes, this classifica-

tion of types of glass was motivated by criminological investigation. The dataset

used is the glass2 downloadable from PROBEN1 (1994) ftp site. It consists of

214 instances already pre-processed and so there are no missing values.

4. Servo prediction (inputs:12, outputs:1). Originally this benchmark was created

by Karl Ulrich (MIT) in 1986 and refers to a highly non-linear phenomenon that

is predicting the rise time of a servomechanism in terms of two (continuous) gain

settings and two (discrete) choices of mechanical linkages. The dataset consists

of 167 patterns and has no missing values.

5. Solar sunspot prediction (inputs:12, outputs:1). The dataset contains the sunspot

activity for the years 1700 to 1990. The task is to predict the sun spot activity

for one of those years given the activity of the preceding twelve years. A total of

279 different patterns are derived from the raw data.

6. Wine classification (inputs:13, outputs:3). These data are the results of a chemi-

cal analysis of wines grown in the same region in Italy but derived from three dif-

ferent cultivars. The analysis determined the quantities of 13 constituents found

in each of the three types of wines. The dataset contains 178 instances and has

no missing values.

The original datasets were preprocessed to eliminate duplicate patterns and values were

scaled to match requirements set by the weight selection procedures. These operations

were performed according to PROBEN1 guidelines, (Prechelt, 1994). Unless otherwise

stated, the datasets were partitioned to training sets using approximately 75% of the

patterns and to test sets using the remaining 25%. For the Servo prediction benchmark

the training set was made using 84 patterns and the test set using 83 patterns. The

training and the test sets are defined once and used for all experiments. During network

training the patterns of the training set are presented in the same order using the trains

28

i.e. the online sequential training procedure of MATLAB.

A total number of 42 experiments were set up for these 6 problems and the 7 weight

initialization methods. Each experiment was carried out using a set of 100 initial weight

vectors, selected by the corresponding method. The same network architecture was

initialized with these vectors and trained using online BP. The network architecture

and the training parameters, used in this arrangement, are reported in Table 1. These

parameters are similar to those found by Thimm & Fiesler (1994).

a) Learning rate is the rate used by the vanilla BP online algorithm.

b) Convergence criterion is either the goal set for the minimization of the error

function or the minimum percentage of the training patterns correctly classified

by the network.

c) Max cycles denote the maximum number of BP cycles. During a cycle all train-

ing patterns are presented to the network in random order and weights are up-

dated after every training pattern. Training stops when Max cycles number is

reached.

d) Input data scale indicates the interval used by all weight initialization algorithms

except the Nguyen-Widrow algorithm, which scales input data values in the in-

terval [−1, 1].

Table 1: Architectures of networks and training parameters used for the Suite 1 of the experiments

Benchmark
Network Activation Learning Convergence Max Input data

architecture function† rate criterion cycles scale

Auto-MPG 7-3-1 logsig 0.3 0.01 500 [-1,1]

British Vowels 10-20-11 tansig 0.05 90% 800 [-1,1]

Glass 9-10-8-6 logsig 0.6 0.04 800 [0,1]

Servo 12-3-1 logsig 0.1 0.008 500 [-1,1]

Solar 12-5-1 logsig 0.3 0.005 500 [0,1]

Wine 13-6-3 tansig 0.2 95% 500 [-1,1]

† logsig denotes the logistic sigmoid function and tansig is the hyperbolic tangent

29

4.1.2. Analysis of the Results

Tables 2, 3 and 4 report the experimental results on the benchmarks considered for

the aforementioned performance measures. A quick look at these results shows that

the proposed approach improves network performance for all parameters.

The comparison of the efficiency of the different initialization methods is based

Table 2: Convergence success results in 100 trials for the Suite 1 of the experiments

Benchmark
Initialization Algorithms

BoersK Bottou KimRa LIT-A NW SCAWI Smieja

Auto-MPG 100 100 100 100 100 100 100

British Vowels 91 100 100 100 91 100 100

Glass 22 21 0 72 12 0 0

Servo 100 100 100 100 99 100 100

Solar 100 100 100 100 92 100 100

Wine 100 100 100 100 100 100 100

on the statistical analysis of the results obtained. In order to evaluate the statistical sig-

nificance of the observed performance one-way ANOVA (Green & Salkind, 2003) was

used to test equality of means. ANOVA relies on three assumptions: independence,

normality and homogeneity of variances of the samples. This procedure is robust with

respect to violations of these assumptions except in the case of unequal variances with

unequal sample sizes, which is true for the Glass benchmark as the larger group size is

more than 1.5 times the size of the smaller group.

The validity of the normality assumption is omitted and Levene’s test for testing

equality of variances is conducted, (Ramachandran & Tsokos, 2009). Homogeneity of

variances is rejected for all cases by Levene’s test and so Tamhane’s posthoc procedure,

(Ramachandran & Tsokos, 2009), is applied to perform multiple comparisons analysis

of the samples. The significance level set for these tests is α = 0.05. The p-value

(Sig.) indicated for each initialization method, concerns comparison with the proposed

method and the mean value is marked with an ∗ when equality of means is rejected

p-value< 0.05. The analysis of the Glass benchmark results was performed pairwise

between successful initialization methods using the Mann-Whitney test.

Table 5 reports for each initialization method how many times a method delivers

30

Table 3: Convergence rate results for the Suite 1 of the experiments

Benchmarks
Initialization Algorithms

LIT-A BoersK Bottou KimRa NW SCAWI Smieja

Auto-MPG

Mean 2.19 2.51 2.38 2.97* 4.73* 2.34 2.26

St.D. 0.46 1.03 0.86 0.39 2.88 0.59 0.52

Sig. 0.106 0.690 0.000 0.000 0.638 1.000

British Vowels

Mean 471.29 521.88* 476.99 487.96 517.77* 468.83 476.58

St.D. 41.59 94.16 46.15 36.50 79.28 54.82 53.82

Sig. 0.000 1.000 0.060 0.000 1.000 1.000

Servo

Mean 88.07 87.31 86.37 124.07* 77.17 96.02* 86.88

St.D. 8.66 14.75 12.87 3.14 35.29 9.02 8.96

Sig. 1.000 0.999 0.000 0.071 0.000 1.000

Solar

Mean 142.67 150.26 159.74* 169.88* 233.05* 160.15* 158.08*

St.D. 30.73 28.66 30.90 18.33 91.24 29.87 29.74

Sig. 0.794 0.003 0.000 0.000 0.001 0.008

Wine

Mean 11.42 10.57* 10.73* 11.65 10.50 11.08 11.26

St.D. 1.10 1.68 1.42 0.98 5.49 1.32 1.52

Sig. 0.001 0.004 0.932 0.899 0.658 1.000

Glass

Min 600 616 660 – 563 – –

Max 799 785 795 – 789 – –

Median 721.00 730.50 759.00* – 718.00 – –

Sig. 0.214 0.001 - 0.975 – –

∗ denotes that the mean value of the initialization method is significantly different from the mean value of LIT-A

using the indicated p-values (Sig.) computed by the posthoc analysis of the ANOVA results.
– denotes that the initialization method failed to meet the convergence criteria exceeding the maximum number of

cycles in all trials.

superior, equal or inferior performance when compared (pairwise comparisons) with

all other methods regarding convergence rate and generalization. The advantage of-

fered by the proposed method to achieve better convergence rate is manifested by these

results. So, performance of a neural network when weights are initialized with the

proposed method is superior in 42% of the cases. In 50% of the cases performance is

the same with all other methods and only in 6% the proposed method delivers inferior

performance to the training algorithm.

In terms of generalization the proposed method though having a marginally better

31

score when compared to the method of Kim and Ra proves to be better than all the other

methods in all benchmarks, except in the case of the Glass benchmark, see Table 4. For

the Glass benchmark the generalization performance seems to be better for the methods

of Boers-Kuiper, Bottou and Nguyen-Widrow compared to our LIT-A method. How-

ever, one should also take into account the number of successful experiments for each

method. Generalization “achieved” by the proposed method is superior in 47% of the

cases, while in 42% of the cases performance is the same with other methods and only

in 11% of the cases the proposed method delivered inferior performance to the training

algorithm. Only the method of Kim and Ra seems to give similar performance with the

proposed LIT-Approach.

4.1.3. Non-parametric Statistical Analysis and Posthoc Procedures

In order to comply with reported best practice in the evaluation of the performance

of neural networks, (Luengo et al., 2009; Garcı́a et al., 2010; Derrac et al., 2011), we

evaluated the statistical significance of the observed performance results applying the

Friedman test. This test ranks the performance of a set of k algorithms and can detect a

significant difference in the performance of at least two algorithms. More specifically,

the Friedman test is a non-parametric statistical procedure similar to the parametric

two-way ANOVA used to test if at least two of the k samples represent populations

with different medians. The null hypothesis H0 for Friedman‘s test states equality of

medians between the populations while the alternative hypothesis H1 is defined as the

negation of the null hypothesis.

