
Processing Keyword Queries under Access
Limitations?

Andrea Cal̀ı1,4, Thomas W. Lynch5,1,
Davide Martinenghi2, and Riccardo Torlone3

1Birkbeck, University of London, UK
andrea@dcs.bbk.ac.uk

2Politecnico di Milano, Italy
davide.martinenghi@polimi.it

3Università Roma Tre, Italy
torlone@dia.uniroma3.it

4Oxford-Man Inst. of Quantitative Finance
University of Oxford, UK

5Reasoning Technology Ltd, UK
thomas.lynch@reasoningtechnology.com

Abstract. The Deep Web is constituted by data accessible through web
pages, but not readily indexable by search engines, as they are returned
in dynamic pages. In this paper we propose a framework for accessing
Deep Web sources, represented as relational tables with so-called ac-
cess limitations, with keyword-based queries. We formalize the notion of
optimal answer and investigate methods for query processing. We also
outline the main ideas of our implementation of a prototype system for
Deep Web keyword search.

1 Introduction

It is reasonabe to assume that a user might want or need to query relational data
with keywords – for instance, if he is accessing data whose structure he ignores;
in this setting, the user is also free from having to know the query language.
This idea has been around for over a decade [3] Since then, a vast corpus of
research has been carried out in this field from the point of view of applications
(see e.g. [8] for a survey). The problem has been recently formalized in [2], where
a formal approach is provided, which is independent of the organization of data
in tables.

In this paper we propose an approach to keyword search on so-called Deep
Web sources. The Deep Web is constituted by data that are accessible only if
queried through a web page, usually by filling in an HTML form. We represent
Deep Web sources as relational tables; the necessity of filling in the aforemen-
tioned form with values forces one to access the relations with suitable selections;
these restrictions are referred to as access limitations. It is well known that an-
swering relational queries under access limitations requires the execution of a

? A preliminary version of this paper was published in the 9th Al-
berto Mendelzon Workshop on Foundations of Data Management, 2015,
http://ceur-ws.org/Vol-1378

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42134585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

recursive query plan [5, 4]. This is also true in our setting, where a recursive
extraction of tuples (or facts) is performed, according to the access limitations,
so as to search for the keywords in the data.

Our main contributions are the following.

– We formally define the notion of keyword queries under access limitations,
and the notion of answer (Section 2).

– We propose an algorithm for processing keyword queries under access limi-
tations (Section 3).

– We discuss the computational complexity of our algorithm, showing that the
problem of computing answers to keyword queries in our setting is tractable
(Section 3).

– We outline the main features of a prototype system that processes keyword
queries in the Deep Web (Section 4).

2 Problem definition

Basics. We model data sources as relations of a relational database and we
assume that, albeit autonomous, they have “compatible” attributes. For this,
we assume that the attributes of relations are defined over a set of abstract
domains D = {D1, . . . , Dm}, which, rather than denoting concrete value types
(such as string or integer), represent data types at a higher level of abstraction
(for instance, car or country). The set of all values is denoted by D =

⋃n
i=1Di.

In the following, we shall denote by R(A1, . . . , Ak) a (relation) schema, by
dom(A) ∈ D the domain of an attribute A, by r a relation over R, and by
r = {r1, . . . , rn} a (database) instance of a database schema R = {R1, . . . , Rn}.

Access limitations. An access pattern Π for a schema R(A1, . . . , Ak) is a mapping
sending each attribute Ai into an access mode, which can be either input or
output; Ai is correspondingly called an input (resp., output) attribute for R wrt.
Π. For ease of notation, we shall mark input attributes with an ‘i’ superscript to
distinguish them from the output ones. Let A′

1, . . . , A
′
l be all the input attributes

for R wrt. Π; any tuple 〈c1, . . . , cl〉 such that ci ∈ dom(A′
i) for 1 ≤ i ≤ l is called

a binding for R wrt. Π. An access α consists of an access pattern Π for a schema
R and a binding for R wrt. Π; the output of such an access α on an instance r
is the set T = σA1=c1,...,Al=cl(r). Intuitively, we can only access a relation if we
can provide a value for every input attribute. Given an instance r for a database
schema R, a set of access patterns Π for the relations in R, and a set of values
C ⊆ D, an access path (for R, Π and C) is a sequence of accesses α1, . . . , αn

on r such that each value in the binding of αi, 1 ≤ i ≤ n, either occurs in the
output of an access αj with j < i or is a value in C. A tuple t in r is said to be
reachable if there exists an access path P such that t is in the output of some
access in P ; the reachable portion reach(r,Π, C) of r is the set of all reachable
tuples in r given the values in C.