Table 6 uses two subtables to depict the average rankings computed through the

above statistical test for the convergence rate and the generalization performance. At

the bottom of each subtable we give the statistic of each test along with the correspond-

ing p-value. The p-values computed strongly suggest rejection of the null hypothesis

at the α = 0.05 level of significance. This means that the initialization algorithms have

some pattern of larger and smaller scores (medians) among them i.e. there exist signif-

icant differences among the considered algorithms.

The significant differences detected by the above test procedure concern the overall

comparison of the algorithms as a set entailing that the performance of at least one

32

Table 4: Generalization performance results for the Suite 1 of the experiments

Benchmarks
Initialization Algorithms

LIT-A BoersK Bottou KimRa NW SCAWI Smieja

Auto-MPG

Mean 0.0743 0.0750 0.0748 0.0738 0.0778* 0.0739 0.0741

St.D. 0.0041 0.0052 0.0047 0.0018 0.0073 0.0043 0.0041

Sig. 0.999 1.000 1.000 0.001 1.000 1.000

British Vowels

Mean 96.23% 93.72%* 96.29% 96.27% 94.52%* 95.86% 96.18%

St.D. 1.60% 2.85% 1.37% 1.18% 2.70% 1.81% 1.45%

Sig. 0.000 1.000 1.000 0.000 0.933 1.000

Servo

Mean 0.0792 0.0854* 0.0839* 0.0797* 0.0969* 0.0842* 0.0801*

St.D. 0.0010 0.0055 0.0045 0.0002 0.0145 0.0049 0.0020

Sig. 0.000 0.000 0.000 0.000 0.000 0.002

Solar

Mean 0.0924 0.0924 0.0919 0.0876* 0.1025* 0.0911 0.0917

St.D. 0.0040 0.0030 0.0030 0.0019 0.0107 0.0029 0.0034

Sig. 1.000 0.999 0.000 0.000 0.160 0.980

Wine

Mean 99.84% 98.98%* 99.38%* 99.80% 98.69%* 99.58% 99.40%*

St.D. 0.57% 1.20% 1.05% 0.64% 1.48% 0.93% 1.22%

Sig. 0.000 0.003 1.000 0.000 0.282 0.025

Glass

Min 59.62% 67.31% 65.38% - 65.38% - -

Max 71.15% 75.00% 75.00% - 75.00% - -

Median 65.38% 71.15%* 69.32%* - 69.23%* - -

Sig. 0.000 0.000 - 0.000 - -

* denotes that the mean value of the initialization method is significantly different from the mean value of LIT-A using

the indicated p-values (Sig.) computed by the posthoc analysis of the ANOVA results.
– denotes that the initialization method failed to meet the convergence criteria exceeding the maximum number of cycles

in all trials.

initialization algorithm differs from the others. However, the Friedman test cannot pro-

vide information on which algorithms are different from the others and so a multiple

comparison analysis needs to be conducted. For the sake of our evaluation we need to

carry out a multiple comparisons analysis between performance of the LIT-Approach

and performance of each one of the other initialization methods. This is a multiple

comparisons (pairwise) analysis (Derrac et al., 2011) with a control algorithm which

results in formulating k − 1 hypotheses one for each of the k − 1 comparisons, where

in our case k = 7. A better performance for the convergence rate of an algorithm trans-

33

Table 5: Summary of pairwise comparisons score for each method for the Suite 1 of the experiments

Initialization
Convergence rate Generalization

method Superior Equal Inferior Superior Equal Inferior

BoersK 12 19 5 6 17 13

Bottou 12 20 4 10 20 6

KimRa 4 12 20 16 15 5

LIT-A 15 19 2 17 15 4

NW 6 13 17 4 5 27

SCAWI 7 20 9 8 20 8

Smieja 8 24 4 9 20 7

lates here to a smaller number of epochs and a better performance for generalization is

taken to be a smaller classification or approximation error. So, the objective of the tests

is minimization and in consequence the control procedure is automatically selected to

be the algorithm with the lowest ranking score. This algorithm is LIT-Approach for

both performance measures, see Table 6.

For the non-parametric test (Friedman) used we consider the ranking scores com-

Table 6: Average ranking achieved by the Friedman test (Suite 1 of the experiments)

Initialization Convergence Rate Generalization
method

BoersK 3.75 4.69

Bottou 3.71 4.02

KimRa 5.15 3.33

LIT-A 3.15 2.81

NW 4.40 5.26

SCAWI 4.03 4.08

Smieja 3.82 3.82

Statistic 305.76 511.50

p-value 0.12e-09 0.23e-09

puted for each algorithm. Then the posthoc analysis aims in determining if the differ-

ence between the ranking score of the proposed LIT-Approach and the ranking score of

each of the other algorithms are significantly different. The test statistic z and the cor-

responding p-value for comparing LIT-Approach and each of the other algorithms are

computed using the online STATService (Parejo et al., 2012) environment. The p-value

34

(2-tailed) corresponding to the z-statistic of each comparison is determined using nor-

mal approximation and can be compared with some appropriate level of significance

α.

However, these p-values are not suitable for multiple comparisons as they do not

account for the Family-Wise Error Rate (FWER) produced by accumulation of Type

I error in the case of a family of hypotheses associated with the multiple comparisons

tests (Derrac et al., 2011). To cope with this matter, instead of using posthoc proce-

dures to adjust the level of significance α, we choose to compute the adjusted p-values

(APVs) corresponding to the Holm (Bonferroni-Holm) and the Benjamini-Hochberg

adjustment methods. Information on these adjustment methods can be found in R-

Documentation (2013) and references cited therein. These APVs can be used to test

the corresponding hypotheses i.e. to compare corresponding algorithms directly with

any significance level α and give a “metric” of how different these algorithms are (Lu-

engo et al., 2009).

The unadjusted and the adjusted p-values for the pairwise comparison of the pro-

posed algorithm with each one of the other methods are presented in Table 7 for both

convergence rate and generalization. Note that the precision retained for the p-values

given in this Table and all similar Tables hereafter is up to the fourth decimal digit.

The adjusted p-values for the Friedman test in this Table show significant difference

between the ranking of the LIT-Approach and the other methods for both convergence

rate and generalization. This translates to an improvement of the LIT-Approch over all

the other weight initialization algorithms.

The computations necessary for Table 6 as well as for all similar Tables hereafter in

this paper were carried out using STATService (Parejo et al., 2012). Computations for

Table 7 as well as for all similar Tables hereafter were executed using the R environ-

ment for Statistical Data Analysis. Finally, it is worth noting that the results obtained

using the non-parametric statistical analysis confirm those provided by ANOVA.

4.1.4. Comments and Remarks

Despite the stochastic nature of the training scheme adopted for this suite we may

argue that the results obtained are suggestive of the potential offered by the proposed

35

Table 7: p-values of multiple comparisons (Suite 1 of the experiments)

Initialization
Unadjusted

Adjusted

algorithm Bonferroni-Holm Benjamini-Hochberg

Convergence rate (Control algorithm is LIT-A)

BoersK 0.0000 0.0000 0.0000

Bottou 0.0000 0.0000 0.0000

KimRa 0.0000 0.0000 0.0000

NW 0.0000 0.0000 0.0000

SCAWI 0.0000 0.0000 0.0000

Smieja 0.0000 0.0000 0.0000

Generalization (Control algorithm is LIT-A)

BoersK 0.0000 0.0000 0.0000

Bottou 0.0000 0.0000 0.0000

KimRa 0.0000 0.0000 0.0000

NW 0.0000 0.0000 0.0000

SCAWI 0.0000 0.0000 0.0000

Smieja 0.0000 0.0000 0.0000

method. In terms of convergence success (Table 2) the proposed method seems to con-

tribute to the best score for the training algorithm. Moreover, the advantage offered

by the proposed method to achieve better convergence rate is manifested by the results

given in Table 3 and Table 5. Lastly, one may easily notice that in terms of general-

ization performance the proposed method though marginally superior when compared,

using ANOVA, to the Kim-Ra it proves to be better than all the other methods in all

benchmarks, except the Glass benchmark, see Tables 4 and 5. These conclusions are

strongly supported by the non-parametric statistical analysis with the Friedman test.

Though these results are indicative and for comparison purposes, they provide signifi-

cant evidence regarding the efficiency of the proposed method.

4.2. Function approximation

4.2.1. Setup of the Experiments

In order to cover the whole range of problems for which MLPs are used, one needs

to consider the problem of approximating analytically defined non-linear functions.

This constitutes a necessary prerequisite for a “fair” comparison first and foremost

with the method of Nguyen and Widrow, as these researchers initially demonstrated

36

their method on a function approximation problem. The functions used as benchmarks

are defined in the following paragraphs.

Function 1. The function for this benchmark is the one reported in the original paper

of Nguyen & Widrow (1990),

y = 0.5 sin
(
πx2

1

)
sin (2πx2).

The network used here, is a 3-layer (2-21-1) architecture with the hyperbolic tangent

activation function for the hidden layer nodes as well as for the output node. A total of

625 (= 25× 25) points are randomly selected, using uniform ditribution, in the interval

[−1, 1] × [−1, 1]. Among these points 450 are used for training and 175 for testing the

network.

Function 2. The function considered here is a variant of the function considered in

Yam & Chow (2000, 2001). This function is a mapping of eight input variables, taken

in the interval [0, 1], into three output ones defined by the following three equations:

y1 = (x1x2 + x3x4 + x5x6 + x7x8) /4

y2 =
√

(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)/8

y3 = (1 − y1)1/3

For this benchmark, a 8-12-3 network architecture was used with logistic activation

functions for nodes of the hidden and the output layer. A set of 75 patterns is formed

by randomly sampling, with uniform distribution, values for the input variables and

calculating output values. Among these input-output patterns, 50 are used for training

the network and 25 for testing, as in Yam & Chow (2001).

Function 3. The function used here is a real-valued non-linear function of two vari-

ables, taken in the interval [−1, 1], defined by the formula:

y = sin (2πx1x2)/(2πx1x2).

A 3-layer network architecture with 30 nodes in the hidden layer was adopted for this

benchmark. All nodes in the hidden layer as well as the output node have a hyperbolic

37

tangent activation function. The training set is formed by taking 320 patterns of the

total 400 (= 20 × 20) that are randomly selected using uniform distribution. The rest

80 patterns constitute the test set.

A total of 21 training experiments were executed for the above 3 functions and the

7 (LIT-A plus other six) weight initialization methods considered in this section. Each

training experiment is made up of a hundred (100) initial weight vectors derived using

one of the weight initialization methods. Networks in all experiments are trained using

the Levenberg-Marquardt method (LM), (Hagan et al., 1996; Marquardt, 1963; Hagan

& Menhaj, 1994). The performance goal for the network output error is set to 1.0e−04

for Functions 1 and 2, and 1.0e − 03 for Function 3. If the performance goal is not

met when a maximum number of 1000 epochs is reached then the training stops. The

learning rate for all experiments of Function 1 is set to 0.1 and 0.5 for the other two

benchmarks. Results of the training experiments are reported in Tables 8 – 10 hereafter.

For the benchmarks Function1 and Function3 LIT-A was applied using 1.5σxi for

the term sxi . This choice is based on the assumption that the input data are approxi-

mately normally distributed, and therefore sxi in the LIT-Approach was “roughly” ap-

proximated using 1.5σxi instead of the third quartile Q3.

4.2.2. Analysis of the Results

The results obtained regarding the performance measures set are shown in Tables

8–10. A rough observation of these results shows that the proposed LIT-Approach re-

mains on top of the other methods as in the previous suite 1 concerning convergence

rate (Table 9) while being among the best methods regarding convergence succes (Ta-

ble 8) and generalization (Table 10).

Comparison between the performance of the different initialization methods, for

Table 8: Convergence success results for the Function Approximation benchmarks

Benchmarks
Initialization Methods

BoersK Bottou KimRa LIT-A NW SCAWI Smieja

Function 1 73 91 82 92 74 85 82

Function 2 100 100 100 100 76 100 100

Function 3 81 100 100 84 81 91 47

38

Table 9: Convergence rate results for the Function Approximation benchmarks

Benchmarks
Initialization Algorithms

BoersK Bottou KimRa LIT-A NW SCAWI Smieja

Function 1
Mean 379.79 504.70 538.73 337.05 275.70 333.72 401.71

St.D. 217.57 177.66 164.74 198.95 212.12 184.73 225.23

Function 2
Mean 6.89 6.87 8.93 6.49 69 7.23 7.36

St.D. 1.61 1.54 2.25 1.40 191.28 1.95 2.34

Function 3
Mean 60.89 16.74 23.48 18.57 46.68 30.16 208.40

St.D. 159.11 58.83 11.01 46.94 105.11 91.91 273.50

Table 10: Generalization performance results for the Function Approximation benchmarks

Benchmarks
Initialization Algorithms

BoersK Bottou KimRa LIT-A NW SCAWI Smieja

Function 1
Mean 0.0090 0.0090 0.0091 0.0089 0.1595 0.0090 0.0090

St.D. 0.0007 0.0006 0.0006 0.0007 0.0000 0.0007 0.0007

Function 2
Mean 0.0130 0.0134 0.0144 0.0131 0.4686 0.0133 0.0141

St.D. 0.0020 0.0024 0.0019 0.0025 0.0000 0.0019 0.0024

Function 3
Mean 0.0210 0.0221 0.0222 0.0211 0.6704 0.0218 0.0211

St.D. 0.0043 0.0009 0.0009 0.0032 0.0000 0.0023 0.0048

the function mapping experiments, is carried out using the non-parametric Friedman

test. The average rankings computed are reported in Table 11. The hypotheses of the

Friedman test and the posthoc procedures performed are the same as those for the suite

1 of the experiments. The unadjusted and the adjusted p-values of the posthoc proce-

dures are given in Table 12. The fact that the control procedure for the convergence rate

is LIT-Approach together with the p-values in Table 12 underline the superiority of the

proposed method. On the other hand the algorithm of Bottou is considered to be the

control procedure for the generalization. This does not prove that Bottou’s method per-

forms better than LIT-Approach as the corresponding unadjusted and adjusted p-values

denote that the performance of these algorithms is the same.

39

Table 11: Average ranking achieved by the Friedman test (Function Approximation benchmarks)

Initialization Convergence Rate Generalization
method

BoersK 3.87 3.60

Bottou 3.59 3.24

KimRa 4.91 3.80

LIT-A 2.99 3.25

NW 4.57 6.43

SCAWI 3.45 3.48

Smieja 4.61 4.20

Statistic 195.05 486.06

p-value 0.10e-09 0.21e-09

Table 12: p-values of multiple comparisons (Function Approximation benchmarks)

Initialization
Unadjusted

Adjusted

algorithm Bonferroni-Holm Benjamini-Hochberg

Convergence rate (Control algorithm is LIT-A)

BoersK 0.0000 0.0000 0.0000

Bottou 0.0007 0.0020 0.0009

KimRa 0.0000 0.0000 0.0000

NW 0.0000 0.0000 0.0000

SCAWI 0.0091 0.0182 0.0106

Smieja 0.0000 0.0000 0.0000

Generalization (Control algorithm is Bottou)

BoersK 0.0394 0.1586 0.0690

KimRa 0.0015 0.0073 0.0034

LIT-A 0.9397 1.0000 1.0000

NW 0.0000 0.0000 0.0000

SCAWI 0.1706 0.5119 0.2389

Smieja 0.0000 0.0000 0.0000

4.2.3. Comments and Remarks

In terms of convergence success (Table 8) all initialization methods seem to have

similar performance while the method of Bottou gives the best results as the networks

initialized with this method are trapped in local minima for only 9 trials (2% of the

total number of trials). The results reported in Table 9 support the improvement in

convergence rate offered by the proposed method, when compared with other weight

initialization methods in the context of these function approximation problems. Con-

40

cerning generalization, results in Table 10 indicate that the performance observed for

the LIT-Approach seems to be among the best of all methods. These remarks are con-

firmed by the results of the Friedman test in Table 11 and the posthoc procedures in 12,

especially regarding the convergence rate.

On the other hand generalization performance of the LIT-Approach is found to

be marginally weaker than the performance of Bottou’s method. Compared with the

results of suite 1 performance of the LIT-Approach in terms of generalization is con-

sidered here suboptimal. Various reasons may account for this. One reason is the fact

that the distribution of the input data for benchmarks Function1 and Function3 was

considered to be the normal and therefore it was “roughly” approximated using the

term 1.5σxi . Actually, it seems that defining weight intervals with different ranges for

the input variables seems meaningless for function approximation problems as these

are different from classification ones. Moreover, speaking about ouliers and extreme

input data in the case of a function approximation benchmark is useless. However, in

the context of the LIT-Approach we have not considered that function approximation

should be treated as a special case. So, it remains as an open issue for further investiga-

tion, in the case of function approximation, the estimation of the optimal value k for the

term 1.5σxi , given a specific function approximation problem. However, these claims,

as well as others, need to be further investigated with more benchmarks together with

taking into account the whole input set of training patterns.

What is noteworthy here is the poor generalization performance achieved by the

network when initialized with the Nguyen-Widrow method; in this case, it is very

likely that the network gets trapped in local minima. One should note that, seemingly,

the Nguyen-Widrow method showed notable performance in convergence rate when

experimenting with the non-linear Function 1, which is reported in the original paper

by Nguyen and Widrow (Nguyen & Widrow, 1990).

4.3. Suite 2 of Experiments

4.3.1. Experimental Setup

Setting up this suite is motivated by the importance the research community has

devoted to the weight initialization method of Nguyen and Widrow. In addition, pop-

41

ular neural network packages, such as the Neural Network Toolbox of MATLAB and

the Encog Neural Network Framework (2013), use this technique as the default initial-

ization algorithm for neural networks.

The datasets used for these experiments and basic features of the problems are

briefly outlined here. More details on these benchmarks can be found in the UCI

repository of machine learning database (Frank & Asuncion, 2010) and references cited

therein.