2

t31 t33

t23

t11

t21

t12

(a) Access paths

t31 t33

t23

t11

t21

t12

(b) Join graph

t31 t33

t23

t11t11

A2A1

(c) Answers

Fig. 1. Example 1: Reachable portion, corresponding join graph, and answers.

Keyword queries. A keyword query is a set of values in D called keywords.

Example 1 Consider a query q = {k1, k2}, a schema (with access patterns Π)
R = {R1(Ai

1, A2), R2(Ai
2, A1), R3(Ai

1, A2, A3)}, and an instance r such that

r1 =
Ai

1 A2

k1 c1 t11
c2 c3 t12

r2 =

Ai
2 A1

c1 c2 t21
c4 c2 t22
c1 c6 t23

r3 =

Ai
1 A2 A3

c2 c1 k2 t31
c5 c4 k2 t32
c6 c7 k2 t33

Figure 1(a) shows the reachable portion of r given the values in q along with the
access paths used to extract it, with dotted lines enclosing outputs of accesses.

Given a set T of tuples, the join graph of T is a node-labelled undirected graph
T = 〈N,E〉 constructed as follows: (i) the nodes N are labelled with tuples of
T , and (ii) there is an arc between two nodes n1 and n2 if the tuples labelling
n1 and n2 have at least one value in common.

Example 1 (cont.) The join graph of reach(r,Π, q) is shown in Figure 1(b).

Definition 1 (Answer). An answer to a keyword query q against a database
instance r over a schema R with access patterns Π is a set of tuples A in
reach(r,Π, q) such that: (1) each c ∈ q occurs in at least one tuple t in A;
(2) the join graph of A is connected; (3) for every subset A′ ⊆ A such that A′

enjoys Condition 1 above, the join graph of A′ is not connected.

It is straightforward to see that there could be several answers to a keyword
query; below we give a widely accepted criterium for ranking such answers [8].

Definition 2. Let A1,A2 be two answers of a keyword query q on an instance
r of size |A1| and |A2| respectively; we say that A1 is better than A2, denoted
A1 � A2, if |A1| ≤ |A2|. The optimal answers are those of minimum size.

Example 1 (cont.) The sets A1 = {t11, t31} and A2 = {t11, t23, t33} are an-
swers to q; A1 is better than A2 and is the optimal answer to q.

3

3 Keyword-based answering in the Deep Web

We now present a vanilla algorithm to discuss the computational complexity of
answering a keyword query q in the deep Web modeled as an instance r of a
schema R with access patterns Π. Example 1 shows that, in the worst case,
we need to extract the whole reachable portion to obtain the tuples involved
in an optimal answer. In fact, s = reach(r,Π, q) is actually a connected join
graph, since every tuple in it is in some output of some access path starting
from the values in the query (see for example Figure 1.a), but further paths may
exist between tuples in s (see Figure 1.b). Therefore, query answering requires
in general two main steps, described in Algorithm 1: (i) extract the reachable
portion s of r; (ii) if possible, remove tuples from s so that the obtained set
satisfies the conditions of Definition 1, while minimizing its size.

Algorithm 1: Computing an optimal answer (Answer(q,Π, r))
Input: Keyword query q, access patterns Π, instance r over R
Output: Answer A
1. A := reachablePortion(r,Π, q); // see Algorithm 2
2. if A does not contain all values in q then return nil;
3. else prune(A, q); // see Algorithm 3
4. return A;

A simple way of extracting the reachable portion, inspired by the procedure
described in [4], is shown in Algorithm 2. This algorithm may be allowed to
terminate early if the answer is not required to be optimal (flag ω set to false),
and thus can stop as soon as the reachable portion contains all the keywords
in the query. This is coherent with the distinct root-based semantics of keyword
search in relational databases, which provides a tradeoff between quality of the
result and efficiency of the method to evaluate it [8].

Algorithm 2: Reachable portion (reachablePortion(r,Π, q))
Input: Instance r over R, access patterns Π, initial values q
Flag: boolean ω // if ω = true the answer is guaranteed to be optimal
Output: Reachable portion RP
1. RP := ∅; C := ∅;
2. while an access can be made with a new binding b for some R ∈ R wrt. Π using values in C ∪ q

3. O := output of access to r over R with binding b;

4. RP := RP ∪ O; // cumulating all the obtained tuples into RP

5. C := C ∪
⋃

A∈R,t∈O{t(A)}; // cumulating all the obtained values into C
6. if C ⊇ q ∧ ¬ω then break;
7. return RP ;

Basically, determining an optimal answer from the reachable portion cor-
responds to finding a Steiner tree of its join graph [8], i.e., a minimal-weight

4

subtree of this graph involving a subset of its nodes. An efficient method for
solving this problem in the context of keyword search over structured data is
presented in [6], where a q-fragment can model our notion of answer. Yet, when
optimality is not required, a simple technique (quadratic in the size of r) to
obtain an answer (steps 2–6 of Algorithm 3) consists in trying to remove any
tuple from the set as long as it contains all the keywords and remains connected.