1. Iris classification benchmark (inputs:4, outputs:3). This benchmark is known as

Fisher’s Iris problem. Based on the values of sepal length and width, petal length

and width, the class of iris plant needs to be predicted. The data set contains 3

classes of 50 instances each, where each class refers to a type of iris plant. The

training set used consists of 120 examples and the test set of 30 examples.

2. Pima Indians Diabetes problem (inputs:8, outputs:2). The aim of this real world-

classification task is to decide when a Pima Indian individual is diabetes positive

or not. The values of the input attributes represent personal data and result from a

medical examination. The dataset consists of a total of 768 patterns. The training

set used consists of 576 patterns and the test set of the 192 remaining patterns.

3. Thyroid classification problem (inputs:21, outputs:3). Based on patient query

data and patient examination data the task is to decide whether the patient’s thy-

roid has over function, normal function, or under function. Using the original

thyroid1 dataset the training set is made from 5400 patterns while the test set is

made from 1800 patterns.

4. Yeast classification problem (inputs:8, outputs:10). Yeast is a relatively compli-

cated organism possessing different types of proteins, related to the cytoskele-

tal structure of the cell, the nucleus organization, membrane transporters and

metabolic related proteins (as mitochondrial proteins). After the necessary pre-

processing, Yeast data is found to include 1453 patterns, that is, there are 1453

proteins labeled according to 10 sites. As the data set is radically imbalanced,

the training set was generated by randomly selecting approximately the 70% of

patterns from each of the 10 sites, giving a total of 1019 training patterns. The

42

rest of the patterns, i.e. 434, were included in the test set.

5. Gene2 classification (inputs:120, outputs:3). This is a binary problem with 120

input attributes and 3 output classes. The goal of this classification task is to

decide, from a window of 60 DNA sequence elements (nucleotides), whether the

middle is either an intron/exon boundary (a donor), or an exon/intron boundary

(an acceptor), or none of them. The dataset for this problem was created based on

the Splice-junction Gene Sequences dataset from the UCI repository, (Frank &

Asuncion, 2010). It consists of 2990 patterns (duplicates are excluded) and it is

partitioned to form the training set (2243 patterns) and the test set (747 patterns).

The original datasets were preprocessed to eliminate duplicate patterns and values were

scaled to match requirements set by the weight selection procedures. These operations

were performed according to PROBEN1 guidelines, (Prechelt, 1994). Unless otherwise

stated, the training sets used are made with 75% of the patterns of the initial dataset

and the test sets with the rest 25% of the patterns.

For each benchmark a neural network architecture was defined. Batch processing

was used for training with five well known training algorithms, namely, the Adaptive

gradient descent with momentum (AGDM) (Vogl et al., 1988; Hagan et al., 1996), Re-

silient back-propagation (RBP) (Riedmiller & Braun, 1993), the Levenberg-Marquardt

method (LM) (Hagan et al., 1996; Marquardt, 1963; Hagan & Menhaj, 1994), Scaled

conjugate gradient (SCG) (Moller, 1993) and the Broyden-Fletcher-Goldfarb-Shanno

method (BFGS) (Gill et al., 1981). For each benchmark a set of a thousand (1000)

initial weight vectors was created by each one of the two initialization methods and

used in all experiments. A total of 50 (= 5 benchmarks × 5 training algorithms × 2

initialization methods) experiments were carried out, giving a total of 25000 weights

for each initialisation method. Architectures of the networks and training parameters

used are those reported in the literature (Anastasiadis, 2005) to be the most appropri-

ate for each problem; see Table 13. Note that the value of the momentum coefficient

was set to 0.5 and all networks are fully connected without intra-layer or supra-layer

connections.

43

Table 13: Architectures of networks and training parameters used for the Suite 2 of experiments

Benchmark
Network Activation Total Learning Max Goal Min

architecture function* weights rate† epochs‡ for MSE‡ gradient‡

Iris 4-2-3 logsig 19 0.90 5000 0.01 1.0e-09

Diabetes 8-2-2-2 logsig 30 0.50 2000 0.14 1.0e-09

Thyroid 21-4-3 logsig 103 0.50 2000 0.035 1.0e-09

Yeast 8-16-10 logsig 314 0.50 5000 0.05 1.0e-09

Gene2 120-4-2-3 tansig 503 0.50 5000 0.0075 1.0e-09

* logsig denotes the logistic sigmoid function and tansig is the hyperbolic tangent
† Learning rate is the initial learning rate used for training
‡ Training stops when at least one of the following conditions is satisfied, Max epochs is reached, Error of the network

output becomes lower than or equal to Goal for MSE, Min gradient is reached during training.

Table 14: Convergence success results for the Suite 2 of experiments

Benchmark

Training Algorithms

AGDM BFGS LM RBP SCG

NW LIT-A NW LIT-A NW LIT-A NW LIT-A NW LIT-A

Iris 18.2 100.0 11.5 46.3 42.8 96.0 76.1 99.9 46.9 98.5

Diabetes 12.2 77.2 21.5 73.9 40.3 63.4 39.1 77.3 40.5 70.2

Thyroid 19.0 99.1 58.1 73.9 85.2 99.9 100.0 100.0 93.6 91.3

Yeast 94.5 100.0 35.3 98.3 68.1 94.4 100.0 100.0 84.7 100.0

Gene2 20.1 86.5 1.8 6.7 32.5 43.9 6.9 35.2 26 75.7

All numbers indicated are in the range 0 . . . 100 to denote the percentage of successful training trials

4.3.2. Analysis of the Results

The results obtained regarding the performance measures set are shown in Tables

14, 15 and 16. A rough observation of these results shows that the proposed LIT-

Approach delivers successful network performance for all parameters.

The statistical analysis, applied on results in Tables 15 and 16, concerns the com-

parison of the two initialization techniques using t-test for independent unpaired sam-

ples data. However, while the samples are independent by default, application of the

t-test assumes that these samples are drawn from normally distributed populations with

equal variances. The Shapiro-Wilk test (Shapiro & Wilk, December 1965) was used to

test the normality assumption, with α = 0.05, while SPSS automatically uses Levene’s

test for equality of variances, (Green & Salkind, 2003). In all experiments, except one

(training Gene2 benchmark with the BFGS algorithm for generalization performance)

44

the hypothesis of normality is rejected (p-value< 0.05) for the results of both weight

initialization methods and so the non-parametric Mann-Whitney test for independent

samples is used to compare equality of medians. The statistical significance of the

comparison, that is the p-value (Sig.) indicated underneath the results for every pair of

experiments, is the one calculated by the Mann-Whitney test (or the t-test, when the

normality assumption is validated), (Green & Salkind, 2003).

Results in Table 15, are indicative that in all cases, except in two of them, the pro-

Table 15: Convergence rate results for the Suite 2 of experiments

Training Algorithms

AGDM BFGS LM RBP SCG

NW LIT-A NW LIT-A NW LIT-A NW LIT-A NW LIT-A

Iris

Min 174 111 9 21 4 3 91 33 15 14

Max 4927 143 1076 3272 3532 621 4027 1381 4508 205

Median 981 117 59 51 13 7 512 67 167 26

Sig. 0.000 0.863 0.000 0.000 0.000

Diabetes

Min 254 366 63 56 6 5 67 74 59 48

Max 1996 1999 1935 1835 1925 1903 1977 1996 1993 1971

Median 1021 1436 250 123 27 18 465 681 390 166

Sig. 0.000 0.000 0.000 0.000 0.000

Thyroid

Min 282 211 186 176 10 10 92 84 570 329

Max 1992 528 1976 1971 1999 1659 1455 687 1991 1980

Median 402 319 788.5 575 45 25 268 103 1229 732.5

Sig. 0.000 0.000 0.000 0.000 0.000

Yeast

Min 729 906 168 187 7 7 74 73 102 103

Max 4753 1594 4636 4348 4560 4432 280 197 4701 800

Median 1553 1148.5 403 423 20 12 130 112.5 196 145

Sig. 0.000 0.534 0.000 0.000 0.000

Gene2

Min 489 283 110 57 12 11 436 222 129 61

Max 4971 4956 4757 4990 4976 4675 4946 4654 4974 4962

Median 2426 720 1936 794 31 24 2281 697.5 1118 155

Sig. 0.000 0.016 0.000 0.000 0.000

45

posed method produced initial weight vectors which permitted faster convergence of

the training algorithm in use. In the other two cases, the Iris and the Yeast benchmarks,

the two weight initialization methods seem to allow for the same performance of the

BFGS training algorithm.

With regards to generalization, results are presented in Table 16 and denote the per-

centage of successfully classified unknown patterns. In the case of Gene2 benchmark

for networks trained with the BFGS algorithm, mean values (marked with *) are used

instead of medians, as the Shapiro-Wilk test approved the normality of populations

which allowed us to use the t-test.

Results, in Table 16, show that the proposed initialization method led to networks

that generalize better in about 50% of the cases (12 out of the 25 comparisons) while

the Nguyen-Widrow initialization technique was superior in only 3 cases. One may

notice inconsistency between the p-values indicating significant difference between the

medians while these medians appear, for the Iris problem and some training algorithms,

to be the same. Indeed, the values of the medians suggest that the two methods display

the same performance in terms of generalization. However, for the NW algorithm the

score of 95.56% is taken over 18.2% of successful trials while for the LIT-Approach

95.56% corresponds to 100% of successful trials.

4.3.3. Comments and Remarks

The proposed method demonstrates better performance than the one proposed by

Nguyen and Widrow in all cases. However, despite the fact that these benchmarks

concern classification problems while the method of Nguyen and Widrow was origi-

nally demonstrated for a function approximation problem, we believe that, what really

affects performance of this method is the neural networks architecture itself and not

the type of the problem at hand. The magnification factor multiplying the randomly

selected input-to-hidden layer weights for a (2-21-1) network is given by the formula

0.7H1/N = 211/2 ' 4.5 where H denotes the number of hidden layer nodes. Weights

of this magnitude seem to define in the weight space a starting point which accelerates

convergence of the training algorithm.

On the other hand, it is easy to notice that when the network has a differently

46

Table 16: Generalization performance results (%) for the Suite 2 of experiments

Training Algorithms

AGDM BFGS LM RBP SCG

NW LIT-A NW LIT-A NW LIT-A NW LIT-A NW LIT-A

Iris

Min 95.56 95.56 91.11 91.11 91.11 91.11 93.33 93.33 91.11 93.33

Max 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78

Median 95.56 95.56 95.56 95.56 95.56 95.56 95.56 95.56 95.56 97.78

Sig. 0.000 0.000 0.000 0.351 0.000

Diabetes

Min 70.83 69.27 68.23 65.63 68.75 67.71 68.23 68.23 68.75 68.23

Max 78.65 78.65 80.73 79.17 79.69 79.17 79.17 79.17 79.69 80.21

Median 75.52 76.04 75.52 75.52 75.52 75.00 75.00 75.52 75.52 75.52

Sig. 0.000 0.029 0.011 0.000 0.234

Thyroid

Min 92.28 93.78 92.22 92.50 92.10 92.18 92.25 93.05 97.11 96.67

Max 94.22 94.17 98.28 98.50 99.00 99.00 98.30 98.75 98.33 98.44

Median 93.67 94.06 97.44 97.78 98.28 98.33 97.07 97.90 97.83 97.86

Sig. 0.000 0.000 0.000 0.000 0.788

Yeast

Min 55.07 58.53 44.47 43.55 38.82 45.39 58.29 58.53 43.55 51.15

Max 64.06 64.06 62.44 61.29 62.90 63.82 64.52 64.29 63.59 63.36

Median 60.83 61.52 55.99 52.77 57.14 60.60 61.52 61.52 59.45 60.37

Sig. 0.000 0.000 0.000 0.081 0.000

Gene2

Min 78.18 79.38 82.33 82.06 79.38 78.31 79.79 79.79 79.12 76.04

Max 90.76 91.43 89.83 89.29 90.36 90.50 89.70 90.76 90.50 90.63

Median 85.68 87.15 85.54† 85.82† 86.61 85.54 86.75 86.08 85.81 86.75

Sig. 0.000 0.541† 0.000 0.098 0.000

(%) all numbers in this table denote percentage.
† denotes that with the BFGS algorithm, mean values are used instead of medians, as the Shapiro-Wilk test ap-

proved the normality of populations which allowed us to use the t-test.

shaped architecture, that is, the number of input nodes is higher than the number of

hidden nodes, the factor H1/N tends to reduce to 1. In consequence the initialization

method tends to degenerate to the commonly used random weight selection in the in-

47

terval [−1, 1]. Hence, performance of the Nguyen-Widrow method strongly depends

on the number of nodes of the input and the hidden layers. This argument may be

experimentally confirmed by progressively training a network while gradually increas-

ing the number of hidden layer nodes. Some training trials we performed on the Iris

problem showed that convergence rate of the Nguyen-Widrow method increases when

increasing the hidden layer units. Nevertheless, the price to pay for this is the decrease

in generalization performance.

4.4. Suite 3 of Experiments

4.4.1. Experimental Setup

The objective of this suite is twofold. Firstly, it was set up in order to test the abil-

ity of the LIT-Approach to deal with problems having a big number of features and

thus see if the assumptions underlying the method remain valid when the method ad-

dresses large real life problems. The second objective is to test the performance of the

LIT-Approach against more recent competitors that do not belong to the “family” of

methods which randomly select initial weights from some predefined interval. Among

such methods we retained the following:

Linear-Least-Squares initialization of MLPs through backpropagation of the desired

response (LLSQ). The method uses a technique for backpropagating the desired re-

sponse of an MLP through its nonlinear layers. This permits to train each layer by

solving a linear system of equations per layer which is the solution to a linear least

squares problem. The authors claim that besides initialization the method can be used

for training the network (Erdogmus et al., 2005).

Computing Linear-Least-Squares layer by layer in forward direction (FLLS). The out-

puts of the first hidden layer are assigned with random numbers in the active region of

the activation function of the nodes. The inverses of these output values are computed

and a linear least squares problem is solved to define the weights of the input to the

hidden layer. Using these weights and the input patterns, actual outputs are computed

and used to repeat the process towards the next layer until the output layer. The method

48

determines the initial weights by successively solving one linear least squares problem

per layer in a feed forward way (Yam & Chow, 1997).

Particle Swarm Optimization based weight initialization (PSOI). The method was ini-

tially proposed in van den Bergh (1999). Particle Swarm Optimization is used to define

the most pertinent initial weights which are then used for subsequent training by BP.

Actually, PSO performs pretraining of the MLP for some iterations before activating

BP. The method is an evolutionary approach to weight initialization which, however,

suffers itself from the initialization problem. In our experiments PSO is activated for

20 iterations and the weights computed are used, in the sequel, by the online BP.

Hereafter we will refer to these methods using their acronyms. In addition to the

above in this suite we used the method of Bottou. Hence we form a complete test

of comparisons between five methods; the previous three and the two methods that

had the best performance in the other test suites. It is important to note that in this

suite the algorithm implementing LIT-Approach uses the third quartile of the input

data Q3 instead of some multiple of the standard deviation. Moreover, the weights of

the hidden-to-output nodes are computed using assumptions introduced in subsection

3.3. The benchmarks used for this test suite are defined hereafter in alphabetical order.

1. Far-infrared Laser (FIL) (inputs:50, outputs:1). This is an extension of the Data

Set A from the Santa Fe Competition Data (Weigend & Gershenfeld, 2001) con-

sisting of sampled values from the emission intensity of far-infrared laser (NH3-

FIR) (Hüebner et al., 1989). It is a time series forecasting problem and the aim

is to predict the intensity of a far infared laser at a particular moment from past

samples. In our tests we choose to predict the value of the quantity x at time k+1

given the past 50 samples xk, xk−1, · · · , xk−49 as in Yam & Chow (2001). The to-

tal number of patterns is 10043. The training set was made with 8000 patterns

and the rest 2043 were used for the test set.

2. Landsat Satellite Data (LSAT) (inputs:36, outputs:6). This dataset was generated

taking a small section (82 rows and 100 columns) from the original Landsat data.

49

The dataset consists of the multi-spectral values of pixels in 3x3 neighborhoods

in a satellite image. The aim is to predict the classification associated with the

central pixel in each neighborhood. Each line in the data contains 36 values, that

is, the pixel values in the four spectral bands times the 9 pixels in the 3x3 neigh-

bourhood. The classification label of the central pixel is a number corresponding

to one of the seven classes. Note that class 6 has no examples in this dataset.

The total number of 6435 patterns available was partitioned in the training set

composed of 4435 patterns and the test set having 2000 patterns.

3. Multiple Features Data Set (MFEAT) (inputs:649, outputs:10). This dataset was

created by Robert P.W. Duin, Dept. of Applied Physics, Univ. of Delft. It

consists of features of handwritten digits (‘0’–‘9’) extracted from a collection of

Dutch utility maps. A number of 200 patterns per class, that is a total of 2000

patterns have been digitized in binary images. These digits are represented in

terms of the following six feature sets given in separate files:

- mfeat-fou: 76 Fourier coefficients of the character shapes

- mfeat-fac: 216 profile correlations

- mfeat-kar: 64 Karhunen-Loève coefficients

- mfeat-pix: 240 pixel averages in 2 x 3 windows

- mfeat-zer: 47 Zernike moments

- mfeat-mor: 6 morphological features

The 2000 patterns, contained in each file, are stored in ASCII on 2000 lines. The

first 200 patterns correspond to class ‘0’, the next 200 to class ‘1’, that is, sets of

200 patterns for each of the classes ‘0’–‘9’. The training set for our experiments

consists of 1500 patterns and the test set has 500 patterns.