Algorithm 3: Pruning (prune(T , q))
Input: Set of tuples T , keyword query q
Flag: boolean ω // if ω = true the answer is guaranteed to be optimal
Output: Minimal set of tuples T
1. if ω then return a minimal subtree of the join graph of T that contains q;
2. T ′ := T ; T ′′ := ∅;
3. while T ′′ 6= T ′

4. T ′′ := T ′;

5. for each t ∈ T ′′ if T ′ \ {t} is connected and T ′ \ {t} ⊇ q then T ′ := T ′ \ {t};
6. return T ′;

The extraction of the reachable portion of an instance r with access lim-
itations can be implemented by a Datalog program over r [4], which can be
evaluated in polynomial time in the size of the input [7]. In addition, in [6] it
is shown that the optimal q-fragments of r can be enumerated in ranked-order
with polynomial delay, i.e., the time for printing the next optimal answer is again
polynomial in the size of r. Hence, we can state the following preliminary result.

Theorem 1. An optimal answer to a keyword query against a database instance
with access limitations can be efficiently computed under data complexity.

4 Implementation

We have implemented a prototype version of a system for processing keyword
queries over a set of Deep Web sources. Given the nature of the search, we extract
data on-the-fly and store them in main memory, conveniently represented in
graph format. The keyword search algorithms are run on the extracted data in
main memory rather than in a DBMS; the nature of keyword query processing
in this setting suggests that relying on a relational DBMS does not provide any
significant advantage.

The system is based on an underlying relational layer of Deep Web data called
Dataplex 1. The Dataplex framework was developed in Racket, a language of the
Lisp/Scheme family. In Dataplex, the only field type is text (string), and tables
are seen as containers with interface methods. The main idea behind Dataplex
is that facts can have lists as arguments; facts belong to shapes, that are the
equivalent of single-relation schemata. A shape is created with the call

1 http://thomaswlynch.com/liquid/liquid-doc/liquid/doc/liquid/index.html

5

(dataplex:create-shape name length)

and a tuple can be placed into the created container by

(shape:insert name value list).

Notice that in Dataplex data are stored, logically speaking, in two structures:
one that holds the values, and the other that bridges references to these values;
indices are used to improve performances in the accesses to data in Dataplex.

We are currently running experiments on keyword search by using the Dat-
aplex framework, which we will publish soon. As it is natural to predict, the
bottleneck in the efficiency of query processing is the extraction of data from
the sources.

5 Discussion and future work

In this paper we provided preliminary insights on keyword search in the Deep
Web. As future work on the problem, we plan to:

– devise optimization strategies for query answering; in particular, identify
conditions under which an optimal answer can be derived without extracting
the whole reachable instance;

– leverage known values (besides the keywords), modeled as relations with only
one (output) attribute, to speed up the search for an optimal answer;

– study the problem in a scenario in which the domains of the keywords are
known in advance: in this case schema-based techniques can be used;

– consider the case in which nodes and arcs of the join graph are weighed to
model source availability and proximity, respectively.

Acknowledgments. Andrea Cal̀ı and Thomas Lynch acknowledge support by
the EPSRC grant “Logic-based Integration and Querying of Unindexed Data”
(EP/E010865/1).

References

1. A.V. Aho, C. Beeri, and J.D. Ullman. The theory of joins in r elational databases.
ACM Trans. on Database Syst., 4(3):297314, 1979

2. R. Torlone. Towards a new Foundation for Keyword Search in Relational
Databases. AMW, 2014.

3. V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword Search in Relational
Databases. VLDB, pages 670–681, 2002.

4. A. Cal̀ı, D. Martinenghi. Querying Data under Access Limitations. In ICDE,
pag. 50–59, 2008.

5. C. Li, E. Y. Chang. Answering queries with useful bindings. ACM Trans. Database
Syst., 26(3), pages 313–343, 2001.

6. B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword
proximity search. In PODS, pag. 173–182, 2006.

7. M.Vardi.The complexityof relational querylanguages. InSTOC,pag.137–146,1982.
8. J. Xu Yu, L. Qin, and L. Chang. Search in Relational Databases: A Survey. IEEE

Data Eng. Bull., 33(1): 67–78, 2010.

6