4. The MNIST database of handwritten digits (inputs:784, outputs:10). The MNIST

database was constructed from NIST’s Special Database 1 (SD-1) and Special

Database 3 (SD-3), which contain binary images of handwritten digits (LeCun

et al., 2004). The MNIST training set has a total of 60000 patterns, that is, 30000

patterns from SD-1 and 30000 patterns from SD-3. The test set is composed of

50

5000 patterns from SD-1 and 5000 patterns from SD-3 that is a total of 10000

patterns. The sets of writers of the training set and test set were disjoint. For

performance reasons of our experiments we formed a training set consisting of

10% of the patterns of the original training set and a test set with 10% of the

patterns of the original test set. For every class in the database we selected the

first 10% of the patterns belonging to this class thus forming a balanced sample

of the original dataset. So the training set for our experiments consists of 6000

patterns and the test set has 1000 patterns.

A total of 18 (16+2) training experiments were executed for the above 4 benchmarks

and the 4 (LIT-A, Bottou, FLLS, PSOI) weight initialization methods considered in

this subsection. The other 2 experiments concern the LLSQ method which was tested

only against the FIL and LSAT benchmarks. Each training experiment is made up of

a hundred (100) initial weight vectors derived using one of the weight initialization

methods. The same network architecture was initialized with these vectors and trained

using online BP. The network architecture and the training parameters, used in this

arrangement, are reported in Table 17. Benchmarks are listed in increasing order of the

number of features using their acronyms.

Table 17: Architectures of networks and training parameters used for the Suite 3 of the experi-

ments

Benchmark
Network Activation Learning Convergence Max Input data

architecture function† rate criterion cycles scale

LSAT 36-36-6 tansig‡ 0.9 90% 250 [-1,1]

FIL 50-20-1 logsig 0.9 0.001 100 [0,1]

MFEAT 649-649-10 logsig 0.15 97.5% 500 [-1,1]

MNIST 784-300-10 logsig 0.15 95% 500 [-1,1]

† logsig denotes the logistic sigmoid function and tansig is the hyperbolic tangent
‡ Landsat benchmark uses the hyperbolic tangent for the hidden layer nodes and the logistic sigmoid for nodes

in the output layer. All other networks use the same activation function for all nodes.

4.4.2. Analysis of the Results

Tables 18, 19 and 20 report the experimental results on the benchmarks for the per-

formance measures considered. The symbol – is used in these Tables to denote that the

51

corresponding initialization method failed to meet the convergence criteria exceeding

the maximum number of cycles in all trials. A quick look at these results shows that the

three newly introduced initialization methods have very poor performane especially in

the case of the benchmarks with a big number of features. We need to note that regard-

ing the method LLSQ these tables report the results only for the first two benchmarks

that is LSAT and FIL.

The comparison between the performance of the initialization methods was carried

out using ANOVA for the LSAT and FIL benchmarks. The difference between the

proposed LIT-Aproach and the other methods is indicated with a * and supported by

the corresponding p-value (Sig.). In addition comparison of the initialization methods

in these benchmarks is carried out using the non-parametric test of Friedman and the

posthoc procedures of Bonferroni-Holm and Benjamini-Hochberg in the same context

as for the suite 1 of the experiments. The average rankings computed are reported in

Table 21. These rankings roughly confirm the results observed regarding the mean

values of the performance parameters. Pairwise comparison results reported in Ta-

ble 22 reward the performance of LIT-Approach in terms of convergence rate while

they reveal that the proposed method has the same performace with Bottou’s method

regarding generalization.

Table 18: Convergence success results in 100 trials for the Suite 3 of the experiments

Benchmark
Initialization Algorithms

Bottou FLLS LIT-A LLSQ PSOI

LSAT 100 0 100 72 68

FIL 100 0 100 0 100

MFEAT 100 0 100 ** 0

MNIST 100 0 100 ** 0

4.4.3. Comments and Remarks

The results of these experiments coincide with those already obtained in the previ-

ous suites. As seen above the LIT-Approach is dominant in terms of convergence speed

and seems to be equal, or at most slightly weaker, in terms of generalization compared

with Bottou’s method. The method of Bottou is generally powerful while it seems to

52

Table 19: Convergence rate results for the Suite 3 of the experiments

Benchmarks
Initialization Algorithms

LIT-A Bottou FLLS LLSQ PSOI

LSAT

Mean 110 120.46 251* 143.32* 150.95*

St.D. 40.96 31.36 0.00 78.08 75.92

Sig. 0.363 0.000 0.000 0.000

FIL

Mean 7.51 7.15 0.00* 0.00* 9.6*

St.D. 0.67 0.69 0.00 0.00 3.25

Sig. 0.589 0.000 0.000 0.000

MFEAT

Mean 5.39 12.97* – ** –

St.D. 4.36 1.02 – ** –

Sig. – – ** –

MNIST

Mean 7.66 11.66* – ** –

St.D. 0.61 0.48 – ** –

Sig. – – ** –

∗ denotes that the mean value of the initialization method is significantly different

from the mean value of LIT-A using the indicated p-values (Sig.) computed by

the posthoc analysis of the ANOVA results.
– denotes that the initialization method failed to meet the convergence criteria ex-

ceeding the maximum number of cycles in all trials.
** denotes that the initialization method was not tested for this benchmark.

be weaker when addressing problems with big number of features such as MFEAT and

MNIST. These remarks are also supported by the non-parametric statistical analysis

tests, Tables 21 and 22, for both performance characteristics. What is disarming is the

seemingly bad performance of the other methods. We need to note here that in these

experiments we do take into account the resources needed in terms of time and mem-

ory for an initialization procedure to run. The reason is that the weight initialization

methods based on random weight selection need very little memory to run and they

preprocess the input patterns only in order to extract simple statistics of the sample.

On the other hand the memory and time requirements set by methods not based on

random weight selection constitute a serious barrier for their application in real life

problems. Finally, besides the limitations analyzed in subsection 3.2, LIT-Approach

seems to perform very well even in the case of the selected real life problems with big

53

Table 20: Generalization performance results for the Suite 3 of the experiments

(FIL in mean absolute error)

Benchmarks
Initialization Algorithms

LIT-A Bottou FLLS LLSQ PSOI

LSAT

Mean 88.27% 88.33% 45.19%* 85.42%* 83.56%*

St.D. 0.42% 0.44% 13.73% 6.39% 9.05%

Sig. 0.972 0.000 0.000 0.000

FIL

Mean 0.0155 0.0158 0.2765* 0.0668* 0.0176*

St.D. 0.0007 00010 0.1451 0.0282 0.0017

Sig. 0.157 0.000 0.000 0.000

MFEAT

Mean 98.52% 98.69% – ** –

St.D. 0.23% 0.24% – ** –

Sig. – – ** –

MNIST

Mean 89.69% 89.57% – ** –

St.D. 0.41% 0.26% – ** –

Sig. – – ** –

∗ denotes that the mean value of the initialization method is significantly different from

the mean value of LIT-A using the indicated p-values (Sig.) computed by the posthoc

analysis of the ANOVA results.
– denotes that the initialization method failed to meet the convergence criteria exceeding

the maximum number of cycles in all trials.
** denotes that the initialization method was not tested for this benchmark.

Table 21: Average ranking achieved by the Friedman test (Suite 3 of the experiments)

Initialization Convergence Rate Generalization
method

Bottou 2.01 1.63

LIT-A 1.54 1.64

FLLS 4.30 4.50

LLSQ 3.80 3.87

PSOI 3.35 3.36

Statistic 890.44 1094.19

p-value 0.25e-09 0.0

number of patterns. It is worth noting that we have not considered benchmarks with

even higher number of features as these are normally treated with feature selection

and/or dimensionality reduction methods before applying a classification method that

54

Table 22: p-values of multiple comparisons (Suite 3 of the experiments)

Initialization
Unadjusted

Adjusted

algorithm Bonferroni-Holm Benjamini-Hochberg

Convergence rate (Control algorithm is LIT-A)

Bottou 0.0000 0.0001 0.0000

FLLS 0.0000 0.0000 0.0000

LLSQ 0.0000 0.0000 0.0000

PSOI 0.0000 0.0000 0.0000

Generalization (Control algorithm is Bottou)

LIT-A 0.9554 1.0000 1.0000

FLLS 0.0000 0.0000 0.0000

LLSQ 0.0000 0.0000 0.0000

PSOI 0.0000 0.0000 0.0000

requires parameter initialization.

5. Conclusion

In this paper we studied an interval analysis approach for neural network weight

initialization with the aim to deal with uncertainty about the initial weights. Instead of

algebraically solving a linear interval system we formulated and solved a linear inter-

val tolerance problem. Hence, a self contained standalone algorithm is proposed that

inherently includes major concepts such as: the number of inputs to a node in the first

hidden layer, the statistical information of the input data, effective positioning of the

hyperplanes in the pattern space and full utilization of the dynamic range of the acti-

vation function. Both the theoretical analysis and the experimental results suggest that

the proposed LIT-Approach successfully tackles the problem of neural saturation while

avoiding false local minima.

The proposed LIT-Approach has been compared against other well known random

weight initialization techniques on a number of well known real world benchmarks.

The experiments carried out cover a broad range of problems using networks with

architectures of increasing complexity. The results obtained are suggestive of the ef-

ficiency of the proposed method while providing an overall classification framework

for some of the most well known weight initialization methods. For all performance

55

characteristics set, the proposed method is either on top of other initialization methods

or at least exhibits similar performance with the other methods. Moreover, it is easy

to notice that the proposed method demonstrates stable inter-problem performance be-

haviour. We believe that all these features make the proposed method a reliable algo-

rithm for use in real life problems.

Solving the linear interval tolerance problem seems to successfully address the

problem of weight initialization. However, some important questions need to be in-

vestigated in future research. These questions concern the possibility to define among

all solutions in the Tolerance solution set, the optimal one, if any, for the weight ini-

tialization problem; the evaluation of different algorithms solving the linear interval

tolerance problem for weight initialization, and others, such as the potential offered by

such an approach to other types of neural networks.

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable sug-

gestions and comments on earlier draft of the manuscript, that helped to significantly

improve the paper at hand. Special thanks are due to Prof. Erdogmus for kindly offering

the software implementing the method LLSQ, as well as to Mr. George Dimakopoulos,

statistical analyst at the Technological Educational Institute of Epirus, for his helpful

comments regarding ANOVA.

References

Agresti, A., & Franklin, C. (2009). Statistics: The Art and Science of Learning from

Data. (3rd ed.). Boston, MA: Pearson Education.

Ahn, J., Marron, J., Muller, K. M., & Chi, Y.-Y. (2007). The high-dimension, low-

sample-size geometric representation holds under mild conditions. Biometrika, 94,

760–766.

Alefeld, G., & Herzberger, J. (1983). Introduction to Interval Computations. New

York, NY: Academic Press.

56

Alefeld, G., & Mayer, G. (2000). Interval analysis: theory and applications. Journal

of Computational and Applied Mathematics, 121, 421–464.

Anastasiadis, A. D. (2005). Neural Networks Training and Applications using Biolog-

ical Data. Ph.D. thesis Birkbeck College, University of London.

Beaumont, O., & Philippe, B. (2001). Linear interval tolerance problem and linear

programming techniques. Reliable Computing, 7, 433–447.

Bello, R., & Verdegay, J. L. (2012). Rough sets in the soft computing environment.

Information Sciences, 212, 1 – 14.

van den Bergh, F. (1999). Particle swarm weight initialization in multi-layer perceptron

artificial neural networks. In Proceedings of the ICAI, Development and Practice of

Artificial Intelligence Techniques (pp. 41–45). Durban, South Africa.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York, NY, USA:

Oxford University Press, Inc.

Boers, E. G. W., & Kuiper, H. (1992). Biological Metaphors and the Design of Modular

Artificial Neural Networks. Master’s thesis Leiden University Netherlands.

Bottou, L. Y. (1988). Reconnaissance de la parole par reseaux multi-couches. In

Proceedings of the International Workshop Neural Networks Applications, Neuro-

Nimes’88 (pp. 197–217). Nimes, France.

Chen, C. L., & Nutter, R. S. (1991). Improving the training speed of three-layer feed-

forward neural nets by optimal estimation of the initial weights. In Proceedings of

the International Joint Conference on Neural Networks, IJCNN’91 (pp. 2063–2068).

Seattle, WA volume 3.

Degrauwe, D., Lombaert, G., & Roeck, G. D. (2010). Improving interval analysis in

finite element calculations by means of affine arithmetic. Computers and Structures,

88, 247–254.

57

Derrac, J., Garcı́a, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use

of nonparametric statistical tests as a methodology for comparing evolutionary and

swarm intelligence algorithms. Swarm and Evolutionary Computation, 1, 3–18.

Drago, G. P., & Ridella, S. (1992). Statistically controlled activation weight initializa-

tion (SCAWI). IEEE Transactions on Neural Networks, 3, 627–631.

Erdogmus, D., Fontenla-Romero, O., Principe, J., Alonso-Betanzos, A., & Castillo, E.

(2005). Linear-least-squares initialization of multilayer perceptrons through back-

propagation of the desired response. IEEE Transactions on Neural Networks, 16,

325–337.

Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation net-

works. Technical Report CMU–CS–88–162 School of Computer Science, Carnegie

Mellon University Pittsburg.

Fernández-Redondo, M., & Hernández-Espinosa, C. (2001). Weight initialization

methods for multilayer feedforward. In Proceedings of the European Symposium

on Artificial Neural Networks, ESANN’2001 (pp. 119–124). Bruges, Belgium: D-

Facto.

Encog Neural Network Framework (2013). URL: http://www.heatonresearch.com/

encog/articles/nguyen-widrow-neural-network-weight.html.

Frank, A., & Asuncion, A. (2010). UCI Machine Learning Repository. URL: http:

//archive.ics.uci.edu/ml.

Garcı́a, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric

tests for multiple comparisons in the design of experiments in computational intelli-

gence and data mining: Experimental analysis of power. Information Sciences, 180,

2044–2064.

Garloff, J., Idriss, I., & Smith, A. (2007). Guaranteed parameter set estimation for

exponential sums: The three-terms case. Reliable Computing, 13, 351–359.

58

Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical Optimization. New York,

NY: Academic Press.

Goldsztejn, A. (2007). Comparison of the Hansen–Sengupta and the Frommer–Lang–

Schnurr. Computing, 79, 53–60.

Green, S. B., & Salkind, N. J. (2003). Using SPSS for Windows and Macintosh: Ana-

lyzing and Understanding Data. (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. Boston,

MA: PWS Publishing.

Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Mar-

quardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.

Hansen, E. (2006). Solving over-determined systems of interval linear equations. Re-

liable Computing, 12, 239–243.

Hansen, E., & Walster, G. W. (2004). Global Optimization Using Interval Analysis.

(2nd ed.). New York, NY: Marcel Dekker.

Hansen, E. R. (1992). Bounding the solution of interval linear equations. SIAM Journal

on Numerical Analysis, 29, 1493–1503.

Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks. Cambridge, MA:

MIT Press.

Haykin, S. (1999). Neural Networks A Comprehensive Foundation. (2nd ed.). Upper

Saddle River, NJ: Prentice-Hall.

Heindl, G., Kreinovich, V., & Lakeyev, A. (1998). Solving linear interval systems is

NP-hard even if we exclude overflow and underflow. Reliable Computing, 4, 383–

388.

Hu, C., & He, L. (2007). An application of interval methods to stock market forecast-

ing. Reliable Computing, 13, 423–434.

59

Hüebner, U., Abraham, N. B., & Weiss, C. O. (1989). Dimensions and entropies of

chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev. A,

40, 6354.

Ishibuchi, H., & Nii, M. (1998). Improving the generalization ability of neural net-

works by interval arithmetic. In L. C. Jain, & R. K. Jain (Eds.), Proc. 2nd Int. Conf.

Knowledge-Based Intelligent Electronic Systems, KES 1998. IEEE.

Jamett, M., & Acuña, G. (2006). An interval approach for weight’s initialization of

feedforward neural networks. In Proceedings of the 5th Mexican International Con-

ference on Artificial Intelligence, MICAI 2006 (pp. 305–315). Springer–Verlag vol-

ume 4293 of LNCS.

Kearfott, R. B. (1996). Interval computations: introduction, uses, and resources. Eu-

romath Bulletin, 2, 95–112.

Kim, Y. K., & Ra, J. B. (1991). Weight value initialization for improving training

speed in the back-propagation network. In Proceedings of the International Joint

Conference on Neural Networks, IJCNN’91 (pp. 2396–2401). Seattle, WA volume 3.

Krawczyk, R. (1969). Newton-algorithmen zur bestimmung von nullstellen mit fehler-

schranken. Computing, 4, 187–201.

Kreinovich, V., Lakeyev, A., Rohn, J., & Kahl, P. (1997). Computational Complexity

and Feasibility of Data Processing and Interval Computations. Dordrecht, Nether-

land: Kluwer Academic.

Kubica, B. J. (2010). Interval methods for solving underdetermined nonlinear systems.

Reliable Computing, 15, 207–217.

LeCun, Y. (1993). Efficient learning and second-order methods. Tutorial at Neural

Information Processing Systems Conference, NIPS.

LeCun, Y., Cortes, C., & Burges, C. J. (2004). The MNIST database of of handwritten

digits. URL: http://yann.lecun.com/exdb/mnist/.

60

Lee, Y., Oh, S. H., & Kim, M. W. (1991). The effect of initial weights on premature

saturation in back-propagation learning. In Proceedings of the International Joint

Conference on Neural Networks, IJCNN’91 (pp. 765–770). Seattle, WA volume I.

Li, G., Alnuweiri, H., & Wu, Y. (1993). Acceleration of back-propagation through

initial weight pre–training with delta rule. In Proceedings of the International Joint

Conference on Neural Networks, IJCNN’93 (pp. 580–5858). San Francisco, CA

volume 1.

Li, H., Li, H., & Du, Y. (2007). A global optimization algorithm based on novel interval

analysis for training neural networks. In Proc. 2nd Int. Conf. Advances in Computa-

tion and Intelligence ISICA’07 (pp. 286–295). Berlin, Heidelberg: Springer-Verlag.

Luengo, J., Garcı́a, S., & Herrera, F. (2009). A study on the use of statistical tests for

experimentation with neural networks: Analysis of parametric test conditions and

non-parametric tests. Expert Systems with Applications, 36, 7798–7808.

Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1997). Effective back-

propagation training with variable stepsize. Neural Networks, 10, 69–82.

Marquardt, D. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Pa-

rameters. SIAM Journal on Applied Mathematics, 11, 431–441.

Meyers, L. S., Gamst, G. C., & Guarino, A. J. (2013). Performing Data Analysis Using

IBM SPSS. (1st ed.). Hoboken, NJ: John Wiley.

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learn-

ing. Neural Networks, 6, 525–533.

Moore, R. E. (1966). Interval Analysis. Englewood Cliffs, NJ: Prentice–Hall.

Neumaier, A. (1984). New techniques for the analysis of linear interval equations.

Linear Algebra and its Applications, 58, 273–325.

Neumaier, A. (1986). Tolerance analysis with interval arithmetic. Freiburger Intervall-

Berichte 86(9). Albert-Ludwigs-Universität, Freiburg.

61

Neumaier, A. (1990). Interval Methods for Systems of Equations. New York, NY:

Cambridge University Press.

Nguyen, D., & Widrow, B. (1990). Improving the learning speed of two-layer neural

networks by choosing initial values of the adaptive weights. In Proceedings of the

International Joint Conference on Neural Networks, IJCNN’90 (pp. 21–26). Ann

Arbor, MI volume 3.

Ning, S., & Kearfott, R. B. (1997). A comparison of some methods for solving linear

interval equations. SIAM Journal on Numerical Analysis, 34, 1289–1305.

Osowski, S. (1993). New approach to selection of initial values of weights in neural

function approximation. Electronics Letters, 29, 313–315.

Palubinskas, G. (1994). Data-driven weight initialization of back-propagation for pat-

tern recognition. In Proceedings of the International Conference on Artificial Neural

Networks, ICANN’94 (pp. 851–854). London volume 2.

Parejo, J. A., Garcı́a, J., Ruiz-Cortés, A., & Riquelme, J. C. (2012). Statservice:

Herramienta de análisis estadı́stico como soporte para la investigación con meta-

heurı́sticas. In Actas del VIII Congreso Expañol sobre Metaheurı́sticas, Algoritmos

Evolutivos y Bio-inspirados.

Pavelka, A., & Procházka, A. (2004). Algorithms for initialization of neural network

weights. In Sbornı́k prı́spevku 12 rocnı́ku konference MATLAB 2004 (pp. 453–459).

Prague volume 2.

Pawlak, Z. (1991). Rough Sets - Theoretical Aspects of Reasoning About Data. Dor-

drecht, Netherlands: Kluwer Academic Publishers.

Penmetsa, R. C., & Grandhi, R. V. (2002). Efficient estimation of structural reliability

for problems with uncertain intervals. Computers and Structures, 80, 1103–1112.

Pivkina, I., & Kreinovich, V. (2006). Finding Least Expensive Tolerance Solutions and

Least Expensive Tolerance Revisions: Algorithms and Computational Complexity.

62

Technical Report UTEP–CS–06–37 Department of Computer Science, University

of Texas at El Paso El Paso.

Prechelt, L. (1994). PROBEN1, A set of benchmarks and benchmarking rules for neu-

ral network training algorithms. Technical Report 21/94 Fakultät für Informatik,

Universität Karlsruhe Germany.

PROBEN1 (1994). Anonymous ftp site. URL: ftp://ftp.ira.uka.de/pub/neuron/.

R-Documentation (2013). Adjust P-values for Multiple Comparisons. URL: http://

stat.ethz.ch/R-manual/R-patched/library/stats/html/p.adjust.html Package stats ver-

sion 2.15.2.

Ramachandran, K. M., & Tsokos, C. P. (2009). Mathematical Statistics with Applica-

tions. London, UK: Elsvier.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster back-

propagation learning: The RPROP algorithm. In Proceedings of the International

Conference on Neural Networks, ICNN 1993 (pp. 586–591). San Francisco, CA.

Rohn, J. (1993). Cheap and Tight Bounds: The recent result by E. Hansen can be made

more efficient. Interval Computations, 4, 13–21.

Rohn, J. (2003). Solvability of systems of linear equations. SIAM Journal on Matrix

Analysis and Applications, 25, 237–245.

Rump, S. M. (2001). Self-validating methods. Linear Algebra and its Applications,

324, 3–13.

Schmidhuber, J., & Hochreiter, S. (1996). Guessing can outperform many long time

lag algorithms. Technical Note IDSIA–19–96 Dalle Molle Institute for Artificial

Intelligence Manno–Lugano, Switzerland.

Shafer, G. A. (1976). Mathematical Theory of Evidence. Princeton, NJ: Princeton

University Press.

63

Shapiro, S. S., & Wilk, M. B. (December 1965). An analysis of variance test for

normality (complete samples). Biometrika, 52, 591–611.

Shary, S. P. (1995). Solving the linear interval tolerance problem. Mathematics and

Computers in Simulation, 839, 53–85.

Shary, S. P. (2002). A new technique in systems analysis under interval uncertainty and

ambiguity. Reliable Computing, 8, 321–418.

Shimodaira, H. (1994). A weight value initialization method for improved learning

performance of the back-propagation algorithm in neural networks. In Proceedings

of the 6th International Conference on Tools with Artificial Intelligence, ICTAI’94

(pp. 672–675). New Orleans.

Smieja, F. J. (1991). Hyperplane spin dynamics, network plasticity and back-

propagation learning. GMD Report National Resesearch Centre for Information

Science (GMD) Bonn (St. Augustine), Germany.

Sonoda, S., & Murata, N. (2013). Nonparametric Weight Initialization of Neural Net-

works via Integral Representation. URL: http://arxiv.org/abs/1312.6461.

Thimm, G., & Fiesler, E. (1994). High-Order and Multilayer Perceptron Initialization.

Technical Report 94–07 IDIAP Research Institute Martigny, Switzerland.

Thimm, G., & Fiesler, E. (1997). High-order and multilayer perceptron initialization.

IEEE Transactions on Neural Networks, 8, 349–359.

Vogl, T. P., Mangis, J. K., Rigler, J. K., Zink, W. T., & Alkon, D. L. (1988). Acceler-

ating the convergence of the back-propagation method. Biological Cybernetics, 59,

257–263.

de Weerdt, E., Chu, Q. P., & Mulder, J. A. (2009). Neural network output optimization

using interval analysis. IEEE Transactions on Neural Networks, 20, 638–653.

Weigend, A. S., & Gershenfeld, N. (2001). The Santa Fe Time Series Competition

Data. http://www-psych.stanford.edu/˜andreas/Time-Series/.

64

Wessels, L. F. A., & Barnard, E. (1992). Avoiding false local minima by proper initial-

ization of connections. IEEE Transactions on Neural Networks, 5, 899–905.

Xu, S., Lam, J., & Ho, D. W. (2005). Novel global robust stability criteria for interval

neural networks with multiple time-varying delays. Physics Letters A, 342, 322–330.

Yam, J. Y. F., & Chow, T. W. S. (2001). Feedforward networks training speed enhance-

ment by optimal initialization of the synaptic coefficients. IEEE Transactions on

Neural Networks, 12, 430–434.

Yam, Y. F., & Chow, T. W. S. (1995). Determining initial weights of feedforward neural

networks based on least squares method. Neural Processing Letters, 2, 13–17.

Yam, Y. F., & Chow, T. W. S. (1997). A new method in determining the initial weights

of feedforward neural networks for training enhancement. Neurocomputing, 16, 23–

32.

Yam, Y. F., & Chow, T. W. S. (2000). A weight initialization method for improving

training speed in feedforward neural networks. Neurocomputing, 30, 219–232.

Yata, K., & Aoshima, M. (2010). Intrinsic Dimensionality Estimation of High-

Dimension, Low Sample Size Data with D-Asymptotics. Communications in Statis-

tics - Theory and Methods, 39, 1511–1521.

Yoon, H.-S., Bae, C.-S., & Min, B.-W. (1995). Neural networks using modified initial

connection strengths by the importance of feature elements. In Proceedings of the

1995 IEEE International Conference Systems, Man and Cybernetics (pp. 458–461).

Vancouver, BC volume 1.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and

Systems, 1, 3–28.

65

x1

x2

y=w0+w1x1+w2x2

w0

Decision boundary

−
𝑤0

𝑤1
 −

𝑤0

𝑤2

Figure 1: Hyperplane position in the augmented pattern space. The intercepts with the axes and the decision

boundary are shown too. Adapted from Wessels & Barnard (1992).

66

